JPH09264535A - Spark plug - Google Patents

Spark plug

Info

Publication number
JPH09264535A
JPH09264535A JP7344796A JP7344796A JPH09264535A JP H09264535 A JPH09264535 A JP H09264535A JP 7344796 A JP7344796 A JP 7344796A JP 7344796 A JP7344796 A JP 7344796A JP H09264535 A JPH09264535 A JP H09264535A
Authority
JP
Japan
Prior art keywords
diameter
insulator
tip surface
spark plug
shaft hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7344796A
Other languages
Japanese (ja)
Inventor
Akimasa Tomita
晃正 富田
Tsutomu Okayama
勉 岡山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP7344796A priority Critical patent/JPH09264535A/en
Publication of JPH09264535A publication Critical patent/JPH09264535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spark Plugs (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a firing part from being rendered to arc creepage by raising voltage of the arc creepage. SOLUTION: This spark plug A includes a main fitment 1 having a fitment shelf 11, an electrical insulator 2 fixed in the main fitment 1 for stopping a seat surface 21 in a rear slope 111 through a packing 12, and a central electrode 3 fixed in a shaft hole 20. The central electrode 3 has a diameter reduction stage 31 located by Mmm(M>=1.6mm) interioly from an insulator tip end surface 22, a diameter ϕD2 from the diameter reduction stage 31 to an electrode tip end surface 32 being smaller (0.3mm or more) than an original diameter ϕD1 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関に装着す
るスパークプラグに関する。
The present invention relates to a spark plug mounted on an internal combustion engine.

【0002】[0002]

【従来の技術】スパークプラグは、一般的に、気密的に
支持する為のリング状のパッキン501を介して座面5
02が金具棚503の後方斜面504に係止される。そ
して、リング505及び滑石506を介して主体金具5
07の後端部508を加締めることにより、軸孔509
内に中心電極510を固定した絶縁碍子511が主体金
具507内に固定される(図10参照)。
2. Description of the Related Art Generally, a spark plug has a seat surface 5 through a ring-shaped packing 501 for hermetically supporting it.
02 is locked to the rear slope 504 of the metal rack 503. Then, the metal shell 5 is inserted through the ring 505 and the talc 506.
By tightening the rear end portion 508 of 07, the shaft hole 509
An insulator 511 having the center electrode 510 fixed therein is fixed in the metal shell 507 (see FIG. 10).

【0003】[0003]

【発明が解決しようとする課題】上記従来のスパークプ
ラグDにおいて、正規のスパークギャップ512で火花
放電せず、矢印500に示す様に発火部絶縁碍子513
の奥で横飛び(発火部沿面放電)する場合がある。この
発火部沿面放電が発生すると、エンスト、アイドル不安
定、低温時のエンジン始動不能、及び加速不良等のエン
ジン不調を引き起こす。又、沿面放電により絶縁碍子5
11が削られたり、異常燃焼により、スパークプラグD
の耐久性が低下する。更に、発火部沿面放電により発火
部絶縁碍子513が割れてエンジン内に落下するとエン
ジンにダメージを与える。
In the above-described conventional spark plug D, spark discharge does not occur in the regular spark gap 512, and the ignition portion insulator 513 as shown by the arrow 500.
May jump sideways (creeping part creeping discharge). The occurrence of this creeping discharge creeping part causes engine malfunction such as engine stall, idle instability, engine start failure at low temperature, and poor acceleration. In addition, the insulator 5
Spark plug D due to scraping of 11 or abnormal combustion
The durability is reduced. Furthermore, if the ignition part insulator 513 is broken by the creeping discharge of the ignition part and falls into the engine, the engine is damaged.

【0004】発明者らは、様々なスパークプラグについ
て発火部沿面放電の起き易さを調べたところ、の構造
を有するスパークプラグや、ガスエンジンに使用するス
パークプラグ(〜)は特に発火部沿面放電が起き易
いことを見い出した。
The inventors investigated the susceptibility of creeping discharge to the sparking part of various spark plugs. As a result, the spark plug having the structure and the spark plug (-) used in the gas engine particularly discharge to the sparking part. I found that it was easy to get up.

【0005】脚長が短いスパークプラグ。 圧縮比が高いエンジンで使用するスパークプラグ。 気体燃料に点火(高い放電電圧が必要)するスパーク
プラグ。 スパークギャップ512が広いスパークプラグ(高い
放電電圧が必要)。
A spark plug with a short leg length. Spark plug for use in engines with high compression ratio. Spark plug that ignites gaseous fuel (requires high discharge voltage). Spark plug with a wide spark gap 512 (high discharge voltage required).

【0006】本発明の第1の目的は、発火部沿面放電電
圧を高め、発火部沿面放電を防止したスパークプラグの
提供にある。本発明の第2の目的は、発火部沿面放電電
圧を高め、発火部沿面放電を防止したガスエンジン用の
スパークプラグの提供にある。
A first object of the present invention is to provide a spark plug in which the creeping discharge voltage at the ignition part is increased to prevent the creeping discharge at the ignition part. A second object of the present invention is to provide a spark plug for a gas engine, in which the creeping discharge voltage at the ignition part is increased to prevent the creeping discharge at the ignition part.

【0007】[0007]

【課題を解決するための手段】上記課題を解決する為、
本発明は、以下の構成を採用した。 (1)筒状の主体金具と、主体金具内に固定される軸孔
付の絶縁碍子と、先端が碍子先端面から突出する様に軸
孔内に固定される中心電極とを有するスパークプラグに
おいて、前記中心電極は前記碍子先端面から1.6mm
以上奥に径減段を有し、該径減段から電極先端面までの
直径を0.3mm以上(中心電極の元径より)小さくし
た。
In order to solve the above-mentioned problems,
The present invention employs the following configuration. (1) In a spark plug having a tubular metal shell, an insulator with a shaft hole fixed in the metal shell, and a center electrode fixed in the shaft hole so that the tip projects from the insulator tip surface. , The center electrode is 1.6 mm from the insulator tip surface.
As described above, there is a diameter reduction step, and the diameter from the diameter reduction step to the electrode tip surface is made 0.3 mm or more (smaller than the original diameter of the center electrode).

