JPH09263241A - Body inclination control device - Google Patents

Body inclination control device

Info

Publication number
JPH09263241A
JPH09263241A JP7622496A JP7622496A JPH09263241A JP H09263241 A JPH09263241 A JP H09263241A JP 7622496 A JP7622496 A JP 7622496A JP 7622496 A JP7622496 A JP 7622496A JP H09263241 A JPH09263241 A JP H09263241A
Authority
JP
Japan
Prior art keywords
vehicle body
control
hydraulic
angle
tilt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7622496A
Other languages
Japanese (ja)
Other versions
JP3529539B2 (en
Inventor
Isao Okamoto
勲 岡本
Noriaki Tokuda
憲曉 徳田
Kazutoshi Miura
和敏 三浦
Akihiko Umada
明彦 馬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Railway Technical Research Institute
Original Assignee
Toshiba Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Railway Technical Research Institute filed Critical Toshiba Corp
Priority to JP07622496A priority Critical patent/JP3529539B2/en
Publication of JPH09263241A publication Critical patent/JPH09263241A/en
Application granted granted Critical
Publication of JP3529539B2 publication Critical patent/JP3529539B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/02Trucks; Load vehicles
    • B60G2300/026Heavy duty trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/10Railway vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/85System Prioritisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/912Attitude Control; levelling control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/914Height Control System

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of a condition to contact a car body to a hydraulic cylinder when a body inclination angle control is started. SOLUTION: In the inclination angle control time of a car body, at first, a control means controls the car height of a body until it is made to a specific car height (Step ST1 and ST2), and then, a procedure to carry out the inclination angle control is applied to make to a specific inclination angle (Step ST3 to ST5). As a result, even though the oil in the solenoid valve of a hydraulic system is leaked, the oil in a hydraulic cylinder is reduced, and the car height is lowered, in the case of starting the inclination angle control of the car body, by starting after the stopping of the control of the hydraulic cylinder for a long time, the inclination angle control is started after the car height is raised at first. Consequently, the contact of the car body to the hydraulic cylinder as in case of entering the inclination angle control directly as the car height is lowered, can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は油圧シリンダを用い
て車体を台車から支持し、車体の車高や傾斜角度を制御
する車体傾斜制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle body tilt control device for supporting a vehicle body from a bogie by using a hydraulic cylinder and controlling a vehicle height and a tilt angle of the vehicle body.

【0002】[0002]

【従来の技術】従来一般に、油圧装置を利用した車体傾
斜制御装置の1車両分の構成は図4に示すようなもので
あり、前後の台車1F,1Rそれぞれに油圧装置YT
F,YTRを設置し、これらの油圧装置YTF,YTR
によって車体2は支持される。設定器DTは走行時の軌
道の曲線データ、制御定数などを設定し、車体傾斜指令
部CTは車両の走行距離、速度情報をもとにして車体の
傾斜角度や車高を演算して出力する。この車体傾斜指令
装置CTの出力する車高指令、傾斜角度指令に基づいて
油圧駆動制御をPTは、油圧装置YT1,YT2それぞ
れを駆動して車体3を目標とする車高及び傾斜角度に制
御する油圧駆動制御部PTから構成されている。
2. Description of the Related Art Generally, a vehicle body inclination control device using a hydraulic device has a structure for one vehicle as shown in FIG. 4, and the front and rear bogies 1F and 1R are respectively provided with a hydraulic device YT.
F and YTR are installed, and these hydraulic devices YTF and YTR are installed.
The vehicle body 2 is supported by. The setter DT sets the curve data of the track during traveling, control constants, etc., and the vehicle body inclination command section CT calculates and outputs the vehicle body inclination angle and vehicle height based on the vehicle traveling distance and speed information. . Based on the vehicle height command and the tilt angle command output from the vehicle body tilt command device CT, the hydraulic drive control PT drives each of the hydraulic devices YT1 and YT2 to control the vehicle body 3 to a target vehicle height and tilt angle. It is composed of a hydraulic drive control unit PT.

【0003】そして1台の台車1に対する油圧装置YT
は図5に示す構成である。この油圧装置YTは、左右の
傾斜シリンダS1,S2、車体2の左側、右側それぞれ
の変位を検出する変位センサX1,X2、これらの傾斜
シリンダS1,S2に油を分配供給する比例シリンダS
3、比例シリンダS3を駆動する駆動シリンダS4、各
シリンダに対する油量を制御する電磁弁Sol 11,Sol
12,Sol 21,Sol22,Sol 3a,Sol 3b、セフ
ティ電磁弁Sol 、及び油圧タンクと油圧ポンプから成る
油圧ユニット装置Syから構成されている。そして比例
シリンダS3と駆動シリンダS4はシリンダ軸Kで機械
的に接続されていて、駆動シリンダS4の動作によって
シリンダ軸Kを駆動し、これによって比例シリンダS3
のシリンダ室SA,SBの容積比を制御するようになっ
ている。このシリンダ軸Kの変位量は変位センサX3に
よって検出する。
A hydraulic system YT for one carriage 1
Is the configuration shown in FIG. The hydraulic device YT includes left and right tilt cylinders S1 and S2, displacement sensors X1 and X2 that detect displacements of the left and right sides of the vehicle body 2, and a proportional cylinder S that distributes and supplies oil to these tilt cylinders S1 and S2.
3, a drive cylinder S4 that drives the proportional cylinder S3, and solenoid valves Sol 11 and Sol that control the amount of oil for each cylinder
12, Sol 21, Sol 22, Sol 3a, Sol 3b, a safety solenoid valve Sol, and a hydraulic unit device Sy including a hydraulic tank and a hydraulic pump. The proportional cylinder S3 and the drive cylinder S4 are mechanically connected by the cylinder axis K, and the operation of the drive cylinder S4 drives the cylinder axis K, whereby the proportional cylinder S3.
The volume ratio of the cylinder chambers SA and SB is controlled. The displacement amount of the cylinder axis K is detected by the displacement sensor X3.

【0004】この油圧装置YTの動作について説明す
る。油圧装置YTは図4に示した油圧駆動制御部PTに
よって制御されるが、そのために油圧駆動制御部PTは
変位センサX1〜X3の検出信号を入力して車体傾斜指
令部CTによって与えられる各々の目標値と比較し、そ
の偏差に応じて電磁弁Sol 11,Sol 12,Sol 21,
Sol 22,Sol 3a,Sol 3bそれぞれに対する駆動信
号を与え、電磁弁Sol 11,Sol 12,Sol 21,Sol
22,Sol 3a,Sol 3bそれぞれがこの駆動信号に応
じて動作することにより車体2の車高及び傾斜角度を制
御する。
The operation of the hydraulic device YT will be described. The hydraulic device YT is controlled by the hydraulic drive control unit PT shown in FIG. 4, for which the hydraulic drive control unit PT inputs the detection signals of the displacement sensors X1 to X3 and is given by the vehicle body tilt command unit CT. Compared with the target value, the solenoid valves Sol 11, Sol 12, Sol 21,
Drive signals for Sol 22, Sol 3a, and Sol 3b are given, and solenoid valves Sol 11, Sol 12, Sol 21, Sol
Each of 22, Sol 3a, and Sol 3b operates according to this drive signal to control the vehicle height and the inclination angle of the vehicle body 2.

【0005】<<車高制御>>車体2を所望の位置に浮
上させる時には、油圧ユニット装置Syの油圧タンクか
ら油を次のように経路で供給する。まず駆動シリンダS
4を中立位置にしてこれによって制御される比例シリン
ダS3の左右両側のシリンダ室SA,SBを等容積に
し、1つの経路として油圧ユニット装置Sy→電磁弁So
l 11→比例シリンダS3のシリンダ室SA→傾斜シリ
ンダS1で傾斜シリンダS1に油を供給し、他方は、油
圧ユニット装置Sy→電磁弁Sol 21→比例シリンダS
3のシリンダ室SB→傾斜シリンダS2となる経路によ
って傾斜シリンダS2に油を供給し、傾斜シリンダS
1,S2を等距離だけ駆動させて車体2を浮上させる。
<< Vehicle Height Control >> When the vehicle body 2 is levitated to a desired position, oil is supplied from the hydraulic tank of the hydraulic unit Sy through the following route. First, the drive cylinder S
4 is set to the neutral position, the cylinder chambers SA and SB on both the left and right sides of the proportional cylinder S3 controlled by this are made equal in volume, and the hydraulic unit device Sy → solenoid valve So is used as one path.
l 11 → cylinder chamber SA of the proportional cylinder S3 → oil is supplied to the tilt cylinder S1 by the tilt cylinder S1, and the other is hydraulic unit Sy → solenoid valve Sol 21 → proportional cylinder S1.
The oil is supplied to the tilt cylinder S2 through the path from the third cylinder chamber SB to the tilt cylinder S2.
The vehicle body 2 is levitated by driving 1 and S2 at equal distances.

【0006】車体2の車高を下げる場合には、電磁弁So
l 11,Sol 12を共に開いて傾斜シリンダS1,S2
それぞれに供給されている油を油圧ユニット装置Syの
油圧タンクに戻す。
When the vehicle height of the vehicle body 2 is lowered, the solenoid valve So
Open both 11 and Sol 12 and tilt cylinders S1 and S2
The oil supplied to each is returned to the hydraulic tank of the hydraulic unit device Sy.

