JPH09263300A - High temperature structural body tightening structure for space shuttle - Google Patents

High temperature structural body tightening structure for space shuttle

Info

Publication number
JPH09263300A
JPH09263300A JP9734296A JP9734296A JPH09263300A JP H09263300 A JPH09263300 A JP H09263300A JP 9734296 A JP9734296 A JP 9734296A JP 9734296 A JP9734296 A JP 9734296A JP H09263300 A JPH09263300 A JP H09263300A
Authority
JP
Japan
Prior art keywords
shaft
high temperature
protrusion
temperature structure
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9734296A
Other languages
Japanese (ja)
Inventor
Taisuke Kusano
野 泰 輔 草
Masakazu Shimanuki
貫 雅 一 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP9734296A priority Critical patent/JPH09263300A/en
Publication of JPH09263300A publication Critical patent/JPH09263300A/en
Pending legal-status Critical Current

Links

Landscapes

  • Connection Of Plates (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a fastener from being stuck and loosened because of high temperature and permit recycling by fitting the first and second protrusion parts respectively at both ends of a shaft part, and inserting a heat-resisting alloy collar between the first protrusion part of a shaft inserted into a hole at a high temperature structure body formed out of short fiber reinforced ceramic complex material and the high temperature structure body. SOLUTION: A shaft 1 formed out of a short fiber reinforced ceramic complex material is provided with a comical head part 4, a shaft part 3, and a protrusion part 3 at the top of it. The whole surface of the shaft 1 is coated with silicon carbide or aluminum oxide to prevent it from being stuck because of high temperature. At a high temperature structure body 5 where the shaft 1 is inserted, a tapered hole 7 and a hole 8 brought into contact with the head part 4 are formed, whose sectional shapes have a little large width which is a similar figure to the cross section of the first protrusion part 3. The high temperature structure bodies 5, 6 are made of carbon fiber reinforced complex material, and a C collar 9 of niobium alloy which is coated with aluminum diffusion is bedded between the high temperature structure body 6 and the first protrusion part 3. Therefore, by selecting the total length of the C collar 9 and the high temperature structure bodies 5, 6 with thermal expansion coefficient considered, it is possible to attain high tightening force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【発明の属する技術分野】本発明は宇宙往還機の高温構
造体の締結構造とそのファスナーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fastening structure for a high temperature structure of a space shuttle and its fastener.

【0002】[0002]

【従来の技術】宇宙と地上とを往復する宇宙往還機は、
大気圏に突入する際に空気との摩擦でその機体表面は千
数百度の高温に曝される。この高温下でも宇宙往還機が
無事に地上に帰還できるよう、機体には耐熱性に優れた
セラミックス複合材や炭素繊維強化炭素複合材等が多く
使用され、これらの高温構造体の締結には耐熱性の高い
Fe基特殊鋼MA956製のボルトとナットが使用され
ている。
2. Description of the Related Art Space shuttles that reciprocate between space and the earth are
When entering the atmosphere, the surface of the fuselage is exposed to high temperatures of several thousand and several hundred degrees due to friction with air. In order for the space shuttle to safely return to the ground even at this high temperature, many ceramic composites and carbon fiber reinforced carbon composites with excellent heat resistance are used for the aircraft, and heat resistance is used for fastening these high temperature structures. Bolts and nuts made of highly resistant Fe-based special steel MA956 are used.

【0003】その他、宇宙往還機の高温構造体の弛まな
いファスナーとして特開平7−10094号公報には、
図5に示すような、機体の主構造材と耐熱パネルとの間
に断熱材を挾み、主構造材と耐熱カバーとを両端にねじ
を切ったメタルロッドでつなぎ、耐熱カバー側の一端で
2個の皿状メタルナットを短い距離間に対向させて、皿
条メタルナットの間に耐熱カバーと耐熱ワッシャーを共
締めし、耐熱カバー締付けに及ぼすメタルロッドの熱膨
張の影響を小さくする取付け構造が開示されている。
In addition, Japanese Patent Laid-Open No. 7-10094 discloses a fastener that does not loosen the high temperature structure of a space shuttle.
As shown in Fig. 5, a heat insulating material is sandwiched between the main structural material of the airframe and the heat resistant panel, and the main structural material and the heat resistant cover are connected at both ends with a metal rod having a thread cut at one end on the heat resistant cover side. Mounting structure that reduces the effect of thermal expansion of the metal rod on the heat-resistant cover tightening by placing two plate-shaped metal nuts facing each other for a short distance and tightening the heat-resistant cover and heat-resistant washer together between the plate metal nuts. Is disclosed.

【0004】[0004]

【発明が解決しようとする課題】Fe基特殊鋼MA95
6等の特殊耐熱鋼でもおよそ1200°Cを超すと破断
強度が急激に低下する。したがって1200°C以上の
温度で耐熱金属材料のファスナーを用いる場合には、締
付力を確保するために太い軸径のファスナーを用いねば
ならないが、その結果機体重量が増加する。また、耐熱
鋼のボルト及びナットと炭素繊維強化炭素複合材の構造
体との組合せの場合、大気圏突入時の千数百度の高温下
では、ねじの溶融や酸化以外に、耐熱鋼と炭素繊維強化
炭素材が接触している部分で拡散反応による焼付きが発
生しファスナーの再使用ができなくなる。焼付き対策と
して耐熱性の高いセラミックス製ねじのが考えられる
が、セラミックスは靱性が低いので、締付けによりねじ
部が破損する。
Fe-based special steel MA95
Even with special heat-resistant steels such as No. 6 and the like, when the temperature exceeds 1200 ° C, the breaking strength sharply decreases. Therefore, when a fastener made of a heat-resistant metal material is used at a temperature of 1200 ° C. or higher, a fastener having a large shaft diameter must be used to secure the tightening force, but as a result, the body weight increases. In addition, in the case of a combination of heat resistant steel bolts and nuts and carbon fiber reinforced carbon composite material structure, under the high temperature of a thousand and several hundred degrees when entering the atmosphere, in addition to melting and oxidation of the screw, heat resistant steel and carbon fiber reinforced Seizure occurs due to the diffusion reaction at the part where the carbon material is in contact, and the fastener cannot be reused. As a countermeasure against seizure, a ceramic screw with high heat resistance can be considered, but since ceramic has low toughness, the screw part will be damaged by tightening.

【0005】特開平7−10094号公報の方法も金属
製のロッドとナットを使用しているので高温に曝された
場合に、ねじ部の焼付きや溶融もしくは酸化が発生しや
すい。また焼付かない場合でも酸化によりねじ面の性状
のばらつきが大きくなり、締付力が保障できなくなるの
では再使用できない恐れが高い。
The method disclosed in Japanese Patent Laid-Open No. 7-10094 also uses a metal rod and nut, and therefore, when exposed to a high temperature, seizure, melting, or oxidation of the screw portion is likely to occur. Even if it is not seized, the variation in the properties of the screw surface becomes large due to oxidation, and if the tightening force cannot be guaranteed, there is a high possibility that it cannot be reused.

【0006】ファスナーが焼付くと、点検作業で高温構
造体の取り外す場合に、ファスナーあるいは構造体を破
壊しなければならない。また特殊な耐熱材料から作られ
た多数のファスナーを飛行の度に新しく交換すること
も、宇宙往還機の商業ベースの利用を考えた場合に費用
の点で改善しなければならない課題である。そこで本発
明は、焼付かず溶融せず酸化しないで再使用でき、かつ
弛まない宇宙往還機の高温構造体の締結構造とそれらに
用いられるファスナーを提供することが目的である。
Once the fastener is seized, the fastener or structure must be destroyed when removing the hot structure during inspection work. Also, the replacement of a large number of fasteners made from special heat-resistant materials with each flight is another issue that must be improved in terms of cost when considering commercial use of space vehicles. Therefore, an object of the present invention is to provide a fastening structure for a high temperature structure of a space shuttle that can be reused without burning, melting, or oxidizing, and does not sag, and a fastener used therefor.

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に請求項1に記載された発明は、宇宙往還機の高温構造
体の締結構造において、軸部と、その軸部の一端に延設
された前記軸部の軸に直交した第1の突起部と、前記軸
のもう一端に延設された前記第1の突起部より大きい第
2の突起部とを備えた短繊維強化型セラミックス複合材
製の軸と、前記軸の第2の係止部以外の部分を挿通させ
る大きさで高温構造体に設けられた孔と、前記孔に挿通
された前記軸の第1の突起部と前記機体本体との間に挾
入された耐熱合金鋼製のカラーとを、有することを特徴
とするものである。
In order to achieve this object, the invention described in claim 1 is a fastening structure of a high temperature structure of a space shuttle, which is provided with a shaft portion and one end of the shaft portion. A short fiber reinforced ceramic composite including a first protrusion that is orthogonal to the axis of the shaft that is formed and a second protrusion that is larger than the first protrusion and that is extended to the other end of the shaft. A shaft made of material, a hole provided in the high temperature structure with a size for inserting a portion other than the second locking portion of the shaft, a first protrusion of the shaft inserted in the hole, and And a collar made of heat-resistant alloy steel that is inserted between the body and the machine body.

【0008】この締結構造における各構成部品の熱膨張
率は、耐熱合金製のカラーが最も大きく、次に短繊維強
化型セラミック複合材製の軸が大きく、高温構造体材料
が炭素繊維強化型炭素複合材が用いられた場合、その熱
膨張率が最も小さい。この場合には、高温構造体とカラ
ーとよりなる被締付け部の熱膨張長さが、軸の熱膨張長
さを上回るようにカラーの長さを選定することにより、
温度が高まるにつれファスナーの締結力が増加して安定
するという効果がある。また、ねじ部を廃しているので
ねじの焼付きや酸化の恐れもない。
Regarding the coefficient of thermal expansion of each component in this fastening structure, the collar made of heat-resistant alloy has the largest, the axis made of short fiber reinforced ceramic composite material has the second largest, and the high temperature structural material is carbon fiber reinforced carbon. When a composite material is used, its coefficient of thermal expansion is the smallest. In this case, by selecting the length of the collar so that the thermal expansion length of the tightened portion consisting of the high temperature structure and the collar exceeds the thermal expansion length of the shaft,
There is an effect that the fastening force of the fastener increases and becomes stable as the temperature rises. Moreover, since the screw portion is abolished, there is no fear of seizure or oxidation of the screw.

【0009】請求項2記載の発明は、請求項1におい
て、その軸部の断面が円形であり、第1の係止部の断面
が扁平であることを特徴とするものである。
According to a second aspect of the present invention, in the first aspect, the shaft portion has a circular cross section, and the first locking portion has a flat cross section.

【0010】請求項3に記載された発明は、請求項2に
おける前記軸部が、前記第1の突起部から前記第2の突
起部へ向かって、前記第1の突起部より小さい扁平断面
の突起の第1部分と、前記第1部分の幅と等しいかもし
くは小さい直径の円形断面で高温構造体に設けられた前
記孔より長い第2部分と、前記第1の突起部と同じ形状
であるが方向が異なる断面で前記孔より短い長さの第3
部分とを、有することを特徴とするものである。
According to a third aspect of the invention, the shaft portion of the second aspect has a flat cross section smaller than the first protrusion portion from the first protrusion portion toward the second protrusion portion. The first portion of the protrusion, the second portion having a circular cross section with a diameter equal to or smaller than the width of the first portion and longer than the hole provided in the high temperature structure, and the same shape as the first protrusion portion. Is a third section having a cross section with a different direction and a length shorter than the hole.
And a portion.

【0011】この軸部を有する軸を用いて高温構造物を
締結する場合には、軸を軸部の前記第2部分まで通した
時に軸を回転して前記の第3部分と孔との形状を合わ
せ、さらに軸を孔に通す。そして軸を通し終えると高温
構造体と第1の突起部の間にカラーを挾入する。カラー
としてCカラーを用い、その内部空間の径を前記軸部の
第1部分の突起方向の長さと等しくして、挾入したCカ
ラーを回転すればCカラーの位置決めと抜け防止ができ
る。
When a high temperature structure is fastened using a shaft having this shaft portion, the shaft is rotated when the shaft is passed to the second portion of the shaft portion, and the shape of the third portion and the hole is formed. And then pass the shaft through the hole. After passing through the shaft, the collar is inserted between the high temperature structure and the first protrusion. If the C color is used as the collar, the diameter of the internal space is made equal to the length of the first portion of the shaft portion in the protruding direction, and the inserted C color is rotated, the C color can be positioned and prevented from coming off.

【0012】請求項5に記載された発明は、耐熱合金製
のボルトの頭部と軸部とを短繊維強化型セラミックス複
合材で覆い、前記ボルトのねじ部と反対側の端に短繊維
強化型セラミックス複合材の突起部を具備する軸と、こ
の軸の前記の突起部以外は通す大きさで宇宙往還機の高
温構造体に設けられた孔と、この孔に通された前記軸に
高温構造体に隣接して挿通された短繊維強化セラミック
複合材製の第1カラーと、該第1カラーに燐接して置か
れ前記軸に挿通された前記ボルトより熱膨張率の大きい
耐熱合金製の第2カラーと、前記ボルトのねじに螺合さ
れた耐熱合金製のナットとを有することを特徴とするも
のである。前記構成部品中において、軸の長さと第2カ
ラーの長さをそれらの熱膨張率と長さ考慮して適切に設
定することで、第2カラーの熱膨張長さを軸の熱膨張長
さより長くすることができる。こうしてこの締結構造に
おいては、熱膨張長さは高温構造体と第1カラーと第2
カラーの合計が軸より大きくなり、温度の上昇と共に締
結力が増加する。また軸やナットには高温固着防止処理
を実施して固着防止を強化する。
According to a fifth aspect of the present invention, the head and the shaft of the bolt made of a heat-resistant alloy are covered with a short fiber reinforced ceramic composite material, and the short fiber reinforced at the end opposite to the threaded portion of the bolt. -Type ceramics composite material having a projection, a hole provided in a high temperature structure of a space shuttle having a size other than the above-mentioned projection of the shaft, and a high temperature for the shaft passed through the hole. A first collar made of a short fiber reinforced ceramic composite that is inserted adjacent to the structure, and made of a heat-resistant alloy that is placed in phosphorus contact with the first collar and has a coefficient of thermal expansion higher than that of the bolt that is inserted into the shaft. It is characterized by having a second collar and a nut made of a heat-resistant alloy screwed into the screw of the bolt. In the above-mentioned constituent parts, the length of the shaft and the length of the second collar are appropriately set in consideration of their coefficients of thermal expansion and lengths, so that the thermal expansion length of the second collar is more Can be long. Thus, in this fastening structure, the thermal expansion length is determined by the high temperature structure, the first collar, and the second collar.
The sum of the collars is larger than the axis and the fastening force increases with increasing temperature. In addition, the high temperature anti-sticking process is applied to the shaft and nut to strengthen the anti-sticking.

【0013】[0013]

【発明の実施の形態】説明に先立ち本発明に実施に使用
されるアルミニウム拡散皮膜処理についてその概略を説
明しておく。この方法は特開平5−125519号公報
で出願人が開示したもので、被覆剤のアルミニウム粉末
と活性剤のハロゲン化イットリウム粉末と焼結防止剤の
酸化アルミニウム粉末との混合粉末中にニオブ合金を埋
め込み、大気圧の不活性ガス中で900〜1200°C
で3〜15時間加熱して行われる。そうするとニオブ合
金表面にイットリウムを含んだニオブ−アルミニウム系
金属間化合物が形成される。この状態で大気中で高温に
曝されるとニオブ合金表面に酸化アルミニウム層が形成
されるが、同時に酸化アルミニウム層とニオブ合金との
界面にはアルミニウムとイットリウムとの複酸化物或い
はイットリウム酸化物が生成される。これらによって酸
化アルミニウム層がニオブ合金表面に密着され安定す
る。ニオブ合金は融点が約2500°Cと高く耐熱性は
優れているが、高温での酸化の進行速度が早いために真
空中や不活性ガス中での使用に限られていた。しかし前
記のアルミニウム拡散被覆法により高温の大気中でも使
用が可能になった。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Prior to the description, an outline of the aluminum diffusion film treatment used in the present invention will be described. This method is disclosed by the applicant in Japanese Patent Application Laid-Open No. 5-125519, and a niobium alloy is added to a mixed powder of aluminum powder as a coating agent, yttrium halide powder as an activator, and aluminum oxide powder as a sintering inhibitor. Embedded, 900-1200 ° C in inert gas at atmospheric pressure
And heating for 3 to 15 hours. Then, a niobium-aluminum intermetallic compound containing yttrium is formed on the surface of the niobium alloy. When exposed to high temperature in the atmosphere in this state, an aluminum oxide layer is formed on the surface of the niobium alloy, but at the same time, a double oxide or yttrium oxide of aluminum and yttrium is formed at the interface between the aluminum oxide layer and the niobium alloy. Is generated. By these, the aluminum oxide layer is brought into close contact with the surface of the niobium alloy and becomes stable. Although niobium alloy has a high melting point of about 2500 ° C. and excellent heat resistance, it has been limited to use in a vacuum or an inert gas because of its fast rate of progress of oxidation at high temperatures. However, the aluminum diffusion coating method described above has made it possible to use even in a high temperature atmosphere.

【0014】本発明の実施の形態を図を用いて説明す
る。図1は請求項1に係る実施例の締付けを表したもの
であり、図1(a)は締付けの断面図を、図1(b)は
図1(a)を矢視A側から見たものである。軸1は短繊
維強化型セラミック複合材で造られ、円錐状の頭部4
と、頭部4の円錐の途中から円形断面で所定の長さ延設
された軸部2と、軸部2の先端につながり軸部2に直交
する方向に突起部3とを備えている。突起部3の突起の
軸と直交する方向の幅は軸部2の直径よりも小さく、頭
部4と対向する面3aは軸部2に垂直である。また頭部
4の円錐の底面は前記係止部3よりも大きい。この軸1
の全表面は高温固着防止のために、炭化珪素(SiC)
又は酸化アルミニウム(Al2 O3 )が化学気相蒸着法
により皮膜処理がなされている。
An embodiment of the present invention will be described with reference to the drawings. 1A and 1B show the tightening of the embodiment according to claim 1, FIG. 1A is a sectional view of the tightening, and FIG. 1B is a view of FIG. It is a thing. Shaft 1 is made of short fiber reinforced ceramic composite and has a conical head 4
The head portion 4 is provided with a shaft portion 2 extending from the middle of the cone in a circular cross-section by a predetermined length, and a protrusion portion 3 connected to the tip of the shaft portion 2 in a direction orthogonal to the shaft portion 2. The width of the protrusion 3 in the direction orthogonal to the axis of the protrusion is smaller than the diameter of the shaft 2, and the surface 3a facing the head 4 is perpendicular to the shaft 2. The bottom surface of the cone of the head portion 4 is larger than that of the locking portion 3. This axis 1
The entire surface of silicon carbide (SiC)
Alternatively, aluminum oxide (Al2 O3) is subjected to a film treatment by a chemical vapor deposition method.

【0015】軸1が通されて締結される高温構造体5に
は、前記頭部4の円錐面が当接する錐孔7と、それに連
続する一様断面の孔8が設けられている。孔8は高温構
造体6まで連通しており、その断面形状は第1の突起部
3の断面と相似形で第1の突起部3及び軸部2より若干
大きい幅を持つ。高温構造体5と6は炭素繊維強化素複
合材で製作されており、高温構造体6と軸1の第1の突
起部3との間には、アルミニウム拡散皮膜処理をされた
ニオブ合金製のCカラー9が嵌め込まれている。
The high temperature structure 5 to which the shaft 1 is passed and fastened is provided with a conical hole 7 with which the conical surface of the head portion 4 abuts, and a hole 8 having a uniform cross section continuous with the conical hole 7. The hole 8 communicates with the high temperature structure 6, and its cross-sectional shape is similar to the cross section of the first protrusion 3 and has a width slightly larger than that of the first protrusion 3 and the shaft 2. The high temperature structures 5 and 6 are made of a carbon fiber reinforced composite material, and a space between the high temperature structure 6 and the first protrusion 3 of the shaft 1 is made of a niobium alloy that has been treated with an aluminum diffusion coating. C color 9 is fitted.

【0016】軸1は第1の突起部3から孔7と孔8に挿
入される。挿入の際に第1の突起部3の形状と孔7或い
は孔8の孔形状とを一致させ、頭部4の円錐面4aが前
記円錐孔7の円錐面7aに当接するまで通される。そし
て、高温構造体6と突起部3とにできる間隙に所定長さ
のCカラー9を、孔8による凹部を避けるように挟み込
む。Cカラー9の挟み込みには液体窒素等を利用して冷
し嵌めで行うこともある。
The shaft 1 is inserted into the holes 7 and 8 from the first protrusion 3. At the time of insertion, the shape of the first protrusion 3 and the shape of the hole 7 or the hole 8 are made to match, and the conical surface 4a of the head 4 is passed until it contacts the conical surface 7a of the conical hole 7. Then, a C collar 9 having a predetermined length is sandwiched in a gap formed between the high temperature structure 6 and the protrusion 3 so as to avoid a concave portion due to the hole 8. The C collar 9 may be sandwiched by cold fitting using liquid nitrogen or the like.

【0017】次に、宇宙往還機が大気圏に突入した際に
大気との摩擦で発生する高温下において本請求項発明の
ファスナーが弛まず、そして破損や固着しない理由につ
いて説明する。
Next, the reason why the fastener of the present invention does not sag, and is not damaged or stuck at a high temperature generated by friction with the atmosphere when the space shuttle enters the atmosphere will be described.

【0018】大気圏との空力摩擦により千数百度Cに加
熱された機体表面や表面近くの高温構造体5やファスナ
ーの軸部2、高温構造体6、Cカラー9の温度も、機体
表面より低いが、千数百度Cの高温になる。熱膨張率の
値は、金属材、セラミック繊維強化複合材、炭素
繊維強化炭素複合材の順で大きく、本願発明の構成部品
に当てはめて示すと、Cカラー9、軸1、高温構
造体5と6との合計、の順で大きい。Cカラー9と高温
構造体5と6との合計長さを、熱膨張率を考慮して適切
に選べば、高温時において軸1の伸びより大きい伸びを
得ることができるので、高温ほど高い締付力を得ること
ができる。
The temperature of the high-temperature structure 5 and the high-temperature structure 5 near the surface, the fastener shaft 2, the high-temperature structure 6, and the C collar 9 which are heated to a few thousand degrees C. by aerodynamic friction with the atmosphere are also lower than the surface of the machine. However, it becomes a high temperature of one thousand and several hundred degrees C. The value of the coefficient of thermal expansion increases in the order of the metal material, the ceramic fiber reinforced composite material, and the carbon fiber reinforced carbon composite material. When applied to the components of the present invention, the C color 9, the shaft 1 and the high temperature structure 5 are shown. The total is 6 and the order is larger. If the total length of the C collar 9 and the high temperature structures 5 and 6 is appropriately selected in consideration of the coefficient of thermal expansion, an elongation larger than the elongation of the shaft 1 can be obtained at high temperature, so that the higher the tightening is, the higher the tightening becomes. It is possible to obtain urging force.

【0019】炭化珪素又は酸化アルミニウム皮膜処理さ
れた短繊維強化型セラミック複合材は、短繊維強化型セ
ラミックス複合材の優れた耐熱性を持ちながらその耐酸
化性を向上させたもので、1400°Cの温度でも溶損
せず、また拡散反応や酸化が起きないことが確認されて
いる。従って、炭化珪素又は酸化アルミニウム皮膜処理
された短繊維強化型セラミック複合材製の軸1は、14
00°Cの高温下でも熱により溶損することがなく拡散
反応や酸化も発生しない。またCカラー9にはアルミ拡
散皮膜処理したニオブ合金を用い、1300°Cの高温
下でも炭素繊維強化炭素複合材製の高温構造体6との間
に拡散反応や溶融および酸化が発生しないことが確認さ
れている。
The short fiber reinforced ceramic composite material treated with silicon carbide or aluminum oxide has improved heat resistance of the short fiber reinforced ceramic composite material while improving its oxidation resistance. It has been confirmed that it does not melt even at the temperature of, and that neither diffusion reaction nor oxidation occurs. Accordingly, the shaft 1 made of the silicon carbide or aluminum oxide film-treated short fiber reinforced ceramic composite material is
Even at a high temperature of 00 ° C, there is no melting loss due to heat, and neither diffusion reaction nor oxidation occurs. Further, a niobium alloy treated with an aluminum diffusion coating is used for the C color 9, and the diffusion reaction, the melting and the oxidation with the high temperature structure 6 made of the carbon fiber reinforced carbon composite material do not occur even at a high temperature of 1300 ° C. It has been confirmed.

【0020】図2は図1の軸1の軸部2において、軸部
2が頭部4につながる部分に、機体本体内側に突出しな
い長さで係止部3と同じ断面形状の軸部2bを設けたも
ので、軸1の回転により位置ずれが起きないようにした
ものである。
FIG. 2 shows a shaft portion 2b of the shaft 1 of FIG. 1 in which the shaft portion 2 is connected to the head 4 and has a length which does not project to the inside of the machine body and which has the same sectional shape as the locking portion 3. Is provided so that the displacement of the shaft 1 due to the rotation of the shaft 1 does not occur.

【0021】図3は図2における軸部2bを除く軸部2
が、第1の突起部3につながる端部に第1の突起部3に
重なるような突起をもつ第1部分12と、それにつなが
る部分に、高温構造体5と6の厚みよりも長い円形断面
の第2部分13とからなるものである。軸部2の第1部
分12の突起の高さは突起部3より小さく、図示の幅は
第1の突起部3の幅に等しくしてある。第2部分13の
円形断面の直径は、図示では第1の突起部3の幅と等し
くしてある。Cカラー9の内径寸法を第1部分12の突
起高さ方向の長さと等しくとれば、図3(a)に示すよ
うにCカラー9のスリットを軸部12の幅方向に回転し
て、Cカラー9の位置決めと抜け防止を図ることができ
る。
FIG. 3 shows the shaft portion 2 excluding the shaft portion 2b in FIG.
Is a first portion 12 having a protrusion that overlaps the first protrusion 3 at the end connected to the first protrusion 3, and a circular cross section longer than the thickness of the high temperature structures 5 and 6 at the portion connected to the first portion 12. And the second portion 13 of. The height of the protrusion of the first portion 12 of the shaft portion 2 is smaller than that of the protrusion portion 3, and the illustrated width is equal to the width of the first protrusion portion 3. The diameter of the circular cross section of the second portion 13 is made equal to the width of the first protrusion 3 in the figure. If the inner diameter of the C collar 9 is made equal to the length of the first portion 12 in the height direction of the protrusion, the slit of the C collar 9 is rotated in the width direction of the shaft portion 12 as shown in FIG. The collar 9 can be positioned and prevented from coming off.

【0022】図4は請求項5に係る実施例であり、軸部
16を細くしたニオブ合金製のボルト15の表面をアル
ミ拡散皮膜処理し、軸部16と頭部17を炭化珪素又は
酸化アルミニウムを皮膜処理した短繊維強化セラミック
ス複合材で覆ってファスナーの軸14を形成する。軸1
4のヘッド部18は軸部19に向かって細くなる円錐形
をしている。高温構造体22には軸14のヘッド部18
の円錐形に合致した円錐形の孔24と、それに連通して
軸14のねじ部20と軸部19が挿通できる孔25とが
設けられ、孔25は高温構造体23まで連通している。
孔25にねじ部20から軸14が通され、第1カラー2
1aと第2カラー21bが軸14に挿通されてアルミニ
ウム拡散皮膜処理されたニオブ合金製のナット26で締
付けられている。第1カラー21aは短繊維強化セラミ
ックス複合材等で製作され厚みは規定されないが、その
表面には耐酸化性向上のために炭化珪素又は酸化アルミ
ニウムが皮膜処理されており、第2カラー21bはボル
トの材料であるニオブ合金より熱膨張率の大きい金属、
例えばFe基特殊合金MA956製で、その場合の第2
カラー1bの長さは軸14の約半分以上に設定される。
なお、軸14の製作は、まずボルト15の頭部17と軸
部16を覆う短繊維強化セラミックス複合材製の軸部材
19の軸中心断面で二分割された形を、所定の型にセラ
ミックスの粉末と短繊維炭化珪素を混合して入れて焼き
固めて作り、それを2個用いて金属性ボルトを挾み込
み、ほぼ同じ熱膨張率のセラミック系接着剤で軸部材1
9を接着する。
FIG. 4 shows an embodiment according to a fifth aspect of the present invention, in which the surface of the niobium alloy bolt 15 having a thin shaft portion 16 is treated with an aluminum diffusion coating, and the shaft portion 16 and the head portion 17 are made of silicon carbide or aluminum oxide. The shaft 14 of the fastener is formed by covering the above with a short fiber-reinforced ceramic composite material subjected to a film treatment. Axis 1
The head portion 18 of No. 4 has a conical shape that tapers toward the shaft portion 19. The high temperature structure 22 includes a head portion 18 of the shaft 14.
A conical hole 24 conforming to the conical shape is provided, and a hole 25 through which the screw portion 20 and the shaft portion 19 of the shaft 14 can be inserted is provided so as to communicate therewith, and the hole 25 communicates with the high temperature structure 23.
The shaft 14 is passed through the hole 25 from the screw portion 20, and the first collar 2
1a and the second collar 21b are inserted into the shaft 14 and fastened with a nut 26 made of a niobium alloy which has been treated with an aluminum diffusion coating. The first collar 21a is made of a short fiber reinforced ceramics composite material or the like and its thickness is not specified, but its surface is coated with silicon carbide or aluminum oxide to improve oxidation resistance, and the second collar 21b is a bolt. A metal with a higher coefficient of thermal expansion than the niobium alloy that is the material of
For example, if it is made of Fe-based special alloy MA956,
The length of the collar 1b is set to be about half or more of the shaft 14.
In order to manufacture the shaft 14, first, a shaft member 19 made of a short fiber reinforced ceramics composite material that covers the head portion 17 and the shaft portion 16 of the bolt 15 is divided into two parts at the center cross section of the shaft, and a ceramic is formed into a predetermined mold. Powder and short-fiber silicon carbide are mixed and put together, then baked and solidified, two metal bolts are sandwiched between them, and the shaft member 1 is made of a ceramic adhesive having approximately the same coefficient of thermal expansion.
Glue 9.

【0023】空気と機体の摩擦により発生した熱で締結
構造は高温になり、高温構造体22,23と第1カラー
21aと第2カラー21bとを合わせた熱膨張長さは軸
14の熱膨張長さより大きいので、温度の上昇につれ締
結力が増加し弛みは発生しない。また、軸14やナット
23は表面をアルミニウム拡散皮膜処理したニオブ合金
製なので、溶解や酸化が起こらず固着が防止される。ま
た耐熱合金製第2カラー21bと高温構造体23の間に
は短繊維強化型セラミックス複合材製の第2カラー21
aがあるので拡散反応による固着も発生しない。
The fastening structure becomes hot due to the heat generated by the friction between the air and the airframe, and the thermal expansion length of the high temperature structures 22, 23, the first collar 21a and the second collar 21b is the thermal expansion length of the shaft 14. Since it is longer than the length, the fastening force increases as the temperature rises, and slack does not occur. Further, since the shaft 14 and the nut 23 are made of a niobium alloy whose surface is treated with an aluminum diffusion coating, they do not melt or oxidize and are prevented from sticking. In addition, between the heat-resistant alloy second collar 21b and the high temperature structure 23, the second collar 21 made of a short fiber reinforced ceramic composite material is provided.
Since there is a, sticking due to the diffusion reaction does not occur.

【0024】[0024]

【発明の効果】以上述べたように、宇宙往還機の高温構
造体の締結構造において、軸を短繊維強化型セラミック
ス複合材で作り、その軸の端部に突起させた係止部と機
体本体との間に耐熱合金製のカラーを挾入することで、
大気圏突入時の高熱によるファスナーの固着と弛みを防
止し、高温構造体の取り外しを容易にすると共に、ファ
スナーの再使用を可能にすることができる。また、軸部
を細くした耐熱合金製のボルトの頭部と軸部とを短繊維
強化型セラミックス複合材で覆った軸で、高温構造体と
短繊維強化型セラミックス複合材製のカラーと前記ボル
トより熱膨張率の大きい耐熱合金製のカラーとを挿通
し、耐熱合金製のナットで締付けることにより、高温に
さらされる締結構造の固着と弛みを防止し、高温構造体
の取り外しを容易にし、ファスナーの再使用を可能にす
ることができる。なお、本発明のファスナーは宇宙往還
機に限るものではなく、その他高温場所における部材の
締結にも適用できる。
As described above, in the fastening structure of the high temperature structure of the space shuttle, the shaft is made of the short fiber reinforced ceramics composite material, and the locking portion and the main body of the body protruding at the end of the shaft. By inserting a color made of heat resistant alloy between and,
It is possible to prevent the fastener from sticking and loosening due to high heat when entering the atmosphere, facilitating removal of the high-temperature structure and enabling reuse of the fastener. Also, a shaft made by covering the head portion and the shaft portion of a heat-resistant alloy bolt with a thinned shaft portion with a short fiber reinforced ceramic composite material, a high temperature structure and a collar made of the short fiber reinforced ceramic composite material, and the bolt. By inserting a heat-resistant alloy collar with a larger coefficient of thermal expansion and tightening it with a heat-resistant alloy nut, the fastening structure is prevented from sticking and slackening when exposed to high temperatures, facilitating removal of the high-temperature structure, and fasteners. Can be reused. The fastener of the present invention is not limited to the space shuttle, but can be applied to fastening members in other high temperature places.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の高温構造体の締結構造の第1の実施例
を示す図で、(a)はその取付け断面図であり(b)は
(a)をA側から視た図である。
FIG. 1 is a view showing a first embodiment of a fastening structure for a high temperature structure according to the present invention, (a) is a sectional view of the attachment, and (b) is a view of (a) viewed from the A side. .

【図2】本発明のファスナーの軸の一実施例であり
(a)は軸を側面からみた図で、(b)は(a)でB−
Bから視える図である。
FIG. 2 is an embodiment of the shaft of the fastener of the present invention, (a) is a side view of the shaft, (b) is (a) B-
It is a figure seen from B.

【図3】本発明の第2の実施例の取付け構造で(a)は
その断面図を表し、(b)はファスナーの軸の斜視図で
ある。
FIG. 3A is a sectional view of a mounting structure according to a second embodiment of the present invention, and FIG. 3B is a perspective view of a shaft of a fastener.

【図4】本発明の別の実施例の断面図である。FIG. 4 is a sectional view of another embodiment of the present invention.

【図5】従来の締結構造の例を表す断面図で、(a)は
全体を(b)は(a)のCで示した部分を拡大したもの
である。
FIG. 5 is a cross-sectional view showing an example of a conventional fastening structure, in which (a) is an overall view and (b) is an enlarged view of a portion indicated by C in (a).

【符号の説明】[Explanation of symbols]

2 軸部 3 突起部 4 頭部 5 高温構造体 6 高温構造体 9 Cカラー 15 ボルト 20 ねじ部 21a 第1カラー 21b 第2カラー 26 ナット 2 Shaft part 3 Protrusion part 4 Head part 5 High temperature structure 6 High temperature structure 9 C collar 15 Bolt 20 Screw part 21a 1st collar 21b 2nd collar 26 Nut

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 宇宙往還機の高温構造体の締結構造にお
いて、軸部と、該軸部の一端に延設され軸部に直交した
第1の突起部と、前記軸部のもう一端に延設された前記
第1の突起部より大きい断面の第2の突起部とを備えた
短繊維強化セラミックス複合材製の軸と、前記軸部及び
前記第1の突起部より大きく前記第2の突起部より小さ
い断面形状で高温構造体に設けられた孔と、該孔に挿通
された前記軸の第1の突起部と前記高温構造体との間に
挾入された耐熱合金製のカラーとを、有することを特徴
とする宇宙往還機の高温構造体の締結構造。
1. In a fastening structure for a high temperature structure of a space shuttle, a shaft portion, a first protrusion extending at one end of the shaft portion and orthogonal to the shaft portion, and extending at the other end of the shaft portion. A shaft made of a short fiber reinforced ceramic composite material, which is provided with a second protrusion having a larger cross section than the first protrusion provided, and the second protrusion larger than the shaft and the first protrusion. A hole provided in the high-temperature structure with a cross-sectional shape smaller than that of the portion, and a collar made of a heat-resistant alloy inserted between the first protrusion of the shaft inserted into the hole and the high-temperature structure. And a fastening structure for a high temperature structure of a space vehicle.
【請求項2】 前記軸部が円形断面であり、前記第1の
突起部が扁平な断面であることを特徴とする請求項1記
載の宇宙往還機の高温構造体の締結構造。
2. The fastening structure for a high temperature structure of a space shuttle according to claim 1, wherein the shaft portion has a circular cross section and the first protrusion has a flat cross section.
【請求項3】 前記軸部が、前記第1の突起部部から前
記第2の突起部へ向けて、前記第1の突起部より小さい
突起を持つ第1部分と、該第1部分の幅と等しいか又は
小さい円形断面で構造体に設けられた前記孔より長い第
2部分と、前記第1の突起部と同じ形状で前記第1の突
起部とは傾きが異なる断面を持ち前記孔より短い長さの
第3の部分とを、有することを特徴とする請求項2記載
の宇宙往還機の高温構造体の締結構造。
3. A first portion, wherein the shaft portion has a protrusion smaller than the first protrusion portion from the first protrusion portion toward the second protrusion portion, and a width of the first portion. A second portion longer than the hole provided in the structure with a circular cross-section equal to or smaller than, and a cross-section having the same shape as the first protrusion and a different inclination from the first protrusion, 3. The fastening structure for a high temperature structure of a space shuttle according to claim 2, further comprising a third portion having a short length.
【請求項4】 前記カラーの耐熱合金がアルミニウム拡
散皮膜処理をしたニオブ合金であることを特徴とする請
求項1又は2記載の宇宙往還機の高温構造体の締結構
造。
4. The fastening structure for a high temperature structure of a space shuttle according to claim 1, wherein the color heat-resistant alloy is a niobium alloy treated with an aluminum diffusion film.
【請求項5】 宇宙往還機の高温構造体の締結構造にお
いて、耐熱合金製のボルトと、該ボルトの頭部と軸部と
を覆い前記ボルトの頭部側の端に前記ねじ部より太い突
起部を形成した短繊維強化型セラミックス複合材の軸部
材とを備えた軸と、該軸の前記突起部以外を通す大きさ
で高温構造体に設けられた孔と、該孔に挿通された前記
軸に前記高温構造体に隣接して挿通された短繊維強化型
セラミックス複合材製の第1カラーと、該第1カラーに
隣接して前記軸に挿通された第2カラーと、前記ボルト
のねじ部と螺合する耐熱合金製のナットとを、有するこ
とを特徴とする宇宙往還機の高温構造体の締結構造。
5. In a fastening structure for a high temperature structure of a space shuttle, a bolt made of a heat-resistant alloy, a head and a shaft portion of the bolt are covered, and a projection thicker than the screw portion is provided at an end on the head side of the bolt. A shaft provided with a shaft member of a short fiber reinforced ceramic composite material forming a portion, a hole provided in the high temperature structure having a size other than the projection of the shaft, and the hole inserted into the hole. A first collar made of a short fiber reinforced ceramics composite material inserted into a shaft adjacent to the high temperature structure, a second collar inserted into the shaft adjacent to the first collar, and a screw of the bolt A structure for fastening a high-temperature structure of a space shuttle, comprising: a nut made of a heat-resistant alloy that is screwed into the portion.
【請求項6】 前記ボルトとナットがアルミニウム拡散
皮膜処理されたニオブ合金であり、前記第2カラーがF
e基特殊鋼製であることを特徴とする請求項5記載の宇
宙往還機の高温構造体の締結構造。
6. The bolt and nut are made of a niobium alloy treated with an aluminum diffusion coating, and the second collar is F.
The fastening structure for a high temperature structure of a space shuttle according to claim 5, which is made of an e-based special steel.
【請求項7】 宇宙往還機の高温構造体を締結するファ
スナーにおいて、アルミニウム拡散皮膜処理されたニオ
ブ合金製のボルトと、該ボルトの軸部と頭部とを覆い前
記ボルトの頭部側の端に前記ねじ部より太い突起部を備
えた短繊維強化型セラミックス複合材の軸部材とを、有
することを特徴とする宇宙往還機の高温構造体を締結す
るファスナー。 【0001】
7. A fastener for fastening a high temperature structure of a space shuttle, wherein a bolt made of a niobium alloy treated with an aluminum diffusion coating and a shaft end and a head of the bolt are covered, and a head side end of the bolt. And a shaft member of a short fiber reinforced ceramic composite material having a protrusion thicker than the screw portion, and a fastener for fastening a high temperature structure of a space shuttle. [0001]
JP9734296A 1996-03-28 1996-03-28 High temperature structural body tightening structure for space shuttle Pending JPH09263300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9734296A JPH09263300A (en) 1996-03-28 1996-03-28 High temperature structural body tightening structure for space shuttle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9734296A JPH09263300A (en) 1996-03-28 1996-03-28 High temperature structural body tightening structure for space shuttle

Publications (1)

Publication Number Publication Date
JPH09263300A true JPH09263300A (en) 1997-10-07

Family

ID=14189814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9734296A Pending JPH09263300A (en) 1996-03-28 1996-03-28 High temperature structural body tightening structure for space shuttle

Country Status (1)

Country Link
JP (1) JPH09263300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513951A (en) * 2021-04-30 2021-10-19 中国工程物理研究院总体工程研究所 Connection unlocking and heat-proof system of full-enclosed split head cover

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113513951A (en) * 2021-04-30 2021-10-19 中国工程物理研究院总体工程研究所 Connection unlocking and heat-proof system of full-enclosed split head cover

Similar Documents

Publication Publication Date Title
US7967562B2 (en) Ceramic matrix composite capped bolt attachment
EP3330553B1 (en) Fastener
US7153054B2 (en) Fastener assembly for attaching a non-metal component to a metal component
US7753643B2 (en) Stacked laminate bolted ring segment
US7261489B2 (en) Fastener assembly for attaching a non-metal component to a metal component
US7832972B2 (en) Internal pocket fastener system for ceramic matrix composites
JP3484299B2 (en) Heat-resistant structural composite small-diameter turbine and method of manufacturing the same
US20080107521A1 (en) Stacked laminate fiber wrapped segment
JP2009062980A (en) Flexure ring and propulsion system
US10132171B2 (en) Rotor disk blade with friction-held root, rotor disk, turbomachine and associated assembly method
JPS63251127A (en) Combined construction of members with different thermal expansion and combining method thereof
EP3556739B1 (en) Gang channel
EP0232603B1 (en) A method of bonding members having different coefficients of thermal expansion
US5228795A (en) Self-tightening fitting for attachment of metal to carbon-carbon structures
JPH09263300A (en) High temperature structural body tightening structure for space shuttle
JP2004353668A (en) Long life period nozzle flap for turbojet of aircraft
US4706912A (en) Structural external insulation for hypersonic missiles
US6730412B2 (en) Metal matrix composite
EP0567252A1 (en) Whisker-anchored thermal barrier coating
JPH10182256A (en) Fiber reinforced ceramic base composite material and its production
JPH07248015A (en) Structure for fastening ceramic part and metal part with bolt
JPH0116235B2 (en)
US20230250029A1 (en) Composites and methods of forming composites having tailored cte
JPH084738A (en) Fastening tool
JPH0913903A (en) Gas turbine moving blade