JPH09264769A - Apparatus for measuring lubricant return amount of refrigerating cycle - Google Patents

Apparatus for measuring lubricant return amount of refrigerating cycle

Info

Publication number
JPH09264769A
JPH09264769A JP11105796A JP11105796A JPH09264769A JP H09264769 A JPH09264769 A JP H09264769A JP 11105796 A JP11105796 A JP 11105796A JP 11105796 A JP11105796 A JP 11105796A JP H09264769 A JPH09264769 A JP H09264769A
Authority
JP
Japan
Prior art keywords
lubricating oil
amount
mist
compressor
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11105796A
Other languages
Japanese (ja)
Inventor
Akio Wada
明生 和田
Seiji Nishizawa
誠治 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP11105796A priority Critical patent/JPH09264769A/en
Publication of JPH09264769A publication Critical patent/JPH09264769A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus for measuring the amount of returned lubricant to a compressor by circulating in a refrigerating cycle. SOLUTION: In a refrigerating cycle, refrigerant becomes gas state immediately before a compressor, lubricant partly flows along the tube wall in liquid state, and is partly carried as mist to gas refrigerant. The lubricant is separated to the liquid state part and mist part, the flow of the lubricant is made to liquid droplets. The number of the droplets per unit time is measured to measure the amount of the former, and the amount of the latter is measured by a light scattering method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍サイクルを循
環してコンプレッサに戻る潤滑油の量を計測し、冷凍サ
イクルの性能を評価するための装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the amount of lubricating oil that circulates in a refrigeration cycle and returns to a compressor to evaluate the performance of the refrigeration cycle.

【0002】[0002]

【従来の技術】冷凍機用コンプレッサから吐出され冷凍
サイクルを循環する潤滑油の量は、コンプレッサの性能
を評価する重要な特性の一つで、油循環率として計測さ
れている。これは冷凍サイクルの中で、冷媒が液体で循
環している場所、即ち膨張弁の直前で、液体冷媒に含ま
れる潤滑油の重量百分率濃度として計測するものであ
る。
2. Description of the Related Art The amount of lubricating oil discharged from a compressor for a refrigerating machine and circulating in a refrigerating cycle is one of the important characteristics for evaluating the performance of the compressor and is measured as an oil circulation rate. This is measured as a weight percentage concentration of the lubricating oil contained in the liquid refrigerant in a place where the refrigerant is circulated as a liquid in the refrigeration cycle, that is, immediately before the expansion valve.

【0003】これに対し本発明が計測しようとするの
は、冷凍サイクルを循環して実際にコンプレッサに戻っ
てくる潤滑油の量である。
On the other hand, what the present invention seeks to measure is the amount of lubricating oil that circulates in the refrigeration cycle and actually returns to the compressor.

【0004】冷媒は、膨張弁を通過したのち気化し、気
体となってコンプレッサに戻るが、潤滑油は気化しない
ので、気体となった冷媒と分離して単独で戻ることにな
る。冷凍サイクルは、基本的に閉鎖系になっていて、一
旦コンプレッサから吐出された潤滑油は、サイクルのど
こかで消失しない以上、いつかは再びコンプレッサに戻
るものであり、十分長い時間間隔でみれば、油循環率と
潤滑油の戻り量は同じとなる性格のものである。ところ
がより短い時間の単位でみた場合、分離した潤滑油自身
には、コンプレッサに戻ろうとする性質はなく、高速の
気流となって戻る気体の冷媒に吹き流されて戻されるに
すぎない。そのため、膨張弁以降のサイクルの構成と形
状によって潤滑油の戻り易さは大きく影響され、結果と
して冷凍サイクルの効率を大きく左右することになる。
The refrigerant vaporizes after passing through the expansion valve and returns to the compressor as a gas. However, since the lubricating oil does not vaporize, it separates from the gasified refrigerant and returns independently. The refrigeration cycle is basically a closed system, and once the lubricating oil discharged from the compressor does not disappear somewhere in the cycle, it will return to the compressor again at some point. The oil circulation rate and the amount of lubricating oil returned are the same. However, when viewed in a shorter time unit, the separated lubricating oil itself does not have the property of returning to the compressor, and is simply blown back to the refrigerant of the gas that returns as a high-speed airflow. Therefore, the easiness of returning the lubricating oil is greatly affected by the configuration and shape of the cycle after the expansion valve, and as a result, the efficiency of the refrigeration cycle is greatly influenced.

【0005】このような事情から、油戻り量の計測は冷
凍サイクルの評価のために強く望まれていたが、現状で
はこの油戻り量を計測することが困難で、計測しようと
する部位に透明な配管部を設け、目視で観察して感覚的
に把握する以外に適当な方法がなかった。
Under these circumstances, it has been strongly desired to measure the oil return amount for evaluation of the refrigeration cycle, but at present, it is difficult to measure the oil return amount, and it is transparent to the part to be measured. There was no suitable method other than providing a simple piping part and visually observing it.

【0006】[0006]

【発明が解決しようとする課題】潤滑油の戻り量の計測
が困難であるのは、冷凍サイクルの次のような特性によ
る。 1) 冷凍サイクルが高圧状態の気体を封入した閉鎖系
で構成されるため、その運転状態に影響を与えないよう
にサンプリングすることが困難であること。 2) 計測しようとする部位では、冷媒は気体、潤滑油
は液体という均一でない状態となっており、しかも問題
の潤滑油は、一部はミスト状態で気体の冷媒に混じって
高速に移動し、一部は比較的遅くかつ一様でない流速で
管壁を伝うような形で流れており、これらは計測対象と
しての特性が全く異なっていて、それをまとめて、ある
いは別々に計測することが困難であること。
The difficulty in measuring the return amount of lubricating oil is due to the following characteristics of the refrigeration cycle. 1) Since the refrigeration cycle is composed of a closed system in which high-pressure gas is enclosed, it is difficult to sample without affecting the operating condition. 2) At the part to be measured, the refrigerant is a gas and the lubricating oil is in a non-uniform state, and the lubricating oil in question is partly mixed with the gaseous refrigerant in a mist state and moves at high speed. Some of them flow at a relatively slow and non-uniform velocity along the pipe wall, and they have completely different characteristics as measurement targets, making it difficult to measure them collectively or separately. To be.

【0007】特に、2)での管壁を伝って流れる潤滑油
分は、仮にその部位に存在する量を計測することは出来
たとしても、それが流れているのか、滞留しているのか
を区別することが容易ではない。さらに本当に計測する
必要があるのは潤滑油の移動量であるために、計測する
部位における存在量とそこでの平均の流速の積を求める
こと、あるいは、流れの断面を想定したとき、その断面
を構成する各微少部分毎の流速を計測し、それを全断面
積にわたって積分することが必要となるが、そのどちら
も実現することが極めて困難である。
In particular, regarding the lubricating oil flowing along the pipe wall in 2), even if it is possible to measure the amount existing at that portion, it is determined whether it is flowing or staying. Not easy to distinguish. Furthermore, what really needs to be measured is the amount of movement of the lubricating oil. Therefore, calculate the product of the existing amount at the measurement site and the average flow velocity there, or when assuming a cross section of the flow, It is necessary to measure the flow velocity of each of the minute portions constituting it and integrate it over the entire cross-sectional area, but it is extremely difficult to realize either of them.

【0008】本発明は、このような困難さのために目視
で観察することしかできなかった従来技術壁を打破する
ためになされたものであり、潤滑油がコンプレッサに戻
る量を物理的手段によって計測しようとするものであ
る。
The present invention was made to break through the walls of the prior art, which could only be visually observed because of such difficulties, and the amount of lubricating oil returned to the compressor was determined by physical means. It is something to be measured.

【0009】[0009]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明は、管壁を伝って流れる潤滑油と、ミスト
となって気体の冷媒によって運ばれる潤滑油を分離し
て、それらの量を別々に計測する手段を提供する。即
ち、冷凍サイクルの中でコンプレッサに戻る流路を、潤
滑油がミストとなって気体の冷媒とともに流れる流路
と、潤滑油だけで流れる流路に分け、前者ミストとなっ
て移動する量を一定空間に含まれる油粒子の量としてと
らえて計測し、潤滑油が液体状態で単独で移動する分
は、純粋に液体が流れる量としてとらえて計測する。
In order to solve the above-mentioned problems, the present invention separates the lubricating oil flowing along the pipe wall from the lubricating oil which becomes mist and is carried by the gaseous refrigerant, Provide a means to separately measure the amount of That is, the flow path that returns to the compressor in the refrigeration cycle is divided into a flow path in which the lubricating oil becomes mist and flows with the gas refrigerant, and a flow path in which only lubricating oil flows, and the former amount becomes the mist and the amount that moves It is measured as the amount of oil particles contained in the space, and the amount of the lubricating oil moving independently in the liquid state is measured as the amount of pure liquid flowing.

【0010】[0010]

【発明の実施の形態】本発明の実施例の1つを図1に示
す。冷凍サイクルでは、コンプレッサ1で圧縮された冷
媒は凝縮器2で液化し、膨張弁3で圧縮圧から解放さ
れ、エバポレータ4で気化し再びコンプレッサに戻る。
配管5はこれらの冷凍サイクルの各要素を連結し、冷媒
を順に導いている。コンプレッサから冷媒とともに吐出
した潤滑油は、冷媒が液体状態にある膨張弁までは、冷
媒にほぼ均一に溶解しているが、エバポレータにおいて
冷媒が気化した後では、冷媒と分離し、一部は高速で流
れる気体の冷媒によりミストとなって運ばれ、残りは管
壁に液体となって付着し、冷媒に押されてコンプレッサ
に向かって移動する。本発明による潤滑油の戻り量を計
測する装置は、センサ部6と本体部7から構成され、セ
ンサ部はコンプレッサの直前の配管に設置される。この
センサ部と本体部は接続ケーブル8で接続される。
BEST MODE FOR CARRYING OUT THE INVENTION One embodiment of the present invention is shown in FIG. In the refrigeration cycle, the refrigerant compressed by the compressor 1 is liquefied by the condenser 2, released from the compression pressure by the expansion valve 3, vaporized by the evaporator 4 and returned to the compressor again.
The pipe 5 connects the respective elements of these refrigeration cycles and guides the refrigerant in order. The lubricating oil discharged from the compressor together with the refrigerant is almost uniformly dissolved in the refrigerant up to the expansion valve where the refrigerant is in a liquid state, but after the refrigerant is vaporized in the evaporator, it is separated from the refrigerant, and part of it is at high speed. Is carried by the refrigerant of the gas flowing as a mist, and the rest is adhered as a liquid to the pipe wall, is pushed by the refrigerant and moves toward the compressor. The device for measuring the amount of returned lubricating oil according to the present invention comprises a sensor unit 6 and a main body unit 7, and the sensor unit is installed in a pipe just before the compressor. The sensor section and the main body section are connected by a connection cable 8.

【0011】センサ部は、図2に示すような構成を持
つ。センサ部は冷凍サイクルの配管と、11及び12で
接続する。この接続には、フレアジョイント方式、スウ
ェジロック方式、あるいはフランジ方式などを用いる。
センサ部は、主流路13と、それに付属して設置したミ
スト分計測部14と液体分計測部15から成る。主流路
の断面積は、接続する冷凍サイクルの配管のそれに比べ
て等しいか大きくし、このセンサを取り付けたことによ
って流路抵抗が増加しないようにするとともに、少なく
ともこのセンサ内では、配管内に比べて気体の冷媒の流
速が増加しないようにして、管壁の潤滑油が新たにミス
トとならないようにする。主流路に設けた窪み16は、
管壁を伝って流れてきた潤滑油がここに集まって液体分
計測部の方に導かれ、ミスト分計測部に行かないように
するものである。
The sensor section has a structure as shown in FIG. The sensor unit is connected to the piping of the refrigeration cycle at 11 and 12. For this connection, a flare joint method, a swagelok method, a flange method, or the like is used.
The sensor unit is composed of a main flow path 13, a mist amount measuring unit 14 and a liquid amount measuring unit 15 which are attached thereto. Make sure that the cross-sectional area of the main flow path is equal to or larger than that of the piping of the connected refrigeration cycle so that the flow path resistance does not increase by installing this sensor. Therefore, the flow velocity of the gaseous refrigerant is prevented from increasing so that the lubricating oil on the pipe wall does not become a new mist. The recess 16 provided in the main flow path is
The lubricating oil flowing along the pipe wall collects here and is guided to the liquid component measuring unit so that it does not go to the mist component measuring unit.

【0012】次に各計測部について説明する。ミスト分
の計測は光散乱法による。その構成を図3、図4に示
す。主流路の管壁の同一円周上に光照射部21と受光部
22を互いに90゜となるように設ける。光照射部には
光源となるランプ23を組み込み、そこからの光をレン
ズ24で平行光束とし、光を透過する材質で作った窓2
6を通して主流路内に導入する。光照射部の反対側に
は、主流路に窪みを作り、そこにさらに光を吸収するよ
うに塗装を施した光トラップ29を設け、照射光が流路
の壁で反射して受光部に入らないようにする。また同じ
理由で、流路の内側も光を吸収するような塗装を施す。
受光部には光検知器28を設置し、ミストによる散乱光
が、光透過性の窓27を通り、レンズ25で集光され
て、検知器に到達して検知されるようにする。散乱され
検知器に入射する光の強度は、照射光が照射する空間に
存在するミストの量に関係するので、検出した散乱光強
度から、必要に応じて別途用意した検量線を用い、ミス
トの量を算出する。尚、ミスト状の油の移動量は、この
ようにして求めたミストの量に、別途計測した気体冷媒
の流速を掛けて算出することが出来る。光源ランプおよ
び検知器を作動させる電力は接続ケーブルを通じて本体
部から送られ、また検知器で検知された信号も同様接続
ケーブルを経由して本体部に送られ、そこで処理、出力
される。
Next, each measuring section will be described. Measurement of the mist is based on the light scattering method. The configuration is shown in FIGS. The light irradiation section 21 and the light receiving section 22 are provided at 90 ° on the same circumference of the tube wall of the main flow path. A lamp 2 which is a light source is incorporated in the light irradiating section, and the light from the lamp 23 is made into a parallel light flux by the lens 24, and the window 2 is made of a material that transmits the light.
It is introduced through 6 into the main flow path. On the opposite side of the light irradiation part, a recess is formed in the main flow path, and a light trap 29 coated so as to further absorb light is provided there, and the irradiation light is reflected by the wall of the flow path and enters the light receiving part. Try not to. For the same reason, the inside of the flow path is also coated so as to absorb light.
A photodetector 28 is installed in the light receiving unit so that scattered light due to mist passes through the light transmissive window 27, is condensed by the lens 25, reaches the detector, and is detected. The intensity of light scattered and incident on the detector is related to the amount of mist existing in the space irradiated by the irradiation light.Therefore, from the detected scattered light intensity, a calibration curve prepared separately as necessary is used. Calculate the amount. The amount of the mist-like oil transferred can be calculated by multiplying the amount of the mist thus obtained by the flow velocity of the gas refrigerant that is separately measured. Electric power for operating the light source lamp and the detector is sent from the main body through the connecting cable, and the signal detected by the detector is also sent to the main body through the connecting cable, where it is processed and output.

【0013】本発明の別の実施例として、光照射部、受
光部に光源ランプ、検知器を組み込まず、本体部に光源
を組み込み、ここから光ファイバを用いて光照射部に光
を導き、さらに受光部で得られた散乱光を光ファイバで
本体部に導いて、そこでその強度を検出する構成もあ
る。
As another embodiment of the present invention, a light source lamp and a detector are not incorporated in the light emitting portion and the light receiving portion, but a light source is incorporated in the main body portion, and light is guided to the light emitting portion from here by using an optical fiber. Further, there is a configuration in which scattered light obtained by the light receiving section is guided to the main body section by an optical fiber and the intensity thereof is detected there.

【0014】続いて液体状態の潤滑油の移動量の計測部
を説明する。本発明による実施例を図5に示す。窪み1
6に流れ込んだ潤滑油は、その直下に接続された細管3
1を通って液体状潤滑油計測小容器32を満たす。この
小容器のほぼ中腹には細い枝管33が接続されていて、
潤滑油がここまで達するとこの枝管からあふれ、この枝
管の先に設けられたノズル34から容器35の中に液滴
となって滴下する。このノズルを挟んですぐ下に発光ダ
イオードからなる発光部36と受光部37が配置され、
滴下する液滴を光で検知する。滴下した潤滑油の液滴は
細管38を通って主流路の戻り、最終的にコンプレッサ
に戻る。細管39、40は容器内の圧力の平衡を保つた
めに設けたものである。バルブ41及びそれに続く細管
42は、計測を終了した後、小容器にたまっている潤滑
油を抜き取るためのものである。
Next, the measuring unit for the moving amount of the lubricating oil in the liquid state will be described. An embodiment according to the present invention is shown in FIG. Hollow 1
Lubricating oil flowing into 6 is the thin tube 3 connected directly below it.
Fill the liquid lubricating oil measuring container 32 through 1. A thin branch pipe 33 is connected to almost the middle of this small container,
When the lubricating oil reaches this point, it overflows from this branch pipe and drops as droplets from the nozzle 34 provided at the end of this branch pipe into the container 35. A light emitting portion 36 and a light receiving portion 37 formed of a light emitting diode are arranged immediately below the nozzle,
The dropped droplet is detected by light. The dropped lubricating oil passes through the narrow tube 38, returns to the main flow path, and finally returns to the compressor. The thin tubes 39 and 40 are provided to maintain the pressure balance in the container. The valve 41 and the subsequent thin tube 42 are for draining the lubricating oil accumulated in the small container after the measurement is completed.

【0015】液状となって移動する潤滑油の量は、単位
時間当たりの液滴の数に比例する。検知した液滴の数を
単位時間当たりの数に換算し、必要に応じて別途用意し
た検量線を用い、潤滑油の移動量を算出する。
The amount of lubricating oil that moves as a liquid is proportional to the number of droplets per unit time. The number of detected droplets is converted into the number per unit time, and the movement amount of the lubricating oil is calculated using a calibration curve prepared separately as needed.

【0016】[0016]

【発明の効果】以上述べた本発明により、これまで目視
で観察することしか出来なかった潤滑油の戻り量を物理
的に計測することが可能となり、より効率の高い冷凍サ
イクルの設計を行うための客観的なデータを供給するこ
とが可能となる。
As described above, according to the present invention, it is possible to physically measure the return amount of the lubricating oil, which can only be visually observed, and to design a refrigeration cycle with higher efficiency. It is possible to supply objective data of.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷凍サイクルに本発明による潤滑油戻り量計測
装置を組み込んだ状態を示す説明図である。
FIG. 1 is an explanatory view showing a state in which a lubricating oil return amount measuring device according to the present invention is incorporated in a refrigeration cycle.

【図2】本発明のセンサ部の概略の説明図である。FIG. 2 is a schematic explanatory diagram of a sensor unit of the present invention.

【図3】本発明の実施例の1つの、光散乱法によるミス
ト分の計測機構を説明する正面図である。
FIG. 3 is a front view illustrating a mist component measuring mechanism by a light scattering method, which is one of the embodiments of the present invention.

【図4】本発明の実施例の1つの、光散乱法によるミス
ト分の計測機構を説明する上面図である。
FIG. 4 is a top view illustrating a mist component measuring mechanism by a light scattering method, which is one embodiment of the present invention.

【図5】本発明の実施例の1つの、液状の潤滑油を液滴
の数として計測する機構を示す説明図である。
FIG. 5 is an explanatory diagram showing a mechanism for measuring a liquid lubricating oil as the number of liquid droplets, which is one of the embodiments of the present invention.

【符号の説明】[Explanation of symbols]

1 コンプレッサ 2 凝縮器 3 膨張弁 4 エバポレータ 5 配管 6 センサ部 7 本体部 8 信号ケーブル 11 接続部(in側) 12 接続部(out側) 13 主流路 14 ミスト状潤滑油分計測部 15 液体状潤滑油分計測部 16 液体状潤滑油分溜め部 21 光照射部 22 受光部 23 光源ランプ 24、25 レンズ 26、27 光透過窓板 28 光検知器 29 光トラップ部 31、33、38、39、40、42 細管 32 液体状潤滑油計測小容器 34 ノズル 35 液滴受け容器 36 発光部 37 受光部 41 バルブ DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Expansion valve 4 Evaporator 5 Piping 6 Sensor part 7 Main body part 8 Signal cable 11 Connection part (in side) 12 Connection part (out side) 13 Main flow path 14 Mist type lubricating oil component measurement part 15 Liquid type lubrication Oil measuring part 16 Liquid lubricating oil collecting part 21 Light emitting part 22 Light receiving part 23 Light source lamp 24, 25 Lens 26, 27 Light transmitting window plate 28 Optical detector 29 Optical trap part 31, 33, 38, 39, 40 , 42 Thin tube 32 Liquid lubricating oil measuring small container 34 Nozzle 35 Droplet receiving container 36 Light emitting part 37 Light receiving part 41 Valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷凍サイクルでコンプレッサに戻る潤滑
油の量の計測において、冷凍サイクルの配管内を液状で
流れる潤滑油と、潤滑油のミストを含んだ気体状態の冷
媒の流れとに分離し、液状で流れる潤滑油の量を計測す
る機構と、ミストとなって気体冷媒の流れによって運ば
れる潤滑油の量を計測する機構を備えた、潤滑油戻り量
計測装置。
1. When measuring the amount of lubricating oil returning to a compressor in a refrigeration cycle, the lubricating oil flowing in a liquid state in a pipe of the refrigeration cycle is separated into a gaseous refrigerant flow containing a mist of lubricating oil, A lubricating oil return amount measuring device having a mechanism for measuring the amount of lubricating oil flowing in a liquid state, and a mechanism for measuring the amount of lubricating oil carried as a mist by the flow of a gas refrigerant.
【請求項2】 請求項1に関わる潤滑油戻り量計測装置
で、分離した液状の潤滑油を細管から液滴として滴下さ
せ、その滴下数を数えることによって潤滑油の流量を計
測するようにした潤滑油戻り量計測装置。
2. The lubricating oil return amount measuring device according to claim 1, wherein the separated liquid lubricating oil is dropped as droplets from a thin tube, and the flow rate of the lubricating oil is measured by counting the number of drops. Lubricant return amount measuring device.
【請求項3】 請求項1に関わる潤滑油戻り量計測装置
で、分離した潤滑油のミストを含む気体の冷媒を光散乱
法によって測定し、その散乱光の強度から運ばれるミス
ト状の潤滑油の量を計測する潤滑油戻り量計測装置。
3. The lubricating oil return amount measuring device according to claim 1, wherein the gas refrigerant containing the separated mist of the lubricating oil is measured by a light scattering method, and the mist-like lubricating oil is conveyed from the intensity of the scattered light. Lubricating oil return amount measuring device to measure the amount of.
JP11105796A 1996-03-28 1996-03-28 Apparatus for measuring lubricant return amount of refrigerating cycle Pending JPH09264769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11105796A JPH09264769A (en) 1996-03-28 1996-03-28 Apparatus for measuring lubricant return amount of refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11105796A JPH09264769A (en) 1996-03-28 1996-03-28 Apparatus for measuring lubricant return amount of refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH09264769A true JPH09264769A (en) 1997-10-07

Family

ID=14551321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11105796A Pending JPH09264769A (en) 1996-03-28 1996-03-28 Apparatus for measuring lubricant return amount of refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH09264769A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042088A (en) * 2001-03-26 2003-02-13 Kobe Steel Ltd Liquid quantity calculating method, liquid quantity calculating device and oil cooled compressor having the liquid quantity calculating device
JP2009133524A (en) * 2007-11-29 2009-06-18 Chino Corp Oil circulation rate measuring device and method
EP3822560A1 (en) 2019-11-18 2021-05-19 Audi AG Optical measurement of oil circulation rate
WO2023095290A1 (en) * 2021-11-26 2023-06-01 東芝三菱電機産業システム株式会社 Mist flow rate measurement device, ultrasonic atomization system, and mist flow rate measurement method
WO2023095291A1 (en) * 2021-11-26 2023-06-01 東芝三菱電機産業システム株式会社 Mist flow rate measurement device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042088A (en) * 2001-03-26 2003-02-13 Kobe Steel Ltd Liquid quantity calculating method, liquid quantity calculating device and oil cooled compressor having the liquid quantity calculating device
JP2009133524A (en) * 2007-11-29 2009-06-18 Chino Corp Oil circulation rate measuring device and method
EP3822560A1 (en) 2019-11-18 2021-05-19 Audi AG Optical measurement of oil circulation rate
WO2023095290A1 (en) * 2021-11-26 2023-06-01 東芝三菱電機産業システム株式会社 Mist flow rate measurement device, ultrasonic atomization system, and mist flow rate measurement method
WO2023095291A1 (en) * 2021-11-26 2023-06-01 東芝三菱電機産業システム株式会社 Mist flow rate measurement device

Similar Documents

Publication Publication Date Title
US5072595A (en) Apparatus for detecting small bubbles in a pressurized fluid stream
KR890000603B1 (en) Apparatus and method for infrared optical electronic qualitative analysis of a fluid independent of the temperature thereof
DK174197B1 (en) Particle Analyzer and Method for Particle Analysis
DK174059B1 (en) Particle analyzer and method for determining the degree of particle symmetry
JP5990185B2 (en) Equipment for photometric or spectroscopic inspection of liquid samples
CN108458857B (en) Photoelectric equipment vibration, temperature and air pressure environment simulation test system
US5017796A (en) Moving blade tip clearance measurement apparatus and method with moveable lens
JPH09264769A (en) Apparatus for measuring lubricant return amount of refrigerating cycle
US6330060B1 (en) Cloud condensation nucleus spectrometer
CN101103275A (en) Optical transit time velocimeter
CN109709025A (en) A kind of multi-modality imaging optical system
CN106248919A (en) Method based on blood sample vibration detection coagulation
CN103698153A (en) Aerosol particle sampling and detecting method and device based on energy trap method
CN106225861A (en) The determinator of a kind of fluid flow and airborne vehicle fuel quantity assay method
CN106769923A (en) A kind of water vapor condensation characteristic measuring device based on laser absorption and scattering
CN202928837U (en) Aerosol particle sampling and detecting device based on energy trap method
JP5078085B2 (en) Oil circulation rate measuring apparatus and method
CN108760613A (en) A kind of corrosive salt spray chamber convenient for adjusting
FR2585471A1 (en) METHODS AND THEIR DEVICES FOR IMPLEMENTING THE INCONDENSABLE RATE IN A GASEOUS MIXTURE
US20120257202A1 (en) Concentration measuring device, concentration measuring arrangement and concentration measuring method
US7477379B2 (en) Analysis apparatus
Newell In situ refractometry for concentration measurements in refrigeration systems
RU2801784C1 (en) Method for control of content of mechanical impurities in aerosols and liquids and device of optical cell for its implementation
CN206132146U (en) Liquid flow's survey device
JP2009014238A (en) Oil circulation rate measuring device