JPH09263846A - Method for recovering available metal in dust and/or sludge from stainless steel producing process - Google Patents

Method for recovering available metal in dust and/or sludge from stainless steel producing process

Info

Publication number
JPH09263846A
JPH09263846A JP9954096A JP9954096A JPH09263846A JP H09263846 A JPH09263846 A JP H09263846A JP 9954096 A JP9954096 A JP 9954096A JP 9954096 A JP9954096 A JP 9954096A JP H09263846 A JPH09263846 A JP H09263846A
Authority
JP
Japan
Prior art keywords
coke
dust
sludge
amount
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9954096A
Other languages
Japanese (ja)
Other versions
JP3534530B2 (en
Inventor
Nobuyuki Yoneda
信幸 米田
Masahiro Harada
晶洋 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP09954096A priority Critical patent/JP3534530B2/en
Publication of JPH09263846A publication Critical patent/JPH09263846A/en
Application granted granted Critical
Publication of JP3534530B2 publication Critical patent/JP3534530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an effective coke adding method for treating dust and/or sludge produced in a stainless steel producing process with an electric furnace. SOLUTION: At the time of executing smelting reduction by briquetting the dust and/or the sludge containing available metals and adding the coke into this briquette, the adding quantity of the coke used to the reduction is adjusted to a quantity corresponding to the coke adding quantity (kg/T-dust, sludge) of 0.75-0.90 calculated by A [ 2.6(%total Fe/0.7773)+3.3 (%Cr2 O3 )+2.9 (%NiO)]. Further, the coke used to the reduction is adjusted so that the total of wt. ratio of each grain size of the coke mixed within the following range becomes 100%. The grain sigz and the blending ratio of the coke are <=10mm at 5-20%, 10-15mm at 35-50%, 15-20mm at 25-40% and >20mm at <=10%, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はステンレス鋼の製造
において各工程から発生するダスト,スラッジ等の廃棄
物処理に係り,より詳しくはこの廃棄物に含まれるF
e,Ni,Cr等の有価金属を効率良く,安定して回収
するための電気炉製錬における電気炉へのコ−クス添加
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of waste such as dust and sludge generated from each process in the production of stainless steel, and more particularly to the F contained in this waste.
The present invention relates to a method for adding coke to an electric furnace in electric furnace smelting for efficiently and stably recovering valuable metals such as e, Ni and Cr.

【0002】[0002]

【従来の技術】ステンレス鋼の製造において,電気炉,
転炉,VOD処理等の工程から排出されるガス中のダス
トやステンレス鋼板の酸洗処理の廃液から発生するスラ
ッジにはFe,Ni,Crなどの有価金属が多量に含ま
れている。従ってこれらダスト,スラッジを廃棄物とし
てそのまま投棄することは省資源の観点からも公害防止
の面からも望ましいことではない。そのためダスト,ス
ラッジ等を処理し,その中の有価金属を回収する技術が
数多く提案されてきた。ステンレス製造工程から発生す
るダスト,スラッジの処理に関する典型的な先行技術と
して 特公昭62−2013号公報が公知である。特公
昭62−2013号公報は電気製錬炉によってダストお
よびスラッジを処理するに際し,炉状況を安定させるた
めに添加コ−クスの粒度をダスト,スラッジの組成に応
じて調節する製錬法を開示している。ダストまたはスラ
ッジを電気炉へ投入するには製団機または造粒機によっ
てダスト,スラッジをブリケットもしくはペレット状の
団鉱にする必要があり,成型のため糖蜜,澱粉,パルプ
廃液等のバインダ−が使用される。またダスト,スラッ
ジの組成により,或いはコ−クスの灰分が少なくて鉱滓
量が不当に少ない場合は珪石,石灰石などの造滓材が添
加され,さらにコ−クスの一部を団鉱に内装させること
もある。またダスト,スラッジ処理の場合,炉床の溶融
金属に含まれる硫黄を重量比で示す〔%S〕が鉱滓の塩
基度,炉床温度,還元剤としてのコ−クス添加量等の諸
因子に関する電気炉操業の総合的な結果を示すから溶融
金属中の硫黄〔%S〕が炉の安定性を示す一つの指標に
なる。
In the production of stainless steel, electric furnaces,
A large amount of valuable metals such as Fe, Ni, and Cr are contained in sludge generated from dust in gas discharged from processes such as a converter and VOD process and waste liquid from pickling process of stainless steel plate. Therefore, discarding these dusts and sludges as wastes is not desirable from the viewpoint of resource saving and pollution prevention. Therefore, many technologies have been proposed for treating dust and sludge and recovering valuable metals in them. Japanese Patent Publication No. 62-2013 is known as a typical prior art relating to the treatment of dust and sludge generated in the stainless steel manufacturing process. Japanese Examined Patent Publication No. 62-2013 discloses a smelting method in which, when treating dust and sludge in an electric smelting furnace, the particle size of added coke is adjusted according to the composition of the dust and sludge in order to stabilize the furnace condition. are doing. In order to put dust or sludge into an electric furnace, it is necessary to turn the dust and sludge into briquettes or pellets using a briquette or granulator. used. If the amount of slag is unreasonably small due to the composition of dust and sludge, or the ash content of coke is too small, slag material such as silica stone or limestone is added, and a part of the coke is added to the briquette. Sometimes. In the case of dust and sludge treatment, sulfur in the molten metal of the hearth is expressed by weight ratio [% S] relates to various factors such as basicity of slag, hearth temperature, and coke addition amount as a reducing agent. Sulfur [% S] in the molten metal is one of the indicators of the stability of the furnace because it shows the overall results of the electric furnace operation.

【0003】[0003]

【発明が解決しようとする課題】良好な炉状況を維持す
るためにコ−クス粒度を団鉱組成に応じて選択するとす
れば夫々の組成に適した粒度別のコ−クスを用意し,そ
のための篩分け,粒度調整のための混合設備,更には各
粒度用コ−クス置場,全体的に見た作業量の増加等,コ
スト的に不利な要因が増加する。また,粗粒のコ−クス
が必要な団鉱組成の場合は粗粒コ−クスの増加とともに
炉内の電気抵抗が減少するから,そのため電極を引き上
げねばならず,炉床への熱エネルギ−の集中が出来なく
なる。電気炉の場合,酸化物形態にある有価金属の反応
の主体は炉床におけるコ−クスの直接還元にあるので,
電極の引上げは熱放散を増大させ,熱効率の低下,即ち
電力原単位の上昇と処理能力の低下を来すことになる。
またコ−クス添加量の基本は回収すべき金属に結合する
酸素を取り除くに必要な量であるから処理すべきダス
ト,スラッジの組成の変動によって変動し,炉内のコ−
クス量が過不足なく,長期に渡って安定した操業を続け
るには絶えざる監視と変動への対応に多大の努力を必要
とする。
If the coke grain size is selected according to the composition of the briquette in order to maintain a good furnace condition, cokes for each grain size suitable for each composition are prepared. The cost disadvantages such as sieving, mixing equipment for particle size adjustment, coke storage for each particle size, and overall increase in work load increase. In the case of a briquette composition that requires coarse-grained coke, the electrical resistance in the furnace decreases as the coarse-grained coke increases. Therefore, the electrode must be pulled up, and the thermal energy to the hearth Can't concentrate. In the case of an electric furnace, the main component of the reaction of valuable metals in the oxide form is the direct reduction of coke in the hearth.
Pulling up the electrode increases heat dissipation, resulting in a decrease in thermal efficiency, that is, an increase in power consumption and a decrease in processing capacity.
The basic amount of coke added is the amount necessary to remove the oxygen bound to the metal to be recovered, so it varies depending on the composition of the dust and sludge to be treated, and the coke in the furnace
In order to maintain a stable operation for a long period of time without excess or deficiency, the amount of effort must be constantly monitored and great efforts must be made to respond to fluctuations.

【0004】本発明は上述した問題を解決するためにダ
スト,スラッジ組成の変動に対して容易に適切なコ−ク
ス添加量を決定できる方法と,反応に最も効果的な添加
コ−クスの粒度構成を提案するものである。
In order to solve the above-mentioned problems, the present invention provides a method for easily determining an appropriate amount of coke added to a change in dust and sludge composition, and a particle size of the added coke most effective for the reaction. It proposes a configuration.

【0005】[0005]

【課題を解決するための手段】即ち,上記の目的は団鉱
にしたダスト,スラッジとともに次式に相当する量のコ
−クスを電気炉に投入することによって達成される。 コ−クス添加量=A{2.6(全Fe/0.7773)+3.3(%Cr2O3)+
2.9(%NiO)} ここで,コ−クス量は(Kg/T−ダスト,スラッジ)
で示し,(%全Fe/0.7773)は炉に投入される
全Fe分の重量%,(%Cr23),(%NiO)はダ
スト,スラッジ原料組成のそれぞれの重量%,またAは
A=0.75〜0.90の範囲の数値を示す。
That is, the above-mentioned object is achieved by charging dust and sludge made into briquette and an amount of coke corresponding to the following equation into an electric furnace. Amount of coke = A {2.6 (total Fe / 0.7773) +3.3 (% Cr 2 O 3 ) +
2.9 (% NiO)} where the coke amount is (Kg / T-dust, sludge)
, (% Total Fe / 0.7773) is the weight% of the total Fe charged into the furnace, (% Cr 2 O 3 ), (% NiO) are the respective weight% of the dust and sludge raw material compositions, and a is a number in the range of a = 0. 75~0. 90.

【0006】その際,使用するコ−クスはコ−クスの粒
径とその重量比が 10mm以下・・・・・・・5〜20% 10〜15mm・・・・・35〜50% 15〜20mm・・・・・25〜40% 20mm以上・・・・・・10%以下 の範囲内にあり,更に各粒度のコ−クスを混合した重量
比の合計が100%となるように調節して使用すること
である。
At this time, the coke to be used has a coke particle size and a weight ratio of 10 mm or less ... 5-20% 10-15 mm ... 35-50% 15- 20 mm ... 25-40% 20 mm or more ... 10% or less, and further adjust so that the total weight ratio of coke of each particle size is 100%. Is to use.

【0007】[0007]

【発明の実施の形態】上記コ−クス添加量を求める式に
おいて,Fe分の係数,2.6,Cr分の係数,3.3,
Ni分の係数,2.9はそれぞれ還元用コ−クス,溶融
金属中に残存するカ−ボン,不可避的に溶融金属に入る
Si分の還元用コ−クスに,更に歩留りを考えてて定め
た係数であるが,各成分にたするコ−クス量の合計は更
に係数Aによって補正される。Aは後述するように,組
成の異なる団鉱について実験的に求められた係数であ
る。Aは約0.83を中心にしてA=0.75〜0.90
と言う比較的広い範囲で電力原単位(KWH/T−ダス
ト,スラッジ)が最小に近い状態となり,操業中,組成
が変動してその組成に対応するコ−クス量に過不足を生
じてもAの指定範囲であれば其の組成における極少値に
近い電力原単位で操業を続けることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the above formula for determining the amount of coke added, a coefficient for Fe, a coefficient for 2.6, a coefficient for Cr, 3.3,
The coefficient of Ni content, 2.9 is the reduction coke, the carbon remaining in the molten metal, and the reduction coke of the Si content that inevitably enters the molten metal. The total amount of coke added to each component is further corrected by the coefficient A. As will be described later, A is a coefficient experimentally obtained for briquettes having different compositions. A is about 0.83 and A = 0.75 to 0.90
In a relatively wide range, the power consumption rate (KWH / T-dust, sludge) is close to the minimum, and the composition fluctuates during operation, resulting in excess or deficiency in the amount of coke corresponding to that composition. If it is in the designated range of A, the operation can be continued with the electric power consumption rate close to the minimum value in the composition.

【0008】即ち,ある団鉱の処理に必要なコ−クス量
を上記の式にA=0.83を用いて計算すれば,それが
炉床に達して溶融する際の組成の多少の変動は勿論考慮
する必要は無く,またA=0.83によって計算された
先の団鉱に対するコ−クス量がそのまま他の組成の団鉱
に適用されても,此のコ−クス量に対する後者の組成か
ら逆算したAの数値がA=0.75〜0.90に収まれ
ば,そのまま安定した操業を続けることが出来る。従っ
て処理するダスト,スラッジの代表的な組成にAの指定
範囲の中心,A=0.83を適用して計算したコ−クス
量が他のダスト,スラッジのFe,Cr,Ni各酸化物
含有量の組み合わせにおいてA=0.75〜0.90に入
る組成領域を予め決定しておけば,その領域内のダス
ト,スラッジについては先に求めた代表組成のコ−クス
量を添加すればよく,組成変動に対応するコ−クス量を
その都度計算する手間を省くことができる。
That is, if the amount of coke required for the treatment of a briquette is calculated by using A = 0.83 in the above equation, some fluctuation of the composition when it reaches the hearth and melts Of course, it is not necessary to consider, and even if the coke amount for the former briquette calculated by A = 0.83 is directly applied to the briquette of other composition, the latter amount for this coke amount is If the numerical value of A calculated back from the composition is within A = 0.75 to 0.90, stable operation can be continued. Therefore, the coke amount calculated by applying A = 0.83 to the center of the specified range of A for the typical composition of dust and sludge to be treated contains Fe, Cr, and Ni oxides of other dust and sludge. If the composition region within A = 0.75 to 0.90 is determined in advance in the combination of the amounts, the amount of dust and sludge in that region may be added by the coke amount of the previously determined representative composition. It is possible to save the trouble of calculating the coke amount corresponding to the composition variation each time.

【0009】その際,コ−クス粒度が反応性に影響する
のでコ−クスの粒度構成もコ−クスの過不足に影響す
る。細粒のコ−クスは反応性が良く,電気抵抗も大きい
から細粒の割合が多いと電極の挿入深さを十分に取れる
ようになって電力原単位は減少する。しかし細粒部分は
鉱滓とともに炉外に排出され易く,またダストとして排
ガスと一緒に排出されてしまうので多量の細粒は好まし
くない。そこで適正な粒度範囲を検討し,次のコ−クス
粒度構成を提案する。
At this time, since the coke grain size affects the reactivity, the coke grain size structure also affects the excess or deficiency of the coke. The fine-grained coke has good reactivity and high electric resistance, so if the proportion of fine-grained particles is large, the insertion depth of the electrode can be sufficiently secured and the power consumption rate decreases. However, a large amount of fine particles is not preferable because the fine particles are easily discharged outside the furnace together with the slag, and are also discharged as dust together with the exhaust gas. Therefore, we examine the appropriate grain size range and propose the following coke grain size composition.

【0010】 10mm以下・・・・・・5〜20% 10〜15mm・・・・35〜50% 15〜20mm・・・・25〜40% 20mm以上・・・・・・10%以下 各粒径コ−クスがここに示す重量比の範囲内で混合さ
れ,各粒径コ−クスの重量比が合計100%となるよう
に調合する。
10 mm or less ... 5 to 20% 10 to 15 mm ... 35 to 50% 15 to 20 mm ... 25 to 40% 20 mm or more ... 10% or less Each grain The diameter cokes are mixed within the weight ratio range shown here, and the weight ratios of the particle size cokes are 100% in total.

【0011】[0011]

【実施例】【Example】

(実施例1)図1は本発明の実施に係る電気製錬炉の模
式図で,炉体1に電極2が3本△連結で上方から炉体1
に挿入される。コ−クス4とともに団鉱3は炉体1の炉
内頂部に投入され,順次炉床へ降下する。団鉱は通常の
方法で作製した。即ち,ステンレス製造の各工程から回
収したダスト,スラッジにバインダ−としてパルプ廃液
を加えて混和し,団鉱機を通してブリケットとしたもの
である。炉床に溜まった溶融金属5は取出し口7から取
り出される。鉱滓6が溶融した状態で溶融金属5を覆っ
ている。以上のような作業によって表1に示すような有
価金属を含有する団鉱,a及びbを処理し,添加コ−ク
ス量を3種類のパラメ−タを使って表示したときの電力
原単位(KWH/T−ダスト,スラッジ)を示した。即
ち,(1)処理するダスト,スラッジTon当りのコ−
クス原単位,(2)含有有価金属酸化物を還元するに必
要な理論コ−クス量に対する添加コ−クス量の倍率,及
び(3)各金属酸化物個々の還元に必要なコ−クス量の
合計に対する前記同様の比率,即ち,係数Aで, A=コ−クス添加量/{2.6(%全Fe/0.7773)+3.3(%Cr
2O3)+ 2.9(NiO} である。ここでコ−クス添加量の単位は(kg/T−ダス
ト,スラッジ)である。
(Embodiment 1) FIG. 1 is a schematic view of an electric smelting furnace according to an embodiment of the present invention.
Is inserted into. The briquette 3 together with the coke 4 is charged into the furnace top of the furnace body 1 and sequentially descends to the hearth. The briquette was prepared by a usual method. That is, the pulp waste liquid is added as a binder to the dust and sludge collected from each step of stainless steel production, and the mixture is mixed into a briquette through a briquetting machine. Molten metal 5 accumulated in the hearth is taken out through an outlet 7. The molten metal 5 is covered with the slag 6 in a molten state. By the above work, the briquette containing valuable metals as shown in Table 1, a and b are treated, and the amount of added coke is displayed by using three types of parameters. KWH / T-dust, sludge). That is, (1) dust per ton and sludge Ton
Coke basic unit, (2) Magnification of the amount of added coke to the theoretical amount of coke required for reducing the valuable metal oxide contained, and (3) Amount of coke required for reduction of each metal oxide individually. The same ratio to the sum of the above, that is, the coefficient A, A = coke addition amount / {2.6 (% total Fe / 0.7773) +3.3 (% Cr
2 O 3 ) +2.9 (NiO}, where the unit of coke addition is (kg / T-dust, sludge).

【0012】[0012]

【表1】 [Table 1]

【0013】処理する団鉱の組成を考慮せずに表示する
(1)の方式では最小の電力原単位を得るためのコ−ク
ス添加量は団鉱組成の変動によって大きく変動する。即
ち,操業においてコ−クスの過不足に絶えず注意する必
要がある。還元に必要な理論コ−クス量に対する過剰コ
−クス量の比率(2)では団鉱組成を考慮しているの
で,最小電力原単位を示す位置はコ−クス原単位表示
(1)ほど大きく変動しないが,最適コ−クス量への過
不足があるとき,電力原単位は急激に増加する。変動に
対する厳重な監視と厳密なコ−クス添加量の調節が必要
である。横軸にA値をとる(3)はa,b団鉱でそれぞ
れA=0.80及び0.82において極少値を示し,A=
0.75〜0.90の範囲で最小に近い電力原単位になっ
た。従ってA=0.75〜0.90の中心値0.83でコ
−クス添加量を決定すればそのコ−クス量が前記範囲に
入る他の組成の団鉱に適用されても略最適条件で操業す
ることが出来る。
In the method (1) in which the composition of the briquette to be treated is not taken into consideration, the amount of coke added to obtain the minimum electric power consumption rate greatly varies depending on the variation of the briquette composition. That is, it is necessary to constantly pay attention to the excess and deficiency of coke in the operation. The ratio of the excess coke amount to the theoretical coke amount required for reduction (2) takes into account the briquette composition, so the position showing the minimum power consumption unit is larger as the coke consumption unit display (1) is. Although it does not fluctuate, when there is an excess or deficiency in the optimum amount of coke, the power consumption rate increases rapidly. Strict monitoring for fluctuations and strict adjustment of coke addition amount are required. (3), which has an A value on the horizontal axis, shows a minimum value at A = 0.80 and 0.82 for group a and b respectively, and A =
In the range of 0.75 to 0.90, the power consumption rate was close to the minimum. Therefore, if the coke addition amount is determined at the central value 0.83 of A = 0.75 to 0.90, even if the coke amount is applied to briquettes having other compositions falling within the above range, the optimum condition is obtained. Can be operated at.

【0014】(実施例2)実施例1に使用した電気炉を
使用し,実施例1と同様の予備処理をして作製した団鉱
について,添加するコ−クスの粒度構成が電力原単位に
与える影響を表2に示した。実施例2は既述の各粒径に
許容される粒度分布の範囲から表に示す粒度構成のもの
を選び,係数Aを0.80とした場合である。
(Example 2) With respect to a briquette produced by using the electric furnace used in Example 1 and performing the same pretreatment as in Example 1, the grain size composition of the coke to be added is the power consumption unit. The influences given are shown in Table 2. Example 2 is a case where the particle size constitution shown in the table is selected from the range of the particle size distribution allowed for each particle size and the coefficient A is 0.80.

【0015】[0015]

【表2】 [Table 2]

【0016】(実施例3)許容範囲であるが,実施例2
と異なる粒度構成のコ−クスを採用し,A=0.86と
して,実施例2と同様の実験を行った結果が表2の実施
例3である。コ−クス粒度が適正である場合は実施例1
および2とも電力原単位は略900KWH/T−ダス
ト,スラッジ以下であり,溶融金属中の硫黄〔%S〕も
炉況が安定な事を示した。
(Embodiment 3) Although it is within the allowable range, Embodiment 2
Example 3 in Table 2 shows the result of an experiment similar to that of Example 2 using a coke having a grain size configuration different from that of A = 0.86. Example 1 when the coke grain size is appropriate
In both No. 2 and No. 2, the electric power consumption rate was about 900 KWH / T-dust and sludge or less, and the sulfur [% S] in the molten metal showed that the furnace condition was stable.

【0017】(比較例)前記実施例に使用した電気炉を
使用し,実施例と同じ処理で作製した団鉱について実験
した。表2の比較例1は略適正なコ−クス粒度構成であ
るが,添加量が許容A値の範囲に達しない場合の例で,
溶融金属中の硫黄〔%S〕も大きく,溶融金属中のカ−
ボン濃度が足りないことを示しており,同時に電力原単
位も大きいことが分かる。
(Comparative Example) An experiment was carried out on a briquette produced by the same process as that of the example using the electric furnace used in the example. Comparative Example 1 in Table 2 has a substantially proper coke grain size composition, but is an example in which the addition amount does not reach the range of the allowable A value.
Sulfur [% S] in the molten metal is also large and the
This indicates that the concentration of bon is insufficient, and at the same time, the power consumption rate is also large.

【0018】比較例2は粒度が大きいコ−クスの割合が
多く,電気抵抗の減少で電極を引き上げたためにAは適
正値であっても電力原単位は増加した。
In Comparative Example 2, the ratio of coke having a large grain size was large, and the electric power consumption rate was increased even if A was a proper value because the electrode was pulled up because the electric resistance decreased.

【0019】比較例3は−クス粒度構成は適正である
が,Aの適正値を越えてコ−クスを添加した場合で,電
力原単位は前述の実施例に劣る。
In Comparative Example 3, the grain size composition is proper, but when the coke is added in excess of the proper value of A, the electric power consumption rate is inferior to that of the above-mentioned Examples.

【0020】[0020]

【発明の効果】本発明によれば有価金属を含むダスト,
スラッジを電気炉処理して有価金属を回収する際に,ダ
スト,スラッジの組成が変動しても最も経済的な電力原
単位で操業できるコ−クス添加量を容易に決定し得る。
その際,使用するコ−クスも本発明に従ってその粒度を
決定することで電力単位を減少させ,長期にわたる安定
した炉状況を確保できる。
According to the present invention, dust containing valuable metals,
When recovering valuable metals by treating sludge with an electric furnace, it is possible to easily determine the amount of coke added that can operate at the most economical power consumption rate, even if the composition of dust and sludge fluctuates.
At that time, the unit of electric power can be reduced by determining the granularity of the coke to be used according to the present invention, and a stable furnace condition for a long period can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に係る電気製錬炉の模式図であ
る。
FIG. 1 is a schematic diagram of an electric smelting furnace according to an embodiment of the present invention.

【図2】コ−クス添加量のパラメ−タと電力原単位の関
係を示す線図である。
FIG. 2 is a diagram showing a relationship between parameters of coke addition amount and electric power consumption rate.

【符号の説明】[Explanation of symbols]

1 電気製錬炉本体 2 電極 3 団鉱 4 コ−クス 5 溶融金属 6 溶融鉱滓 7 溶融金属取出し口 1 Electro-smelting furnace main body 2 Electrode 3 Briquettes 4 Cokes 5 Molten metal 6 Molten slag 7 Molten metal outlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 有価金属を含有するダストおよび/また
はスラッジを製団し,これをコ−クス及び必要に応じて
加える造滓剤とともに溶融還元してダストおよび/また
はスラッジ中の有価金属を回収する方法において,還元
に使用するコ−クスの添加量を コ−クス添加量(Kg/T−ダスト,スラッジ)=A{2.6
(%全Fe/0.7773)+3.3(%Cr2O3)+2.9(%NiO)},A=0.75〜
0.90 に相当する量に調節することを特徴とするステンレス鋼
製造工程から発生するダストおよび/またはスラッジの
有価金属を回収する方法。
1. A valuable metal-containing dust and / or sludge is formed and melt-reduced together with coke and optionally a slag-forming agent to recover valuable metal in the dust and / or sludge. In the above method, the addition amount of coke used for reduction is the addition amount of coke (Kg / T-dust, sludge) = A {2.6
(% Total Fe / 0.7773) +3.3 (% Cr 2 O 3 ) +2.9 (% NiO)}, A = 0.75 ~
A method for recovering valuable metals in dust and / or sludge generated from a stainless steel manufacturing process, characterized by adjusting the amount to 0.90.
【請求項2】 請求項1において還元に使用するコ−ク
スはコ−クスの粒径とその重量比が 10mm以下・・・・・・・5〜20% 10〜15mm・・・・・35〜50% 15〜20mm・・・・・25〜40% 20mm以上・・・・・・10%以下 の範囲内にあり,更に各粒度のコ−クスを混合した重量
比の合計が100%となるように調節して使用すること
を特徴とする請求項1記載のステンレス鋼製造工程から
発生するダストおよび/またはスラッジの有価金属を回
収する方法。
2. The coke used in the reduction according to claim 1, wherein the coke particle size and the weight ratio thereof are 10 mm or less ........ 5 to 20% 10 to 15 mm .. -50% 15-20 mm ... 25-40% 20 mm or more ... 10% or less, and the total weight ratio of coke of each particle size is 100%. The method for recovering valuable metal of dust and / or sludge generated from the stainless steel manufacturing process according to claim 1, which is used after being adjusted.
JP09954096A 1996-03-29 1996-03-29 Method for recovering valuable metal of dust and / or sludge generated from stainless steel manufacturing process Expired - Fee Related JP3534530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09954096A JP3534530B2 (en) 1996-03-29 1996-03-29 Method for recovering valuable metal of dust and / or sludge generated from stainless steel manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09954096A JP3534530B2 (en) 1996-03-29 1996-03-29 Method for recovering valuable metal of dust and / or sludge generated from stainless steel manufacturing process

Publications (2)

Publication Number Publication Date
JPH09263846A true JPH09263846A (en) 1997-10-07
JP3534530B2 JP3534530B2 (en) 2004-06-07

Family

ID=14250034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09954096A Expired - Fee Related JP3534530B2 (en) 1996-03-29 1996-03-29 Method for recovering valuable metal of dust and / or sludge generated from stainless steel manufacturing process

Country Status (1)

Country Link
JP (1) JP3534530B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193574A (en) * 2017-05-15 2018-12-06 Jfeスチール株式会社 Melting reduction method of dust, and recycling method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018193574A (en) * 2017-05-15 2018-12-06 Jfeスチール株式会社 Melting reduction method of dust, and recycling method

Also Published As

Publication number Publication date
JP3534530B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
US20060037673A1 (en) Chromium-containing metal and manufacturing method thereof
JP2009079303A (en) Manufacturing method of stainless steel by reutilizing waste in stainless steel manufacturing process
CN1718554A (en) Treatment method of vanadium containing converter steel slag
US6685761B1 (en) Method for producing beneficiated titanium oxides
EP2210959B1 (en) Process for producing molten iron
JP3317658B2 (en) Metal recovery from steel industry waste.
JP3534530B2 (en) Method for recovering valuable metal of dust and / or sludge generated from stainless steel manufacturing process
JP2006009146A (en) Method for refining molten iron
CN1138864C (en) V2O3 electro-aluminothermic process for semelting FeV50
JP2007146217A (en) Steelmaking method and refining facility for steelmaking
CA1275174C (en) Secondary lead production
JP3929260B2 (en) Zinc enriched compact and method for concentrating zinc in steelmaking dust using the compact
JP3560677B2 (en) Operating method of electric smelting furnace with reduced electrode consumption
CN115572787B (en) Process method for reducing thermal state slag through slag splashing protection
EP3817876A1 (en) Calcium, aluminum and silicon alloy, as well as a process for the production of the same
JP4757829B2 (en) Electrical smelting method for efficiently recovering valuable metals from steel by-products
JP3732561B2 (en) Simultaneous implementation of iron alloy production and incineration ash melting in an electric furnace
JP2008019510A (en) Method of operating electric arc furnace by using steelmaking dust
JPH07173520A (en) Method for dephosphorizing chromium-containing molten iron and molten steel
JPH08120354A (en) Operation of electric smelting furnace
EP1980632A1 (en) The agglomeration of metal production dust with geopolymer resin
Kurunov et al. Washing the hearth of blast furnaces with briquets made from scale
JPH101707A (en) Equipment for recovering zinc in dust
JPH1121612A (en) Method for melting steel
JP3806282B2 (en) Method of melting iron-containing cold material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees