JPH0926347A - Wireless liquid level measurement and transmission device - Google Patents

Wireless liquid level measurement and transmission device

Info

Publication number
JPH0926347A
JPH0926347A JP7199199A JP19919995A JPH0926347A JP H0926347 A JPH0926347 A JP H0926347A JP 7199199 A JP7199199 A JP 7199199A JP 19919995 A JP19919995 A JP 19919995A JP H0926347 A JPH0926347 A JP H0926347A
Authority
JP
Japan
Prior art keywords
measurement
interval
displacement
value
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7199199A
Other languages
Japanese (ja)
Other versions
JP3516776B2 (en
Inventor
Katsuto Fujimoto
勝人 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tominaga Manufacturing Co
Original Assignee
Tominaga Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tominaga Manufacturing Co filed Critical Tominaga Manufacturing Co
Priority to JP19919995A priority Critical patent/JP3516776B2/en
Publication of JPH0926347A publication Critical patent/JPH0926347A/en
Application granted granted Critical
Publication of JP3516776B2 publication Critical patent/JP3516776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To save the powder by comparing the last measured value with the previously measure value and, based on the result, controlling measurement intervals, for the next time and later on, to be long or short. SOLUTION: The first and second, measurement interval, reference displacements ΔP1 and ΔP2 , and positive and negative transmission reference displacements ΔP and ΔN are stored in a storage part 40. A comparison means 41 finds short term displacement ΔH0 by subtracting the previous measured value H1 from the current measured value H0 , and then compares the displacement ΔH0 with the ΔP1 , and, based on ΔH0 >ΔP1 or ΔH0 <=ΔP1 , outputs short period signal ts or long period signal t1 , respectively, to a measurement interval control means 45 and a continuous-rise- liquid-level stability judging means 44. A comparison means 42 subtracts the previous transmission value h1 from the measured value H0 , for finding inter-measurement- transmission displacement Δh0 , and then, depending on Δh0 >ΔP2 or Δh0 <=ΔP2 , signal ts or T1 , respectively, is sent to the means 45. A comparison means 43 resets counter 62 at the displacement Δh0 >ΔP and Δh0 <ΔN, and closes a transmission switch 34. In such a manner, the measurement interval is extended with the signal t1 when the displacements ΔH0 and Δh0 are small, thus the power is saved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、給油所等に埋設されて
いる地下タンクの燃料油の液位を測定し、測定した液位
を無線によって送信する無線式液位測定送信装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wireless liquid level measuring and transmitting device for measuring the liquid level of fuel oil in an underground tank buried in a gas station and transmitting the measured liquid level wirelessly. is there.

【0002】[0002]

【従来の技術】一般に、給油所では、地下タンクから離
れた事務所内で、地下タンクの液位を監視できるように
している。ここで、地下タンクに設けた計測手段からの
信号を、ケーブルで伝送しようとすると、防爆対策上、
配線工事が大がかりなものになる。そのため、従来よ
り、計測手段にバッテリーを設け、測定値を無線で事務
所に送信している。
2. Description of the Related Art Generally, at a gas station, the liquid level of an underground tank can be monitored in an office away from the underground tank. Here, if you try to transmit the signal from the measuring means installed in the underground tank with a cable,
Wiring work becomes large-scale. Therefore, conventionally, a battery is provided in the measuring means and the measured value is wirelessly transmitted to the office.

【0003】こうしたシステムでは、バッテリーが切れ
ると、バッテリー交換をするのであるが、防爆対策上、
給油所の作業者ではなく、別のサービスマンがバッテリ
ーの交換を行う。したがって、1回のバッテリー交換の
コストが高いので、極力、バッテリーの寿命を伸ばす工
夫が必要となる。そこで、従来は、計測手段の測定結果
に基づいて送信の間隔を調節することにより、省電力化
を図っている(たとえば、特公平6−63810号公
報、特開平4−58116号公報、同331326号公
報参照)。
In such a system, when the battery runs out, the battery is replaced.
Another service person replaces the battery, not the operator at the gas station. Therefore, since the cost of one battery replacement is high, it is necessary to devise to extend the life of the battery as much as possible. Therefore, conventionally, power saving is achieved by adjusting the transmission interval based on the measurement result of the measuring means (for example, Japanese Patent Publication No. 6-63810, Japanese Patent Application Laid-Open No. 4-58116, and Japanese Patent No. 331326). (See the official gazette).

【0004】[0004]

【発明が解決しようとする課題】しかし、これらの先行
技術では、送信時の省電力化を図ることはできるが、測
定時の省電力化については何ら考慮されていない。した
がって、今一つ十分にバッテリーの寿命を伸ばすことが
できない。
However, in these prior arts, although power saving during transmission can be achieved, no consideration is given to power saving during measurement. Therefore, the life of the battery cannot be fully extended.

【0005】本発明は、前記従来の課題に鑑みてなされ
たもので、その目的は、送信時だけでなく、測定時につ
いても省電力化を図ってバッテリーの寿命を十分に伸ば
すことができる無線式液位測定送信装置を提供すること
である。
The present invention has been made in view of the above problems of the related art, and its purpose is to save power not only at the time of transmission but also at the time of measurement, so that the battery life can be sufficiently extended. A liquid level measuring and transmitting device is provided.

【0006】[0006]

【課題を解決するための手段および作用】前記目的を達
成するために、本出願の第1発明は、今回の測定値H0
と今回よりも前の測定値Hm とを比較する比較手段と、
短い測定間隔TS および長い測定間隔TL の少なくとも
2種類の測定間隔で計測手段に測定させると共に、前記
比較手段による比較結果に基づいて、次回以後(次回を
含む)の測定間隔を制御する測定間隔制御手段とを備え
ていることを特徴とする。
Means and Actions for Solving the Problems In order to achieve the above-mentioned object, the first invention of the present application is based on the present measurement value H 0.
And a comparison means for comparing the measured value H m before this time,
Measurement in which the measuring means measures at least two kinds of measuring intervals of a short measuring interval T S and a long measuring interval T L , and controls the measuring interval of the next time (including the next time) based on the comparison result by the comparing means. And an interval control means.

【0007】第1発明によれば、比較手段による比較の
結果、液位が上昇しているか、安定しているか、あるい
は、下降しているかを知ることができるので、たとえ
ば、液位が上昇している場合に短い測定間隔TS で測定
し、一方、安定・下降中には長い測定間隔TL で測定す
ることができる。ここで、液位が上昇するのは、ローリ
ーから荷降し注油を行うような、極く短い期間であるか
ら、測定時の省電力化を図ることができる。
According to the first aspect of the present invention, it is possible to know whether the liquid level is rising, stable, or falling as a result of the comparison by the comparing means. Therefore, for example, the liquid level is rising. In this case, the measurement can be performed at a short measurement interval T S , while the measurement can be performed at a long measurement interval T L during the stable / descent. Here, since the liquid level rises for an extremely short period, such as when unloading from a lorry and performing lubrication, it is possible to save power during measurement.