【0007】この場合の油圧駆動制御部PTの制御ブロ
ック線図は図6に示すようなもので、比較器SU1 ,SU2
、増幅器KC1 ,KC2 、電磁弁を含めた油圧系の伝達関
数KS1,KS2 、傾斜シリンダS1,S2の可動部の変位
量X1,Y2を検出する変位センサx1,X2の伝達関数KX1,KX
2 から構成されている。車高指令値VXr は車体傾斜指令
部CTから入力される。
The control block diagram of the hydraulic drive control unit PT in this case is as shown in FIG. 6, and the comparators SU1, SU2
, Amplifiers KC1 and KC2, transfer functions KS1 and KS2 of hydraulic system including solenoid valves, transfer functions KX1 and KX of displacement sensors x1 and X2 that detect displacements X1 and Y2 of movable parts of the tilt cylinders S1 and S2.
It consists of two. The vehicle height command value VXr is input from the vehicle body tilt command section CT.

【0008】制御動作は、比較器SU1 で指令値VXr とフ
ィードバック信号VXO1とを比較し、その出力偏差Δer1
の大きさに応じて増幅器KC1 が次の信号を出力し、電磁
弁Sol 11,Sol 12を制御する。
In the control operation, the comparator SU1 compares the command value VXr with the feedback signal VXO1, and the output deviation Δer1
The amplifier KC1 outputs the following signal in accordance with the magnitude of, and controls the solenoid valves Sol 11 and Sol 12.

【0009】Δer1 >0のときに1を出力し、電磁弁So
l 11をオン、電磁弁Sol 12をオフ Δer1 ≦0のときに0を出力し、電磁弁Sol 11をオ
フ、電磁弁Sol 12をオン とする。
When Δer1> 0, 1 is output and the solenoid valve So
l 11 is turned on, and the solenoid valve Sol 12 is turned off. When Δer1 ≤ 0, 0 is output, the solenoid valve Sol 11 is turned off, and the solenoid valve Sol 12 is turned on.

【0010】そして電磁弁Sol 11がオンで、電磁弁So
l 12がオフの場合には油圧ユニット装置Syから油が
比例シリンダS3のシリンダ室SAを通じて傾斜シリン
ダS1に供給されて車体2の片側(図5では左の山側)
を上昇させる。
When the solenoid valve Sol 11 is turned on, the solenoid valve So
When the l12 is off, oil is supplied from the hydraulic unit Sy to the tilt cylinder S1 through the cylinder chamber SA of the proportional cylinder S3, and one side of the vehicle body 2 (the left mountain side in FIG. 5).
To rise.

【0011】反対に電磁弁Sol 11がオフで、電磁弁So
l 12がオンの場合には傾斜シリンダS1内の油を油圧
ユニット装置Syに戻すことによって車体の片側を下げ
る。
On the contrary, when the solenoid valve Sol 11 is off, the solenoid valve So
When l12 is ON, the oil in the tilt cylinder S1 is returned to the hydraulic unit Sy to lower one side of the vehicle body.

【0012】同様に、比較器SU2 で指令値VXr とフィー
ドバック信号VXO2とを比較し、その出力偏差Δer2 の大
きさに応じて増幅器KC2 が次の信号を出力し、電磁弁So
l 21,Sol 22を制御する。
Similarly, the comparator SU2 compares the command value VXr with the feedback signal VXO2, and the amplifier KC2 outputs the following signal according to the magnitude of the output deviation Δer2, and the solenoid valve So
It controls l21 and Sol22.

【0013】Δer2 >0のときに1を出力し、電磁弁So
l 21をオン、電磁弁Sol 22をオフ Δer2 ≦0のときに0を出力し、電磁弁Sol 21をオ
フ、電磁弁Sol 22をオン とし、電磁弁Sol 21がオンで、電磁弁Sol 22がオフ
の場合には油圧ユニット装置Syから油が比例シリンダ
S3のシリンダ室SBを通じて傾斜シリンダS2に供給
されて車体2の他側(図5では右の海側)を上昇させ
る。反対に電磁弁Sol 21がオフで、電磁弁Sol 22が
オンの場合には傾斜シリンダS2内の油を油圧ユニット
装置Syに戻すことによって車体の他側を下げる。
When Δer2> 0, 1 is output and the solenoid valve So
l 21 is on, solenoid valve Sol 22 is off 0 is output when Δer2 ≤ 0, solenoid valve Sol 21 is off, solenoid valve Sol 22 is on, solenoid valve Sol 21 is on, solenoid valve Sol 22 is on. When it is off, oil is supplied from the hydraulic unit Sy to the tilt cylinder S2 through the cylinder chamber SB of the proportional cylinder S3 to raise the other side of the vehicle body 2 (the right sea side in FIG. 5). On the contrary, when the solenoid valve Sol 21 is off and the solenoid valve Sol 22 is on, the oil in the tilt cylinder S2 is returned to the hydraulic unit Sy to lower the other side of the vehicle body.

【0014】こうして左右両側の傾斜シリンダS1,S
2を同時に同じ指令値VXr に一致するように駆動させる
ことにより車体2を上下に水平移動させて車高の制御を
行うのである。
Thus, the left and right tilt cylinders S1 and S
By simultaneously driving 2 so as to match the same command value VXr, the vehicle body 2 is horizontally moved vertically to control the vehicle height.

【0015】<<傾斜角度制御>>車体2の傾斜角度を
制御するには次のように山側の傾斜シリンダS1、海側
の傾斜シリンダS2内の油量を制御する。図5において
山側の傾斜シリンダS1を下げ、海側の傾斜シリンダS
2を上げる場合(以下、山傾斜と称する)は、油圧ユニ
ット装置Syの油圧タンクから電磁弁Sol 3aを介して
駆動シリンダS4内のシリンダ室SC側に油を供給し、
シリンダ室SD側の油を電磁弁Sol 3bから抜く。これ
によってシリンダ軸Kが図中B側(海側)に移動し、シ
リンダ軸Kが移動すると比例シリンダS3内のシリンダ
室SB側の油圧が上昇してその中の油が傾斜シリンダS
2に流れ込み、反対に比例シリンダS3内のシリンダ室
SAの油圧が下がって傾斜シリンダS1の油がシリンダ
室SAに還流する。この結果、山側の傾斜シリンダS1
は下がり、海側の傾斜シリンダS2は上昇して車体2は
山側に傾斜する。
<< Inclination Angle Control >> To control the inclination angle of the vehicle body 2, the amount of oil in the mountain side inclination cylinder S1 and the sea side inclination cylinder S2 is controlled as follows. In FIG. 5, the tilting cylinder S1 on the mountain side is lowered, and the tilting cylinder S on the sea side is lowered.
When increasing 2 (hereinafter, referred to as mountain inclination), oil is supplied from the hydraulic tank of the hydraulic unit device Sy to the cylinder chamber SC side in the drive cylinder S4 via the solenoid valve Sol 3a,
Drain the oil on the cylinder chamber SD side from the solenoid valve Sol 3b. As a result, the cylinder axis K moves to the B side (sea side) in the figure, and when the cylinder axis K moves, the oil pressure on the cylinder chamber SB side in the proportional cylinder S3 rises, and the oil therein is inclined cylinder S.
2, the oil pressure in the cylinder chamber SA in the proportional cylinder S3 decreases, and the oil in the tilt cylinder S1 flows back into the cylinder chamber SA. As a result, the mountain side tilt cylinder S1
Falls, the tilting cylinder S2 on the sea side rises, and the vehicle body 2 tilts on the mountain side.

【0016】逆に山側の傾斜シリンダS1を上げ、海側
の傾斜シリンダS2を下げる場合(以下、海傾斜と称す
る)は、油圧ユニット装置Syの油圧タンクから電磁弁
Sol3bを介して駆動シリンダS4内のシリンダ室SD
側に油を供給し、シリンダ室SC側の油を電磁弁Sol 3
aから抜く。これによってシリンダ軸Kが図中A側(山
側)に移動し、シリンダ軸Kが移動すると比例シリンダ
S3内のシリンダ室SA側の油圧が上昇してその中の油
が傾斜シリンダS1に流れ込み、反対に比例シリンダS
3内のシリンダ室SBの油圧が下がって傾斜シリンダS
2の油がシリンダ室SBに還流し、この結果、山側の傾
斜シリンダS1は上がり、海側の傾斜シリンダS2は下
がって車体2は海側に傾斜する。
On the contrary, when the mountain side tilt cylinder S1 is raised and the sea side tilt cylinder S2 is lowered (hereinafter referred to as sea tilt), the solenoid valve is moved from the hydraulic tank of the hydraulic unit Sy.
Cylinder chamber SD in drive cylinder S4 via Sol3b
To the solenoid valve Sol 3 to supply oil to the cylinder chamber SC side.
Remove from a. As a result, the cylinder axis K moves to the A side (mountain side) in the figure, and when the cylinder axis K moves, the hydraulic pressure on the cylinder chamber SA side in the proportional cylinder S3 rises, and the oil therein flows into the inclined cylinder S1 and the other side. Proportional to cylinder S
The hydraulic pressure of the cylinder chamber SB in 3 decreases and the tilt cylinder S
The second oil flows back into the cylinder chamber SB, and as a result, the mountain-side tilt cylinder S1 goes up, the sea-side tilt cylinder S2 goes down, and the vehicle body 2 tilts toward the sea.

【0017】また車体2を水平に支持する場合は、電磁
弁Sol 11,Sol 12,Sol 21,Sol 22をオフ状態
にし、シリンダ軸Kを中心位置に制御する。
When the vehicle body 2 is supported horizontally, the solenoid valves Sol 11, Sol 12, Sol 21, Sol 22 are turned off and the cylinder axis K is controlled to the center position.

【0018】油圧駆動制御部PTの制御ブロック線図は
図7のようになり、本装置とは別装置などから検出した
車両速度V、円曲線部のカントC、曲線半径Rなどに基
づいて目標傾斜角φrを算出する演算回路Cr、比較器
SU3 、PID回路で構成される制御補償要素H(s)、リミ
ッタKm、電磁弁Sol 3a,Sol 3bとシリンダを含め
た油圧系の制御伝達関数KS、シリンダ軸Kの変位量Y3
を検出する変位センサX1の伝達関数KX、変位センサ
X1のフィードバック出力VXに基づいて車体2の傾斜角
度φoを計算する演算回路Kφから構成される。
The control block diagram of the hydraulic drive control unit PT is as shown in FIG. 7, and the target is based on the vehicle speed V, the cant C of the circular curve portion, the curve radius R, etc. detected from a device other than this device. Arithmetic circuit Cr for calculating inclination angle φr, comparator
SU3, control compensating element H (s) composed of PID circuit, limiter Km, solenoid valve Sol 3a, Sol 3b and control transfer function KS of hydraulic system including cylinder, displacement amount of cylinder axis K Y3
Is composed of a transfer function KX of the displacement sensor X1 for detecting the following and a calculation circuit Kφ for calculating the inclination angle φo of the vehicle body 2 based on the feedback output VX of the displacement sensor X1.

【0019】制御動作を説明する。この制御系は基本的
には実傾斜角度φoと目標傾斜角φrとの偏差Δerに対
するPID制御によるフィードバック制御を構成し、補
償要素H(s)の出力Vsy の大きさにリミッタkmを作用さ
せて電磁弁Sol 3a,Sol 3bの弁の開度を制御し、開
度の大きい方の電磁弁はそこを流れる油量が増加し、傾
斜スピードが速くなり、開度の小さい方の電磁弁はそこ
を流れる油量が減少し、傾斜スピードが遅くなる。
The control operation will be described. This control system basically constitutes feedback control by PID control with respect to the deviation Δer between the actual inclination angle φo and the target inclination angle φr, and applies a limiter km to the magnitude of the output Vsy of the compensation element H (s). Solenoid valves Sol 3a and Sol 3b control the opening of the solenoid valve, and the solenoid valve with the larger opening increases the amount of oil flowing through it, increasing the tilt speed, and the solenoid valve with the smaller opening has The amount of oil flowing through it decreases and the tilting speed becomes slower.

【0020】<<保護動作>>何らかの異常が発生した
場合、油圧駆動制御部PTはセフティ電磁弁Sol のみを
動作させ、駆動シリンダS4内のシリンダ室SC,SD
の油圧回路を短絡させてこれらの両室間の油の流れを自
由にする。これによって比例シリンダS3内の油も自由
になり、車体2が自然振子状態になって走行時の安全を
確保する。
<< Protective Operation >> When some abnormality occurs, the hydraulic drive control unit PT operates only the safety solenoid valve Sol to operate the cylinder chambers SC and SD in the drive cylinder S4.
Short the hydraulic circuit of to free the oil flow between these two chambers. As a result, the oil in the proportional cylinder S3 is also freed, and the vehicle body 2 is in a natural pendulum state to ensure safety during traveling.

【0021】<<油圧応答不良検出>>油圧系統の応答
不良が発生した場合の安全対策が必要であり、従来、油
圧駆動制御部PTの1台の台車1に対する傾斜シリンダ
S1,S2の応答不良検出の制御系は図9のブロック線
図に示す構成である。この制御系は比較器SU4 ,SU5 、
絶対値回路ABS1,ABS2、設定値DXと絶対値回路の出力と
の比較回路KH1 ,KH2 、これらの比較回路KH1 ,KH2 の
出力のアンド回路AND から構成される。
<< Detection of Poor Hydraulic Response >> It is necessary to take safety measures when a poor response of the hydraulic system occurs. Conventionally, poor response of the tilt cylinders S1 and S2 to one carriage 1 of the hydraulic drive control unit PT. The detection control system has the configuration shown in the block diagram of FIG. This control system consists of comparators SU4, SU5,
It is composed of absolute value circuits ABS1 and ABS2, comparison circuits KH1 and KH2 of the set value DX and the output of the absolute value circuit, and an AND circuit AND of the outputs of these comparison circuits KH1 and KH2.

【0022】制御動作について説明する。指令値VXr と
傾斜シリンダS1,S2の変位センサX1,X2からのフィ
ードバック信号VX01,VX02(図6参照)を比較器SU4 ,
SU5で比較し、その偏差Δer1 ,Δer2 を絶対値回路ABS
1,ABS2に入力する。そしてこの絶対値回路ABS1,ABS2
の出力|Δer1 |,|Δer2 |を比較回路KH1 ,KH2で
設定値DXと比較する。ここで偏差の絶対値出力が設定値
DXよりも大きい場合にフェールセーフ信号をアンド回路
AND に入力し、アンド回路AND は比較回路KH1,KH2 の
両方からフェールセーフ信号を受ける時にセフティ電磁
弁Sol を作動させる信号を出力し、セフティ電磁弁Sol
の動作によって車体2を自然振子状態にして安全を図
る。
The control operation will be described. The command value VXr and the feedback signals VX01, VX02 (see FIG. 6) from the displacement sensors X1, X2 of the tilt cylinders S1, S2 are compared with the comparator SU4,
Compared with SU5, the deviations Δer1 and Δer2 are calculated as absolute value circuit ABS.
1, input to ABS2. And this absolute value circuit ABS1, ABS2
The outputs | Δer1 |, | Δer2 | of the comparison circuit KH1 and KH2 are compared with the set value DX. Here, the absolute value output of the deviation is the set value
Fail-safe signal AND circuit when larger than DX
The AND circuit AND outputs the signal that activates the safety solenoid valve Sol when receiving the fail-safe signal from both the comparison circuits KH1 and KH2, and outputs the safety solenoid valve Sol.
The vehicle body 2 is brought into a natural pendulum state by means of the operation of to secure the safety.

【0023】[0023]

【発明が解決しようとする課題】ところがこのような従
来の車体傾斜制御装置では、次のような問題点があっ
た。
However, such a conventional vehicle body tilt control device has the following problems.

【0024】まず油圧制御に用いられる電磁弁は時間の
経過と共に油のリークが避けられず、傾斜シリンダS
1,S2によって車体2をある車高に浮上させて支持
し、水平に維持した状態で制御を停止していると、車体
2の自重によって自然に車高が低下してしまい、また場
合によっては、車体2の自重のアンバランスによって車
体2が傾斜する現象も現れる。このため、駆動シリンダ
S4のシリンダ軸Kは常に中心位置に維持されていると
は限らない。このような状態で車高制御と傾斜角度制御
を起動すると両制御間に干渉が発生し、車体2を指令値
どおりに制御できない場合が発生する。例えば、図10
(a)に示すようにはじめに車体2の車高が十分でない
状態で傾斜角度制御を起動すると、同図(b)に示すよ
うに車体2が傾斜シリンダS1側に接触したり、逆に傾
斜シリンダS2側に接触して損傷が発生する恐れがある
問題点があった。
First, in the solenoid valve used for hydraulic control, oil leakage cannot be avoided with the passage of time, and the tilt cylinder S
When the vehicle body 2 is levitated to a certain vehicle height by S1, S2 and is stopped and the control is stopped in a state where the vehicle body 2 is kept horizontal, the vehicle height naturally decreases due to the weight of the vehicle body 2, and in some cases, The phenomenon in which the vehicle body 2 tilts due to the imbalance of its own weight also appears. Therefore, the cylinder axis K of the drive cylinder S4 is not always maintained at the center position. If the vehicle height control and the lean angle control are activated in such a state, interference may occur between the two controls, and the vehicle body 2 may not be controlled according to the command value. For example, FIG.
When the tilt angle control is first started in a state where the vehicle height of the vehicle body 2 is not sufficient as shown in (a), the vehicle body 2 comes into contact with the tilt cylinder S1 side as shown in (b) of FIG. There is a problem in that damage may occur due to contact with the S2 side.

【0025】また車体傾斜制御では、カーブ(曲線)を
通過する時に車両速度V、レールのカントC、曲線半径
Rをもとにしてふさわしい角度だけ車体を傾斜させ、こ
れによって左右方向に働く遠心加速度を軽減させ、乗り
心地を向上させると共に、カーブ通過速度の向上を図る
ことを目的としている。このため、図4に示した従来の
車体傾斜制御装置では、走行区間のカーブの位置、その
カントC及び曲線半径をあらかじめデータとして設定器
DTに登録し、このデータと計測した車両速度Vとに基
づいてふさわしい傾斜角度を傾斜角度指令部CTで割出
し、その傾斜角度指令値に一致するように傾斜角度制御
を油圧駆動制御部PTで行っている。
In the vehicle body tilt control, the vehicle body is tilted by an appropriate angle based on the vehicle speed V, the rail cant C, and the curve radius R when passing through a curve (curve). The purpose of this is to improve the ride comfort and the curve passing speed. Therefore, in the conventional vehicle body inclination control device shown in FIG. 4, the position of the curve in the traveling section, the cant C and the radius of the curve are registered in the setter DT as data in advance, and this data and the measured vehicle speed V are stored. Based on this, a suitable tilt angle is indexed by the tilt angle command unit CT, and the tilt angle control is performed by the hydraulic drive control unit PT so as to match the tilt angle command value.

【0026】図8は走行区間のカーブの一例を示してい
る。同図(a)に示す実際のカーブで、地点XAまでは直
線区間、地点XA−地点XBの区間は入口緩和曲線区間、地
点XB−地点XCの区間は円曲線区間、地点XC−地点XDは出
口緩和曲線区間で、地点XD以降はまた直線区間である。
これに対して目標傾斜角度φrは同図(b)に示すよう
にカントを加味した傾斜角速度が制限値を超える区間に
は傾斜角速度制限を超えないように新たな入口緩和曲線
区間(地点XA' −地点XB' )と出口緩和曲線(地点XC'
−地点XD' )を演算する。そしてこのカーブを通過する
場合の目標傾斜角度φrの算出は次のようにして行って
いる。 (1)直線制御区間(距離X≦XA' ) φr=0[°]
FIG. 8 shows an example of a curve in a traveling section. In the actual curve shown in FIG. 5A, a straight line section up to the point XA, an entrance relaxation curve section at the point XA-point XB, a circular curve section at the point XB-point XC, and a point XC-point XD are shown. It is an exit relaxation curve section and is a straight section after point XD.
On the other hand, the target inclination angle φr is set to a new entrance relaxation curve section (point XA ′ so as not to exceed the inclination angular speed limit in the section where the inclination angular speed including the cant exceeds the limit value as shown in FIG. -Point XB ') and exit relaxation curve (Point XC'
− Calculate point XD ′). The calculation of the target tilt angle φr when passing through this curve is performed as follows. (1) Straight line control section (distance X ≦ XA ′) φr = 0 [°]

【0027】 (2)入口緩和曲線制御区間(距離XA' ≦X<XB' )(2) Entrance relaxation curve control section (distance XA '≤ X <XB')

【数1】 [Equation 1]

【0028】 (3)円曲線制御区間(距離XB' ≦X<XC' ) φr=φc[°] ここで、(3) Circle curve control section (distance XB ′ ≦ X <XC ′) φr = φc [°] Here,

【数2】 であり、円曲線区間の超過遠心加速度αuは、次の式で
求められるものである。
[Equation 2] And the excessive centrifugal acceleration αu in the circular curve section is obtained by the following equation.

【数3】 ここで、 V:車両速度[km/h] C:円曲線部のカント[mm] R:円曲線部の曲線半径[m] g:重力加速度(=9.8[m/s2 ]) G:車輪ゲージ(=1500[mm]) である。(Equation 3) Here, V: vehicle speed [km / h] C: cant of circular curve part [mm] R: curve radius of circular curve part [m] g: gravitational acceleration (= 9.8 [m / s2]) G: It is a wheel gauge (= 1500 [mm]).

【0029】 (4)出口緩和曲線制御区間(距離XC' ≦X<XD' )(4) Exit relaxation curve control section (distance XC '≤ X <XD')

【数4】 (Equation 4)

【0030】(5)直線制御区間(距離XD' ≦X) φr=0[°] また円曲線部の目標傾斜角度φrと、入口緩和曲線部、
出口緩和曲線部それぞれの目標傾斜角度との間には次の
関係が成立つ。入口緩和曲線部の目標傾斜角度φr'とし
て、 φr'=(X/(XB'-XA' ))・φr 出口緩和曲線部の目標傾斜角度φr'として、 φr'=(X/(XD' −XC' ))・φr
(5) Straight line control section (distance XD '≤ X) φr = 0 [°] Further, the target inclination angle φr of the circular curve portion and the inlet relaxation curve portion,
The following relationships are established with the target inclination angles of the exit relaxation curve portions. Φr '= (X / (XB'-XA')) ・ φr As the target inclination angle φr 'of the inlet relaxation curve portion, φr' = (X / (XD'- XC ')) ・ φr

【0031】このようにして求められる目標傾斜角度φ
rは数3式で示されているように、車両速度Vの2乗に
比例しているので、低速度領域ではほとんど0となる。
そこで車体は台車に対してほぼ平行の状態に維持されて
曲線部を通過することになり、曲線部にはカントCが設
定されているためにカントの角度だけ車体が水平状態か
ら傾斜した状態で走行し、この結果、乗客に不快感を与
える問題点があった。
The target tilt angle φ obtained in this way
Since r is proportional to the square of the vehicle speed V as shown in the equation 3, it becomes almost 0 in the low speed region.
Therefore, the vehicle body is maintained in a state of being substantially parallel to the trolley and passes through the curved portion. Since the cant C is set on the curved portion, the vehicle body is inclined from the horizontal state by the cant angle. As a result, the vehicle runs, and as a result, there is a problem in which passengers feel discomfort.

【0032】さらに、図9に示したように従来では、車
高制御における油圧応答不良の検出は、指令値VXr と傾
斜シリンダの変位センサからの出力VX01,VX02を比較器
SU4,SU5 で比較し、その偏差Δer1 ,Δer2 を絶対値
回路ABS1,ABS2に入力し、この絶対値回路の出力|Δer
1 |,|Δer2 |を比較回路KH1 ,KH2 で設定値DXと比
較し、設定値DXよりも偏差の絶対値が大きい場合に油圧
応答不良と判断している。しかしながら、車高制御は電
磁弁Sol 11〜Sol 22のオン/オフ制御によって行う
ために、指令値VXr としてステップ状にあらかじめ決め
られた規定値が与えられるので、特に変位センサの出力
VX01,VX02がほぼ0の時、つまり起動時には偏差Δer1
,Δer2 が最大値となり、油圧応答不良の検出ができ
ない問題点があった。
Further, as shown in FIG. 9, conventionally, in detecting the hydraulic response failure in vehicle height control, the command value VXr and outputs VX01 and VX02 from the displacement sensor of the tilt cylinder are compared.
SU4 and SU5 are compared, and the deviations Δer1 and Δer2 are input to absolute value circuits ABS1 and ABS2, and the output of this absolute value circuit | Δer
1 |, | Δer2 | are compared with the set value DX by the comparison circuits KH1 and KH2, and if the absolute value of the deviation is larger than the set value DX, it is judged that the hydraulic response is defective. However, since the vehicle height control is performed by the on / off control of the solenoid valves Sol 11 to Sol 22, a stepwise predetermined value is given as the command value VXr.
Deviation Δer1 when VX01 and VX02 are almost 0, that is, at startup
, Δer2 has the maximum value, and there was a problem that a poor hydraulic response could not be detected.

【0033】本発明はこのような従来の問題点に鑑みて
なされたもので、傾斜制御を起動する時にまず車高制御
して所定の高さまで車体を浮上がらせてから所定の傾斜
角度に制御する制御手順をとることによって車体が傾斜
シリンダに接触することがないようにした車体傾斜制御
装置を提供することを目的とする。
The present invention has been made in view of such conventional problems. When activating the tilt control, the vehicle height is first controlled to levitate the vehicle body to a predetermined height, and then the vehicle is controlled to a predetermined tilt angle. It is an object of the present invention to provide a vehicle body tilt control device in which the vehicle body does not come into contact with the tilt cylinder by taking the control procedure described above.

【0034】本発明の他の目的は、車両が曲線部を低速
で走行する際に曲線部のカントによって車体が傾斜する
のを防止し、乗り心地を向上させることができる車体傾
斜制御装置を提供することにある。
Another object of the present invention is to provide a vehicle body inclination control device capable of preventing the vehicle body from inclining due to the cant of the curved portion when the vehicle travels at a low speed on the curved portion and improving the riding comfort. To do.

【0035】本発明のさらに他の目的は、油圧応答不良
検出が傾斜シリンダの位置に関係なく、正確に検出する
ことができる車体傾斜制御装置を提供することにある。
Still another object of the present invention is to provide a vehicle body tilt control device capable of accurately detecting a hydraulic response failure regardless of the position of the tilt cylinder.

【0036】[0036]

【課題を解決するための手段】請求項1の発明は、台車
の左右各々に設けられ、この台車上の車体を支持する油
圧シリンダと、左右の油圧シリンダ各々に油を配分供給
する油圧供給系統と、油圧供給系統を制御することによ
って車体の車高及び傾斜角度を制御する制御手段とを備
えて成る車体傾斜制御装置において、制御手段が、車体
の傾斜角度制御時に所定の高さまで車高制御を優先し、
その後、傾斜角度制御を実行する機能を備えたものであ
る。
The invention according to claim 1 is to provide a hydraulic cylinder which is provided on each of the left and right sides of a bogie and which supports a vehicle body on the bogie, and a hydraulic supply system which distributes and supplies oil to each of the left and right hydraulic cylinders. And a control means for controlling the vehicle height and the inclination angle of the vehicle body by controlling the hydraulic pressure supply system, the control means controls the vehicle height to a predetermined height when controlling the inclination angle of the vehicle body. Prioritize
After that, it has a function of executing the tilt angle control.

【0037】この請求項1の発明の車体傾斜制御装置で
は、車体の傾斜角度制御時に制御手段がまず車体を所定
の車高になるまで車高制御し、その後、所定の傾斜角度
になるように傾斜角度制御を行う手順をとる。したがっ
て、油圧シリンダの制御が長い時間中断されていた後に
起動して車体の傾斜角度制御を起動するような場合、油
圧系統の電磁弁の油の漏れで油圧シリンダ内の油が減
り、車高が低下していても、まず車高を上げてから傾斜
角度制御に入ることになり、車高が低いまま直接傾斜角
度制御に入る場合のように油圧シリンダに車体が接触す
るのを防止することができる。
In the vehicle body leaning control apparatus according to the present invention, when controlling the leaning angle of the vehicle body, the control means first controls the vehicle height until the vehicle body reaches a predetermined vehicle height, and thereafter the vehicle body leaning angle is set to the predetermined leaning angle. Take the procedure to control the tilt angle. Therefore, when the control of the hydraulic cylinder is started for a long time and then started to start the tilt angle control of the vehicle body, the oil in the hydraulic cylinder decreases due to the oil leak of the solenoid valve of the hydraulic system, and the vehicle height increases. Even if the vehicle height has decreased, the vehicle height must be raised first before entering the lean angle control, and it is possible to prevent the vehicle body from contacting the hydraulic cylinder as in the case of directly entering the lean angle control with the vehicle height kept low. it can.

【0038】請求項2の発明は、台車の左右各々に設け
られ、この台車上の車体を支持する油圧シリンダと、左
右の油圧シリンダ各々に油を配分供給する油圧供給系統
と、油圧供給系統を制御することによって車体の車高及
び傾斜角度を制御する制御手段とを備えて成る車体傾斜
制御装置において、制御手段が、車両が曲線部を低速走
行する時に当該曲線部のカント角を目標傾斜角にして車
体を水平に制御する機能を備えたものである。
According to the second aspect of the present invention, there are provided a hydraulic cylinder provided on each of the left and right sides of the bogie and supporting a vehicle body on the bogie, a hydraulic supply system for distributing and distributing oil to the left and right hydraulic cylinders, and a hydraulic supply system. In a vehicle body inclination control device comprising control means for controlling a vehicle height and an inclination angle of a vehicle body, the control means controls the cant angle of the curved portion when the vehicle runs at a low speed on the curved portion. It has a function to control the body horizontally.

【0039】この請求項2の発明の車体傾斜制御装置で
は、軌道の曲線部を低速で通過する時には、制御手段が
当該曲線部に設定されているカント角に対応する角度だ
け車体を反対側に傾斜させる制御を行う。これによって
低速で曲線部を通過する時には車体をほぼ水平に制御
し、乗り心地を良くする。
In the vehicle body inclination control device according to the second aspect of the present invention, when the vehicle passes through the curved portion of the track at a low speed, the control means moves the vehicle body to the opposite side by an angle corresponding to the cant angle set on the curved portion. Control to incline. As a result, the vehicle body is controlled to be substantially horizontal when passing through a curved portion at a low speed to improve the riding comfort.

【0040】請求項3の発明は、台車の左右各々に設け
られ、この台車上の車体を支持する油圧シリンダと、左
右の油圧シリンダ各々に油を配分供給する油圧供給系統
と、車体の傾斜角度を検出する傾斜角度検出手段と、傾
斜角度検出手段が検出する傾斜角度を目標傾斜角度と所
定制御サイクルごとに比較し、その偏差がゼロとなるよ
うに油圧供給系統を制御することによって車体の傾斜角
度を制御する制御手段とを備えて成る車体傾斜制御装置
において、制御手段が、前回制御サイクルと今回制御サ
イクルとにおける偏差の変化量を見て、所定の比較値よ
りも変化が小さいときに異常と判定する機能を備えたも
のである。
According to a third aspect of the present invention, hydraulic cylinders provided on each of the left and right of the bogie for supporting the vehicle body on the bogie, a hydraulic supply system for distributing oil to the left and right hydraulic cylinders, and a tilt angle of the vehicle body. Of the vehicle body by controlling the hydraulic pressure supply system so that the deviation becomes zero by comparing the inclination angle detected by the inclination angle detection means and the inclination angle detected by the inclination angle detection means with the target inclination angle for each predetermined control cycle. In a vehicle body tilt control device including a control means for controlling an angle, the control means looks at a variation amount of a deviation between a previous control cycle and a current control cycle, and when the variation is smaller than a predetermined comparison value, an abnormality occurs. It has a function of determining

【0041】この請求項3の発明の車体傾斜角度制御装
置では、車体の傾斜角度制御時に制御手段が前回制御サ
イクルと今回制御サイクルとにおける偏差の変化量を見
て、所定の比較値よりも変化が小さいときに油圧系統の
応答不良と判定する。これによって特に傾斜角度制御の
起動時には、目標傾斜角に対する実傾斜角度との偏差の
時間的な変化が小さい時に油圧系統の応答不良を判定す
ることができ、起動時から正しく油圧応答不良を検出す
ることができるようになる。
In the vehicle body tilt angle control device according to the third aspect of the present invention, when the vehicle body tilt angle control is performed, the control means looks at the amount of change in the deviation between the previous control cycle and the current control cycle, and changes from the predetermined comparison value. Is small, it is determined that the hydraulic system has a poor response. This makes it possible to determine a poor response of the hydraulic system when the deviation of the actual tilt angle from the target tilt angle is small at the time of starting the tilt angle control, and the bad response of the hydraulic system can be correctly detected from the start. Will be able to.

【0042】[0042]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて詳説する。本発明の実施の形態の車体傾斜制御
装置の全体的な構成は従来の技術でも説明したように図
4に示す構成であり、前後の台車1F,1Rそれぞれに
油圧装置YTF,YTRを設置し、これらの油圧装置Y
TF,YTRによって車体2は支持される。設定器DT
は走行時の軌道の曲線データ、制御定数などを設定し、
車体傾斜指令部CTにおいて車両の走行距離、速度情報
をもとにして車体の傾斜角度や車高を演算して出力す
る。この車体傾斜指令装置CTの出力する車高指令、傾
斜角度指令に油圧駆動制御PTは基づいて油圧装置YT
F,YTRそれぞれを駆動して車体2を目標とする車高
及び傾斜角度に制御する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. The overall configuration of the vehicle body inclination control device according to the embodiment of the present invention is the configuration shown in FIG. 4 as described in the related art, and the hydraulic devices YTF and YTR are installed in the front and rear bogies 1F and 1R, respectively. These hydraulic devices Y
The vehicle body 2 is supported by TF and YTR. Setting device DT
Sets the curve data of the track during running, control constants, etc.
The vehicle body inclination command unit CT calculates and outputs the vehicle body inclination angle and vehicle height based on the traveling distance and speed information of the vehicle. The hydraulic drive control PT is based on the vehicle height command and the tilt angle command output from the vehicle body tilt command device CT.
Each of F and YTR is driven to control the vehicle body 2 to a target vehicle height and inclination angle.

【0043】そして1台の台車1に対する油圧装置YT
は図5に示す構成であり、油圧駆動制御部PTが図6、
図7に関して従来の技術で説明した制御方式によって<
<車高制御>>と<<車体傾斜角度制御(中立制御を含
む)>>を実行する。
A hydraulic system YT for one carriage 1
Is the configuration shown in FIG. 5, and the hydraulic drive control unit PT is shown in FIG.
According to the control method described in the related art with reference to FIG.
<Vehicle height control> and << Vehicle body tilt angle control (including neutral control) >> are executed.

【0044】そしてこの油圧駆動制御部PTが実行する
傾斜角度制御は図1のフローチャートに示す手順で山
側、海側それぞれの傾斜シリンダS1,S2について変
位量制御を実行する。すなわち、車体傾斜角度制御が起
動されると、最初に変位センサX1,X2それぞれの検
出する変位量VX01,VX02それぞれが所定の車高指令値VX
r になるまで車高制御を実行する(ステップST1)。
In the tilt angle control executed by the hydraulic drive control unit PT, displacement amount control is executed for the mountain-side and sea-side tilt cylinders S1 and S2 in the procedure shown in the flowchart of FIG. That is, when the vehicle body tilt angle control is activated, first, the displacement amounts VX01 and VX02 detected by the displacement sensors X1 and X2 respectively are set to the predetermined vehicle height command value VX.
The vehicle height control is executed until r (step ST1).

【0045】実車高VX0 が指令値VXr に一致すれば、続
いて中立制御を実行する(ステップST2,ST3)。
この中立制御によってシリンダ軸KがそのA−B方向の
最大ストロークVXmax の半分の位置、つまりVXk =VXma
x /2の中立位置に一致させる制御を行う(ステップS
T4)。これによってまず車体2を水平状態に制御す
る。
If the actual vehicle height VX0 matches the command value VXr, then neutral control is executed (steps ST2 and ST3).
By this neutral control, the cylinder axis K is at a position half the maximum stroke VXmax in the AB direction, that is, VXk = VXma.
Control is performed to match the neutral position of x / 2 (step S
T4). As a result, the vehicle body 2 is first controlled to be horizontal.

【0046】そして再び車高制御に戻り、指令値VXr に
一致させる(ステップST1)。
Then, the control is returned to the vehicle height control, and the command value VXr is matched (step ST1).

【0047】車体2を水平状態にして所定の車高VXr に
一致するようになれば、次に、当初の目的であった車体
傾斜制御に入り、図7のブロック線図に示した傾斜角度
制御を実行し、傾斜指令角度φr に車体2の実際の傾斜
角度が一致するように駆動シリンダS4におけるシリン
ダ軸Kの位置制御を行い、これによって比例シリンダS
3のシリンダ室SA,SBの容積比を制御し、車体傾斜
角度を制御する。
When the vehicle body 2 is brought into a horizontal state so that the vehicle height becomes equal to a predetermined vehicle height VXr, then the vehicle body inclination control, which was originally intended, is entered, and the inclination angle control shown in the block diagram of FIG. 7 is performed. The position of the cylinder axis K in the drive cylinder S4 is controlled so that the actual tilt angle of the vehicle body 2 matches the tilt command angle φr.
The volume ratio of the three cylinder chambers SA and SB is controlled to control the vehicle body inclination angle.

【0048】これにより、車体傾斜角度制御を起動する
際には最初に車高を所定の高さまで浮上がらせてから傾
斜制御に移行するので、起動時に直ちに傾斜角度制御に
入る場合のように、油の抜けによって車高が低下してい
るときに直接傾斜角度制御に入ることによって傾斜シリ
ンダS1,S2と傾斜した車体2とが接触して油圧系統
に損傷が発生するという事態が起きないようにできる。
As a result, when the vehicle body tilt angle control is started, the vehicle height is first levitated to a predetermined height and then the tilt control is performed. To prevent a situation in which the tilt cylinders S1 and S2 come into contact with the tilted vehicle body 2 and the hydraulic system is damaged by directly entering the tilt angle control when the vehicle height is decreasing due to oil spillage. it can.

【0049】次に、本発明の第2の実施の形態につい
て、図2に基づいて説明する。この実施の形態の特徴は
軌道の曲線部を通過する際の車体の傾斜角度制御を車両
速度Vの高低に応じて切替える点にある。すなわち、図
4に示した車体傾斜制御装置における油圧駆動制御部P
Tが傾斜角度制御を図2のブロック線図に示すようにし
て実行するのである。
Next, a second embodiment of the present invention will be described with reference to FIG. The feature of this embodiment is that the inclination angle control of the vehicle body when passing through the curved portion of the track is switched according to the level of the vehicle speed V. That is, the hydraulic drive control unit P in the vehicle body tilt control device shown in FIG.
T performs the tilt angle control as shown in the block diagram of FIG.

【0050】この傾斜角度制御系は車両速度V、円曲線
部のカントC、曲線半径Rなどに基づいて目標傾斜角φ
rを算出する演算回路Cr、低速走行時の傾斜制御の目
標角度φcrを与える回路Ccと、車両速度Vに対して切
替え信号Svを出力する切替制御回路Bvと、回路Bv
からの切替信号Svを受けて通常速度時には回路Cr側
に、低速走行時には回路Cc側に切替えて目標傾斜角度
φr/φcrの切替を行うスイッチSWと、比較器SU3 、
PID回路で構成される制御補償要素H(s)、リミッタK
m、電磁弁Sol 3a,Sol 3bとシリンダを含めた油圧
系の制御伝達関数KS、シリンダ軸Kの変位量Y3を検出
する変位センサX3の伝達関数KX、変位センサX3の
フィードバック出力VXに基づいて車体2の傾斜角度φo
を計算する演算回路Kφから構成される。
This inclination angle control system is based on the vehicle speed V, the cant C of the circular curve portion, the curve radius R, etc. and the target inclination angle φ.
An arithmetic circuit Cr for calculating r, a circuit Cc for giving a target angle φcr for tilt control during low speed traveling, a switching control circuit Bv for outputting a switching signal Sv with respect to the vehicle speed V, and a circuit Bv.
The switch SW for switching the target tilt angle φr / φcr by switching to the circuit Cr side during normal speed and the circuit Cc side during low speed traveling in response to the switching signal Sv from the comparator SU3,
Control compensation element H (s) composed of PID circuit, limiter K
m, the solenoid valve Sol 3a, Sol 3b and the control transfer function KS of the hydraulic system including the cylinder, the transfer function KX of the displacement sensor X3 that detects the displacement amount Y3 of the cylinder axis K, and the feedback output VX of the displacement sensor X3. Inclination angle φo of vehicle body 2
It is composed of an arithmetic circuit Kφ for calculating

【0051】そしてこの傾斜角度制御系は、基本的には
実傾斜角度φoと目標傾斜角φr/φcrとの偏差Δerに
対するPID制御によるフィードバック制御を構成し、
補償要素H(s)の出力Vsy の大きさにリミッタkmを作用さ
せて電磁弁Sol 3a,Sol 3bの弁の開度を制御し、開
度の大きい方の電磁弁はそこを流れる油量が増加し、開
度の小さい方の電磁弁はそこを流れる油量が減少し、シ
リンダ軸Kの両側のシリンダ室SC,SDにおいてそれ
らの流量比に応じた容積比となるようにシリンダ軸Kが
左右に移動し、これに応じて比例シリンダS3のシリン
ダ室SA,SBの容積比も制御され、山側、海側の傾斜
シリンダS1,S2の変位量が変化して所定の傾斜角度
が付くことになる。
This tilt angle control system basically constitutes feedback control by PID control for the deviation Δer between the actual tilt angle φo and the target tilt angle φr / φcr,
The limiter km is applied to the magnitude of the output Vsy of the compensation element H (s) to control the opening of the solenoid valves Sol 3a and Sol 3b, and the solenoid valve with the larger opening controls the amount of oil flowing there. The amount of oil flowing through the solenoid valve having the smaller opening increases and the amount of oil flowing therethrough decreases, so that the cylinder shaft K has a volume ratio in the cylinder chambers SC and SD on both sides of the cylinder shaft K in accordance with their flow rate ratio. It moves to the left and right, and the volume ratio of the cylinder chambers SA and SB of the proportional cylinder S3 is also controlled accordingly, and the displacement amount of the mountain-side and sea-side tilt cylinders S1 and S2 changes to give a predetermined tilt angle. Become.

【0052】そこで、図8に示す軌道の曲線部を走行す
る場合、次のようにして目標傾斜角度を演算し、それに
一致するように傾斜角度制御を行う。
Therefore, when traveling on the curved portion of the track shown in FIG. 8, the target tilt angle is calculated as follows, and the tilt angle control is performed so as to match it.

【0053】<<低速走行時の傾斜角度制御>>演算回
路Ccは曲線部のカント角φcrを次のように求める。 (a)円曲線部(距離XB≦X<XC)のカント角φc1: φc1= tan-1(C/G) (b)入口緩和曲線部(距離XA≦X<XB)のカント角φ
c2: φc2=(X/(XB−XA))・ φc1 (c)出口緩和曲線部(距離XC≦X<XD)のカント角φ
c3: φc3=(X/(XD−XC))・ φc1
<< Inclination Angle Control During Low Speed Running >> The arithmetic circuit Cc determines the cant angle φcr of the curved portion as follows. (A) Cant angle φc1 of circular curve part (distance XB ≦ X <XC): φc1 = tan-1 (C / G) (b) Cant angle φ of inlet relaxation curve part (distance XA ≦ X <XB)
c2: φc2 = (X / (XB-XA)) · φc1 (c) Cant angle φ of exit relaxation curve section (distance XC ≦ X <XD)
c3: φc3 = (X / (XD-XC)) / φc1

【0054】切替制御回路Bvは低速走行時には信号S
v=0、通常速度時にはSv=1を出力し、スイッチS
Wをこの信号Svによって切替させる。そしてSv=0
の時には目標傾斜角度φcr(=φc1,φc2又はφc3;距
離Xに応じて選択)を演算回路Ccから出力させ、Sv
=1の時には目標傾斜角度φrを演算回路Crから出力さ
せる。
The switching control circuit Bv outputs the signal S when traveling at a low speed.
v = 0, Sv = 1 is output at normal speed, and the switch S
W is switched by this signal Sv. And Sv = 0
When, the target tilt angle φcr (= φc1, φc2 or φc3; selected according to the distance X) is output from the arithmetic circuit Cc, and Sv
When = 1, the target inclination angle φr is output from the arithmetic circuit Cr.

【0055】そして低速走行時であれば、前述の数3式
において速度Vを無視すると、 αu=−(C/G) となり、これを数2式に代入すると、
When the vehicle is traveling at a low speed, αu =-(C / G) is obtained by ignoring the speed V in the equation (3), and this is substituted into the equation (2).

【数5】 となる。(Equation 5) Becomes

【0056】したがって、目標傾斜角度φcはこの場
合、負の値となり、このφcを上記(a)〜(c)の演
算においてφc1として用いることにより、曲線部を車両
が走行する時に軌道側に設けられたカントによって車体
2が台車1と共に傾くところを逆側に傾斜させて車体2
を軌道に対してほぼ水平状態に維持することができ、乗
り心地を改善することができる。
Therefore, the target inclination angle φc becomes a negative value in this case, and by using this φc as φc1 in the calculations of the above (a) to (c), the curved portion is provided on the track side when the vehicle travels. The vehicle body 2 is tilted to the opposite side where the vehicle body 2 tilts together with the carriage 1 by the cant
Can be maintained substantially horizontal to the track, and riding comfort can be improved.

【0057】次に、本発明の第3の実施の形態につい
て、図3に基づいて説明する。この実施の形態の車体傾
斜制御装置において油圧駆動制御部PTが実行する油圧
応答不良検出の制御系は図3のブロック線図に示す構成
であり、車高指令値VXr と傾斜シリンダS1,S2の変
位量VX01,VX02それぞれとを比較して偏差Δer1 ,Δer
2 を求める比較器SU4 ,SU5 、前回制御サイクルに得ら
れた偏差Δer1/t-1 ,Δer2/t-1 と今回制御サイクルに
得られた偏差Δer1/t ,Δer2/t との偏差ΔE1,ΔE2そ
れぞれを求める回路SE1 ,SE2 、この偏差ΔE1,ΔE2そ
れぞれの絶対値を求める絶対値回路ABS1,ABS2、設定値
DXと絶対値回路ABS1,ABS2それぞれの出力との比較回路
KH1 ,KH2 、これらの比較回路KH1 ,KH2 の出力のアン
ド回路ANDから構成される。
Next, a third embodiment of the present invention will be described with reference to FIG. In the vehicle body leaning control apparatus of this embodiment, the hydraulic drive control unit PT executes a hydraulic response failure detection control system having the configuration shown in the block diagram of FIG. 3, and the vehicle height command value VXr and the leaning cylinders S1, S2 are controlled. Deviations Δer1 and Δer by comparing displacement amounts VX01 and VX02 respectively
2 Comparators SU4 and SU5, deviations Δer1 / t-1 and Δer2 / t-1 obtained in the previous control cycle and deviations ΔE1 and ΔE2 between deviations Δer1 / t and Δer2 / t obtained in the current control cycle Circuits SE1 and SE2 for obtaining each, absolute value circuits ABS1 and ABS2 for obtaining the absolute values of these deviations ΔE1 and ΔE2 respectively, set values
Comparison circuit between DX and absolute value circuit ABS1 and ABS2 output
It is composed of KH1, KH2 and an AND circuit AND of the outputs of these comparison circuits KH1, KH2.

【0058】この油圧応答不良検出制御系の動作につい
て説明する。指令値VXr と傾斜シリンダS1,S2の変
位センサX1,X2のフィードバック信号VX01,VX02(図6
参照)を比較器SU4 ,SU5 で比較し、その偏差Δer1 ,
Δer2 の前回制御サイクルでの値Δer1/t-1 ,Δer2/t-
1 と今回制御サイクルでの値Δer1/t ,Δer2/t との偏
差ΔE1,ΔE2を回路SE1 ,SE2 で求める。つまり、 ΔE1=Δer1/t-1 −Δer1/t ΔE2=Δer2/t-1 −Δer2/t を求めるのである。このΔE1,ΔE2それぞれは変位量の
フィードバック量VX01,VX02それぞれの応答速度に対応
する。
The operation of this hydraulic response failure detection control system will be described. The command value VXr and the feedback signals VX01, VX02 of the displacement sensors X1, X2 of the tilt cylinders S1, S2 (Fig. 6
(Reference) is compared by the comparators SU4 and SU5, and the deviation Δer1,
Values of Δer2 in the previous control cycle Δer1 / t-1 and Δer2 / t-
The deviations ΔE1 and ΔE2 between 1 and the values Δer1 / t and Δer2 / t in the current control cycle are obtained by circuits SE1 and SE2. That is, ΔE1 = Δer1 / t-1 −Δer1 / t ΔE2 = Δer2 / t-1 −Δer2 / t is obtained. The ΔE1 and ΔE2 correspond to the response speeds of the displacement feedback amounts VX01 and VX02, respectively.

【0059】続いて偏差ΔE1,ΔE2それぞれを絶対値回
路ABS1,ABS2に入力する。そして絶対値回路ABS1,ABS2
の出力|ΔE1|,|ΔE2|を比較回路KH1 ,KH2 で設定
値DXと比較する。そして偏差の絶対値出力|ΔE1|,|
ΔE2|が共に設定値DXよりも小さい場合にはフェールセ
ーフ信号をアンド回路AND からセフティ電磁弁Sol に出
力して作動させ、セフティ電磁弁Sol の動作によって車
体2を自然振子状態にして安全を図る。
Subsequently, the deviations ΔE1 and ΔE2 are input to the absolute value circuits ABS1 and ABS2, respectively. And absolute value circuit ABS1, ABS2
Outputs | ΔE1 |, | ΔE2 | of the comparison circuits KH1 and KH2 are compared with the set value DX. And the absolute value of deviation output | ΔE1 |, |
When both ΔE2 | are smaller than the set value DX, a fail-safe signal is output from the AND circuit AND to the safety solenoid valve Sol to operate, and the safety solenoid valve Sol operates to put the vehicle body 2 in a natural pendulum state for safety. .

【0060】これによって車高制御の起動時にも油圧系
統の応答速度が遅ければ応答不良と判断してフェールセ
ーフ動作させることができることになる。
As a result, even when the vehicle height control is started, if the response speed of the hydraulic system is slow, it can be determined that the response is poor and the fail-safe operation can be performed.

【0061】[0061]

【発明の効果】以上のように請求項1の発明によれば、
車体の傾斜角度制御時に制御手段がまず車体を所定の車
高になるまで車高制御し、その後、所定の傾斜角度にな
るように傾斜角度制御を行う手順をとるようにしている
ので、油圧シリンダの制御が長い時間中断されていた後
に起動して車体の傾斜角度制御を起動するような場合、
油圧系統の電磁弁の油の漏れで油圧シリンダ内の油が減
り、車高が低下していても、まず車高を上げてから傾斜
角度制御に入ることになり、車高が低いまま直接傾斜角
度制御に入る場合のように油圧シリンダに車体が接触す
るのを防止することができる。
As described above, according to the invention of claim 1,
When controlling the tilt angle of the vehicle body, the control means first controls the vehicle height until the vehicle body reaches a predetermined vehicle height, and then performs the procedure for performing the tilt angle control so that the vehicle body has a predetermined lean angle. When the control of is started after a long time has been suspended and the tilt angle control of the vehicle body is started,
Even if the oil in the hydraulic cylinder is reduced due to the oil leakage of the solenoid valve of the hydraulic system and the vehicle height is lowered, the vehicle height is first raised before the lean angle control is started, and the lean angle is controlled directly when the vehicle height is low. It is possible to prevent the vehicle body from coming into contact with the hydraulic cylinder as in the case of entering the angle control.

【0062】請求項2の発明によれば、軌道の曲線部を
低速で通過する時には、制御手段が当該曲線部に設定さ
れているカント角に対応する角度だけ車体を反対側に傾
斜させる制御を行うようにしているので、低速で曲線部
を通過する時には車体をほぼ水平に維持することができ
て乗り心地を良くすることができる。
According to the second aspect of the present invention, when passing through the curved portion of the track at a low speed, the control means controls the vehicle body to incline to the opposite side by an angle corresponding to the cant angle set in the curved portion. Since this is done, the vehicle body can be kept substantially horizontal when passing a curved portion at a low speed, and the riding comfort can be improved.

【0063】請求項3の発明によれば、車体の傾斜角度
制御時に制御手段が前回制御サイクルと今回制御サイク
ルとにおける偏差の変化量を見て、所定の比較値よりも
変化が小さいときに油圧系統の応答不良と判定するよう
にしているので、特に傾斜角度制御の起動時に、目標傾
斜角に対する実傾斜角度との偏差の時間的な変化が小さ
い時に油圧系統の応答不良を判定することができ、起動
時から正しく油圧応答不良を検出することができる。
According to the third aspect of the present invention, the control means looks at the variation amount of the deviation between the previous control cycle and the current control cycle during the lean angle control of the vehicle body, and when the variation is smaller than the predetermined comparison value, the hydraulic pressure is changed. Since the system is determined to have a poor response, it is possible to determine a poor response of the hydraulic system when the deviation of the actual tilt angle from the target tilt angle with respect to time is small, especially when the tilt angle control is started. , It is possible to correctly detect a poor hydraulic response from the time of startup.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態の傾斜角度制御手順
を示すフローチャート。
FIG. 1 is a flowchart showing a tilt angle control procedure according to a first embodiment of this invention.

【図2】本発明の第2の実施の形態の曲線部走行時の傾
斜角度制御系をブロック線図。
FIG. 2 is a block diagram of an inclination angle control system during traveling on a curved portion according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態の油圧応答不良判定
制御系のブロック線図。
FIG. 3 is a block diagram of a hydraulic response failure determination control system according to a third embodiment of this invention.

【図4】一般的な油圧制御による車体傾斜制御装置のシ
ステム構成を示すブロック図。
FIG. 4 is a block diagram showing a system configuration of a vehicle body tilt control device using general hydraulic control.

【図5】上記の車体傾斜制御装置の油圧系統図。FIG. 5 is a hydraulic system diagram of the vehicle body tilt control device.

【図6】従来の車高制御系のブロック線図。FIG. 6 is a block diagram of a conventional vehicle height control system.

【図7】従来の傾斜角度制御系のブロック線図。FIG. 7 is a block diagram of a conventional tilt angle control system.

【図8】一般的な軌道の曲線部の区間区分例を示す説明
図。
FIG. 8 is an explanatory diagram showing an example of section division of a curved portion of a general trajectory.

【図9】従来の油圧応答不良検出系のブロック線図。FIG. 9 is a block diagram of a conventional hydraulic response failure detection system.

【図10】従来の車体傾斜角度制御系による車体の動き
を示す説明図。
FIG. 10 is an explanatory diagram showing movement of a vehicle body by a conventional vehicle body tilt angle control system.

【符号の説明】[Explanation of symbols]

1 台車 2 車体 DT 設定器 CT 車体傾斜指令部 PT 油圧駆動制御部 S1,S2 傾斜シリンダ S3 比例シリンダ S4 駆動シリンダ Sy 油圧ユニット装置 K シリンダ軸 Sol 11,Sol 12,Sol 21,Sol 22 電磁弁 Sol 3a,Sol 3b 電磁弁 Sol セフティ電磁弁 X1〜X3 変位センサ 1 bogie 2 vehicle body DT setter CT vehicle body tilt command section PT hydraulic drive control section S1, S2 tilt cylinder S3 proportional cylinder S4 drive cylinder Sy hydraulic unit device K cylinder axis Sol 11, Sol 12, Sol 21, Sol 22 solenoid valve Sol 3a , Sol 3b Solenoid valve Sol Safety solenoid valve X1 to X3 Displacement sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 和敏 東京都府中市東芝町1番地 株式会社東芝 府中工場内 (72)発明者 馬田 明彦 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazutoshi Miura 1st Toshiba Town, Fuchu-shi, Tokyo Inside the Toshiba Fuchu factory (72) Inventor Akihiko Mada 1st Toshiba-cho, Fuchu-shi Tokyo Inside the Fuchu factory, Toshiba

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 台車の左右各々に設けられ、この台車上
の車体を支持する油圧シリンダと、前記左右の油圧シリ
ンダ各々に油を配分供給する油圧供給系統と、前記油圧
供給系統を制御することによって前記車体の車高及び傾
斜角度を制御する制御手段とを備えて成る車体傾斜制御
装置において、 前記制御手段が、前記車体の傾斜角度制御時に所定の高
さまで車高制御を優先し、その後、傾斜角度制御を実行
する機能を備えたことを特徴とする車体傾斜制御装置。
1. A hydraulic cylinder that is provided on each of the left and right sides of a bogie to support a vehicle body on the bogie, a hydraulic supply system that distributes oil to each of the left and right hydraulic cylinders, and controls the hydraulic supply system. In the vehicle body leaning control device comprising: a control means for controlling the vehicle height and the leaning angle of the vehicle body, the control means prioritizes the vehicle height control to a predetermined height when controlling the leaning angle of the vehicle body, and thereafter, A vehicle body tilt control device having a function of executing tilt angle control.
【請求項2】 台車の左右各々に設けられ、この台車上
の車体を支持する油圧シリンダと、前記左右の油圧シリ
ンダ各々に油を配分供給する油圧供給系統と、前記油圧
供給系統を制御することによって前記車体の車高及び傾
斜角度を制御する制御手段とを備えて成る車体傾斜制御
装置において、 前記制御手段が、車両が曲線部を低速走行する時に当該
曲線部のカント角を目標傾斜角にして前記車体を水平に
制御する機能を備えたことを特徴とする車体傾斜制御装
置。
2. A hydraulic cylinder that is provided on each of the left and right of the bogie and supports a vehicle body on the bogie, a hydraulic supply system that distributes oil to each of the left and right hydraulic cylinders, and controls the hydraulic supply system. According to the vehicle body inclination control device, the control means controls the cant angle of the curved portion to a target inclination angle when the vehicle runs at a low speed on the curved portion. A vehicle body inclination control device having a function of horizontally controlling the vehicle body.
【請求項3】 台車の左右各々に設けられ、この台車上
の車体を支持する油圧シリンダと、前記左右の油圧シリ
ンダ各々に油を配分供給する油圧供給系統と、前記車体
の傾斜角度を検出する傾斜角度検出手段と、前記傾斜角
度検出手段が検出する傾斜角度を目標傾斜角度と所定制
御サイクルごとに比較し、その偏差がゼロとなるように
前記油圧供給系統を制御することによって前記車体の傾
斜角度を制御する制御手段とを備えて成る車体傾斜制御
装置において、 前記制御手段が、前回制御サイクルと今回制御サイクル
とにおける前記偏差の変化量を見て、所定の比較値より
も変化が小さいときに異常と判定する機能を備えて成る
車体傾斜制御装置。
3. A hydraulic cylinder provided on each of the left and right sides of the bogie to support a vehicle body on the bogie, a hydraulic supply system for distributing oil to each of the left and right hydraulic cylinders, and an inclination angle of the vehicle body is detected. The lean angle of the vehicle body is controlled by comparing the lean angle detected by the lean angle detecting means and the lean angle detected by the lean angle detecting means with each predetermined control cycle and controlling the hydraulic pressure supply system so that the deviation becomes zero. In a vehicle body tilt control device comprising a control means for controlling an angle, when the control means sees a change amount of the deviation between a previous control cycle and a current control cycle, and the change is smaller than a predetermined comparison value, A vehicle body tilt control device having a function of determining that the vehicle is abnormal.
JP07622496A 1996-03-29 1996-03-29 Body tilt control device Expired - Fee Related JP3529539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07622496A JP3529539B2 (en) 1996-03-29 1996-03-29 Body tilt control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07622496A JP3529539B2 (en) 1996-03-29 1996-03-29 Body tilt control device

Publications (2)

Publication Number Publication Date
JPH09263241A true JPH09263241A (en) 1997-10-07
JP3529539B2 JP3529539B2 (en) 2004-05-24

Family

ID=13599216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07622496A Expired - Fee Related JP3529539B2 (en) 1996-03-29 1996-03-29 Body tilt control device

Country Status (1)

Country Link
JP (1) JP3529539B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026103A1 (en) * 2010-08-25 2012-03-01 住友金属工業株式会社 System and method for estimating acceleration of vibration component in railcar
KR102606246B1 (en) * 2023-06-02 2023-11-29 (주)제이.케이.에스 Automatic horizontal transfer device and method when transporting large heavy objects

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026103A1 (en) * 2010-08-25 2012-03-01 住友金属工業株式会社 System and method for estimating acceleration of vibration component in railcar
CN103097225A (en) * 2010-08-25 2013-05-08 新日铁住金株式会社 System and method for estimating acceleration of vibration component in railcar
JPWO2012026103A1 (en) * 2010-08-25 2013-10-28 新日鐵住金株式会社 Railway vehicle vibration component acceleration estimation apparatus and vibration component acceleration estimation method
JP5522259B2 (en) * 2010-08-25 2014-06-18 新日鐵住金株式会社 Railway vehicle vibration component acceleration estimation apparatus and vibration component acceleration estimation method
TWI449643B (en) * 2010-08-25 2014-08-21 Nippon Steel & Sumitomo Metal Corp Braking component acceleration estimator of railway vehicle and method for estimating acceleration of vibration component
KR101449354B1 (en) * 2010-08-25 2014-10-08 신닛테츠스미킨 카부시키카이샤 System and method for estimating acceleration of vibration component in railcar
AU2011294664B2 (en) * 2010-08-25 2015-01-22 Nippon Steel Corporation System and method for estimating acceleration of vibration component in railcar
US9162688B2 (en) 2010-08-25 2015-10-20 Nippon Steel & Sumitomo Metal Corporation Vibrational component acceleration estimation device and vibrational component acceleration estimation method for railway vehicle
KR102606246B1 (en) * 2023-06-02 2023-11-29 (주)제이.케이.에스 Automatic horizontal transfer device and method when transporting large heavy objects

Also Published As

Publication number Publication date
JP3529539B2 (en) 2004-05-24

Similar Documents

Publication Publication Date Title
CN106891782B (en) The method and device of chair control
KR920006149A (en) Vehicle suspension controller
JP3440283B2 (en) Vehicle inclination control method and inclination control device
JP3424716B2 (en) Vehicle turning control device
JP2002316641A (en) Vehicle body inclination control device for rolling stock
CN107848510A (en) The method for manipulating brake
JP5038615B2 (en) Abnormality detection method for vehicle body tilting device
JPH09263241A (en) Body inclination control device
JP2004182000A (en) Fail safe method of car body inclination control, device, railroad vehicle and curve determining method used for this method
JP2002160616A (en) Brake device
JP4292973B2 (en) Railway vehicle body tilt control method and apparatus
JPS6067210A (en) Anti-roll control device for vehicle
JP2939229B1 (en) Vehicle body tilt control method for railway vehicles
JP3832184B2 (en) Body tilt control device
JPH04176773A (en) Electronic control method of air spring for rolling stock
JP4396255B2 (en) Vehicle body tilt control method and apparatus
JPH0948345A (en) Body tilting control method for rolling stock and its device
JPH0920160A (en) Following run controller for vehicle
JPH0328010A (en) Car height control device for vehicle
JPH08154303A (en) Attitude controller for pantograph
JPH07125633A (en) Method for restoring position of body in abnormal condition of rolling stock body inclination control mechanism
JPH01269666A (en) Car body tilting device
JPH115532A (en) Car body inclining device
KR880001885B1 (en) Inclination apparatus for railroad car
JP4439145B2 (en) Tracking control method of spherical moving body and spherical moving body

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120305

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees