JPH09263547A - Accelerating substance for percutaneous absorption and production of the same - Google Patents

Accelerating substance for percutaneous absorption and production of the same

Info

Publication number
JPH09263547A
JPH09263547A JP7649196A JP7649196A JPH09263547A JP H09263547 A JPH09263547 A JP H09263547A JP 7649196 A JP7649196 A JP 7649196A JP 7649196 A JP7649196 A JP 7649196A JP H09263547 A JPH09263547 A JP H09263547A
Authority
JP
Japan
Prior art keywords
phe
polyrotaxane
percutaneous absorption
solution
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7649196A
Other languages
Japanese (ja)
Other versions
JP3704194B2 (en
Inventor
Nobuhiko Yui
伸彦 由井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP07649196A priority Critical patent/JP3704194B2/en
Publication of JPH09263547A publication Critical patent/JPH09263547A/en
Application granted granted Critical
Publication of JP3704194B2 publication Critical patent/JP3704194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Polyethers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an accelerating substance for a percutaneous absorption, capable of avoiding a skin irritation or toxicity while enhancing the medicine absorption capability of a skin by utilizing a high molecular organic compound. SOLUTION: This accelerating substance for a percutaneous absorption consists of plural cyclic compounds of α,β,γ-cyclodextrins, a linear chain like high molecular compound piercing through the cavity of the cyclic compounds (e.g. polyethylene glycol) and degradable parts in a living body bonded to both the ends of the linear chain like high molecular compound, and also an aggregate of the polymer degradable in the living body having an ultra molecular structure obtained by hydroxypropylation of the above α,β,γ-cyclodextrins. The degradable part in the living body is obtained by adding pseudopolyrotaxane to Z-L-Phe-succinimide to obtain Z-L-Phe-polyrotaxane, then hydroxypropylating and deprotecting the Z-group as necessary. An aqueous solution of indomethacin is excellent in permeability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、薬剤の経皮吸収を
促進させるための新規物質に関するものである。
TECHNICAL FIELD The present invention relates to a novel substance for promoting percutaneous absorption of a drug.

【0002】[0002]

【従来の技術】薬物を皮膚から効率良く吸収させて全身
或いは局所の薬理効果を発揮させる経皮吸収システム
(TTS)には、経皮吸収促進剤の使用による薬物の皮
膚吸収性向上が不可欠である。一般に皮膚最外層は、角
質層と呼ばれる角化細胞が分化した後重積した角質細胞
で覆われており、薬物だけではなく細菌等の外界からの
異物の侵入に対する防御の役割を演じている。そのため
薬物を皮膚より吸収させるためには、角質層中に存在し
ている角質細胞間脂質や細胞内ケラチン等の蛋白質と強
く相互作用し、これらの秩序構造を乱したり破壊する必
要がある。このような作用を有する物質は、一般に経皮
吸収促進剤と呼ばれており、これまでに多くの低分子極
性有機化合物が検討され、薬物の経皮吸収促進剤を飛躍
的に亢進する作用が報告されている。当初は、角質細胞
間脂質を抽出あるいは脂質二分子構造を破壊する作用を
有するジメチルスルフォキシド等の極性溶媒、ピロリド
ンカルボン酸等の自然保湿因子、高級脂肪酸等の各種界
面活性剤が検討され、続いてエイゾンと云う商品名で知
られる1-ドデシルアザシクロヘプタン-2-オンが細胞間
脂質のみならず、細胞内ケラチン等の含有蛋白質を変性
させて更に高い吸収促進作用を示すことが報告されてい
る。本発明者他3名らは”種々の経皮吸収促進剤による
皮膚角質層内の水の構造変化とインドメタシン透過性へ
の影響”(Drug Delivary System
Vol.7No.21992年発行)で角質層結合水量及
び%抽出とP値との関係について角質層結合水量が0.20
g/g以上で0.25g/g未満の時にP値は増大することが発表
しており,角質層結合水量が0.20g/g以上で0.25g/g未満
となるような経費吸収促進物質が望まれている。
2. Description of the Related Art A transdermal absorption system (TTS), which efficiently absorbs a drug through the skin and exerts a systemic or local pharmacological effect, must improve the skin absorbability of the drug by using a transdermal absorption enhancer. is there. Generally, the outermost layer of the skin is covered with keratinocytes, which are called stratum corneum and have been differentiated and accumulated and then play a role of protection against invasion of foreign substances not only from drugs but also from the outside world such as bacteria. Therefore, in order to absorb the drug from the skin, it is necessary to strongly interact with proteins such as intercorneocyte lipids and intracellular keratin existing in the stratum corneum to disturb or destroy these ordered structures. A substance having such an action is generally called a percutaneous absorption enhancer, and many low-molecular-weight polar organic compounds have been studied so far, and it has an action to dramatically enhance the percutaneous absorption enhancer of a drug. It has been reported. Initially, polar solvents such as dimethyl sulfoxide having an action of extracting keratinocyte lipids or destroying the lipid bimolecular structure, natural moisturizing factors such as pyrrolidonecarboxylic acid, and various surfactants such as higher fatty acids were investigated. Subsequently, it was reported that 1-dodecylazacycloheptan-2-one, known under the trade name of Azone, has a higher absorption promoting effect by denaturing not only intracellular lipids but also proteins contained in cells such as intracellular keratin. ing. "The effect of various transdermal absorption enhancers on the structure change of water in the stratum corneum of the skin and the indomethacin permeability" by the present inventors and others (Drug Delivery System).
Vol. 7 No. (Issued in 1992), the relationship between the stratum corneum bound water content and% extraction and the P value was 0.20.
It has been announced that the P value increases when the amount is g / g or more and less than 0.25 g / g, and a cost absorption promoting substance that makes the stratum corneum bound water amount 0.20 g / g or more and less than 0.25 g / g is desired. It is rare.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
経皮吸収促進剤は、いずれも低分子有機化合物であり、
角質細胞と相互作用するだけではなく、皮膚下組織へと
浸透し、これら組織を構成する細胞にも強く作用して長
期間にわたって使用すると細胞毒性や皮下炎症を引き起
こすことが判明した。すなわちこれら経皮吸収促進物質
は、単に角質層の秩序構造に影響を与えるだけでなくそ
れ自身が角質層を透過して角質下の体内、具体的には真
皮及び皮下組織へと浸透していき、結果的に皮膚刺激性
や皮膚毒性を示すという問題点を有していた。従来使用
されていた経皮吸収促進剤はこのことから、安全な経皮
吸収促進剤を求めて新しいアプローチがなされている。
その一つが柑橘類に含まれるリモネン等のように皮下組
織に吸収されても安全な低分子化合物であり、もう一つ
は角質細胞に作用しても皮下組織に吸収されない高分子
化合物である。しかしながら、いずれの化合物も角質層
への薬物の分配を向上させることが特徴であり、多くの
薬物について皮膚吸収性を向上させるに足りる薬物拡散
性を向上させるには至らなかった。そこで本発明は、か
かる従来技術の欠点に鑑みなされたもので、高分子有機
化合物を用いて皮膚の薬物吸収性を向上させながら皮膚
刺激性や毒性を回避することのできる経皮吸収促進剤を
見出したのである。
However, these percutaneous absorption enhancers are all low molecular weight organic compounds,
It was found that it not only interacts with keratinocytes but also penetrates into tissues under the skin and strongly acts on cells constituting these tissues, and causes cytotoxicity and subcutaneous inflammation after long-term use. That is, these percutaneous absorption-promoting substances not only affect the ordered structure of the stratum corneum but also permeate through the stratum corneum and penetrate into the sub-corneal body, specifically, the dermis and subcutaneous tissues. As a result, it has a problem that it shows skin irritation and skin toxicity. For this reason, the transdermal absorption enhancers that have been conventionally used have been taken a new approach in search of a safe transdermal absorption enhancer.
One of them is a low molecular weight compound such as limonene contained in citrus fruits which is safe to be absorbed into the subcutaneous tissue, and the other is a high molecular compound which is not absorbed into the subcutaneous tissue even when acting on keratinocytes. However, any of the compounds is characterized by improving the distribution of the drug to the stratum corneum, and many drugs have not been able to improve the drug diffusibility sufficient to improve the skin absorbability. Therefore, the present invention has been made in view of the above-mentioned drawbacks of the prior art, and a percutaneous absorption enhancer capable of avoiding skin irritation and toxicity while improving the drug absorption of the skin by using a high molecular weight organic compound. I found it.

【0004】[0004]

【課題を解決するための手段】すなわち本発明は、α,
β又はγ−シクロデキストリン複数の環状化合物と、該
環状化合物の空洞を貫通させた直鎖状高分子化合物と、
この直鎖状高分子化合物の両端部に結合させた生体内分
解性部位とからなり、前記α,β又はγ−シクロデキス
トリンをヒドロキシプロピル化した超分子構造の生体内
分解性高分子集合体体からなる経皮吸収促進物質により
本目的を達成する。請求項3の発明は前記経皮吸収促進
物質の製法に関するもので、 a)カルボベンゾキシ-L-フェニルアラニンとN-ヒドロ
キシスシンイミド(N-HOSu)と反応させてZ-L-Phe-スクシ
ンイミドを合成する工程と、 b)シクロデキストリン水溶液にα-(3-アミノプロピ
ル)-ω-(3-アミノプロピル)ポリ(オキシエチレン)を添
加して擬ポリロタキサンを作成する工程と、 c)前記a)の工程で得られたZ-L-Phe-スクシンイミド
の溶解液に前記b)の工程で得られた擬ポリロタキサン
を添加しZ-L-Phe-ポリロタキサンを合成する工程と、 d)前記c)の工程で得られたZ-L-Phe-ポリロタキサン
をヒドロキシプロピル化する工程とからなる。 α,β又はγ−シクロデキストリンとこれらのシクロデ
キストリンの空隙を貫通するポリマーとの関係は、既に
大阪大学の原田博士の研究(表面談話会・コロイド懇話
会1994年Vol.32No.2)により、以下のようなポリマーが
貫通可能であることが指摘されている。 1)α−シクロデキストリンの場合 ポリエチレングリコール 2)β−シクロデキストリンの場合 ポリエチレングリコール、ポリプロピレングリコール、
ポリイソブチレン 3)γ−シクロデイストリンの場合 ポリエチレングリコール、ポリプロピレングリコール、
ポリイソブチレン、ポリメチルビニルエーテル そして、末端にかさ高い基例えば2,4-ジニトロフェニル
基、3,6-ジニトロベンゾイル基が結合していると貫通し
えないので、末端にはメチル基、メトキシ基、アミン基
等の小さな官能基を結合させたものを用いる。尚、ポリ
エチレングリコール、ポリプロピレングリコール、ポリ
イソブチレンあるいはこれらのブロック共重合体の平均
分子量が200〜5000で、望ましくは400〜20
00である。
That is, the present invention is based on α,
β or γ-cyclodextrin a plurality of cyclic compounds, a linear polymer compound penetrating the cavity of the cyclic compound,
A biodegradable polymer assembly comprising a biodegradable site bonded to both ends of this linear polymer compound and having a supramolecular structure obtained by hydroxypropylating the above α, β or γ-cyclodextrin. This object is achieved by a percutaneous absorption enhancer consisting of. The invention of claim 3 relates to a method for producing the percutaneous absorption enhancer, which comprises: a) synthesizing ZL-Phe-succinimide by reacting carbobenzoxy-L-phenylalanine with N-hydroxysuccinimide (N-HOSu). And b) adding α- (3-aminopropyl) -ω- (3-aminopropyl) poly (oxyethylene) to the cyclodextrin aqueous solution to prepare a pseudopolyrotaxane, and c) the above a) The step of adding the pseudo-polyrotaxane obtained in the step b) to the solution of the ZL-Phe-succinimide obtained in the step to synthesize ZL-Phe-polyrotaxane, and the step d) obtained in the step c). Hydroxypropylating ZL-Phe-polyrotaxane. The relationship between α, β or γ-cyclodextrin and polymers penetrating the voids of these cyclodextrins has already been investigated by Dr. Harada of Osaka University (Surface discourse / colloid congress 1994 Vol.32 No.2). It has been pointed out that the following polymers are penetrable. 1) In the case of α-cyclodextrin Polyethylene glycol 2) In the case of β-cyclodextrin Polyethylene glycol, polypropylene glycol,
Polyisobutylene 3) In the case of γ-cyclodextrin Polyethylene glycol, polypropylene glycol,
Polyisobutylene, polymethyl vinyl ether, and bulky groups at the end, such as 2,4-dinitrophenyl group, 3,6-dinitrobenzoyl group can not penetrate if bound, so a methyl group, methoxy group, The one to which a small functional group such as an amine group is bonded is used. The average molecular weight of polyethylene glycol, polypropylene glycol, polyisobutylene or a block copolymer thereof is 200 to 5000, preferably 400 to 20.
00.

