JPH09264794A - Infrared imaging apparatus - Google Patents

Infrared imaging apparatus

Info

Publication number
JPH09264794A
JPH09264794A JP8077501A JP7750196A JPH09264794A JP H09264794 A JPH09264794 A JP H09264794A JP 8077501 A JP8077501 A JP 8077501A JP 7750196 A JP7750196 A JP 7750196A JP H09264794 A JPH09264794 A JP H09264794A
Authority
JP
Japan
Prior art keywords
infrared
black body
sensitivity
optical path
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8077501A
Other languages
Japanese (ja)
Inventor
Takeshi Kawabata
剛 川畑
Tetsuo Tamura
哲雄 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
N II C MEDICAL SYST KK
Original Assignee
N II C MEDICAL SYST KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by N II C MEDICAL SYST KK filed Critical N II C MEDICAL SYST KK
Priority to JP8077501A priority Critical patent/JPH09264794A/en
Publication of JPH09264794A publication Critical patent/JPH09264794A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Optical Filters (AREA)

Abstract

PROBLEM TO BE SOLVED: To omit a drive circuit and to also simply perform the calibration of fluctuations in sensitivity by arranging a reference black body for adjusting the sensitivity of an infrared detector to an infrared filter changeover mechanism restricting incident infrared rays. SOLUTION: The infrared energy of a subject 1 is scanned by a scanning mechanism 3 such as a galvano mirror through the window of a detection part. The scanning circuit 12 controlled by a computer is driven by the mechanism 3. The infrared energy obtained by scanning the subject 1 is chopped by a chopper 6 through an infrared lens 5 functioning as an object lens. The chopper 6 becomes a black body of a level standard in a cut-off part cutting off infrared energy. The fluctuations in the sensitivity of an infrared detector 10 detecting the infrared energy emitted from the subject are related to the designation accracy of temp. and are caused by the deterioration with time of a detector material, and a plurality of standard infrared temp. black bodies are measured to correct sensitivity. The black body 3 for adjusting sensitivity is arranged to a changeover mechanism 14 and moved by a moving circuit 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は被写体より放射され
る赤外線を計測するための赤外線放射温度測定用の赤外
線撮像装置に係わり、特に撮像光路中に配設した感度調
整用基準黒体の駆動を簡単にした赤外線撮像装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared imaging device for measuring infrared radiation temperature for measuring infrared radiation emitted from a subject, and more particularly to driving a reference black body for sensitivity adjustment arranged in an imaging optical path. The present invention relates to a simplified infrared imaging device.

【0002】[0002]

【従来の技術】従来から、被写体等から自然放射されて
いる赤外線を検知してその温度分布等を画像化する赤外
線放射温度測定用の赤外線撮像装置はサーモグラフィー
装置としてよく知られている。
2. Description of the Related Art Conventionally, an infrared imaging device for infrared radiation temperature measurement, which detects infrared rays naturally emitted from a subject or the like and forms an image of its temperature distribution, etc., is well known as a thermography device.

【0003】これら赤外線撮像装置は被写体から放射さ
れる赤外線を撮像用の光学系を介してインジューム,ア
ンチモン又はセレン化鉛(InSb:PbSe)、或い
は水銀カドミウムテルル(HgCdTe)等で構成した
赤外線検出器に導かれ、該赤外線検出器では赤外線の強
さ(赤外線エネルギー)に応じた電気信号を発生する。
この信号をプリアンプを介して増幅し、例えばデジタル
系の信号処理回路に供給した後にサーモグラフィーデー
タとしたものを表示装置等で被写体の温度分布として画
像化して表示する様に成されている。
These infrared image pickup devices detect infrared rays emitted from a subject through an optical system for image pickup, and are composed of indium, antimony, lead selenide (InSb: PbSe), mercury cadmium tellurium (HgCdTe), or the like. Then, the infrared detector generates an electric signal according to the intensity of infrared rays (infrared energy).
This signal is amplified through a preamplifier, supplied to, for example, a digital signal processing circuit, and then thermographic data is imaged and displayed as a temperature distribution of a subject on a display device or the like.

【0004】この様な赤外線撮像装置に用いる赤外線光
学系の構成は従来は図4及び図5の如く構成されてい
た。先ず、図4について説明する。
The infrared optical system used in such an infrared image pickup device has conventionally been constructed as shown in FIGS. 4 and 5. First, FIG. 4 will be described.

【0005】図4に於いて、被写体1の温度分布を測定
するための検出部は上記した赤外検出器10の前段の赤
外線撮像光路に赤外検出器10側から赤外線フィルタ
8,チョッパ6,赤外レンズ5,ミラー2等が配され、
図示しないが走査系のガルバノミラー等を介して被写体
1を上から下に更に左から右に水平に順次走査して行く
ことで、これら光路中に配した光学系を介して赤外検出
器10で検出された赤外エネルギーの検出出力はプリア
ンプ11を介して信号処理回路に供給されてサーモグラ
フィーデータと成される。
In FIG. 4, the detector for measuring the temperature distribution of the subject 1 is provided with an infrared filter 8, a chopper 6, from the infrared detector 10 side in the infrared imaging optical path in the preceding stage of the infrared detector 10. Infrared lens 5, mirror 2 etc. are arranged,
Although not shown, the subject 1 is horizontally scanned from the top to the bottom and further from the left to the right through a scanning galvanometer mirror or the like, so that the infrared detector 10 can be detected through the optical system arranged in these optical paths. The detection output of the infrared energy detected in (1) is supplied to the signal processing circuit via the preamplifier 11 and is converted into thermographic data.

【0006】赤外検出器10と被写体1間に配された赤
外フィルタ8は撮像する被写体の物性、例えばガラス、
或いはプラスチック等の性質や温度に応じて切換えて使
用されるために、コンピュータ(以下CPUと記す)等
に接続されたフィルタ移動回路9及び移動機構によっ
て、被写体の温度レンジ或は撮像する被写体の違いによ
って複数の赤外フィルタの内の1つが選択されて撮像光
路中に配設される様に成されている。
An infrared filter 8 arranged between the infrared detector 10 and the subject 1 is a physical property of the subject to be imaged, such as glass,
Alternatively, since it is used by switching according to the property and temperature of plastic or the like, the difference between the temperature range of the subject or the subject to be imaged is determined by the filter moving circuit 9 and the moving mechanism connected to the computer (hereinafter referred to as CPU). One of the plurality of infrared filters is selected by and is arranged in the imaging optical path.

【0007】チョッパ6はスクリュー状回転盤或は回転
円盤に窓を設けたもので通常の温度測定時に基準黒体と
して使用されていてチョッパ駆動回路7によって駆動さ
れる。チョッパ6は窓部が赤外線撮像光路上に配された
開かれた状態では、被写体1の赤外線温度検出を行な
い。黒く塗られている円盤の遮蔽部が赤外線光路上に来
た時には赤外線撮像時のレベル基準黒体として使用され
る。赤外レンズ5は対物レンズとして機能する。赤外レ
ンズ5の前方に配設されているミラー2は赤外線光路中
に45°傾斜して配され、このミラー2は検出部の視野
外(光路外)に配設された黒体基準3から基準黒体の撮
像赤外線を取り込む、この黒体基準3はレベル基準とし
てではなくゲイン補正を行う場合に用いられる。
The chopper 6 is a screw-shaped rotary disk or a rotary disk provided with a window, is used as a reference black body during normal temperature measurement, and is driven by a chopper drive circuit 7. The chopper 6 detects the infrared temperature of the subject 1 when the window is open with the window located on the infrared imaging optical path. When the shield part of the disk painted in black comes on the infrared optical path, it is used as a level reference black body during infrared imaging. The infrared lens 5 functions as an objective lens. The mirror 2 arranged in front of the infrared lens 5 is arranged at an angle of 45 ° in the infrared optical path, and the mirror 2 is arranged from the black body reference 3 arranged outside the field of view (outside the optical path) of the detecting section. The black body reference 3 that captures the imaged infrared rays of the reference black body is used not as a level reference but when performing gain correction.

【0008】従って、赤外線による温度測定等の前にミ
ラー2をミラー移動機構によって赤外線撮像光路中に出
し入れするための光路移動回路4が必要となる。
Therefore, the optical path moving circuit 4 for moving the mirror 2 in and out of the infrared imaging optical path by the mirror moving mechanism is required before the temperature measurement by infrared rays.

【0009】従って、黒体基準3は赤外線放射温度検出
時にはミラー2が光路外に引き上げられるので、このミ
ラー2やミラー移動機構及び光路移動回路4はゲイン補
正の校正時のみに用いることになる。
Therefore, since the mirror 2 is pulled out of the optical path when the infrared radiation temperature is detected, the black body reference 3 is used only when calibrating the gain correction, the mirror moving mechanism and the optical path moving circuit 4.

【0010】図5に示すものは、従来の他の赤外線撮像
装置の構成を示すものであり、図4との対応部分には同
一符号を付して重複説明は省略する。
FIG. 5 shows the structure of another conventional infrared image pickup device, and the parts corresponding to those in FIG. 4 are designated by the same reference numerals and their duplicate description will be omitted.

【0011】図5の場合は赤外線レンズ5と被写体1間
の赤外線光路中に校正用のゲイン補正を行なうための基
準黒体3を直接挿入する様に成したものであり、基準黒
体3は黒体移動機構及び黒体移動回路4aによって赤外
線撮像光路中に挿入されたり光路外に排出されたりする
様に成されているもので他の構成は図3と同一である。
In the case of FIG. 5, the reference black body 3 for directly performing the gain correction for calibration is directly inserted in the infrared optical path between the infrared lens 5 and the subject 1. The black body moving mechanism and the black body moving circuit 4a are configured to be inserted into the infrared imaging optical path or discharged out of the optical path, and other configurations are the same as those in FIG.

【0012】[0012]

【発明が解決しようとする課題】上述の従来構成で説明
した赤外線撮像装置の光学系の構成によるとゲイン補正
を行うための基準黒体3を赤外線撮像光路中に出し入れ
させるための黒体移動機構及び黒体移動回路4a並びに
ミラー2を赤外線撮像光路中に出し入れさせるための光
路移動機構や光路移動回路4を黒体温度のゲイン補正だ
けの為に狭い検出部近傍に配設しなければならない問題
があった。
According to the configuration of the optical system of the infrared imaging device described in the above-mentioned conventional configuration, the black body moving mechanism for moving the reference black body 3 for gain correction into and out of the infrared imaging optical path. And a problem that the optical path moving mechanism for moving the black body moving circuit 4a and the mirror 2 in and out of the infrared imaging optical path and the optical path moving circuit 4 must be arranged in the vicinity of a narrow detection part only for gain correction of the black body temperature. was there.

【0013】本発明は叙上の問題点を解消した赤外線撮
像装置を提供しようとするものであり、その課題とする
ところはミラー等の光路移動機構或は基準黒体3を赤外
線撮像光路から出し入れするための機構や駆動回路が省
略出来て感度変動の校正も簡単に行なえる赤外線撮像装
置を得るにある。
An object of the present invention is to provide an infrared image pickup device which solves the above problems. The problem is that an optical path moving mechanism such as a mirror or a reference black body 3 is taken in and out of the infrared image pickup optical path. The purpose is to obtain an infrared imaging device in which the mechanism and drive circuit for doing so can be omitted, and sensitivity fluctuations can be easily calibrated.

【0014】[0014]

【課題を解決するための手段】本発明の赤外線撮像装置
はその原理的構成が図1に示されている様に、被写体1
より放射される赤外線を検出して、該赤外線に対応した
熱温度を計測する様に成した赤外線撮像装置に於いて、
入射赤外光を制限する赤外線フィルタ切換機構14に赤
外線検出器10の感度を調整するための基準黒体3を配
設し、赤外線フィルタ切換機構14を駆動することで赤
外線撮像光路に感度調整用の基準黒体3を介在可能と成
したものである。
The infrared imaging apparatus of the present invention has a principle structure as shown in FIG.
In an infrared image pickup device configured to detect infrared rays emitted from the infrared rays and measure a heat temperature corresponding to the infrared rays,
The reference black body 3 for adjusting the sensitivity of the infrared detector 10 is provided in the infrared filter switching mechanism 14 for limiting the incident infrared light, and the infrared filter switching mechanism 14 is driven to adjust the sensitivity in the infrared imaging optical path. The reference black body 3 of No. 1 can be interposed.

【0015】本発明の赤外線撮像装置によれば、光路中
に配したミラー2を移動する機構及び光路移動回路4
や、感度調整用の基準黒体3を移動する機構及び黒体移
動回路4aが不要となり、赤外線撮像装置の赤外線撮像
光路中に配設されている赤外フィルタ切換機構14中に
感度調整用基準黒体3を配設する様に成したので赤外線
撮像光路のスペースも小さくすることが出来、且つ赤外
線検出器10の感度変動補正機能も得られる赤外線撮像
装置が得られる。
According to the infrared imaging apparatus of the present invention, the mechanism for moving the mirror 2 arranged in the optical path and the optical path moving circuit 4
Also, the mechanism for moving the reference black body 3 for sensitivity adjustment and the black body moving circuit 4a are unnecessary, and the reference for sensitivity adjustment is provided in the infrared filter switching mechanism 14 arranged in the infrared imaging optical path of the infrared imaging device. Since the black body 3 is arranged, the space of the infrared imaging optical path can be reduced, and the infrared imaging device can also obtain the sensitivity fluctuation correction function of the infrared detector 10.

【0016】[0016]

【発明の実施の形態】以下、本発明の赤外線撮像装置の
光学経路の原理的構成を図1によって説明する。尚、従
来の図4及び図5の構成との対応部分には同一符号を付
して重複説明を省略する。
BEST MODE FOR CARRYING OUT THE INVENTION The principle structure of the optical path of an infrared imaging device of the present invention will be described below with reference to FIG. In addition, the same reference numerals are given to the portions corresponding to those of the conventional configurations of FIG. 4 and FIG.

【0017】図1の光学系の構成に於いて、本例では被
写体1の赤外エネルギーを検出部の図示しない窓を介し
てガルバノミラー等の走査機構13で面順次走査する。
走査機構13はCPUで制御される走査回路12で走査
駆動される。
In the configuration of the optical system shown in FIG. 1, in this example, the infrared energy of the subject 1 is scanned in a frame sequential manner by a scanning mechanism 13 such as a galvanometer mirror through a window (not shown) of the detector.
The scanning mechanism 13 is scan-driven by the scanning circuit 12 controlled by the CPU.

【0018】被写体1を走査して得られた赤外線エネル
ギーは対物レンズとして機能する赤外レンズ5を介して
チョッパ6でチョッピングされる。このチョッピングは
CPUに接続されたチョッパ移動回路7で駆動される。
チョッパ6は前記した様に赤外エネルギーを遮断する遮
蔽部ではレベル基準の黒体と成されている。開口部では
被写体1からの赤外エネルギーを通過させて、赤外フィ
ルタ8を介して赤外線検出器10によって赤外エネルギ
ーが検出される。
Infrared energy obtained by scanning the subject 1 is chopped by a chopper 6 via an infrared lens 5 which functions as an objective lens. This chopping is driven by the chopper moving circuit 7 connected to the CPU.
As described above, the chopper 6 is a level-based black body in the shielding portion that shields infrared energy. The infrared energy from the subject 1 is passed through the opening, and the infrared energy is detected by the infrared detector 10 via the infrared filter 8.

【0019】被写体1から放射される赤外エネルギーを
検出する赤外検出器10の感度変動は、温度の指示精度
に直接関係し、この感度変動の主な要因は赤外線検出器
材料の径率変化によるもので、その変化量、変化速度は
固体差が大きく予測することが困難であるために複数の
基準の赤外温度黒体を測定し、感度(ゲイン)を補正す
ることになる。この感度調整用の基準黒体3を本例では
図2及び図3に示す様に赤外線フィルタ切換機構14に
共通に配設し、フィルタ移動回路9で移動或は回動され
る。
The sensitivity fluctuation of the infrared detector 10 for detecting the infrared energy emitted from the subject 1 is directly related to the temperature indicating accuracy, and the main factor of this sensitivity fluctuation is the change in the diameter ratio of the infrared detector material. Since it is difficult to predict the amount of change and the rate of change due to individual differences, it is necessary to measure a plurality of reference infrared temperature black bodies and correct the sensitivity (gain). In this embodiment, the reference black body 3 for adjusting the sensitivity is commonly arranged in the infrared filter switching mechanism 14 as shown in FIGS. 2 and 3, and is moved or rotated by the filter moving circuit 9.

【0020】これら赤外線フィルタ切換機構14に取り
付けられる複数の赤外フィルタ8は被写体1の温度、性
質によって幾種類かの特性の異なるフィルタ8が選択さ
れ、温度レンジの変更又は被写体の変更に応じて切り換
えられる。赤外線撮像装置の機能に応じて赤外フィルタ
8の枚数は異なるが、図2及び図3は3枚の赤外フィル
タ8を設けた場合を示す。
As the plurality of infrared filters 8 attached to the infrared filter switching mechanism 14, several kinds of filters 8 having different characteristics are selected depending on the temperature and the property of the subject 1, and the temperature range is changed or the subject is changed. Can be switched. Although the number of infrared filters 8 differs depending on the function of the infrared imaging device, FIGS. 2 and 3 show a case where three infrared filters 8 are provided.

【0021】図2は赤外線フィルタ切換機構14として
所定の赤外フィルタ8或は感度調整用基準黒体3を赤外
線撮像光路内に挿入或は赤外線撮像光路から排出するた
めにリニア機構を用いたもので赤外線撮像光路内に矢印
D−D′で示す様に直線的に出し入れされる。
In FIG. 2, a linear mechanism is used as the infrared filter switching mechanism 14 to insert or eject a predetermined infrared filter 8 or a reference black body 3 for sensitivity adjustment into or out of the infrared imaging optical path. Is linearly moved in and out of the infrared imaging optical path as indicated by the arrow DD '.

【0022】図2に示す赤外線フィルタ切換機構14は
略板状の第1の水平部15aの一端から垂直に直交する
様に延設された垂直部15bと、この垂直部15bの一
端から水平に直交する様に延設された3つの種類の異な
る赤外フィルタ8が並設された第2の水平部15cから
成る略Z字状に形成された赤外フィルタ枠15の第1の
水平部15aの一端には略楕円形の透孔を穿ち、楕円形
に巻回した空芯コイル16を貼着し、該コイル16を挟
んで磁石17aを配設し、コイル端子t1 及びt2 に所
定の制御電流をCPUを介して供給し、サーボコントロ
ールすれば3つの赤外フィルタ8の任意の1つを赤外撮
像光路上に持ち来して停止させることが出来る。即ち、
第1の水平部15aでリニアモータ17が構成可能とな
る。
The infrared filter switching mechanism 14 shown in FIG. 2 has a vertical portion 15b extending vertically from one end of a substantially plate-shaped first horizontal portion 15a and a horizontal portion extending from one end of the vertical portion 15b. A first horizontal portion 15a of an infrared filter frame 15 formed in a substantially Z shape and including a second horizontal portion 15c in which three different types of infrared filters 8 extending so as to be orthogonal to each other are arranged in parallel. An air-core coil 16 having an approximately elliptical through hole formed at one end thereof and wound in an elliptical shape is attached, a magnet 17a is disposed with the coil 16 sandwiched therebetween, and predetermined coil terminals t 1 and t 2 are provided. If the control current is supplied via the CPU and servo-controlled, any one of the three infrared filters 8 can be brought to the optical path of the infrared image pickup and stopped. That is,
The linear motor 17 can be configured by the first horizontal portion 15a.

【0023】本例の赤外フィルタ切換機構14には感度
調整用の基準黒体3を配設するための基準黒体枠18を
第1の水平部15aの後部に接合させる。
In the infrared filter switching mechanism 14 of this embodiment, a reference black body frame 18 for disposing the reference black body 3 for sensitivity adjustment is joined to the rear portion of the first horizontal portion 15a.

【0024】即ち、基準黒体枠18は第1の水平部15
aの左端部寄りの背面から水平部に直交して後方に延設
された一端に旗状部18bを形成した板材から成る腕1
8aを左方向に直交する様に折り曲げ、この腕18aの
旗状部18bに基準黒体3を貼着或は嵌め込む様に成さ
れている。
That is, the reference black body frame 18 is the first horizontal portion 15
An arm 1 made of a plate material in which a flag-shaped portion 18b is formed at one end extending rearward from the back surface near the left end portion of a and orthogonal to the horizontal portion.
8a is bent so as to be orthogonal to the left direction, and the reference black body 3 is attached or fitted into the flag-shaped portion 18b of the arm 18a.

【0025】上述の3つの赤外フィルタ8が並設された
第2の水平部15cと基準黒体3が配設された旗状部1
8bとは図1の平面図に示す様にチョッパ6を両側から
挟着する様に且つ第2の水平部15cの1つの赤外フィ
ルタ8が赤外撮像光路内にある時には基準黒体3を保持
する少なくとも旗状部18bは赤外撮像光路外に配設さ
れて段違いになる様に構成されている。
The flag-shaped portion 1 in which the second horizontal portion 15c in which the above-mentioned three infrared filters 8 are arranged in parallel and the reference black body 3 are disposed
The reference numeral 8b denotes the reference black body 3 so that the chopper 6 is sandwiched from both sides as shown in the plan view of FIG. 1 and one infrared filter 8 of the second horizontal portion 15c is in the infrared imaging optical path. At least the flag-shaped portion 18b to be held is arranged outside the infrared imaging optical path so as to have a step difference.

【0026】上述の構成で基準黒体としてのレベル調整
には閉じた時のチョッパ6が用いられる。感度調整の時
はリニアモータ17を制御して基準黒体3を赤外撮像光
路の中心位置に挿入する様に位置サーボし、上述の基準
黒体3を測定した値から赤外検出器10の感度の変動を
算出して補正値とする様にする。
In the above-mentioned configuration, the chopper 6 when closed is used for level adjustment as the reference black body. At the time of sensitivity adjustment, the linear motor 17 is controlled to perform position servo so that the reference black body 3 is inserted in the center position of the infrared imaging optical path, and the infrared detector 10 of the infrared detector 10 is detected from the measured value of the reference black body 3. The sensitivity variation is calculated and used as the correction value.

【0027】上述のリニア形の基準黒体3の付加した赤
外線フィルタ切換機構14ではリニアモータ17を構成
させた場合を説明したが、第1の水平部15aの一側端
にラックを形成し、モータ軸に嵌着したピニオンをラッ
クと噛合せて赤外線フィルタ切換機構14を矢印D−
D′方向に摺動させ、所定位置に停止させて、赤外フィ
ルタ8の任意の1つ或は感度調整用の基準黒体8を赤外
光路に挿入する様にしてもよい。
In the infrared filter switching mechanism 14 to which the linear reference black body 3 described above is added, the linear motor 17 has been described, but a rack is formed at one end of the first horizontal portion 15a. The pinion fitted to the motor shaft is engaged with the rack to move the infrared filter switching mechanism 14 to the arrow D-.
You may make it slide in the D'direction and stop at a predetermined position, and insert any one of the infrared filters 8 or the reference black body 8 for sensitivity adjustment into the infrared optical path.

【0028】図3に示す構成は回転型のフィルタ移動機
構の例を示すものであり、CPUを介してフィルタ移動
回路9によって駆動されるモータ23のモータ軸24に
は略扇形状の赤外線フィルタ支持片22及び基準黒体支
持片20が互にモータ軸24の長手方向にずれ、且つ互
に前方からみて重なり合わない様にモータ軸24にセッ
トスクリュー25等を介して螺着されている。
The configuration shown in FIG. 3 shows an example of a rotary type filter moving mechanism, in which a substantially fan-shaped infrared filter support is provided on a motor shaft 24 of a motor 23 driven by a filter moving circuit 9 via a CPU. The piece 22 and the reference black body supporting piece 20 are screwed to the motor shaft 24 via a set screw 25 or the like so that they are displaced from each other in the longitudinal direction of the motor shaft 24 and do not overlap each other when viewed from the front.

【0029】基準黒体支持片20と赤外フィルタ支持片
22に軸受26がこれら支持片20及び22回転中心位
置に固着されて、軸受26にモータ軸24が挿通されて
いる。
A bearing 26 is fixed to the reference black body supporting piece 20 and the infrared filter supporting piece 22 at the center of rotation of these supporting pieces 20 and 22, and the motor shaft 24 is inserted through the bearing 26.

【0030】この回転型のフィルタ赤外線切換機構14
も、赤外フィルタ支持片22の任意の1つの赤外フィル
タ8が赤外撮像光路中に配されているときには基準黒体
支持片20は赤外撮像光路中から外れた位置にあり、基
準黒体支持片20の基準黒体3が赤外撮像光路中にある
ときは赤外フィルタ支持片20は赤外撮像光路外にある
様に互い違いに配置する角度を選択する。
This rotary type filter infrared ray switching mechanism 14
Also, when any one infrared filter 8 of the infrared filter supporting piece 22 is arranged in the infrared imaging optical path, the reference black body supporting piece 20 is at a position deviated from the infrared imaging optical path, and the reference black When the reference black body 3 of the body support piece 20 is in the infrared image pickup optical path, the infrared filter support pieces 20 are selected so as to be arranged alternately so as to be outside the infrared image pickup optical path.

【0031】モータ23はCPUに接続されたフィルタ
移動回路9でサーボ制御されて、適宜の赤外フィルタ8
の1つ或は感度調整用の基準黒体3を赤外撮像光路の中
心位置に持ち来して停止させる様に成されている。
The motor 23 is servo-controlled by a filter moving circuit 9 connected to the CPU so that an appropriate infrared filter 8 can be obtained.
1 or a reference black body 3 for sensitivity adjustment is brought to the center position of the infrared imaging optical path and stopped.

【0032】本発明の赤外線撮像装置は上述の様に構成
されているので従来の様に感度調整用の基準黒体3の赤
外エネルギーを取り入れるためのミラー2を移動させる
ミラー移動機構や光路移動回路4並びにミラー2をなく
すことが出来る。或は従来の黒体移動機構や黒体移動回
路4aを省略可能となり、これら機構及び回路を従来か
らある赤外フィルタ8を移動させるフィルタ移動機構及
びフィルタ移動回路9で兼用出来て、感度調整用の基準
黒体3が赤外フィルタ切換機構14に簡単に搭載出来
て、赤外検出器10の感度変動の補正が正しく行なえる
赤外線撮像装置が得られる。
Since the infrared imaging device of the present invention is constructed as described above, the mirror moving mechanism for moving the mirror 2 for taking in the infrared energy of the reference black body 3 for sensitivity adjustment and the optical path movement as in the prior art. The circuit 4 and the mirror 2 can be eliminated. Alternatively, the conventional black body moving mechanism and the black body moving circuit 4a can be omitted, and these mechanisms and circuits can be used as a filter moving mechanism and a filter moving circuit 9 for moving the conventional infrared filter 8 for sensitivity adjustment. The reference black body 3 can be easily mounted on the infrared filter switching mechanism 14, and an infrared image pickup device can be obtained in which the sensitivity variation of the infrared detector 10 can be corrected correctly.

【0033】[0033]

【発明の効果】本発明の赤外線撮像装置によれば下記の
効果が得られる。 (1)光路変更のためのミラー及び機構部が除ける。 (2)黒体移動(挿入)機構が除ける。 (3)感度調整用の基準黒体の搭載が容易に行え検出器
感度変動の補正機能が実現できる。
According to the infrared imaging device of the present invention, the following effects can be obtained. (1) The mirror and mechanism for changing the optical path can be removed. (2) The black body moving (inserting) mechanism can be eliminated. (3) A reference black body for sensitivity adjustment can be easily mounted, and a detector sensitivity fluctuation correction function can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の赤外線撮像装置の光路説明図である。FIG. 1 is an explanatory diagram of an optical path of an infrared imaging device of the present invention.

【図2】本発明の赤外線撮像装置に用いるフィルタ移動
機構の斜視図である。
FIG. 2 is a perspective view of a filter moving mechanism used in the infrared imaging device of the present invention.

【図3】本発明の赤外線撮像装置に用いる他のフィルタ
移動機構の斜視図である。
FIG. 3 is a perspective view of another filter moving mechanism used in the infrared imaging device of the present invention.

【図4】従来の赤外線撮像装置の光路説明図である。FIG. 4 is an optical path explanatory diagram of a conventional infrared imaging device.

【図5】従来の他の赤外線撮像装置の光路説明図であ
る。
FIG. 5 is an optical path diagram of another conventional infrared imaging device.

【符号の説明】[Explanation of symbols]

1 被写体 3 基準黒体 8 赤外フィルタ 9 フィルタ移動回路 14 赤外線フィルタ切換機構 1 subject 3 reference black body 8 infrared filter 9 filter moving circuit 14 infrared filter switching mechanism

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被写体より放射される赤外線を検出し
て、該赤外線に対応した熱温度を計測する様に成した赤
外線撮像装置に於いて、 上記入射赤外光を制限する赤外線フィルタ切換機構に赤
外線検出器の感度を調整するための基準黒体を配設し、
該赤外線フィルタ機構を駆動することで赤外線撮像光路
に該感度調整用基準黒体を介在可能と成したことを特徴
とする赤外線撮像装置。
1. An infrared imaging device configured to detect infrared rays radiated from a subject and measure a heat temperature corresponding to the infrared rays, in an infrared filter switching mechanism for limiting the incident infrared rays. A reference black body is provided to adjust the sensitivity of the infrared detector,
An infrared imaging device characterized in that the sensitivity adjusting reference black body can be interposed in an infrared imaging optical path by driving the infrared filter mechanism.
【請求項2】 前記赤外線撮像光路に挿入する前記赤外
線フィルタ切換機構付の基準黒体をリニア駆動手段を介
して移動させる様に成したことを特徴とする請求項1記
載の赤外線撮像装置。
2. The infrared imaging apparatus according to claim 1, wherein the reference black body with the infrared filter switching mechanism inserted in the infrared imaging optical path is moved via a linear driving means.
【請求項3】 前記赤外線光路に挿入する前記赤外線フ
ィルタ切換機構付の基準黒体を回転駆動手段を介して回
動させる様に成したことを特徴とする請求項1記載の赤
外線撮像装置。
3. The infrared imaging device according to claim 1, wherein the reference black body with the infrared filter switching mechanism inserted into the infrared optical path is rotated through a rotation driving means.
JP8077501A 1996-03-29 1996-03-29 Infrared imaging apparatus Pending JPH09264794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8077501A JPH09264794A (en) 1996-03-29 1996-03-29 Infrared imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8077501A JPH09264794A (en) 1996-03-29 1996-03-29 Infrared imaging apparatus

Publications (1)

Publication Number Publication Date
JPH09264794A true JPH09264794A (en) 1997-10-07

Family

ID=13635723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8077501A Pending JPH09264794A (en) 1996-03-29 1996-03-29 Infrared imaging apparatus

Country Status (1)

Country Link
JP (1) JPH09264794A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042399A1 (en) * 1999-01-14 2000-07-20 Matsushita Electric Industrial Co., Ltd. Infrared imaging device, vehicle with the same, and infrared image adjusting device
US6576892B2 (en) 2001-08-31 2003-06-10 Fujitsu Limited Infrared imaging device
JP2012254222A (en) * 2011-06-09 2012-12-27 Teikyo Heisei Univ Device for human dynamic face temperature change measurement by thermography and measuring method, and calibrator used for the same
US8445847B2 (en) 2007-03-30 2013-05-21 Toyota Jidosha Kabushiki Kaisha Abnormal measurement detection device and method for infrared radiation thermometer
CN103728026A (en) * 2013-12-26 2014-04-16 四川长虹电器股份有限公司 Environment temperature testing system
JP2015203637A (en) * 2014-04-15 2015-11-16 日本電気株式会社 infrared imaging device
JP2018515158A (en) * 2015-03-16 2018-06-14 グルコビスタ・インコーポレイテッド Substance concentration correction system and method
CN108548605A (en) * 2018-03-30 2018-09-18 四川谛达诺科技有限公司 A kind of infrared radiation thermometer
CN110006540A (en) * 2019-04-12 2019-07-12 中国科学院长春光学精密机械与物理研究所 A kind of switching mechanism of black body radiation calibration
CN111006774A (en) * 2019-12-06 2020-04-14 北京振兴计量测试研究所 System and method for testing calibration blackbody radiation source manufactured by MEMS (micro-electromechanical systems) process
CN111175965A (en) * 2020-02-28 2020-05-19 中国科学院上海技术物理研究所 Infrared imaging system and imaging method based on filter wheel rotation imaging
WO2021201573A1 (en) * 2020-03-30 2021-10-07 (주)씨앤테크 Temperature measurement apparatus and method for measuring temperature of object using same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000042399A1 (en) * 1999-01-14 2000-07-20 Matsushita Electric Industrial Co., Ltd. Infrared imaging device, vehicle with the same, and infrared image adjusting device
US6700124B1 (en) 1999-01-14 2004-03-02 Matsushita Electric Industrial Co., Ltd. Infrared imaging device, vehicle having the same installed therein, and infrared image adjustment device
US6855934B2 (en) 1999-01-14 2005-02-15 Matsushita Electric Industrial Co., Ltd. Infrared imaging device, vehicle having the same installed therein, and infrared image adjustment device
US7030377B2 (en) 1999-01-14 2006-04-18 Matsushita Electric Industrial Co., Ltd. Infrared imaging device, vehicle having the same installed therein, and infrared image adjustment device
US6576892B2 (en) 2001-08-31 2003-06-10 Fujitsu Limited Infrared imaging device
US9163992B2 (en) 2007-03-30 2015-10-20 Toyota Jidosha Kabushiki Kaisha Abnormal measurement detection device and method for infrared radiation thermometer
US8445847B2 (en) 2007-03-30 2013-05-21 Toyota Jidosha Kabushiki Kaisha Abnormal measurement detection device and method for infrared radiation thermometer
JP2012254222A (en) * 2011-06-09 2012-12-27 Teikyo Heisei Univ Device for human dynamic face temperature change measurement by thermography and measuring method, and calibrator used for the same
CN103728026A (en) * 2013-12-26 2014-04-16 四川长虹电器股份有限公司 Environment temperature testing system
JP2015203637A (en) * 2014-04-15 2015-11-16 日本電気株式会社 infrared imaging device
JP2018515158A (en) * 2015-03-16 2018-06-14 グルコビスタ・インコーポレイテッド Substance concentration correction system and method
CN108548605A (en) * 2018-03-30 2018-09-18 四川谛达诺科技有限公司 A kind of infrared radiation thermometer
CN108548605B (en) * 2018-03-30 2024-04-19 四川谛达诺科技有限公司 Infrared thermometer
CN110006540A (en) * 2019-04-12 2019-07-12 中国科学院长春光学精密机械与物理研究所 A kind of switching mechanism of black body radiation calibration
CN111006774A (en) * 2019-12-06 2020-04-14 北京振兴计量测试研究所 System and method for testing calibration blackbody radiation source manufactured by MEMS (micro-electromechanical systems) process
CN111175965A (en) * 2020-02-28 2020-05-19 中国科学院上海技术物理研究所 Infrared imaging system and imaging method based on filter wheel rotation imaging
CN111175965B (en) * 2020-02-28 2023-05-09 中国科学院上海技术物理研究所 Infrared imaging system and method based on optical filter wheel rotation imaging
WO2021201573A1 (en) * 2020-03-30 2021-10-07 (주)씨앤테크 Temperature measurement apparatus and method for measuring temperature of object using same

Similar Documents

Publication Publication Date Title
JPH09264794A (en) Infrared imaging apparatus
JP4388226B2 (en) Sensor device
JP4567806B1 (en) Non-contact temperature sensor
US2314800A (en) Infrared spectrophotometer
JP2010071987A (en) Device for infrared radiation detection equipped with resistance type imaging bolometer, system equipped with array of such bolometer, and reading method of imaging bolometer integrated into such system
US4652761A (en) Grating ozone spectrophotometer
JPS6146768B2 (en)
KR101726716B1 (en) Combination computed and direct radiography system and method
EP0345984B1 (en) Non-contact optical gauge
US3416865A (en) Optical density measuring system
JPH0318352A (en) X-ray diagnosing device
HU192395B (en) Optical reflexion concentration meter
JP2732320B2 (en) Differential refractive index detector for liquid chromatography
JP4705076B2 (en) Infrared imaging device
US4087691A (en) Reference radiation source in a device for measuring the radiation from an object
JP4250323B2 (en) Infrared imaging device
JPH1151773A (en) Hot object measuring apparatus and temperature correction method therefor
US6522401B2 (en) Light measuring device for a plane light source
US20230375902A1 (en) Optical system comprising a probe for image sensor detection
JPH09261534A (en) Infrared image pickup device
JP2595862B2 (en) Calibration device for width measuring instrument and correction method using the same
JPH06109538A (en) Spectroscopic analyzer
JP2017038138A (en) Imaging device
JPH0266415A (en) Infrared ray detecting device
JP4633873B2 (en) Pyroelectric infrared detector