【0008】第1発明は、次の第2発明により、より具
体的に実現される。第2発明は、測定間隔基準変位ΔP
1を記憶する記憶部と、今回の測定値H0から今回より
も前の測定値Hm を減算した変位ΔH0 を、前記測定間
隔基準変位ΔP1と比較する比較手段と、短い測定間隔
S および長い測定間隔TL の少なくとも2種類の測定
間隔で前記計測手段に測定させると共に、前記比較手段
による比較の結果、前記変位ΔH0 が測定間隔基準変位
ΔP1よりも大きいときには、次回の測定までの測定間
隔を前記短い測定間隔TS で測定させる測定間隔制御手
段とを備えていることを特徴とする。
The first invention is more specifically realized by the following second invention. The second invention is the measurement interval reference displacement ΔP.
1 and a comparing means for comparing the displacement ΔH 0 obtained by subtracting the measurement value H m before this time from the measurement value H 0 at this time with the measurement interval reference displacement ΔP 1; and the short measurement interval T S. And at least two measurement intervals of a long measurement interval TL, the measuring means is caused to measure, and when the displacement ΔH 0 is larger than the measurement interval reference displacement ΔP1 as a result of comparison by the comparing means, until the next measurement. And a measuring interval control means for measuring the measuring interval at the short measuring interval T S.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面にしたがって
説明する。図1において、給油所の地下には、複数の地
下タンク1が埋設されており、一方、地上の事務所には
監視装置2が設置されている。各地下タンク1には、地
上に開口するピット10が設けられていると共に、この
ピット10の開口は蓋11で閉塞されている。各ピット
10内には、無線式液位測定送信装置3が収納されてい
る。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, a plurality of underground tanks 1 are buried underground in a gas station, while a monitoring device 2 is installed in an office on the ground. Each underground tank 1 is provided with a pit 10 that opens to the ground, and the opening of this pit 10 is closed by a lid 11. A wireless liquid level measurement / transmission device 3 is housed in each pit 10.

【0010】図2において、無線式液位測定送信装置3
は、計測手段30、送信手段31および制御手段4を備
えている。制御手段4には、バッテリー32から電力が
供給されており、この制御手段4は計測スイッチ33お
よび送信スイッチ34をON・OFFさせることによ
り、後述するように、計測手段30および送信手段31
の動作を制御する。
In FIG. 2, a wireless liquid level measuring and transmitting device 3 is provided.
Includes a measuring unit 30, a transmitting unit 31, and a controlling unit 4. Electric power is supplied to the control means 4 from the battery 32, and the control means 4 turns on and off the measurement switch 33 and the transmission switch 34, so that the measurement means 30 and the transmission means 31 will be described later.
Control the operation of.

【0011】図3は計測手段30の一例を示す。計測手
段30は、地下タンク1(図1)内の燃料油の液位が変
動するのに伴って上下動するフロート30aと、このフ
ロート30aにワイヤ30bを介して接続されたポテン
ショメータ30cを備えている。このポテンショメータ
30cは、液位に応じた電圧を電圧周波数変換手段30
dに出力する。この電圧周波数変換手段30dは、変換
した周波数信号を周波数認識手段30eに出力する。周
波数認識手段30eは、認識した周波数を測定値(液
位)Hとして、図2の制御手段4に出力する。無線式液
位測定送信装置3の送信手段31は、後述するように測
定値Hを監視装置2に無線で送信する。なお、送信する
電波の周波数は、地下タンク1ごとに異なっている。
FIG. 3 shows an example of the measuring means 30. The measuring means 30 includes a float 30a that moves up and down as the liquid level of fuel oil in the underground tank 1 (FIG. 1) fluctuates, and a potentiometer 30c connected to the float 30a via a wire 30b. There is. This potentiometer 30c uses a voltage frequency conversion means 30 for converting a voltage corresponding to the liquid level.
Output to d. The voltage frequency conversion means 30d outputs the converted frequency signal to the frequency recognition means 30e. The frequency recognition means 30e outputs the recognized frequency as a measured value (liquid level) H to the control means 4 in FIG. The transmitting means 31 of the wireless liquid level measurement transmitting device 3 wirelessly transmits the measured value H to the monitoring device 2 as described later. The frequency of the radio wave to be transmitted differs for each underground tank 1.

【0012】図4は監視装置2の一例を示す。監視装置
2は、送信手段31(図2)からの無線信号を受信する
無線受信手段20と、受信した測定値(液位)Hを残油
量に換算する液位/量換算手段21と、残油量を表示す
る表示手段22とを備えている。なお、警報手段23
は、オーバーフローするおそれがある場合や残油量が所
定値よりも少ない場合に警報を発するものである。
FIG. 4 shows an example of the monitoring device 2. The monitoring device 2 includes a wireless reception unit 20 that receives a wireless signal from the transmission unit 31 (FIG. 2), a liquid level / volume conversion unit 21 that converts the received measurement value (liquid level) H into a residual oil amount, A display unit 22 for displaying the amount of residual oil is provided. The alarm means 23
Gives an alarm when there is a risk of overflow or when the amount of residual oil is less than a predetermined value.

【0013】つぎに、本発明の要部である図5の制御手
段4について説明する。この図において、制御手段4
は、たとえばマイクロコンピュータで構成されており、
記憶部40を備えている。この記憶部40には、以下の
値が予め設定記憶されている。 ΔP1:測定間隔第1基準変位 ΔP2:測定間隔第2基準変位 ΔP:正の送信基準変位 ΔN:負の送信基準変位 また、記憶部40には、以下の値が更新記憶される。 H0 :今回の測定値 H1 :前回の測定値 h:送信値
Next, the control means 4 shown in FIG. 5, which is an essential part of the present invention, will be described. In this figure, the control means 4
Is composed of, for example, a microcomputer,
The storage unit 40 is provided. The following values are preset and stored in the storage unit 40. ΔP1: Measurement interval first reference displacement ΔP2: Measurement interval second reference displacement ΔP: Positive transmission reference displacement ΔN: Negative transmission reference displacement Further, the storage unit 40 updates and stores the following values. H 0 : Current measurement value H 1 : Previous measurement value h: Transmission value

【0014】制御手段4は、第1ないし第3比較手段4
1〜43、継続上昇液位安定判別手段44、測定間隔制
御手段45および送信間隔制御手段46などを備えてい
る。測定間隔制御手段45は、後述するように、第1比
較手段41,第2比較手段42による比較結果および継
続上昇液位安定判別手段44の判別結果に基づいて、次
回および次回よりも後の測定間隔を制御するものであ
る。一方、送信間隔制御手段46は3つの比較手段41
〜43による比較結果および継続上昇液位安定判別手段
44の判別結果に基づいて、次の送信までの間隔を制御
するものである。
The control means 4 comprises first to third comparing means 4
1 to 43, continuous rising liquid level stability determination means 44, measurement interval control means 45, transmission interval control means 46 and the like. As will be described later, the measurement interval control means 45 measures the next time and after the next time based on the comparison result by the first comparison means 41 and the second comparison means 42 and the determination result by the continuous rising liquid level stability determination means 44. It controls the interval. On the other hand, the transmission interval control means 46 has three comparison means 41.
The interval until the next transmission is controlled on the basis of the comparison result of ~ 43 and the determination result of the continuous rising liquid level stability determining means 44.

【0015】第1比較手段41は、今回の測定値H0
ら前回の測定値H1 を減算した短期変位ΔH0 を算出
し、この短期変位ΔH0 と測定間隔第1基準変位ΔP1
とを比較し、短期変位ΔH0 が測定間隔第1基準変位Δ
P1よりも大きいときに、短周期信号tsを測定間隔制
御手段45に出力する。一方、この第1比較手段41
は、短期変位ΔH0 が測定間隔第1基準変位ΔP1以下
のときには、長周期信号t1を測定間隔制御手段45に
出力する。
[0015] The first comparing means 41 calculates the short-term displacement [Delta] H 0 obtained by subtracting the measured value H 1 of the previous from the current measurement value H 0, the short-term displacement [Delta] H 0 and the measuring interval a first reference displacement ΔP1
The short-term displacement ΔH 0 is compared with the measurement interval first reference displacement Δ
When it is larger than P1, the short cycle signal ts is output to the measurement interval control means 45. On the other hand, this first comparison means 41
Outputs a long cycle signal t1 to the measurement interval control means 45 when the short-term displacement ΔH 0 is less than or equal to the measurement interval first reference displacement ΔP1.