【0005】直鎖状高分子化合物の両端部に結合させる
生体内分解性部位としては、繰返し単位が1〜5であ
り、構成アミノ酸としてアラニン、バリン、ロイシン、
イソロイシン、メチオニン、プロリン、フェニルアラニ
ン、トリプトファン、アスパラギン酸、グルタミン酸、
グリシン、セリン、スレオニン、チロシン、システイ
ン、リシン、アルギニン、ヒスチジンのいずれか単独若
しくは複数からなるオリゴペプチド鎖、あるいは繰返し
単位が1〜5であり、構成多糖としてデキストラン、ヒ
アルロン酸、キチン、キトサン、アルギン酸、コンドロ
イチン硫酸、デンプン、プルランからなるオリゴ糖鎖を
有する部位を用いるのが好ましい。
The biodegradable site to be bonded to both ends of a linear polymer compound has 1 to 5 repeating units, and its constituent amino acids are alanine, valine, leucine,
Isoleucine, methionine, proline, phenylalanine, tryptophan, aspartic acid, glutamic acid,
An oligopeptide chain consisting of one or more of glycine, serine, threonine, tyrosine, cysteine, lysine, arginine, and histidine, or a repeating unit of 1 to 5 and dextran, hyaluronic acid, chitin, chitosan, alginic acid as constituent polysaccharides. It is preferable to use a site having an oligosaccharide chain consisting of chondroitin sulfate, starch, and pullulan.

【0006】[0006]

【作用】本発明にかかる超分子経皮吸収促進剤では、直
鎖状高分子であるポリエチレングリコール、ポリプロピ
レングリコールあるいはこれらのブロック共重合体に貫
通したシクロデキストリンが強い水素結合性によって角
質層成分と相互作用して薬物拡散性を亢進させ、さらに
本超分子経皮吸収促進剤の分子形態によっては皮下に浸
透しないか、若しくは皮下に浸透した後に皮下分解性部
位であるオリゴペプチド鎖、オリゴ糖鎖、或いはエステ
ル基等が分解することによって、シクロデキストリンが
ポリエチレングリコール、ポリプロピレングリコール或
いはこれらのブロック共重合体から一度に脱離して皮下
組織に対する安全性を保証する。すなわち超分子の形態
によっては角質層以下の組織中には吸収させず、あるい
は吸収されても皮下分解性部位であるオリゴペプチド
鎖、オリゴ鎖或いはアステル基等の分解によって皮下組
織への刺激性・毒性を回避することができる。
In the supramolecular percutaneous absorption enhancer according to the present invention, cyclodextrin penetrating a linear polymer such as polyethylene glycol, polypropylene glycol or a block copolymer thereof has a strong hydrogen bonding property to form a stratum corneum component. Depending on the molecular form of the supramolecular percutaneous absorption enhancer, it interacts with each other to promote drug diffusion, or does not penetrate subcutaneously, or after penetration into the skin, oligopeptide chains and oligosaccharide chains that are subcutaneous degradable sites Alternatively, when the ester group or the like is decomposed, cyclodextrin is detached from polyethylene glycol, polypropylene glycol, or a block copolymer thereof at one time to ensure safety for subcutaneous tissue. That is, depending on the morphology of the supramolecule, it is not absorbed into the tissue below the stratum corneum, or even if absorbed, it is irritating to the subcutaneous tissue due to the decomposition of the subcutaneously degradable site such as oligopeptide chains, oligo chains or astel groups. Toxicity can be avoided.

【0007】[0007]

【発明の実施の形態】本発明を以下に実施例に従って詳
細に説明する。 実施例−1 以下に示す工程A〜Dを経て本発明に使用する超分子構
造の経皮吸収促進剤を作成した。 A)Z-L-Phe-スクシンイミドの合成 ジオキサン(140ml)にカルボベンゾキシ-L-フェニルアラ
ニン((Z-L-Phe)(14.5g)と、N-ヒドロキシスクシンイミ
ド(N-HOSu)(5.58g)を溶解した。この溶液を冷蔵庫で冷
却(12℃)し。DDC(9.99g)を撹拌しながら添加したところ
白濁した。この溶液を冷凍室(4℃)で一晩撹拌したとこ
ろ凝固した。これを数時間かけて溶解し、副生成物であ
るN-N'-ジシクロヘキシル尿素を濾過により除去した。
濾液をエバポレーターで減圧濃縮し、エーテル中に滴下
すると白色沈殿が生じた。この沈殿物を遠心濾過により
回収し、ジクロロメタンに溶解した。この溶液を軽く揺
すりながら石油エーテル(貧溶媒)を滴下し、僅かに白
濁が見られたところで、冷蔵庫に一晩静置して再結晶を
行った。生じた結晶は濾過により回収し、減圧乾燥した
(収率48%)。生成物の純度は示差走査熱量測定によ
る融点測定(138℃)により確認した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below with reference to Examples. Example-1 A transdermal absorption enhancer having a supramolecular structure used in the present invention was prepared through the steps A to D shown below. A) Synthesis of ZL-Phe-succinimide Carbobenzoxy-L-phenylalanine ((ZL-Phe) (14.5 g) and N-hydroxysuccinimide (N-HOSu) (5.58 g) were dissolved in dioxane (140 ml). This solution was cooled in a refrigerator (12 ° C.), DDC (9.99 g) was added with stirring, and the solution became cloudy. When the solution was stirred in a freezer (4 ° C.) overnight, it solidified. Dissolved and the by-product N-N'-dicyclohexylurea was removed by filtration.
The filtrate was concentrated under reduced pressure with an evaporator and then added dropwise into ether to give a white precipitate. The precipitate was collected by centrifugal filtration and dissolved in dichloromethane. Petroleum ether (poor solvent) was added dropwise while gently shaking this solution, and when a slight white turbidity was observed, the solution was left standing overnight in a refrigerator for recrystallization. The generated crystals were collected by filtration and dried under reduced pressure (yield 48%). The purity of the product was confirmed by melting point measurement (138 ° C.) by differential scanning calorimetry.

【0008】[0008]

【化1】 Embedded image

【0009】B)擬ポリロタキサン(α-CD-PEG4000-B
A)の調製 飽和α-シクロデキストリン(CD)水溶液(1.45g/10ml、1.
49×102mM)にα-(3-アミノプロピル)-ω-(3-アミノプロ
ピル)ポリ(オキシエチレン)(PEG4000-BA、Mn=412
0)を(0.13g、3.2×10-4mmol)添加し、3時間撹拌した
ところ溶液が白濁した。この溶液に30分超音波処理を
行った後、一晩静置して白色沈殿物を得た。この沈殿物
を遠心濾過により回収し、2回水洗を行った後、6時間
減圧乾燥して白色粉末を得た(収率85%)。H-NMRよ
りPEG:-OCH2CH2(δ=3.5)とα-CD:C(1)H(δ=4.8)の積分
比からPEG4000-BA鎖一分子に貫通しているα-CDの平均
分子数を求めたところ35〜40であった。
B) Pseudopolyrotaxane (α-CD-PEG4000-B
Preparation of A) Saturated α-cyclodextrin (CD) aqueous solution (1.45 g / 10 ml, 1.
49 × 10 2 mM) to α- (3-aminopropyl) -ω- (3-aminopropyl) poly (oxyethylene) (PEG4000-BA, Mn = 412
0) (0.13 g, 3.2 × 10 −4 mmol) was added and the mixture was stirred for 3 hours, whereupon the solution became cloudy. The solution was sonicated for 30 minutes and then left standing overnight to obtain a white precipitate. The precipitate was collected by centrifugal filtration, washed twice with water, and dried under reduced pressure for 6 hours to obtain a white powder (yield 85%). From H-NMR, from the integral ratio of PEG: -OCH 2 CH 2 (δ = 3.5) and α-CD: C (1) H (δ = 4.8), the PEG4000-BA chain When the average number of molecules was determined, it was 35-40.

【0010】C)Z-L-Phe-ポリロタキサン(α-CD-PEG4
000)の合成 Z-L-Phe-Su(5.4g)をDMSO(7ml)に溶解した。擬ポリロタ
キサン(α-CD-PEG4000-BA)を添加し、N2雰囲気下で三
日間撹拌した(この間更にDMSO(5ml)を3回追加し
た)。反応溶液をエーテル中に滴下し、生じた沈殿物を
遠心濾過で回収した。回収物をアセトンと水で洗浄して
Z-L-Phe-ポリロタキサンを得た(2.06g、収率42%)。H-N
MRよりZ基:CH2O-(δ=5.0)とPhe:-CH2CH-(δ=4.8)の存在
から導入を確認した。
C) ZL-Phe-polyrotaxane (α-CD-PEG4
ZL-Phe-Su (5.4 g) was dissolved in DMSO (7 ml). Pseudopolyrotaxane (α-CD-PEG4000-BA) was added and stirred under N 2 atmosphere for 3 days (DMSO (5 ml) was added 3 times during this period). The reaction solution was dropped into ether and the resulting precipitate was collected by centrifugal filtration. Wash the recovered material with acetone and water
ZL-Phe-polyrotaxane was obtained (2.06 g, 42% yield). HN
From MR, introduction was confirmed by the presence of Z group: CH 2 O- (δ = 5.0) and Phe: -CH 2 CH- (δ = 4.8).

【0011】[0011]

【化2】 Embedded image

【0012】D)Z-L-Phe-ポリロタキサンのヒドロキシ
プロピル化 Z-L-Phe-ポリロタキサン(α-CD貫通数35〜40個)(0.2g)
を1NのNaOH 15mlに溶解した。この溶液にプロピレン
オキシド(PPO)を2.6ml滴下し、24時間撹拌を行った後
塩酸で中和した。生成した塩を除去するため透析膜(MW
=500以下を透過)で5時間(蒸留水3リットル3回)透
析を行った。この溶液をエバポレータで減圧濃縮し、ア
セトン中に滴下すると沈殿物が生じた。これを遠心濾過
により回収し、一晩減圧乾燥してHP Z-L-Phe-ポリロタ
キサンを得た。H-NMRよりヒドロキシプロピル基:CH2-
(δ=2.1)とPhe:-CH3(δ=1.0)の存在から導入を確認し
た。
D) Hydroxypropylation of ZL-Phe-polyrotaxane ZL-Phe-polyrotaxane (α-CD penetration number 35-40) (0.2 g)
Was dissolved in 15 ml of 1N NaOH. 2.6 ml of propylene oxide (PPO) was added dropwise to this solution, and the mixture was stirred for 24 hours and then neutralized with hydrochloric acid. Dialysis membrane (MW
Dialysis was performed for 5 hours (3 liters of distilled water 3 times) for 5 hours or less. This solution was concentrated under reduced pressure with an evaporator and dropped into acetone to generate a precipitate. This was collected by centrifugal filtration and dried under reduced pressure overnight to obtain HP ZL-Phe-polyrotaxane. From H-NMR, hydroxypropyl group: CH 2-
The introduction was confirmed by the presence of (δ = 2.1) and Phe: -CH 3 (δ = 1.0).

【0013】[0013]

【化3】 Embedded image

【0014】E)Z基の脱保護 Z基の脱保護は接触還元法により行った。HP Z-L-Phe-
ポリロタキサン(0.45g)を蒸留水11mlに溶解した。この
水溶液にパラジウムカーボン(0.46g)を添加し、水素を3
0分間流入した。大気が充分水素置換された後、撹拌を
開始した。三日間水素中で撹拌した後、パラジウムカー
ボンを除去するため遠心濾過(3400rpmで10分間)とマイ
クロフィルター(コスモナイスフィルター、水溶液用、
膜孔0.45μl)で濾過した。濾液をエバポレーターで減圧
濃縮し、アセトン200mlに滴下すると、白色沈殿が生じ
た。この沈殿物を遠心濾過で回収し、一晩減圧乾燥を行
った(0.25g)。
E) Deprotection of Z group Deprotection of Z group was carried out by a catalytic reduction method. HP ZL-Phe-
Polyrotaxane (0.45 g) was dissolved in 11 ml of distilled water. Palladium carbon (0.46 g) was added to this aqueous solution, and hydrogen was added to
Flowed for 0 minutes. After the atmosphere was sufficiently replaced with hydrogen, stirring was started. After stirring in hydrogen for 3 days, centrifugal filtration (3400 rpm for 10 minutes) and microfilter (Cosmonice filter, for aqueous solution) to remove palladium carbon
It was filtered through a membrane pore (0.45 μl). The filtrate was concentrated under reduced pressure with an evaporator and then added dropwise to 200 ml of acetone, and a white precipitate was produced. This precipitate was collected by centrifugal filtration and dried under reduced pressure overnight (0.25 g).

【0015】(試験1)前記実施例で得られたZ-L-Phe-
ポリロタキサンを経皮吸収促進剤を用いた、インドメタ
シンの皮膚透過試験を行った。薬物溶液の作成 Z-L-Phe-ポリロタキサンの12.1%水溶液(本発明)、比
較例として精製水(比較例1)、PBS(リン酸水素カ
リウム)(pH:7.4、0.14M)(比較例2)を作成し,ヒ
ドロキシプロピル化ポリロタキサンの薬物透過性能を下
記の方法で比較検討した。
(Test 1) ZL-Phe-obtained in the above example
A skin permeation test of indomethacin was carried out using a transdermal absorption enhancer of polyrotaxane. Preparation of drug solution 12.1% aqueous solution of ZL-Phe-polyrotaxane (present invention), purified water (Comparative Example 1) as comparative example, PBS (potassium hydrogen phosphate) (pH: 7.4, 0.14M) (Comparative example 2) We prepared and compared the drug permeation performance of hydroxypropylated polyrotaxane by the following method.

【0016】皮膚透過試験 1)皮膚の前処理 7週齢の雄性ヘアレスラット(体重150g)を用い、25
%ウレタン(5ml/5kg、i.p.)麻酔下で除毛後腹部皮膚
を摘出し、直ちに37℃の温湯を循環した2−チャンバー
拡散セル(有効拡散面積0.79cm2,容量2.5ml)に挾み、角
質側(ドナー側)に前記薬物溶液をそれぞれを2.0ml、真
皮側(レシーバー側)にPBS(pH:7.4、0.14M)を2.5ml入
れ、18時間マグネティックスターラーにより撹拌した。
その後両セルをPBSで2回洗浄した。 2)透過試験 両セルを洗浄後、ドナー側にインドメタシン懸濁液(飽
和溶解度の約2倍量をPBSに加えた)を、レシーバー
側にPBSをそれぞれ2.5mlづつ入れ、マグネティック
スターラーによる撹拌下、37℃で8時間透過試験を行っ
た。サンプリングは、実験開始後2,4,6及び8時間
目にそれぞれ500μlづつ抜き取ると共に同量のPBSを加
えて、レシーバー側の液量を一定に保った。尚、比較の
ために前処理として薬物溶液を施さないものを比較例3
とした。 3)サンプル中のインドメタシンの濃度測定方法 サンプル液500μlに内標準液(メフェナム酸のメタノー
ル溶液、10μg/ml)500μlを加え混合した後、遠心分離
(10000r.p.m.、室温、5min.)し、その上澄(20μl)をHPL
Cにより測定した。HPLCの条件は以下の表1の通りであ
る。
Skin permeation test 1) Pretreatment of skin Using 7-week-old male hairless rats (body weight 150 g), 25
% Urethane (5ml / 5kg, ip) Under hair anesthesia, the abdominal skin was removed and immediately sandwiched in a 2-chamber diffusion cell (effective diffusion area 0.79cm 2 , volume 2.5ml) circulated with hot water at 37 ° C. 2.0 ml of each of the drug solutions was placed on the keratin side (donor side), and 2.5 ml of PBS (pH: 7.4, 0.14M) was placed on the dermis side (receiver side), and the mixture was stirred with a magnetic stirrer for 18 hours.
After that, both cells were washed twice with PBS. 2) Permeation test After washing both cells, put indomethacin suspension (approx. Twice the saturated solubility in PBS) on the donor side and 2.5 ml of PBS on the receiver side, and stir with a magnetic stirrer. A permeation test was conducted at 37 ° C for 8 hours. For sampling, 500 μl each was withdrawn at 2, 4, 6 and 8 hours after the start of the experiment, and the same amount of PBS was added to keep the liquid volume on the receiver side constant. For comparison, Comparative Example 3 was prepared without pretreatment with a drug solution.
And 3) Method for measuring the concentration of indomethacin in the sample To 500 μl of the sample solution, add 500 μl of the internal standard solution (mefenamic acid in methanol, 10 μg / ml), mix, and then centrifuge.
(10000 r.pm, room temperature, 5 min.), And the supernatant (20 μl) is HPL.
Measured by C. The HPLC conditions are as shown in Table 1 below.