【0008】(2)筒状の主体金具と、主体金具内に固
定される軸孔付の絶縁碍子と、先端が碍子先端面から突
出する様に軸孔内に固定される中心電極とを有するスパ
ークプラグにおいて、前記絶縁碍子は前記碍子先端面か
ら2.0mm以上奥に径増段を有し、該径増段から前記
碍子先端面までの軸孔直径を0.3mm以上(軸孔の元
径より)大きくした。
(2) It has a tubular metal shell, an insulator with a shaft hole fixed in the metal shell, and a center electrode fixed in the shaft hole so that the tip projects from the insulator tip surface. In the spark plug, the insulator has a diameter increase step at a depth of 2.0 mm or more from the tip end surface of the insulator, and a shaft hole diameter from the diameter increase step to the insulator tip surface is 0.3 mm or more (the diameter of the shaft hole Larger than the diameter).

【0009】(3)筒状の主体金具と、主体金具内に固
定される軸孔付の絶縁碍子と、先端が碍子先端面から突
出する様に軸孔内に固定される中心電極とを有するスパ
ークプラグにおいて、前記中心電極は前記碍子先端面か
ら1.6mm以上奥に径減段を有し、該径減段から電極
先端面までの直径を0.3mm以上(中心電極の元径よ
り)小さくし、且つ、前記絶縁碍子は前記碍子先端面か
ら2.0mm以上奥に径増段を有し、該径増段から前記
碍子先端面までの軸孔直径を0.3mm以上(軸孔の元
径より)大きくした。
(3) It has a tubular metal shell, an insulator with a shaft hole fixed in the metal shell, and a center electrode fixed in the shaft hole so that the tip projects from the insulator tip surface. In the spark plug, the center electrode has a diameter reduction step 1.6 mm or more behind the insulator tip surface, and a diameter from the diameter reduction step to the electrode tip surface is 0.3 mm or more (from the original diameter of the center electrode). In addition, the insulator has a diameter increase step 2.0 mm or more deeper than the tip surface of the insulator, and the diameter of the shaft hole from the diameter increase step to the tip surface of the insulator is 0.3 mm or more ( Larger than the original diameter).

【0010】(4)上記(1) 〜(3) の何れかの構成を有
し、前記スパークプラグは、ガスエンジンに装着して使
用する。
(4) The spark plug having any one of the structures (1) to (3) is mounted on a gas engine for use.

【0011】[0011]

【作用および発明の効果】[Operation and effect of the invention]

〔請求項1について〕中心電極は絶縁碍子の碍子先端面
から1.6mm以上奥に径減段を有し、該径減段から電
極先端面までの中心電極の直径を、中心電極の元径より
も0.3mm以上小さくしているので絶縁パス(中心電
極の先端- ガスボリューム内の主体金具内壁)が稼げ
る。これにより、発火部沿面放電電圧が従来のものより
高くなり、発火部沿面放電が防止できる。
[Claim 1] The center electrode has a diameter reduction step at a depth of 1.6 mm or more from the insulator tip surface of the insulator, and the diameter of the center electrode from the diameter reduction step to the electrode tip surface is the original diameter of the center electrode. Since it is smaller than 0.3 mm, the insulation path (the tip of the center electrode-the inner wall of the metal shell in the gas volume) can be earned. As a result, the creeping discharge voltage on the ignition part becomes higher than that of the conventional one, and the creeping discharge on the ignition part can be prevented.

【0012】よって、正規のスパークギャップで飛火す
るのでエンジン不調が解消される。又、エンジンが正常
燃焼し、絶縁碍子が発火部沿面放電により削られないの
でスパークプラグの耐久性が向上する。尚、発火部沿面
放電電圧の向上効果は、径減段の形成位置が碍子先端面
から1.6mm以上奥で、且つ、径減段から電極先端面
までの中心電極の直径を、中心電極の元径よりも0.3
mm以上小さくすることにより顕著に現れる。
[0012] Therefore, the engine malfunction is eliminated because the sparks fly in the regular spark gap. Further, since the engine burns normally and the insulator is not scraped by the surface discharge of the ignition part, the durability of the spark plug is improved. It should be noted that the effect of improving the discharge voltage on the surface of the ignition part is that the position where the diameter reduction step is formed is 1.6 mm or more behind the insulator tip surface, and the diameter of the center electrode from the diameter reduction step to the electrode tip surface is 0.3 than the original diameter
Remarkably appears by making it smaller than mm.

【0013】〔請求項2について〕絶縁碍子は碍子先端
面から2.0mm以上奥に径増段を有し、該径増段から
碍子先端面までの軸孔直径を、軸孔元径よりも0.3m
m以上大きくしているので絶縁パス(中心電極の先端-
ガスボリューム内の主体金具内壁)が稼げる。これによ
り、発火部沿面放電電圧が従来のものより高くなり、発
火部沿面放電が防止できる。
[Claim 2] The insulator has a diameter step at a depth of 2.0 mm or more from the tip surface of the insulator, and the diameter of the shaft hole from the diameter increase to the tip surface of the insulator is larger than the base diameter of the shaft hole. 0.3 m
Insulation path (tip of center electrode-
Earn the metal shell inside the gas volume). As a result, the creeping discharge voltage on the ignition part becomes higher than that of the conventional one, and the creeping discharge on the ignition part can be prevented.

【0014】よって、正規のスパークギャップで飛火す
るのでエンジン不調が解消される。又、エンジンが正常
燃焼し、絶縁碍子が発火部沿面放電により削られないの
でスパークプラグの耐久性が向上する。尚、発火部沿面
放電電圧の向上効果は、径増段の形成位置が絶縁碍子の
碍子先端面から2.0mm以上奥で、且つ、径増段から
碍子先端面までの軸孔直径を、軸孔元径よりも0.3m
m以上大きくすることにより顕著に現れる。
[0014] Therefore, the engine malfunction is eliminated because the spark is fired at the regular spark gap. Further, since the engine burns normally and the insulator is not scraped by the surface discharge of the ignition part, the durability of the spark plug is improved. In addition, the effect of improving the discharge voltage on the surface of the ignition part is that the formation position of the diameter-increasing step is 2.0 mm or more behind the insulator tip surface of the insulator, and the shaft hole diameter from the diameter-increasing step to the insulator tip surface is 0.3m larger than the hole diameter
It becomes noticeable by making it larger than m.

【0015】〔請求項3について〕中心電極は碍子先端
面から1.6mm以上奥に径減段を有し、該径減段から
電極先端面までの中心電極の直径を、中心電極の元径よ
りも0.3mm以上小さくしている。これに加え、絶縁
碍子は碍子先端面から2.0mm以上奥に径増段を有
し、該径増段から碍子先端面までの軸孔直径を、軸孔元
径よりも0.3mm以上大きくしている。これにより、
絶縁パス(中心電極の先端- ガスボリューム内の主体金
具内壁)が稼げ、発火部沿面放電電圧が従来のものより
高くなり、発火部沿面放電が防止できる。
[Claim 3] The center electrode has a diameter reduction step 1.6 mm or more deeper than the tip surface of the insulator, and the diameter of the center electrode from the diameter reduction step to the electrode tip surface is defined as the original diameter of the center electrode. Is 0.3 mm or more smaller than that. In addition to this, the insulator has a diameter increase step 2.0 mm or more from the tip surface of the insulator, and the diameter of the shaft hole from the diameter increase to the tip surface of the insulator is 0.3 mm or more larger than the base diameter of the shaft hole. are doing. This allows
An insulating path (tip of the center electrode-inner wall of the metal shell in the gas volume) can be earned, the discharge voltage at the ignition part becomes higher than the conventional one, and the discharge at the ignition part can be prevented.

【0016】よって、正規のスパークギャップで飛火す
るのでエンジン不調が解消される。又、エンジンが正常
燃焼し、絶縁碍子が発火部沿面放電により削られないの
でスパークプラグの耐久性が向上する。尚、発火部沿面
放電電圧の向上効果は、径減段の形成位置が碍子先端面
から1.6mm以上奥で、径減段から電極先端面までの
中心電極の直径が、中心電極の元径よりも0.3mm以
上小さく、且つ、径増段の形成位置が碍子先端面から
2.0mm以上奥で、径増段から碍子先端面までの軸孔
直径が、軸孔元径よりも0.3mm以上大きい場合に顕
著に現れる。
[0016] Therefore, the engine malfunction is eliminated because the sparks fly at the regular spark gap. Further, since the engine burns normally and the insulator is not scraped by the surface discharge of the ignition part, the durability of the spark plug is improved. The effect of improving the creeping discharge voltage on the ignition part is that the diameter reduction step is formed 1.6 mm or more deeper than the insulator tip surface, and the diameter of the center electrode from the diameter reduction step to the electrode tip surface is the original diameter of the center electrode. Is 0.3 mm or more smaller than the diameter, and the diameter increasing step is 2.0 mm or more deeper than the insulator tip surface, and the diameter of the shaft hole from the diameter increasing step to the insulator tip surface is 0. It becomes noticeable when it is larger than 3 mm.

【0017】〔請求項4について〕ガスエンジンは燃焼
室内の圧縮比が高く、燃焼室に装着した高熱価(脚長が
短い)のスパークプラグに高い高電圧を印加する必要が
あり(気体燃料に点火する為)、発火部沿面放電を起こ
し易い。しかし、請求項1、請求項2、又は請求項3の
構成を施すことにより、発火部沿面放電が起きる発火部
沿面放電電圧を高くすることができるので、ガスエンジ
ン用のスパークプラグとして好適である。
[Claim 4] In the gas engine, the compression ratio in the combustion chamber is high, and it is necessary to apply a high voltage to the spark plug of high heat value (short leg length) mounted in the combustion chamber (ignition of gaseous fuel). Therefore, a creeping discharge is likely to occur in the ignition part. However, by applying the configuration of claim 1, claim 2, or claim 3, since it is possible to raise the creeping discharge voltage of the ignition part where the creeping discharge of the ignition part occurs, it is suitable as a spark plug for a gas engine. .

【0018】[0018]

【発明の実施の形態】本発明の第1実施例(請求項1、
4に対応)を、図1〜図4に基づいて説明する。図1、
2に示す様に、ガスエンジン用のスパークプラグAは、
内方に突出する金具棚11を有する円筒状の主体金具1
と、リング状のパッキン12を介して座面21を金具棚
11の後方斜面111に係止して主体金具1内に固定さ
れる軸孔20付の絶縁碍子2と、先端30が碍子先端面
22から突出する様に軸孔20内に固定される中心電極
3と、主体金具1の先端面13から突設する外側電極4
とを備え、ガスケット15を介してガスエンジンの燃焼
室(図示せず)に螺着される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention (Claim 1,
4) will be described with reference to FIGS. Figure 1,
As shown in 2, the spark plug A for gas engine is
Cylindrical metal shell 1 having a metal shelf 11 protruding inward
And an insulator 2 with a shaft hole 20 fixed in the metal shell 1 by locking the seat surface 21 to the rear slant surface 111 of the metal fitting shelf 11 via the ring-shaped packing 12, and the tip 30 of the insulator tip surface. The center electrode 3 fixed in the shaft hole 20 so as to project from the outer hole 22, and the outer electrode 4 protruding from the tip surface 13 of the metal shell 1.
And is screwed to the combustion chamber (not shown) of the gas engine via the gasket 15.

【0019】主体金具1は、低炭素鋼で形成され、内周
に金具棚11を形成し外周にねじ161を形成したねじ
部16と、前側にガスケット15を配設した胴部17
と、プラグレンチを嵌合させるための六角部18とから
なる。本実施例では、脚長23を包囲する位置の主体金
具1の内径がφ8.7、金具棚11の最小内径がφ7.
0mmに設定されている。
The metal shell 1 is made of low carbon steel, has a threaded portion 16 having a metal shelf 11 formed on the inner circumference and a screw 161 formed on the outer circumference, and a body portion 17 having a gasket 15 arranged on the front side.
And a hexagonal part 18 for fitting a plug wrench. In the present embodiment, the inner diameter of the metal shell 1 surrounding the leg length 23 is φ8.7, and the minimum inner diameter of the metal rack 11 is φ7.
It is set to 0 mm.

【0020】絶縁碍子2は、アルミナを主体とするセラ
ミック焼結体で形成され、ねじ部16の内側に位置する
脚長23と、六角部18から胴部17の内側に位置する
径大部24と、外周にコルゲーション251を形成した
頭部25とからなる。又、絶縁碍子2の軸に沿って軸孔
20(φJ1 =2.2)が形成されている。
The insulator 2 is formed of a ceramic sintered body mainly composed of alumina, and has a leg length 23 located inside the screw portion 16 and a large diameter portion 24 located from the hexagonal portion 18 to the inside of the body portion 17. , A head 25 having a corrugation 251 formed on the outer circumference. A shaft hole 20 (φJ 1 = 2.2) is formed along the axis of the insulator 2.

【0021】この絶縁碍子2は、金属製のパッキン12
を介して座面21を後方斜面111に係止し、主体金具
1の後端部181を、リング241、242、及びシー
ル材243を介して加締めることにより、碍子先端23
1が先端面13から突出する様に主体金具1内に固定さ
れている。
This insulator 2 has a metal packing 12
The seat surface 21 is locked to the rear slanted surface 111 via the ring, and the rear end portion 181 of the metal shell 1 is swaged via the rings 241, 242 and the sealing material 243, whereby the insulator tip 23
1 is fixed in the metal shell 1 so as to project from the tip surface 13.

【0022】本実施例では、碍子先端面22はφ4.
9、基径(脚長23の基部の碍子径)はφ6.5、脚長
23の長さ(発火部碍子長)は9mm、先端面13から
の突出長は1.5mmに設定されている。
In this embodiment, the insulator tip surface 22 has a diameter of φ4.
9, the base diameter (insulator diameter of the base of the leg length 23) is φ6.5, the length of the leg length 23 (ignition portion insulator length) is 9 mm, and the protruding length from the tip surface 13 is set to 1.5 mm.

【0023】中心電極3(Ni合金)は、内部に銅や銀
等の良熱伝導金属が封入され、絶縁碍子先端面22から
の突出長は1.5mm、元径φD1 は2mm、スパーク
ギャップは0.8mmに設定されている。又、中心電極
3は、碍子先端面22から距離Mだけ奥(M=2.5m
m)に径減段31を有し、該径減段31から電極先端面
32までの直径φD2 は、元径φD1 (2mm)よりも
0.35mm細い1.65mmに形成されている。
The center electrode 3 (Ni alloy) is filled with a good heat-conducting metal such as copper or silver and has a protrusion length of 1.5 mm from the insulator insulator tip surface 22 and an original diameter φD 1 of 2 mm and a spark gap. Is set to 0.8 mm. Further, the center electrode 3 is far from the insulator tip surface 22 by a distance M (M = 2.5 m).
m) has a diameter reduction step 31, and the diameter φD 2 from the diameter reduction step 31 to the electrode tip surface 32 is formed to 1.65 mm, which is 0.35 mm thinner than the original diameter φD 1 (2 mm).

【0024】尚、尖っている方をマイナス側にした方が
衝突電離作用が生じ易い(火花放電が起き易く放電電圧
を低くすることができる)ので、中心電極3には主体金
具1に対してマイナス極性の高電圧が印加される。
The impact ionization effect is more likely to occur when the pointed side is on the negative side (spark discharge is more likely to occur and the discharge voltage can be lowered). A high voltage of negative polarity is applied.

【0025】外側電極4(Ni合金)は、略L字状を呈
している。この外側電極4は、先端内面の放電部が電極
先端面32と向き合う様に、主体金具1の先端面13に
抵抗溶接されている。
The outer electrode 4 (Ni alloy) has a substantially L shape. The outer electrode 4 is resistance-welded to the tip surface 13 of the metal shell 1 so that the discharge portion on the inner surface of the tip faces the electrode tip surface 32.

【0026】距離Mの好適範囲を求める為、(元径φD
1 −直径φD2 )を0.35mmと一定にし、碍子先端
面22から径減段31までの距離Mを、0.5mm、
1.0mm、1.5mm、3.0mm、及び6.0mm
にし、他の構成はスパークプラグAと同一にした五種類
のスパークプラグと、(元径φD1 −直径φD2 )を
0.35mmとし、碍子先端面22から径減段31まで
の距離Mを2.5mmにしたスパークプラグAとを、各
10本ずつ製造し、発火部沿面放電が始まる発火部沿面
放電電圧(平均値)を測定したところ図3のグラフに示
す結果が得られた。そして、発火部沿面放電電圧の測定
は、外側電極4を垂直に起こすか、初めから取り付けな
いで測定する。尚、(元径φD1 −直径φD2 )を別の
値にしても同様に試験を行い、距離M≧1.6mmであ
れば発火部沿面放電電圧の向上効果が顕著に現れること
が判明した。
In order to find the preferable range of the distance M, (the original diameter φD
1 -diameter φD 2 ) is fixed to 0.35 mm, and the distance M from the insulator tip surface 22 to the diameter reduction step 31 is 0.5 mm,
1.0 mm, 1.5 mm, 3.0 mm, and 6.0 mm
Other configurations include five types of spark plugs that are the same as the spark plug A, and (the original diameter φD 1 −the diameter φD 2 ) is 0.35 mm, and the distance M from the insulator tip surface 22 to the diameter reduction step 31 is Ten spark plugs A each having a size of 2.5 mm were manufactured, and the creeping discharge voltage (average value) at which the sparking portion creeping discharge started was measured. The results shown in the graph of FIG. 3 were obtained. Then, the measurement of the creeping discharge voltage at the ignition part is performed by raising the outer electrode 4 vertically or without attaching it from the beginning. It should be noted that the same test was carried out even if (original diameter φD 1 −diameter φD 2 ) was changed to another value, and it was found that the effect of improving the creeping discharge voltage at the ignition part was remarkably exhibited when the distance M ≧ 1.6 mm. .

【0027】又、(元径φD1 −直径φD2 )の好適範
囲を求める為、碍子先端面22から径減段31までの距
離Mを2.5mmと一定にし、(元径φD1 −直径φD
2 )を、0.2mm、0.3mm、0.55mm、及び
0.75mmにし、他の構成はスパークプラグAと同一
にした四種類のスパークプラグと、距離Mを2.5mm
とし、(元径φD1 −直径φD2 )を0.35mmにし
たスパークプラグAとを、各10本ずつ製造し、発火部
沿面放電が始まる発火部沿面放電電圧(平均値)を測定
したところ、図4のグラフに示す結果が得られた。尚、
距離Mを別の値にしても同様に試験を行い、(元径φD
1 −直径φD2 )≧0.3mmであれば発火部沿面放電
電圧の向上効果が顕著に現れることが判明した。
Further, in order to obtain a preferable range of (original diameter φD 1 -diameter φD 2 ), the distance M from the insulator tip surface 22 to the diameter reduction step 31 is kept constant at 2.5 mm and (original diameter φD 1 -diameter φD 2 φD
2 ) is 0.2 mm, 0.3 mm, 0.55 mm, and 0.75 mm, and other configurations are the same as the spark plug A. Four types of spark plugs and the distance M is 2.5 mm.
And, each of 10 spark plugs A each having (original diameter φD 1 −diameter φD 2 ) of 0.35 mm was manufactured, and the creeping part discharge voltage (average value) at which the sparking part creeping discharge started was measured. The results shown in the graph of FIG. 4 were obtained. still,
The same test is performed even if the distance M is changed to another value, and the original diameter φD
It was found that if 1 -diameter φD 2 ) ≧ 0.3 mm, the effect of improving the creeping discharge voltage of the ignition part is remarkably exhibited.

【0028】本実施例のスパークプラグAは、以下の利
点を有する。中心電極3は、碍子先端面22から距離M
だけ奥(M=2.5mm)に径減段31を有し、該径減
段31から電極先端面32までの直径φD2 を、元径φ
1(2mm)よりも0.35mm細い1.65mmに
形成している。
The spark plug A of this embodiment has the following advantages. The center electrode 3 is located at a distance M from the insulator tip surface 22.
A diameter reduction step 31 is provided only at the back (M = 2.5 mm), and a diameter φD 2 from the diameter reduction step 31 to the electrode tip surface 32 is calculated as
It is formed to be 1.65 mm thinner than D 1 (2 mm) by 0.35 mm.

【0029】この為、中心電極3の先端〜ガスボリュー
ム内の主体金具内壁間の絶縁パスが長くなり、図3、図
4の“スパークプラグA”に示す様に、発火部沿面放電
が起き始める発火部沿面放電電圧を従来のものより高く
でき(20kV→23.5kV)、発火部沿面放電が防
止できる。よって、正規のスパークギャップで飛火する
のでエンジン不調が解消される。又、エンジンが正常燃
焼し、絶縁碍子2が発火部沿面放電により削られないの
でスパークプラグの耐久性が向上する。
For this reason, the insulating path between the tip of the center electrode 3 and the inner wall of the metal shell in the gas volume becomes long, and as shown in "spark plug A" in FIGS. The creeping discharge voltage on the ignition part can be made higher than that of the conventional one (20 kV → 23.5 kV), and the creeping discharge on the ignition part can be prevented. Therefore, the engine malfunctions are resolved because the sparks fly in the regular spark gap. Further, since the engine burns normally and the insulator 2 is not scraped by the creeping discharge of the ignition part, the durability of the spark plug is improved.

【0030】つぎに、本発明の第2実施例(請求項2、
4に対応)を、図5〜図8に基づいて説明する。図5、
6に示すガスエンジン用のスパークプラグBは、以下の
点がスパークプラグAと異なり、他はスパークプラグA
と同一である。
Next, a second embodiment of the present invention will be described.
4) will be described with reference to FIGS. FIG.
The spark plug B for a gas engine shown in 6 is different from the spark plug A in the following points, and other spark plugs A
Is the same as

【0031】本実施例では、絶縁碍子2は、碍子先端面
22から距離Nだけ奥(N=3.0mm)に径増段23
2を有し、該径増段232から碍子先端面22までの軸
孔直径φJ1 を、軸孔20の直径φJ2 より0.35m
m大きく(φJ1 =2.55)形成している。
In this embodiment, the porcelain insulator 2 is provided with a diameter increasing step 23 at a distance N (N = 3.0 mm) from the tip surface 22 of the porcelain insulator.
2, the diameter φJ 1 of the shaft hole from the diameter increasing step 232 to the insulator tip surface 22 is 0.35 m from the diameter φJ 2 of the shaft hole 20.
It is formed to be m larger (φJ 1 = 2.55).

【0032】距離Nの好適範囲を求める為、(径増段2
32から碍子先端面22までの軸孔直径φJ1 )−(軸
孔20の直径φJ2 )を0.35mmと一定にし、碍子
先端面22から径減段31までの距離Nを、0.5m
m、1.0mm、2.0mm、2.5mm、及び6.0
mmにし、他の構成はスパークプラグBと同一にした五
種類のスパークプラグと、(φJ1 −φJ2 )を0.3
5mmとし、碍子先端面22から径増段232までの距
離Nを3.0mmにしたスパークプラグBとを、各10
本ずつ製造し、発火部沿面放電が始まる発火部沿面放電
電圧(平均値)を測定したところ図7のグラフに示す結
果が得られた。尚、(φJ1 −φJ2 )を別の値にして
も同様に試験を行い、距離N≧2.0mmであれば発火
部沿面放電電圧の向上効果が顕著に現れることが判明し
た。
In order to obtain a preferable range of the distance N, (diameter increase step 2
32 to the insulator tip surface 22 of the shaft hole diameter φJ 1 )-(diameter φJ 2 of the shaft hole 20) is kept constant at 0.35 mm, and the distance N from the insulator tip surface 22 to the diameter reduction step 31 is 0.5 m.
m, 1.0 mm, 2.0 mm, 2.5 mm, and 6.0
mm, and the other configurations have the same five types of spark plugs as the spark plug B, and (φJ 1 −φJ 2 ) is 0.3.
A spark plug B having a length N of 5 mm and a distance N from the insulator tip surface 22 to the diameter increasing step 232 of 3.0 mm is 10
The samples were manufactured one by one, and the creeping discharge voltage (average value) at which the creeping discharge started, and the results shown in the graph of FIG. 7 were obtained. It should be noted that the same test was performed even when (φJ 1 −φJ 2 ) was changed to another value, and it was found that the effect of improving the creeping discharge voltage at the ignition part was remarkably exhibited when the distance N ≧ 2.0 mm.

【0033】又、(φJ1 −φJ2 )の好適範囲を求め
る為、碍子先端面22から径増段232までの距離Nを
3.0mmと一定にし、(φJ1 −φJ2 )を、0.2
mm、0.3mm、0.55mm、及び0.75mmに
し、他の構成はスパークプラグBと同一にした四種類の
スパークプラグと、距離Nを3.0mmとし、(φJ 1
−φJ2 )を0.35mmにしたスパークプラグBと
を、各10本ずつ製造し、発火部沿面放電が始まる発火
部沿面放電電圧(平均値)を測定したところ、図8のグ
ラフに示す結果が得られた。尚、距離Nを別の値にして
も同様に試験を行い、(φJ1 −φJ2 )≧0.3mm
であれば発火部沿面放電電圧の向上効果が顕著に現れる
ことが判明した。
In addition, (φJ1-ΦJTwo) Seeking a suitable range of
Therefore, the distance N from the insulator tip surface 22 to the diameter increasing step 232 is
Keep it constant at 3.0 mm ((φJ1-ΦJTwo), 0.2
mm, 0.3 mm, 0.55 mm, and 0.75 mm
However, the other configurations are the same as those of the spark plug B.
The distance N from the spark plug is set to 3.0 mm, and (φJ 1
-ΦJTwo) With a spark plug B of 0.35 mm
10 pieces of each are manufactured, and the creeping discharge starts at the ignition part.
The creeping discharge voltage (average value) of the
The results shown in the rough were obtained. In addition, the distance N is set to another value.
The same test is performed for (φJ1-ΦJTwo) ≧ 0.3mm
In that case, the effect of improving the discharge voltage on the surface of the ignition part becomes remarkable.
It has been found.

【0034】本実施例のスパークプラグBは、以下の利
点を有する。絶縁碍子2は、碍子先端面22から距離N
だけ奥(N=3.0mm)に径増段232を有し、該径
増段232から碍子先端面22までの軸孔直径φJ
1 を、軸孔20の直径φJ2 より0.35mm大きい
2.55mmにしている。
The spark plug B of this embodiment has the following advantages. Insulator 2 is separated from insulator tip surface 22 by distance N
Only at the back (N = 3.0 mm), there is a diameter increasing step 232, and the diameter of the shaft hole φJ from the diameter increasing step 232 to the insulator tip surface 22.
1 is 2.55 mm, which is 0.35 mm larger than the diameter φJ 2 of the shaft hole 20.

【0035】この為、絶縁パスが長くなり、図7、図8
の“スパークプラグB”に示す様に、発火部沿面放電が
起き始める発火部沿面放電電圧を従来のものより高くで
き(20kV前後→24kV)、発火部沿面放電が防止
できる。よって、正規のスパークギャップで飛火するの
でエンジン不調が解消される。又、エンジンが正常燃焼
し、絶縁碍子2が発火部沿面放電により削られないので
スパークプラグの耐久性が向上する。
As a result, the insulation path becomes long, and the insulation path shown in FIGS.
As shown in "Spark plug B", the creeping discharge voltage at the ignition part where the creeping discharge at the ignition part starts can be made higher than that of the conventional one (around 20 kV → 24 kV), and the creeping discharge at the ignition part can be prevented. Therefore, the engine malfunctions are resolved because the sparks fly in the regular spark gap. Further, since the engine burns normally and the insulator 2 is not scraped by the creeping discharge of the ignition part, the durability of the spark plug is improved.

【0036】つぎに、本発明の第3実施例(請求項1〜
4に対応)を図9に基づいて説明する。図9に示すガス
エンジン用のスパークプラグCは、以下の点がスパーク
プラグAと異なり、他はスパークプラグAと同一であ
る。
Next, a third embodiment of the present invention (claims 1 to 3)
4) will be described with reference to FIG. The spark plug C for a gas engine shown in FIG. 9 is the same as the spark plug A except for the following points.

【0037】本実施例では、中心電極3は、碍子先端面
22から距離Mだけ奥(M=2.5mm)に径減段31
を有し、該径減段31から電極先端面32までの直径φ
2は、元径φD1 (2.0mm)よりも0.35mm
細い1.65mmに形成されている。 又、絶縁碍子2
は碍子先端面22からNだけ奥(N=3.0mm)に径
増段232を有し、該径増段232から碍子先端面22
までの軸孔直径φJ1を、軸孔20の直径φJ2 より
0.35mm大きく(φJ1 =2.55)形成してい
る。
In this embodiment, the diameter of the center electrode 3 is reduced 31 by a distance M from the insulator tip surface 22 (M = 2.5 mm).
And the diameter φ from the diameter reduction step 31 to the electrode tip surface 32
D 2 is 0.35 mm larger than the original diameter φD 1 (2.0 mm)
It is formed to be thin 1.65 mm. Also, insulator 2
Has a diameter increasing step 232 in the back (N = 3.0 mm) from the insulator tip surface 22 by N, and from the diameter increasing step 232 to the insulator tip surface 22.
The diameter φJ 1 of the shaft hole is up to 0.35 mm larger than the diameter φJ 2 of the shaft hole 20 (φJ 1 = 2.55).

【0038】これにより、絶縁パスが長くなり、発火部
沿面放電が起き始める発火部沿面放電電圧を従来のもの
より高くできる(20kV前後→25.5kV)ので、
スパークプラグCは、発火部沿面放電が防止できる。よ
って、正規のスパークギャップで飛火するのでエンジン
不調が解消される。又、エンジンが正常燃焼し、絶縁碍
子2が発火部沿面放電により削られないのでスパークプ
ラグの耐久性が向上する。
As a result, the insulation path becomes longer, and the creeping discharge voltage at the firing part, where the creeping discharge at the ignition part starts, can be made higher than that of the conventional one (around 20 kV → 25.5 kV).
The spark plug C can prevent the creeping discharge on the ignition part. Therefore, the engine malfunctions are resolved because the sparks fly in the regular spark gap. Further, since the engine burns normally and the insulator 2 is not scraped by the creeping discharge of the ignition part, the durability of the spark plug is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るスパークプラグの部
分断面図である。
FIG. 1 is a partial sectional view of a spark plug according to a first embodiment of the present invention.

【図2】本発明の第1実施例に係るスパークプラグの要
部拡大断面図である。
FIG. 2 is an enlarged sectional view of a main part of the spark plug according to the first embodiment of the present invention.

【図3】碍子先端面から径減段までの距離Mと、発火部
沿面放電電圧との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the distance M from the tip surface of the insulator to the diameter reduction step and the discharge voltage on the creeping part.

【図4】(元径φD1 −直径φD2 )と、発火部沿面放
電電圧との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between (original diameter φD 1 −diameter φD 2 ) and the creeping discharge voltage of the ignition part.

【図5】本発明の第2実施例に係るスパークプラグの部
分断面図である。
FIG. 5 is a partial sectional view of a spark plug according to a second embodiment of the present invention.

【図6】本発明の第2実施例に係るスパークプラグの要
部拡大断面図である。
FIG. 6 is an enlarged sectional view of a main part of a spark plug according to a second embodiment of the present invention.

【図7】碍子先端面から径減段までの距離Nと、発火部
沿面放電電圧との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the distance N from the tip surface of the insulator to the diameter reduction step and the creeping discharge voltage of the ignition part.

【図8】(φJ1 −φJ2 )と、発火部沿面放電電圧と
の関係を示すグラフである。
FIG. 8 is a graph showing the relationship between (φJ 1 −φJ 2 ) and the creeping discharge voltage of the ignition part.

【図9】本発明の第3実施例に係るスパークプラグの要
部拡大断面図である。
FIG. 9 is an enlarged sectional view of a main part of a spark plug according to a third embodiment of the present invention.

【図10】従来技術に係るスパークプラグの要部拡大断
面図である。
FIG. 10 is an enlarged sectional view of a main part of a spark plug according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 主体金具 2 絶縁碍子 3 中心電極 12 パッキン 20 軸孔 22 碍子先端面 31 径減段 32 電極先端面 232 径増段 D1 中心電極の元径 D2 径減段から電極先端面までの直径 J1 径増段から碍子先端面までの軸孔直径 J2 軸孔の直径 A、B、C スパークプラグ1 Metal shell 2 Insulator 3 Center electrode 12 Packing 20 Shaft hole 22 Insulator tip surface 31 Diameter reduction step 32 Electrode tip surface 232 Diameter increase step D 1 Center electrode original diameter D 2 Diameter from diameter reduction step to electrode tip surface J 1 Shaft hole diameter from the additional diameter to the insulator tip surface J 2 Shaft hole diameter A, B, C Spark plug

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 筒状の主体金具と、 主体金具内に固定される軸孔付の絶縁碍子と、 先端が碍子先端面から突出する様に軸孔内に固定される
中心電極とを有するスパークプラグにおいて、 前記中心電極は前記碍子先端面から1.6mm以上奥に
径減段を有し、該径減段から電極先端面までの直径を
0.3mm以上小さくしたことを特徴とするスパークプ
ラグ。
1. A spark having a tubular metal shell, an insulator with a shaft hole fixed in the metal shell, and a center electrode fixed in the shaft hole such that the tip projects from the insulator tip surface. In the plug, the center electrode has a diameter reduction step 1.6 mm or more behind the insulator tip surface, and a diameter from the diameter reduction step to the electrode tip surface is reduced by 0.3 mm or more. .
【請求項2】 筒状の主体金具と、 主体金具内に固定される軸孔付の絶縁碍子と、 先端が碍子先端面から突出する様に軸孔内に固定される
中心電極とを有するスパークプラグにおいて、 前記絶縁碍子は前記碍子先端面から2.0mm以上奥に
径増段を有し、該径増段から前記碍子先端面までの軸孔
直径を0.3mm以上大きくしたことを特徴とするスパ
ークプラグ。
2. A spark having a tubular metal shell, an insulator with a shaft hole fixed in the metal shell, and a center electrode fixed in the shaft hole so that the tip projects from the insulator tip surface. In the plug, the porcelain insulator has a stepped diameter 2.0 mm or more deeper than the tip surface of the porcelain insulator, and a shaft hole diameter from the stepped diametrical step to the tip surface of the porcelain insulator is increased by 0.3 mm or more. Spark plug to do.
【請求項3】 筒状の主体金具と、 主体金具内に固定される軸孔付の絶縁碍子と、 先端が碍子先端面から突出する様に軸孔内に固定される
中心電極とを有するスパークプラグにおいて、 前記中心電極は前記碍子先端面から1.6mm以上奥に
径減段を有し、該径減段から電極先端面までの直径を
0.3mm以上小さくし、且つ、 前記絶縁碍子は前記碍子先端面から2.0mm以上奥に
径増段を有し、該径増段から前記碍子先端面までの軸孔
直径を0.3mm以上大きくしたことを特徴とするスパ
ークプラグ。
3. A spark having a tubular metal shell, an insulator with a shaft hole fixed in the metal shell, and a center electrode fixed in the shaft hole such that the tip of the metal shell is protruded from the tip surface of the insulator. In the plug, the center electrode has a diameter reduction step at a depth of 1.6 mm or more from the insulator tip surface, and a diameter from the diameter reduction step to the electrode tip surface is reduced by 0.3 mm or more, and the insulator is A spark plug having a step diameter increased 2.0 mm or more from the tip surface of the insulator, and a shaft hole diameter from the step diameter increase to the tip surface of the insulator is increased by 0.3 mm or more.
【請求項4】 前記スパークプラグは、ガスエンジンに
装着して使用することを特徴とする、請求項1乃至請求
項3の何れかに記載のスパークプラグ。
4. The spark plug according to claim 1, wherein the spark plug is mounted on a gas engine for use.
JP7344796A 1996-03-28 1996-03-28 Spark plug Pending JPH09264535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7344796A JPH09264535A (en) 1996-03-28 1996-03-28 Spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7344796A JPH09264535A (en) 1996-03-28 1996-03-28 Spark plug

Publications (1)

Publication Number Publication Date
JPH09264535A true JPH09264535A (en) 1997-10-07

Family

ID=13518495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7344796A Pending JPH09264535A (en) 1996-03-28 1996-03-28 Spark plug

Country Status (1)

Country Link
JP (1) JPH09264535A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305260B2 (en) 2017-07-14 2019-05-28 Ngk Spark Plug Co., Ltd. Spark plug including an insulator with a front end portion having first and second sections

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305260B2 (en) 2017-07-14 2019-05-28 Ngk Spark Plug Co., Ltd. Spark plug including an insulator with a front end portion having first and second sections
DE102018211565B4 (en) 2017-07-14 2024-05-02 Niterra Co., Ltd. spark plug

Similar Documents

Publication Publication Date Title
US5929556A (en) Spark plug with center electrode having variable diameter portion retracted from front end on insulator
US8082897B2 (en) Plasma jet ignition plug and ignition device for the same
US7105990B2 (en) Spark plug for internal combustion engine
CA2291351C (en) Spark plug for internal combustion engine having better self-cleaning function
JPH09283259A (en) Spark plug
JP4270784B2 (en) Spark plug
WO2021111719A1 (en) Spark plug
US6653768B2 (en) Spark plug
JPH09330782A (en) Spark plug
JP3265210B2 (en) Spark plug
US6552476B1 (en) Spark plug for internal combustion engine having better self-cleaning function
US7262547B2 (en) Spark plug element having defined dimensional parameters for its insulator component
US8558442B2 (en) Plasma jet ignition plug
JPH0272577A (en) Ignition plug of internal combustion engine
JPH09266056A (en) Spark plug
WO2022030072A1 (en) Spark plug
JPH09264535A (en) Spark plug
JP4398483B2 (en) Spark plug
JP3589693B2 (en) Spark plug
JPH06196247A (en) Spark plug for internal combustion engine
JPH09330783A (en) Multipolar spark plug
JP3265211B2 (en) Spark plug
JPH0632252B2 (en) Creepage discharge plug
JPH1187015A (en) Spark plug for layered combustion type engine
JPS617583A (en) Ignition plug of internal combustion engine