【0016】第2比較手段42は、今回の測定値H0
ら、前回送信した前回送信値h1 を減算した測定送信間
変位Δh0 を算出し、この測定送信間変位Δh0 と測定
間隔第2基準変位ΔP2とを比較し、測定送信間変位Δ
0 が測定間隔第2基準変位ΔP2よりも大きいとき
に、短周期信号tsを測定間隔制御手段45に出力す
る。一方、この第2比較手段42は、測定送信間変位Δ
0 が測定間隔第2基準変位ΔP2以下のときには、長
周期信号t1を測定間隔制御手段45に出力する。な
お、前記測定間隔第2基準変位ΔP2は、測定間隔第1
基準変位ΔP1よりも大きな値に設定されている。
The second comparing means 42 calculates a displacement Δh 0 between measurement transmissions obtained by subtracting the previously transmitted value h 1 transmitted last time from the measured value H 0 this time, and the displacement Δh 0 between measurement transmissions and the measurement interval 2 Reference displacement ΔP2 is compared and displacement between measurement transmissions Δ
When h 0 is larger than the second measurement interval reference displacement ΔP2, the short cycle signal ts is output to the measurement interval control means 45. On the other hand, the second comparison means 42 measures the displacement Δ between measurement transmissions.
When h 0 is equal to or less than the second measurement interval reference displacement ΔP2, the long cycle signal t1 is output to the measurement interval control means 45. The second reference displacement ΔP2 of the measurement interval is the first measurement interval
It is set to a value larger than the reference displacement ΔP1.

【0017】前記第1比較手段41は、短期変位ΔH0
が測定間隔第1基準変位ΔP1よりも大きいときに、短
周期信号tsを継続上昇液位安定判別手段44にも出力
し、一方、短期変位ΔH0 が測定間隔第1基準変位ΔP
1以下のときに、長周期信号t1を継続上昇液位安定判
別手段44にも出力する。継続上昇液位安定判別手段4
4は、短周期信号tsおよび長周期信号t1に基づい
て、液位が継続的に上昇しているか、あるいは、液位が
安定しているかを判断するものである。たとえば、継続
上昇液位安定判別手段44は、カウンタを備えており、
第1比較手段41から連続して短周期信号tsが入力さ
れた場合は、液位が継続的に上昇していると判断し、そ
れ以後、液位が安定するまで測定間隔制御手段45に短
周期信号tsを出力する。一方、継続上昇液位安定判別
手段44は、第1比較手段41から数回連続して長周期
信号t1が入力された場合は、液位が安定したと判断し
て、短周期信号tsの出力を停止して測定間隔制御手段
45に長周期信号t1を出力する。
The first comparing means 41 has a short-term displacement ΔH 0.
Is larger than the measurement interval first reference displacement ΔP1, the short cycle signal ts is also output to the continuous rising liquid level stability determination means 44, while the short-term displacement ΔH 0 is the measurement interval first reference displacement ΔP1.
When it is 1 or less, the long-period signal t1 is also output to the continuously rising liquid level stability determination means 44. Continuous rising liquid level stability determination means 4
4 determines whether the liquid level continuously rises or is stable based on the short cycle signal ts and the long cycle signal t1. For example, the continuous rising liquid level stability determination means 44 includes a counter,
When the short cycle signal ts is continuously input from the first comparison means 41, it is determined that the liquid level is continuously rising, and thereafter, the measurement interval control means 45 is short-circuited until the liquid level stabilizes. The periodic signal ts is output. On the other hand, the continuous rising liquid level stability determining means 44 determines that the liquid level is stable and outputs the short cycle signal ts when the long cycle signal t1 is continuously input from the first comparing means 41 several times. Then, the long cycle signal t1 is output to the measurement interval control means 45.

【0018】測定間隔制御手段45は、短い測定間隔T
S および長い測定間隔TL の2種類の測定間隔で計測手
段30に測定をさせるもので、第1比較手段41,第2
比較手段42および継続上昇液位安定判別手段44のい
ずれか1つから短周期信号tsが入力されたときにタイ
マ61の設定時間Tをたとえば2秒に設定し、一方、短
周期信号tsが入力されない場合にはタイマ61の設定
時間をたとえば5秒に設定する。タイマ61は、設定時
間Tに応じて、計測スイッチ33を2秒または5秒ごと
に閉成させて、バッテリー32の電力を計測手段30に
供給させる。これにより、計測手段30は、2秒または
5秒ごとに1回の計測を行って測定値Hを制御手段4に
出力する。
The measurement interval control means 45 has a short measurement interval T.
The measuring means 30 is made to measure at two types of measuring intervals, S and a long measuring interval T L.
When the short cycle signal ts is input from any one of the comparison means 42 and the continuously rising liquid level stability determination means 44, the set time T of the timer 61 is set to, for example, 2 seconds, while the short cycle signal ts is input. If not, the set time of the timer 61 is set to 5 seconds, for example. The timer 61 closes the measurement switch 33 every 2 seconds or 5 seconds according to the set time T to supply the power of the battery 32 to the measurement means 30. As a result, the measuring unit 30 measures once every 2 seconds or 5 seconds and outputs the measured value H to the control unit 4.

【0019】また、測定間隔制御手段45は、両比較手
段41,42および判別手段44のいずれか1つから短
周期信号tsが入力されたときは、送信間隔制御手段4
6に短周期信号tsを出力し、一方、前記各手段41,
42,44のすべてから長周期信号t1が入力されたと
きは、送信間隔制御手段46に長周期信号t1を出力す
る。送信間隔制御手段46は、測定間隔制御手段45か
ら短周期信号tsを受けると、カウンタ62の設定値を
たとえば「2」に設定し、長周期信号t1を受けると、
カウンタ62の設定値をたとえば「60」に設定する。
カウンタ62は、クロックパルスをカウントして、設定
値に達すると計数内容を帰零すると共に、送信スイッチ
34を閉成させて、バッテリー32の電力を送信手段3
1に供給させる。したがって、送信間隔制御手段46に
短周期信号tsが入力されたときには、TS (2秒)×
2回=4秒ごとに、送信手段31が今回の測定値H0
今回送信値h0 として送信する。一方、送信間隔制御手
段46に長周期信号t1が入力されているときには、T
L (5秒)×60回=5分ごとに、送信手段31が今回
の測定値H0 を今回送信値h0 として送信する。
Further, the measurement interval control means 45 receives the short period signal ts from any one of the comparison means 41, 42 and the discrimination means 44, and the transmission interval control means 4 is provided.
6 outputs a short period signal ts to the respective means 41,
When the long cycle signal t1 is input from all of 42 and 44, the long cycle signal t1 is output to the transmission interval control means 46. When the transmission interval control means 46 receives the short cycle signal ts from the measurement interval control means 45, it sets the set value of the counter 62 to, for example, "2", and when it receives the long cycle signal t1,
The set value of the counter 62 is set to "60", for example.
The counter 62 counts clock pulses, and when the set value is reached, the counter contents are reset to zero, and the transmission switch 34 is closed to transmit the power of the battery 32 to the transmission means 3.
1 to supply. Therefore, when the short cycle signal ts is input to the transmission interval control means 46, T S (2 seconds) ×
The transmission means 31 transmits the current measurement value H 0 as the current transmission value h 0 every two times = 4 seconds. On the other hand, when the long cycle signal t1 is input to the transmission interval control means 46, T
Every time L (5 seconds) × 60 times = 5 minutes, the transmitting means 31 transmits the present measurement value H 0 as the present transmission value h 0 .

【0020】なお、カウンタ62が一旦、設定値「6
0」に設定された後、帰零前に、送信間隔制御手段46
が短周期信号tsを受けると、カウンタ62を強制的に
帰零し送信スイッチ34を閉成させて送信させると共
に、設定値が「2」に設定される。一方、カウンタ62
が一旦、設定値「2」に設定された後、送信間隔制御手
段46が長周期信号t1を受けても、カウンタ62の設
定値は次回の送信までの間は「2」に保持されるように
なっている。
It should be noted that the counter 62 is temporarily set to "6".
After being set to "0" and before zeroing, the transmission interval control means 46
When the short period signal ts is received, the counter 62 is forcibly reset to zero, the transmission switch 34 is closed and transmitted, and the set value is set to "2". On the other hand, the counter 62
Even if the transmission interval control means 46 receives the long cycle signal t1 after the setting value is once set to "2", the setting value of the counter 62 is kept at "2" until the next transmission. It has become.

【0021】前記第3比較手段43は、今回の測定値H
0 から前回送信値h1 を減算した測定送信間変位Δh0
を算出し、この測定送信間変位Δh0 と正の送信基準変
位ΔPとを比較し、測定送信間変位Δh0 が正の送信基
準変位ΔPよりも大きいときに、送信指令aを出力して
カウンタ62をリセットすると共に送信スイッチ34を
閉成させる。また、第3比較手段43は、算出した測定
送信間変位Δh0 と負の送信基準変位ΔN(負の値)と
を比較し、測定送信間変位Δh0 の方が負の送信基準変
位ΔNよりも小さいとき(絶対値が大きいとき)も、送
信指令aを出力して、カウンタ62をリセットすると共
に送信スイッチ34を閉成させる。なお、正の送信基準
変位ΔPの絶対値は負の送信基準変位ΔNの絶対値より
も小さな値に設定されている。また、正の送信基準変位
ΔPの値は、測定間隔第1基準変位ΔP1および測定間
隔第2基準変位ΔP2よりも大きな値に設定されてお
り、したがって、測定送信間変位Δh0 の絶対値が非常
に大きい場合には、無条件に送信される。
The third comparing means 43 measures the current measured value H
0 Measurements transmitted between displacement Delta] h 0 obtained by subtracting the previous transmission value h 1 from
Is calculated and this displacement between measurement transmissions Δh 0 is compared with the positive transmission reference displacement ΔP, and when the displacement between measurement transmissions Δh 0 is larger than the positive transmission reference displacement ΔP, the transmission command a is output and the counter is output. 62 is reset and the transmission switch 34 is closed. The third comparing means 43 compares the calculated inter-measurement-transmission displacement Δh 0 with the negative transmission reference displacement ΔN (negative value), and the inter-measurement-transmission displacement Δh 0 is more negative than the negative transmission reference displacement ΔN. Also when it is small (when the absolute value is large), the transmission command a is output to reset the counter 62 and close the transmission switch 34. The absolute value of the positive transmission reference displacement ΔP is set to be smaller than the absolute value of the negative transmission reference displacement ΔN. Further, the value of the positive transmission reference displacement ΔP is set to a value larger than the measurement interval first reference displacement ΔP1 and the measurement interval second reference displacement ΔP2, and therefore the absolute value of the measurement transmission displacement Δh 0 is extremely small. If it is large, it will be sent unconditionally.

【0022】つぎに、上記構成の動作について説明す
る。まず、図6のように、液位が安定している場合は、
今回の測定値H0 と前回の測定値H1 との短期変位ΔH
0 が小さく、また、今回の測定値H0 と前回送信値h1
との測定送信間変位Δh0 も小さいので、図5の測定間
隔制御手段45には、長周期信号t1が入力される。し
たがって、計測手段30が長い測定間隔TLで測定を繰
り返す。したがって、無駄な測定がなされないから、測
定時の省電力化が図られる。
Next, the operation of the above configuration will be described. First, as shown in FIG. 6, when the liquid level is stable,
Short-term displacement ΔH between the current measured value H 0 and the previous measured value H 1
0 is small, and the measured value H 0 of this time and the previously transmitted value h 1
Since the displacement Δh 0 between the measurement and transmission is also small, the long period signal t1 is input to the measurement interval control means 45 in FIG. Therefore, the measuring means 30 repeats the measurement at the long measurement interval T L. Therefore, since unnecessary measurement is not performed, power saving at the time of measurement can be achieved.

【0023】この場合、送信間隔制御手段46にも長周
期信号t1が入力されるので、カウンタ62の設定値が
「60」に設定され、60回の測定につき1回の送信が
なされる。したがって、送信時の省電力化も図られる。
In this case, since the long-period signal t1 is also input to the transmission interval control means 46, the set value of the counter 62 is set to "60", and one transmission is made for every 60 measurements. Therefore, power saving at the time of transmission can be achieved.

【0024】一方、図7のように液位が上昇して、今回
の測定値H0 から前回の測定値H1を減算した短期変位
ΔH0 が測定間隔第1基準変位ΔP1よりも大きくなる
と、図5の第1比較手段41から測定間隔制御手段45
に短周期信号tsが出力されるので、タイマ61の設定
時間が2秒に設定される。これにより、図7のように、
次回までの測定間隔が短い測定間隔TS (2秒)に設定
されて、計測手段30が2秒間隔で計測を行う。この場
合、送信間隔制御手段46にも短周期信号tsが入力さ
れるので、2回の測定を行った後に1回の送信がなされ
る。したがって、ローリーから荷降し(注油)を行って
いる場合などは、短い測定間隔TS (2秒)で測定を行
い、4秒ごとに送信がなされるから、オーバーフローの
防止や、注油するタンクの間違いを早期に発見すること
が可能となる。つまり、レスポンスが損なわれるおそれ
もない。
On the other hand, when the liquid level rises as shown in FIG. 7 and the short-term displacement ΔH 0 obtained by subtracting the previous measurement value H 1 from the current measurement value H 0 becomes larger than the first measurement interval reference displacement ΔP 1, From the first comparison means 41 to the measurement interval control means 45 in FIG.
Since the short cycle signal ts is output to, the set time of the timer 61 is set to 2 seconds. As a result, as shown in FIG.
The measurement interval until the next time is set to a short measurement interval T S (2 seconds), and the measuring means 30 measures at intervals of 2 seconds. In this case, the short cycle signal ts is also input to the transmission interval control means 46, so that the measurement is performed twice and then the transmission is performed once. Therefore, when unloading (lubrication) from the lorry, the measurement is performed at a short measurement interval T S (2 seconds), and the transmission is performed every 4 seconds, which prevents overflow and tanks for lubrication. It will be possible to detect the mistakes of earlier. That is, there is no fear that the response will be impaired.

【0025】ところで、測定間隔第1基準変位ΔP1を
小さくすると、液面の揺れなどによる測定誤差で、誤っ
て液位の上昇を検知するので、測定間隔第1基準変位Δ
P1は、0よりも大きい正の値に設定するのが好まし
い。一方、測定間隔第1基準変位ΔP1を大きな値にす
ると、図8のように液位が徐々に上昇している場合には
連続する2回の測定値H1 ,H0 だけでは、液位の上昇
を検知できなくなる。特に、図1の地下タンク1は、断
面形状が円形であるため、液位が中間にある場合には、
液位の変動が極めて小さくなる。そこで、本実施例で
は、短期変位ΔH0だけでなく、以下のように、長期的
な変位に基づいて、測定間隔を制御している。
By the way, if the first measurement interval first reference displacement ΔP1 is made small, a rise in the liquid level is erroneously detected due to a measurement error due to the fluctuation of the liquid surface or the like.
P1 is preferably set to a positive value greater than zero. On the other hand, when the measurement interval first reference displacement ΔP1 is set to a large value, when the liquid level gradually rises as shown in FIG. 8, the continuous two measured values H 1 and H 0 alone are enough to determine the liquid level. The rise cannot be detected. In particular, since the underground tank 1 of FIG. 1 has a circular cross-sectional shape, when the liquid level is in the middle,
The fluctuation of the liquid level becomes extremely small. Therefore, in this embodiment, the measurement interval is controlled based on not only the short-term displacement ΔH 0 but also the long-term displacement as follows.

【0026】図8のように、液位が緩やかに上昇する
と、今回の測定値H0 から前回送信値h1 を減算した測
定送信間変位Δh0 が測定間隔第2基準変位ΔP2より
も大きくなる。この場合、図5の第2比較手段42から
測定間隔制御手段45に短周期信号tsが出力されるの
で、計測手段30が短い測定間隔TS で測定を行う。し
たがって、緩やかな液位の上昇も検出し得る。
As shown in FIG. 8, when the liquid level gradually rises, the displacement Δh 0 between measurement transmissions obtained by subtracting the previous transmission value h 1 from the current measurement value H 0 becomes larger than the second measurement interval reference displacement ΔP 2. . In this case, since the short period signal ts is output from the second comparing means 42 of FIG. 5 to the measurement interval control means 45, the measuring means 30 measures at the short measurement interval T S. Therefore, a gradual rise in the liquid level can also be detected.

【0027】また、図9のように、液位が著しく上昇し
た場合には、早く送信して監視装置2に知らせる必要が
ある。そこで、本実施例では、図9のように、今回の測
定値H0 から前回送信値h1 を減算した測定送信間変位
Δh0 が正の送信基準変位ΔPよりも大きい場合は、図
5の第3比較手段43がこれを検出して、送信スイッチ
34に送信指令aを出力する。したがって、測定間隔が
短い測定間隔TS になるだけでなく、直ちに今回の測定
値H0 が送信される。
Further, as shown in FIG. 9, when the liquid level rises remarkably, it is necessary to send it early to notify the monitoring device 2. Therefore, in the present embodiment, as shown in FIG. 9, when the measured transmission-to-transmission displacement Δh 0 obtained by subtracting the previous transmission value h 1 from the current measurement value H 0 is larger than the positive transmission reference displacement ΔP, FIG. The third comparison means 43 detects this and outputs the transmission command a to the transmission switch 34. Therefore, not only the measurement interval is short measurement interval T S, immediately the current measurement value H 0 is transmitted.

【0028】一方、図10のように、液位が継続的に上
昇しているときは、ローリーから荷降し(注油)を行っ
ているのであるから、液位が安定するまで、短い測定間
隔TS で測定を繰り返すのが好ましい。そこで、本実施
例では、図10のように、液位が継続して上昇している
場合には、図5の第1比較手段41から継続上昇液位安
定判別手段44に連続して入力された短周期信号tsに
より、継続上昇を検知し、その後、継続上昇液位安定判
別手段44が連続して数回長周期信号t1を受けるま
で、図10のように、短い測定間隔TS で測定を繰り返
す。
On the other hand, as shown in FIG. 10, when the liquid level continuously rises, unloading (lubrication) is being carried out from the lorry. Therefore, a short measurement interval is required until the liquid level stabilizes. It is preferred to repeat the measurement at T S. Therefore, in the present embodiment, as shown in FIG. 10, when the liquid level is continuously rising, it is continuously input from the first comparing means 41 of FIG. 5 to the continuously rising liquid level stability determining means 44. the short period signal ts were senses continued rise, then to undergo several long-period signal t1 is continued rising liquid level stability determination means 44 in succession, as in FIG. 10, measured in the short measurement interval T S repeat.

【0029】また、図11のように、液位が著しく下降
した場合にも、早く送信して、監視装置2に知らせる必
要がある。そこで、本実施例では、図11のように、今
回の測定値H0 から前回送信値h1 を減算した測定送信
間変位Δh0 (負の値)が、負の送信基準変位ΔN(負
の値)よりも小さい(絶対値が大きい)場合には、図5
の第3比較手段43がこれを検出して、送信指令aを送
信スイッチ34に出力する。したがって、この場合に
は、直ちに今回の測定値H0 が送信される。
Further, as shown in FIG. 11, even when the liquid level is significantly lowered, it is necessary to send it early to notify the monitoring device 2. Therefore, in the present embodiment, as shown in FIG. 11, the measurement transmission displacement Δh 0 (negative value) obtained by subtracting the previous transmission value h 1 from the current measurement value H 0 is a negative transmission reference displacement ΔN (negative value). Value is smaller (absolute value is larger),
The third comparing means 43 detects the above and outputs the transmission command a to the transmission switch 34. Therefore, in this case, the current measurement value H 0 is immediately transmitted.

【0030】ところで、本実施例では、発明の内容を分
かり易くするために、図3の計測手段30が液位を測定
することとしたが、計測手段30はたとえば天井から液
面までの距離を測定するものでもよく、本発明の範囲
は、かかる場合も含まれる。なお、液面までの距離を測
定した場合は、液位を測定する場合と変位ΔH0 の符号
が逆になる。したがって、本明細書において、「変位Δ
0 ,Δh0 が基準変位ΔP1,ΔP2,ΔP,ΔNよ
りも大きい」とは、「絶対値が大きい」ことを意味する
ものと解釈しなければならない。
In the present embodiment, in order to make the content of the invention easy to understand, the measuring means 30 in FIG. 3 measures the liquid level, but the measuring means 30 measures the distance from the ceiling to the liquid surface, for example. It may be measured, and the scope of the present invention includes such cases. When the distance to the liquid surface is measured, the sign of the displacement ΔH 0 is opposite to that when the liquid level is measured. Therefore, in this specification, "displacement Δ
"H 0 and Δh 0 are larger than the reference displacements ΔP1, ΔP2, ΔP, and ΔN" should be interpreted to mean that "the absolute value is large".

【0031】また、本実施例では、今回の測定値H0
前回の測定値H1 との変位を短期変位ΔH0 としたが、
本発明では、今回の測定値H0 と前々回の測定値H
2 (今回よりも前の測定値Hm )との変位を短期変位Δ
0 としてもよい。たとえば、測定を5秒ごとに行って
いる場合に、今回の測定値H0 と10秒前の測定値(2
回前の測定値)H2 との変位を算出した場合にも、本発
明に含まれる。
Further, in this embodiment, the displacement between the measurement value H 1 of the current measured value H 0 and the previous was a short-term displacement [Delta] H 0,
In the present invention, the measured value H 0 of this time and the measured value H of the previous two times are
2 (measured value H m before this time) is the short-term displacement Δ
It may be H 0 . For example, when the measurement is performed every 5 seconds, the current measurement value H 0 and the measurement value 10 seconds before (2
The present invention also includes the case where the displacement with respect to the measured value before the measurement) H 2 is calculated.

【0032】さらに、本実施例では、今回の測定値H0
と前回送信値h1 との変位である測定送信間変位Δh0
を長期変位ΔHL としたが、本発明では、今回の測定値
0と前の測定値Hm (たとえば前回の測定値H1 )よ
りも更に以前に測定した古い測定値Hn との変位を長期
変位ΔHL として測定し、長期変位ΔHL と測定間隔第
2基準変位ΔP2とを比較することで、長期的な変動、
つまり、液位の緩やかな上昇を検出してもよい。
Further, in the present embodiment, the present measured value H 0
Displacement between measurement and transmission Δh 0 which is the displacement between the previous transmission value h 1 and
The long-term displacement [Delta] H L and the but, in the present invention, the displacement between the current measured value H 0 and the previous measurement value H m (e.g. previous measurement value H 1) older measurements H n measured more previously than was measured as a long-term displacement [Delta] H L, by comparing the long-term displacement [Delta] H L and the measurement interval second reference displacement [Delta] P2, long-term variations,
That is, a gradual rise in the liquid level may be detected.

【0033】また、本実施例では、短い測定間隔TS
長い測定間隔TL との2種類の測定間隔で測定を行うこ
ととしたが、測定間隔は3種類以上に設定してもよく、
あるいは、無段階的に測定間隔を設定してもよい。無段
階にする方法としては、たとえば、設定値を短期変位Δ
0 で除算して、短期変位ΔH0 が小さい程、大きな測
定間隔で測定させ、一方、短期変位ΔH0 が大きい程、
小さな測定間隔で測定させてもよい。なお、この場合、
上下限の測定間隔を予め設定しておくのが好ましい。
Further, in the present embodiment, the measurement is performed at two kinds of measurement intervals, that is, the short measurement interval T S and the long measurement interval T L , but the measurement interval may be set to three or more,
Alternatively, the measurement interval may be set steplessly. As a method of making stepless, for example, the set value is set to
Dividing by H 0 , the smaller the short-term displacement ΔH 0 , the larger the measurement interval, and the larger the short-term displacement ΔH 0 becomes.
You may make it measure at small measurement intervals. In this case,
It is preferable to preset the upper and lower measurement intervals.

【0034】また、本実施例では、測定間隔が長い場合
に、60回測定するごとに送信したが、送信の最大許容
間隔を時間で設定して、少なくとも最大許容時間になる
毎に送信を行うこととしてもよい。
Further, in the present embodiment, when the measurement interval is long, the measurement is performed every 60 times, but the maximum allowable transmission interval is set by time, and the transmission is performed at least at the maximum allowable time. It may be that.

【0035】また、本実施例では、液位が2回連続して
上昇した場合、液位が継続して上昇していると判断した
が、n回(nは2以上)測定して、m回(mはn以下の
2以上の自然数)以上液位が上昇していれば、液位が継
続的に上昇しているとみなしてもよい。
In this embodiment, when the liquid level continuously rises twice, it is determined that the liquid level continuously rises. However, the measurement is performed n times (n is 2 or more) and m If the liquid level rises more than times (m is a natural number of 2 or more, which is n or less), it may be considered that the liquid level continuously rises.

【0036】一方、本実施例では、液位が数回連続して
下降ないし同じであれば、液位が安定したと判断した
が、2回ないし10回程度連続して液位が下降ないし同
じであれば、液位が安定したと判断することとしてもよ
い。
On the other hand, in the present embodiment, if the liquid level is lowered or the same for several consecutive times, it is judged that the liquid level is stable, but the liquid level is lowered or the same for 2 to 10 times continuously. If so, it may be determined that the liquid level is stable.

【0037】なお、本無線式液位測定送信装置では、数
十回〜数百回の送信毎にA/D変換したバッテリーの電
圧値を、図1の無線式液位測定送信装置3から監視装置
2に送信してもよい。このようにすれば、監視装置2に
おいて、バッテリー32の交換時期を推定することがで
き、したがって、バッテリー切れによるシステムダウン
を未然に防止することができる。
In the wireless liquid level measuring / transmitting device, the voltage value of the battery A / D converted every several tens to several hundreds of transmissions is monitored from the wireless liquid level measuring / transmitting device 3 in FIG. It may be transmitted to the device 2. With this configuration, the monitoring device 2 can estimate the replacement time of the battery 32, and thus can prevent the system from going down due to the battery exhaustion.

【0038】ところで、前記実施例では、送信手段31
からの送信周波数を地下タンク1ごとに異ならせたが、
本発明では、必ずしもそうする必要はない。たとえば、
図2の各無線式液位測定送信装置3が、送信手段31お
よび受信手段を備え、送信前に、他の地下タンク1から
の送信が行なわれているか否かを判断し、送信が行なわ
れていないことを条件に、タンクNo.を含めて、送信
を開始することとしてもよい。この場合には、送信周波
数をタンクごとに異ならせる必要がない。
By the way, in the above embodiment, the transmitting means 31
I changed the transmission frequency from each underground tank 1,
The present invention does not have to do so. For example,
Each wireless liquid level measuring and transmitting device 3 in FIG. 2 is provided with a transmitting means 31 and a receiving means, judges whether or not another underground tank 1 is transmitting before transmitting, and transmits. If the tank No. It is also possible to start the transmission including. In this case, it is not necessary to make the transmission frequency different for each tank.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
今回の測定値H0 と今回よりも前の測定値Hm とを比較
して、送信間隔の他に、測定間隔をも変化させるので、
ローリーから荷降しを行っているような特別な場合等を
除き、測定間隔を長くすることができる。したがって、
レスポンスの良い測定を行いつつ、送信時だけでなく、
測定時についても省電力化が図られる。その結果、防爆
仕様における特別な技術が必要なバッテリーの交換回数
を極力減らすことができる。
As described above, according to the present invention,
Since the measured value H 0 this time and the measured value H m before this time are compared and the measurement interval is changed in addition to the transmission interval,
The measurement interval can be extended except in special cases where the truck is unloaded. Therefore,
While making a measurement with a good response, not only when sending,
Power saving is also achieved during measurement. As a result, the number of battery replacements that require special technology for explosion-proof specifications can be reduced as much as possible.

【0040】また、請求項3の発明によれば、今回の測
定値H0 から今回よりも前の測定値Hm を減算した短期
変位ΔH0 を測定間隔第1基準変位ΔP1と比較するだ
けでなく、今回の測定値H0 から、前記今回よりも前の
測定値Hm よりも更に以前に測定した古い測定値Hn
減算した長期変位ΔHL を、測定間隔第2基準変位ΔP
2と比較している。したがって、緩やかな液位の上昇を
長期変位ΔHL で検出し得ると共に、短期変位ΔH0
比較する測定間隔第1基準変位ΔP1を差程小さな値に
する必要がないので、液面の波打ちなどによる検出の誤
りで、測定間隔が度々短くなるという事態を防止できる
から、より一層省電力化を図ることができる。
According to the third aspect of the invention, the short-term displacement ΔH 0 obtained by subtracting the measurement value H m before this time from the measurement value H 0 at this time is simply compared with the first measurement interval reference displacement ΔP 1. without the current measurement value H 0, the long-term displacement [Delta] H L obtained by subtracting the old measured value H n measured further before than the measurement value H m before the than this, the measurement interval second reference displacement ΔP
Compared to 2. Therefore, since it is possible to detect a gradual increase in the liquid level by the long-term displacement ΔH L and it is not necessary to make the measurement interval first reference displacement ΔP1 to be compared with the short-term displacement ΔH 0 a value that is too small, it is possible to corrugate the liquid surface. Since it is possible to prevent a situation in which the measurement interval is often shortened due to a detection error caused by, it is possible to further reduce power consumption.

【0041】さらに、請求項4の発明によれば、今回の
測定値H0 から前回送信値h1 を減算した測定送信間変
位Δh0 を前記長期変位ΔHL としたから、前回送信値
1と今回の測定値H0 との差(測定送信間変位Δ
0 )が大きくなったときは、短い測定間隔TS で測定
を行うので、レスポンスの良い測定を行うことができ
る。
Furthermore, according to the invention of claim 4, the measurement transmission between displacement Delta] h 0 obtained by subtracting the previous transmission value h 1 from the current measured value H 0 because the said long displacement [Delta] H L, previous transmission value h 1 And the measured value H 0 of this time (displacement Δ between measured transmissions
When h 0 ) becomes large, the measurement is performed at a short measurement interval T S , so that the measurement with good response can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる給油所のシステムを
説明する断面図である。
FIG. 1 is a cross-sectional view illustrating a system of a gas station according to an embodiment of the present invention.

【図2】同システムの概略構成図である。FIG. 2 is a schematic configuration diagram of the system.

【図3】計測手段の一例を示す概略構成図である。FIG. 3 is a schematic configuration diagram showing an example of a measuring unit.

【図4】監視装置の一例を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing an example of a monitoring device.

【図5】無線式液位測定送信装置の一実施例を示す概略
構成図である。
FIG. 5 is a schematic configuration diagram showing an embodiment of a wireless liquid level measurement and transmission device.

【図6】液位安定中の測定・送信間隔を示す概念図であ
る。
FIG. 6 is a conceptual diagram showing a measurement / transmission interval during liquid level stabilization.

【図7】液位が上昇した場合の測定・送信間隔を示す概
念図である。
FIG. 7 is a conceptual diagram showing a measurement / transmission interval when the liquid level rises.

【図8】液位が緩やかに上昇した場合の測定・送信間隔
を示す概念図である。
FIG. 8 is a conceptual diagram showing a measurement / transmission interval when the liquid level gently rises.

【図9】液位が急激に上昇した場合の測定・送信間隔を
示す概念図である。
FIG. 9 is a conceptual diagram showing a measurement / transmission interval when the liquid level rises sharply.

【図10】液位が継続的に上昇した場合の測定・送信間
隔を示す概念図である。
FIG. 10 is a conceptual diagram showing a measurement / transmission interval when the liquid level continuously rises.

【図11】液位が急激に下降した場合の測定・送信間隔
を示す概念図である。
FIG. 11 is a conceptual diagram showing a measurement / transmission interval when the liquid level sharply drops.

【符号の説明】[Explanation of symbols]

3:無線式液位測定送信装置 40:記憶部 41:第1比較手段 42:第2比較手段 45:測定間隔制御手段 46:送信間隔制御手段 3: Wireless liquid level measurement transmission device 40: Storage unit 41: First comparison means 42: Second comparison means 45: Measurement interval control means 46: Transmission interval control means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃料油の液位に関する値を計測手段で測
定し、この測定した測定値を無線で送信すると共に、測
定値の送信間隔を測定結果に基づいて変化させる無線式
液位測定送信装置において、 今回の測定値H0 と今回よりも前の測定値Hm とを比較
する比較手段と、 短い測定間隔TS および長い測定間隔TL の少なくとも
2種類の測定間隔で前記計測手段に測定させると共に、
前記比較手段による比較結果に基づいて、次回以後の測
定間隔を制御する測定間隔制御手段とを備えていること
を特徴とする無線式液位測定送信装置。
1. A wireless liquid level measurement transmission in which a value related to the liquid level of fuel oil is measured by a measuring means, the measured value is transmitted wirelessly, and the transmission interval of the measured value is changed based on the measurement result. In the apparatus, a comparing means for comparing the measured value H 0 of this time with the measured value H m before this time, and the measuring means with at least two kinds of measuring intervals of a short measuring interval T S and a long measuring interval T L Let me measure,
A wireless liquid level measuring and transmitting apparatus comprising: a measurement interval control unit that controls a measurement interval from the next time on the basis of a comparison result by the comparison unit.
【請求項2】 燃料油の液位に関する値を計測手段で測
定し、この測定した測定値を無線で送信すると共に、測
定値の送信間隔を測定結果に基づいて変化させる無線式
液位測定送信装置において、 測定間隔基準変位ΔP1を記憶する記憶部と、 今回の測定値H0 から今回よりも前の測定値Hm を減算
した変位ΔH0 を、前記測定間隔基準変位ΔP1と比較
する比較手段と、 短い測定間隔TS および長い測定間隔TL の少なくとも
2種類の測定間隔で前記計測手段に測定させると共に、
前記比較手段による比較の結果、前記変位ΔH0 が測定
間隔基準変位ΔP1よりも大きいときには、次回の測定
までの測定間隔を前記短い測定間隔TS で測定させる測
定間隔制御手段とを備えていることを特徴とする無線式
液位測定送信装置。
2. A wireless liquid level measurement transmission in which a value relating to the liquid level of fuel oil is measured by a measuring means, the measured value is wirelessly transmitted, and the measured value transmission interval is changed based on the measurement result. In the apparatus, a storage unit that stores the measurement interval reference displacement ΔP1 and a comparison unit that compares the displacement ΔH 0 obtained by subtracting the measurement value H m before this time from the measurement value H 0 of this time with the measurement interval reference displacement ΔP1. And causing the measuring means to measure at least two types of measurement intervals, a short measurement interval T S and a long measurement interval T L ,
When the displacement ΔH 0 is larger than the measurement interval reference displacement ΔP1 as a result of the comparison by the comparison unit, a measurement interval control unit for measuring the measurement interval until the next measurement at the short measurement interval T S is provided. A wireless liquid level measuring and transmitting device characterized by:
【請求項3】 燃料油の液位に関する値を計測手段で測
定し、この測定した測定値を無線で送信すると共に、測
定値の送信間隔を測定結果に基づいて変化させる無線式
液位測定送信装置において、 測定間隔第1基準変位ΔP1および測定間隔第2基準変
位ΔP2を記憶する記憶部と、 今回の測定値H0 から今回よりも前の測定値Hm を減算
した短期変位ΔH0 を、前記測定間隔第1基準変位ΔP
1と比較する第1比較手段と、 今回の測定値H0 から、前記前の測定値Hm よりも更に
以前に測定した古い測定値Hn を減算した長期変位ΔH
L を、前記測定間隔第2基準変位ΔP2と比較する第2
比較手段と、 短い測定間隔TS および長い測定間隔TL の少なくとも
2種類の測定間隔で前記計測手段に測定させると共に、
前記比較の結果、前記短期変位ΔH0 が測定間隔第1基
準変位ΔP1よりも大きいときと、前記長期変位ΔHL
が測定間隔第2基準変位ΔP2よりも大きいときには、
次回の測定までの測定間隔を前記短い測定間隔TS で測
定させる測定間隔制御手段とを備えていることを特徴と
する無線式液位測定送信装置。
3. A wireless liquid level measurement transmission in which a value related to the liquid level of fuel oil is measured by a measuring means, the measured value is transmitted wirelessly, and the transmission interval of the measured value is changed based on the measurement result. In the device, a storage unit that stores the first measurement interval reference displacement ΔP1 and the second measurement interval reference displacement ΔP2, and the short-term displacement ΔH 0 obtained by subtracting the measurement value H m before this time from the measurement value H 0 at this time, The measurement interval first reference displacement ΔP
And a long-term displacement ΔH obtained by subtracting an old measurement value H n measured earlier than the previous measurement value H m from the present measurement value H 0.
A second comparing L with the second reference displacement ΔP2 of the measurement interval
A comparing means, and causing the measuring means to measure at least two kinds of measuring intervals of a short measuring interval T S and a long measuring interval T L ,
As a result of the comparison, when the short-term displacement ΔH 0 is larger than the measurement interval first reference displacement ΔP 1, and when the long-term displacement ΔH L is
Is larger than the measurement interval second reference displacement ΔP2,
A wireless liquid level measuring and transmitting device comprising: a measuring interval control means for measuring the measuring interval until the next measurement at the short measuring interval T S.
【請求項4】 燃料油の液位に関する値を計測手段で測
定し、この測定した測定値を無線で送信すると共に、測
定値の送信間隔を測定結果に基づいて変化させる無線式
液位測定送信装置において、 測定間隔第1基準変位ΔP1および測定間隔第2基準変
位ΔP2を記憶する記憶部と、 今回の測定値H0 から今回よりも前の測定値Hm を減算
した短期変位ΔH0 を、前記測定間隔第1基準変位ΔP
1と比較する第1比較手段と、 今回の測定値H0 から前回送信した前回送信値h1 を減
算した測定送信間変位Δh0 を、前記測定間隔第2基準
変位ΔP2と比較する第2比較手段と、 短い測定間隔TS および長い測定間隔TL の少なくとも
2種類の測定間隔で前記計測手段に測定させると共に、
前記比較の結果、前記短期変位ΔH0 が測定間隔第1基
準変位ΔP1よりも大きいときと、前記測定送信間変位
Δh0 が測定間隔第2基準変位ΔP2よりも大きいとき
には、次回の測定までの測定間隔を前記短い測定間隔T
S で測定させる測定間隔制御手段とを備えていることを
特徴とする無線式液位測定送信装置。
4. A wireless liquid level measurement transmission in which a value related to the liquid level of fuel oil is measured by a measuring means, the measured value is wirelessly transmitted, and the measurement value transmission interval is changed based on the measurement result. In the device, a storage unit that stores the first measurement interval reference displacement ΔP1 and the second measurement interval reference displacement ΔP2, and the short-term displacement ΔH 0 obtained by subtracting the measurement value H m before this time from the measurement value H 0 at this time, The measurement interval first reference displacement ΔP
1st comparison means for comparing with 1, and second comparison for comparing displacement Δh 0 between measurement and transmission obtained by subtracting previously transmitted value h 1 transmitted last time from measured value H 0 of this time with said measurement interval second reference displacement ΔP2 Means for causing the measuring means to measure at least two types of measurement intervals, a short measurement interval T S and a long measurement interval T L ,
As a result of the comparison, when the short-term displacement ΔH 0 is larger than the measurement interval first reference displacement ΔP1 and when the inter-measurement transmission displacement Δh 0 is larger than the measurement interval second reference displacement ΔP2, the measurement until the next measurement is performed. The interval is the short measurement interval T
A wireless liquid level measuring and transmitting device comprising: a measuring interval control means for measuring at S.
JP19919995A 1995-07-11 1995-07-11 Wireless liquid level measurement transmitter Expired - Fee Related JP3516776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19919995A JP3516776B2 (en) 1995-07-11 1995-07-11 Wireless liquid level measurement transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19919995A JP3516776B2 (en) 1995-07-11 1995-07-11 Wireless liquid level measurement transmitter

Publications (2)

Publication Number Publication Date
JPH0926347A true JPH0926347A (en) 1997-01-28
JP3516776B2 JP3516776B2 (en) 2004-04-05

Family

ID=16403795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19919995A Expired - Fee Related JP3516776B2 (en) 1995-07-11 1995-07-11 Wireless liquid level measurement transmitter

Country Status (1)

Country Link
JP (1) JP3516776B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168674A (en) * 2000-11-30 2002-06-14 Oyo Corp Submerged water level meter
JP2003296866A (en) * 2002-03-29 2003-10-17 Omron Corp Information processor and processing method
EP1412929A2 (en) * 2001-07-25 2004-04-28 Atlinks USA, Inc. Method and system for efficiently regulating data transmissions
JP2009053111A (en) * 2007-08-28 2009-03-12 Toshiba Corp Sensor device
US7716000B2 (en) 2007-08-28 2010-05-11 Kabushiki Kaisha Toshiba Sensor apparatus having sensor element
JP2011042943A (en) * 2009-08-19 2011-03-03 Metawater Co Ltd Manhole unit for measuring water level
JP2020180939A (en) * 2019-04-26 2020-11-05 松村物産株式会社 Residual amount management system, distance measuring unit, and residual amount management method
JP2021099350A (en) * 2015-08-21 2021-07-01 トゥルマ・ゲレーテテッヒニク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフトTruma Geraetetechnik GmbH & Co. KG Liquid level measurement device, method of operating the same, and assembly consisting of the same and at least one spacer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168674A (en) * 2000-11-30 2002-06-14 Oyo Corp Submerged water level meter
JP4569999B2 (en) * 2000-11-30 2010-10-27 応用地質株式会社 Submerged water level gauge
EP1412929A2 (en) * 2001-07-25 2004-04-28 Atlinks USA, Inc. Method and system for efficiently regulating data transmissions
EP1412929A4 (en) * 2001-07-25 2008-03-12 Atlinks Usa Inc Method and system for efficiently regulating data transmissions
JP2003296866A (en) * 2002-03-29 2003-10-17 Omron Corp Information processor and processing method
US7239982B2 (en) 2002-03-29 2007-07-03 Omron Corporation Information processing device and method
JP2009053111A (en) * 2007-08-28 2009-03-12 Toshiba Corp Sensor device
US7716000B2 (en) 2007-08-28 2010-05-11 Kabushiki Kaisha Toshiba Sensor apparatus having sensor element
JP2011042943A (en) * 2009-08-19 2011-03-03 Metawater Co Ltd Manhole unit for measuring water level
JP2021099350A (en) * 2015-08-21 2021-07-01 トゥルマ・ゲレーテテッヒニク・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング・ウント・コムパニー・コマンディットゲゼルシャフトTruma Geraetetechnik GmbH & Co. KG Liquid level measurement device, method of operating the same, and assembly consisting of the same and at least one spacer
US11530942B2 (en) 2015-08-21 2022-12-20 Truma Geraetetechnik Gmbh & Co. Kg Device and method for measuring the level of liquid in a container
JP2020180939A (en) * 2019-04-26 2020-11-05 松村物産株式会社 Residual amount management system, distance measuring unit, and residual amount management method

Also Published As

Publication number Publication date
JP3516776B2 (en) 2004-04-05

Similar Documents

Publication Publication Date Title
US5211678A (en) Apparatus, method and system for monitoring fluid
KR100300305B1 (en) Water supply pressurizing pump apparatus, and control system and control method for pump apparatus
KR100869571B1 (en) Steeped Slope Breakdown Sensing System and Sensing Method
US9506795B2 (en) Wireless tank level monitoring
JPH0926347A (en) Wireless liquid level measurement and transmission device
US4222267A (en) Material level detector circuit
EP2930477A1 (en) Level gauging system for long narrow nozzles
US20030106582A1 (en) Method and system for automatically controlling water level in storage tank through wireless control process
CN103229026A (en) Apparatus and methods for automatically testing a servo gauge in an inventory management system
US11071071B2 (en) Method for optimizing power supply life of an industrial sensor platform
EP1261900A1 (en) Method and system for automatically controlling water level in storage tank through wireless control process
US4056887A (en) Device for the measurement of liquid level
EP0512711B1 (en) Device for measuring the quantity of electricity stored in a battery
US5272920A (en) Apparatus, method and system for monitoring fluid
CN110371814B (en) Elevator operation monitoring system and elevator operation monitoring method
US20200055579A1 (en) Boat lift systems and methods
JP3082783B2 (en) Wireless liquid meter
EP2306020B1 (en) Method and apparatus in connection with pump drive
CN210638767U (en) Water level monitor
CN112378490A (en) Non-contact water level monitoring method and liquid level monitoring device
JPH02176425A (en) Radio type liquid-level transmitter
US11828641B2 (en) Vibrating fork liquid level switch with verification
WO1998015884A1 (en) Apparatus for remote monitoring of the level of liquid in at least one tank
CN209838393U (en) Drilling tank surface monitoring system
CN219326692U (en) Discharging control assembly for anaerobic distillation system and anaerobic distillation system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040121

LAPS Cancellation because of no payment of annual fees