【0017】[0017]

【表1】 [Table 1]

【0018】(透過試験結果)ヘアレスラットの摘出皮
膚を用いたインドメタシンの透過実験で、ポリロタキサ
ンの透過促進効果を検討したところ、比較例として設け
た精製水では、Flux:1.90μg/cm2/hr及び8時間累積透
過量:9.10μg/cm2を示したのに対して、ポリロタキサン
で前処理を施したものはFlux:3.46μg/cm2/hr、8時間
累積透過量:19.27μg/cm2と約2倍程度増加した。またL
ag timeもH2O群の3.5時間から2.5時間と短縮し
た。またPBSの場合及び前処理を施さない場合は、以
下の表2及び図1に示す通りとなった。
(Permeation test results) The permeation-promoting effect of polyrotaxane was examined in the permeation experiment of indomethacin using the isolated skin of hairless rats, and in the purified water provided as a comparative example, Flux: 1.90 μg / cm 2 / hr And 8 hours accumulated permeation: 9.10 μg / cm 2 , whereas polyrotaxane pretreated had Flux: 3.46 μg / cm 2 / hr, 8 hours accumulated permeation: 19.27 μg / cm 2 And about doubled. Also L
The ag time was also shortened from 3.5 hours in the H 2 O group to 2.5 hours. Further, in the case of PBS and the case where no pretreatment was performed, the results are shown in Table 2 and FIG. 1 below.

【0019】[0019]

【表2】 [Table 2]

【0020】(試験2)ヒドロキシプロピル化Z-L-Phe-
ポリロタキサンの角質層に対する影響を調べるために以
下の表3からなるHP(L-Phe-α-CD・PEG4000)及び比較例
として他の有機溶媒(精製水、エタノール、DMSO、
エイゾン並びに下記のF),G)の製法により作成した
ヒドロキシプロピル化シクロデキストリン及びL-Phe・PE
G4000)を作成し,これらをそれぞれにラット角質層を1
8時間浸漬した後、水洗して乾燥した。この角質層を60
%程度含水させ、DSC測定を行い、得られた水の融解
熱から結合水量を求めた。さらに高感度DSCを用いて
溶液処理による角質層脂質の変化を調べた。その結果は
以下の表3に示す通りとなった。
(Test 2) Hydroxypropylated ZL-Phe-
In order to investigate the effect of polyrotaxane on the stratum corneum, HP (L-Phe-α-CD / PEG4000) consisting of the following Table 3 and other organic solvents (purified water, ethanol, DMSO,
Azone and hydroxypropylated cyclodextrin and L-Phe • PE prepared by the following F) and G)
G4000), and to each of them, the rat stratum corneum 1
After soaking for 8 hours, it was washed with water and dried. 60 layers of this stratum corneum
% Of water, DSC measurement was performed, and the amount of bound water was determined from the heat of fusion of the obtained water. Furthermore, the change of stratum corneum lipids by the solution treatment was examined using high-sensitivity DSC. The results are shown in Table 3 below.

【0021】F)α-CDのヒドロキシプロピル化 α-CD(10g)を1NのNaOH 100mlに溶解した。この溶液に
プロピレンオキシド(PPO)を8.6ml滴下し、24時間撹拌
を行った後塩酸で中和した。生成した塩を除去するため
透析膜(MW=500以下を透過)で5時間(蒸留水3リット
ル3回)透析を行った。この溶液をエバポレータで減圧
濃縮し、アセトン中に滴下すると沈殿物が生じた。これ
を遠心濾過により回収し、一晩減圧乾燥してHP α-CDを
得た。
F) Hydroxypropylation of α-CD α-CD (10 g) was dissolved in 100 ml of 1N NaOH. Propylene oxide (PPO) (8.6 ml) was added dropwise to this solution, and the mixture was stirred for 24 hours and then neutralized with hydrochloric acid. In order to remove the generated salt, dialysis was performed for 5 hours (3 liters of distilled water 3 times) with a dialysis membrane (permeation of MW = 500 or less). This solution was concentrated under reduced pressure with an evaporator and dropped into acetone to generate a precipitate. This was collected by centrifugal filtration and dried under reduced pressure overnight to obtain HP α-CD.

【0022】G)L-Phe-PEG4000の合成 Z-L-Phe-Su(1.7g :4.8×10-4mmol)をDMSO(2ml)に溶解し
た。この溶液にPEG4000-BA(Mn=4120)を0.5g(1.2×10-4m
mol)添加し、N2雰囲気下で三日間撹拌した(この間更に
DMSO(2ml)を3回追加した)。反応溶液をエーテル中に
滴下し、生じた沈殿物を遠心濾過で回収した。回収物を
エーテルで二回洗浄してZ-L-Phe-ポリロタキサンを得た
(0.3g)。
G) Synthesis of L-Phe-PEG4000 ZL-Phe-Su (1.7 g: 4.8 × 10 -4 mmol) was dissolved in DMSO (2 ml). 0.5 g (1.2 × 10 -4 m) of PEG4000-BA (Mn = 4120) was added to this solution.
mol) and stirred under N 2 atmosphere for 3 days.
DMSO (2 ml) was added 3 times). The reaction solution was dropped into ether and the resulting precipitate was collected by centrifugal filtration. The collected material was washed twice with ether to obtain ZL-Phe-polyrotaxane
(0.3g).

【0023】[0023]

【表3】 [Table 3]

【0024】(考察)表3よりDMSOは結合水の増加
を伴う抽出が見られることから,疎水性の脂質の抽出が
考えられる。エタノール,AZONE,ヒドロキシプロ
ピル化シクロデキストリンは結合水の減少を伴う抽出が
みられ,極性脂質の抽出が考えられる。またヒドロキシ
プロピル化シクロデキストリンは濃度依存的に抽出する
ことが示唆された。一方ヒドロキシプロピル化シクロデ
キストリンとL-Phe-PEG4000の混合液とヒドロキシプロ
ピル化Z-L-Phe-ポリロタキサンは,ともに10%程度の
抽出がみられたものの,結合水の減少はヒドロキシプロ
ピル化Z-L-Phe-ポリロタキサンにみられた。しかも,こ
の結合水減少効果はヒドロキシプロピル化Z-L-Phe-ポリ
ロタキサンの方がヒドロキシプロピル化シクロデキスト
リンの41%水溶液よりも高かった。このことは,ポリ
ロタキサン構造の形成によってヒドロキシプロピル化シ
クロデキストリンの局部濃度が高くなったためと考えら
れる。また高感度DSC測定からAZONEやDMSO
処理では,脂質の抽出が見られたが,ヒドロキシプロピ
ル化Z-L-Phe-ポリロタキサンでは脂質の存在が認められ
た。これらの結果からヒドロキシプロピル化Z-L-Phe-ポ
リロタキサンは他の有機溶媒に比較して,皮膚に対する
刺激性の低い薬物透過促進効果を示すことが期待され
る。
(Discussion) As Table 3 shows that DMSO is extracted with an increase in bound water, it is considered that hydrophobic lipid is extracted. Ethanol, AZONE, and hydroxypropylated cyclodextrin were extracted with a decrease in bound water, and polar lipid extraction was considered. It was also suggested that hydroxypropylated cyclodextrin was extracted in a concentration-dependent manner. On the other hand, a mixture of hydroxypropylated cyclodextrin and L-Phe-PEG4000 and hydroxypropylated ZL-Phe-polyrotaxane both showed about 10% extraction, but the decrease in bound water was due to hydroxypropylated ZL-Phe- Found in polyrotaxane. Moreover, this effect of reducing bound water was higher in hydroxypropylated ZL-Phe-polyrotaxane than in 41% aqueous solution of hydroxypropylated cyclodextrin. This is probably because the formation of the polyrotaxane structure increased the local concentration of hydroxypropylated cyclodextrin. In addition, from high sensitivity DSC measurement to AZONE and DMSO
Extraction of lipid was observed in the treatment, but the presence of lipid was observed in hydroxypropylated ZL-Phe-polyrotaxane. From these results, it is expected that hydroxypropylated ZL-Phe-polyrotaxane has a drug permeation-promoting effect that is less irritating to the skin than other organic solvents.

【0025】[0025]

【発明の効果】以上述べたように本発明にかかる経皮吸
収促進剤(ヒドロキシプロピル化ポリロタキサン)は、
薬物吸収性を亢進することが期待される角質層の秩序構
造を乱したり破壊したりすると共に角質層以下の皮下組
織中に浸透しないか、浸透しても皮下組織内で自動的に
或いは疾患特異的に分解することによって皮膚刺激性・
細胞毒性・炎症性を回避することができる。また本発明
にかかるヒドロキシプロピル化ポリロタキサンを利用し
たインドメタシンの水溶液は、これまでのものに比較し
て透過性に優れることが判明した。
As described above, the percutaneous absorption enhancer (hydroxypropylated polyrotaxane) according to the present invention is
It disturbs or destroys the ordered structure of the stratum corneum, which is expected to enhance drug absorption, and does not penetrate into subcutaneous tissue below the stratum corneum, or even if it penetrates, it automatically or in the subcutaneous tissue Skin irritation due to specific decomposition
It is possible to avoid cytotoxicity and inflammatory properties. It was also found that the aqueous solution of indomethacin using the hydroxypropylated polyrotaxane according to the present invention is superior in permeability as compared with the conventional ones.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明にかかるインドメタシン懸濁液に皮膚
透過の平均を示すグラフである。
1 is a graph showing the average skin permeation of an indomethacin suspension according to the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 α,β又はγ−シクロデキストリン複数
の環状化合物と、該環状化合物の空洞を貫通させた直鎖
状高分子化合物と、この直鎖状高分子化合物の両端部に
結合させた生体内分解性部位とからなり、前記α,β又
はγ−シクロデキストリンをヒドロキシプロピル化した
超分子構造の生体内分解性高分子集合体体からなること
を特徴とする経皮吸収促進物質。
1. A cyclic compound having a plurality of α, β or γ-cyclodextrins, a linear polymer compound penetrating a cavity of the cyclic compound, and bound to both ends of the linear polymer compound. A percutaneous absorption-promoting substance comprising a biodegradable polymer and a biodegradable polymer aggregate having a supramolecular structure obtained by hydroxypropylating the α, β or γ-cyclodextrin.
【請求項2】 前記環状化合物の空洞を貫通させる直鎖
状高分子化合物が、ポリエチレングリコール、ポリプロ
ピレングリコール、ポリイソブチレンあるいはこれらの
ブロック共重合体からなることを特徴とする請求項1記
載の経皮吸収促進物質。
2. The transdermal skin according to claim 1, wherein the linear polymer compound penetrating the cavity of the cyclic compound is made of polyethylene glycol, polypropylene glycol, polyisobutylene or a block copolymer thereof. Absorption enhancer.
【請求項3】 次のa〜dの各工程、 a)カルボベンゾキシ-L-フェニルアラニンとN-ヒドロ
キシスシンイミド(N-HOSu)と反応させてZ-L-Phe-スクシ
ンイミドを合成する工程と、 b)シクロデキストリン水溶液にα-(3-アミノプロピ
ル)-ω-(3-アミノプロピル)ポリ(オキシエチレン)を添
加して擬ポリロタキサンを作成する工程と、 c)前記a)の工程で得られたZ-L-Phe-スクシンイミド
の溶解液に前記b)の工程で得られた擬ポリロタキサン
を添加しZ-L-Phe-ポリロタキサンを合成する工程と、 d)前記c)の工程で得られたZ-L-Phe-ポリロタキサン
をヒドロキシプロピル化する工程と、 からなる経皮吸収促進物質の製法。
3. The following steps a to d: a) reacting carbobenzoxy-L-phenylalanine with N-hydroxysuccinimide (N-HOSu) to synthesize ZL-Phe-succinimide, b) a step of adding α- (3-aminopropyl) -ω- (3-aminopropyl) poly (oxyethylene) to an aqueous solution of cyclodextrin to prepare a pseudopolyrotaxane, and c) obtained by the step a). To the ZL-Phe-succinimide solution to synthesize the ZL-Phe-polyrotaxane obtained in the step b), and d) to obtain the ZL-Phe-polyrotaxane obtained in the step c). A process for producing a percutaneous absorption enhancer comprising the step of converting polyrotaxane into hydroxypropyl.
【請求項4】 前記d)の工程で得られたヒドロキシプ
ロピル化Z-L-Phe-ポリロタキサンを還元法によりZ基の
脱保護を行うことを特徴とする請求項3記載の経皮吸収
促進物質の製法。
4. The method for producing a percutaneous absorption enhancer according to claim 3, wherein the hydroxypropylated ZL-Phe-polyrotaxane obtained in the step d) is subjected to deprotection of the Z group by a reduction method. .
JP07649196A 1996-03-29 1996-03-29 Transdermal absorption-promoting substance and production method thereof Expired - Fee Related JP3704194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07649196A JP3704194B2 (en) 1996-03-29 1996-03-29 Transdermal absorption-promoting substance and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07649196A JP3704194B2 (en) 1996-03-29 1996-03-29 Transdermal absorption-promoting substance and production method thereof

Publications (2)

Publication Number Publication Date
JPH09263547A true JPH09263547A (en) 1997-10-07
JP3704194B2 JP3704194B2 (en) 2005-10-05

Family

ID=13606701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07649196A Expired - Fee Related JP3704194B2 (en) 1996-03-29 1996-03-29 Transdermal absorption-promoting substance and production method thereof

Country Status (1)

Country Link
JP (1) JP3704194B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002159A1 (en) * 2000-07-03 2002-01-10 Japan Tissue Engineering Co., Ltd. Base materials for tissue regeneration, transplant materials and process for producing the same
WO2008035728A1 (en) * 2006-09-21 2008-03-27 Advanced Softmaterials Inc. Sheet for pack
CN114680111A (en) * 2018-09-19 2022-07-01 大日本除虫菊株式会社 Absorption enhancer, composition containing flying pest repellent fragrance, and flying pest repellent article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2637635A1 (en) * 2006-01-18 2007-07-26 Next21 K.K. Gel-forming composition for medical use, administration device for the composition, and drug release controlling carrier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002002159A1 (en) * 2000-07-03 2002-01-10 Japan Tissue Engineering Co., Ltd. Base materials for tissue regeneration, transplant materials and process for producing the same
WO2008035728A1 (en) * 2006-09-21 2008-03-27 Advanced Softmaterials Inc. Sheet for pack
CN114680111A (en) * 2018-09-19 2022-07-01 大日本除虫菊株式会社 Absorption enhancer, composition containing flying pest repellent fragrance, and flying pest repellent article
CN115191431A (en) * 2018-09-19 2022-10-18 大日本除虫菊株式会社 Absorption enhancer, composition containing flying pest repellent fragrance, and flying pest repellent article

Also Published As

Publication number Publication date
JP3704194B2 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
EP2344547B1 (en) Polysaccharides containing carboxyl functional groups substituted by a hydrophobic alcohol derivative
EP2077293B1 (en) Block copolymer for drug conjugates and their pharmaceutical compositions
Kono et al. Characterization, molecular dynamics, and encapsulation ability of β-cyclodextrin polymers crosslinked by polyethylene glycol
Ooya et al. Polyrotaxanes: synthesis, structure, and potential in drug delivery
JPH10505088A (en) Polysaccharides, polypeptides (proteins) and electrophilic polyethylene oxides for surface modification
EP2813515B1 (en) Transdermally delivered hyaluronic acid-protein conjugate
EP0250492A1 (en) Biodegradable synthetic polypeptide and its utilization in therapeutics
JP3181276B2 (en) Amphiphilic compounds with dendritic branch structure
FR2989001A1 (en) MICROPARTICLES AND NANOPARTICLES COMPRISING HYDROPHOBIC POLYSACCHARIDES AND ALPHA-CYCLODEXTRIN
JP4248189B2 (en) Phosphorylcholine group-containing polysaccharide and method for producing the same
Berillo et al. Preparation and physicochemical characteristics of cryogel based on gelatin and oxidised dextran
Brinkhuis et al. Shedding the hydrophilic mantle of polymersomes
Toomari et al. Fabrication of biodendrimeric β-cyclodextrin via click reaction with potency of anticancer drug delivery agent
US20140199349A1 (en) Ph-sensitive hyaluronic acid derivative and uses thereof
JP3830198B2 (en) Skin-permeable indomethacin external preparation using supramolecular structure polymer aggregate
CN115804731B (en) Ergothioneine composition, preparation method and application thereof
JP3704194B2 (en) Transdermal absorption-promoting substance and production method thereof
WO2004000362A1 (en) Process for producing block copolymer/drug composite
CN111393632A (en) Thioketal-linked polyethylene glycol Ce6 material and preparation method and application thereof
Gomes et al. Synthesis, structural characterization and properties of water-soluble N-(γ-propanoyl-amino acid)-chitosans
CA3104568A1 (en) Novel hydroxypropyl-.beta.-cyclodextrin and process for the production thereof
Martinac et al. Gemfibrozil encapsulation and release from microspheres and macromolecular conjugates
EP2190884B1 (en) Process for preparing thermosensitive (poly(ethylene oxide) poly(propylene oxide)) derivatives that can be used to functionalize chitosan.
CN115926019B (en) Chitosan derivative, preparation method and application thereof
CN104758250B (en) Paclitaxel liposome and preparation method and application thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 19960628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050722

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090729

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees