JPH09261924A - Rotor cooling method - Google Patents

Rotor cooling method

Info

Publication number
JPH09261924A
JPH09261924A JP9039796A JP9039796A JPH09261924A JP H09261924 A JPH09261924 A JP H09261924A JP 9039796 A JP9039796 A JP 9039796A JP 9039796 A JP9039796 A JP 9039796A JP H09261924 A JPH09261924 A JP H09261924A
Authority
JP
Japan
Prior art keywords
rotor
refrigerant
stator
rotor core
collar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9039796A
Other languages
Japanese (ja)
Inventor
Kiyoshi Ishida
精 石田
Kensho Iwabuchi
憲昭 岩渕
Ryuichiro Tominaga
竜一郎 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP9039796A priority Critical patent/JPH09261924A/en
Publication of JPH09261924A publication Critical patent/JPH09261924A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the cooling capability with the robust apparatus in the method for cooling rotor. SOLUTION: A rotor 3 to be cooled is provided in a stator 2 so as to face the inner circumferential side of the stator 2 with a gap therebetween. Retaining members which consist of a step part 32 and a collar 4 in which circumferential grooves 33 having inclined side walls 33c on their outer sides are formed are provided on both the sides of a rotor core 31 in its axial direction. Coolant is spouted out against the inclined side walls from nozzles 51 which are provided on a stator 2 side. As the heat generated by the rotor 3 is transmitted through the contact boundaries between the rotor core 31 and the step part 32 and between the collar 4 and the rotor core 31 and taken away by the coolant, the thermal stresses are not applied to an end ring 35 and rotor bars 34.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、回転電機の回転子
の冷却方法に関する。
TECHNICAL FIELD The present invention relates to a method for cooling a rotor of a rotary electric machine.

【0002】[0002]

【従来の技術】従来の技術として、固定子と、空隙を介
し対向させて設けた回転子の冷却方法として、固定子側
に設けたノズルから回転子のエンドリングに向けて冷却
液を吹き付けるものがある(例えば、特開昭64−16
238号 公報)。
2. Description of the Related Art As a conventional technique, as a cooling method of a rotor provided facing a stator with a gap, a cooling liquid is sprayed from a nozzle provided on the stator toward an end ring of the rotor. (For example, JP-A-64-16
No. 238).

【0003】[0003]

【発明が解決しようとする課題】一般的に、誘導形回転
電機の回転子は強磁性体の積層した回転子コアに、AL
等、線膨張係数の大きいロータバーとエンドリングを一
体にダイキャストして形成する。ところが、従来の技術
では、冷却能力は高いものの、冷却液でエンドリングを
部分的に冷却するので、ロータコアとロータバーの線膨
張係数差による熱応力が、起動および負荷変動時ロータ
バーに繰り返し掛かり、ロータバーが疲労破損すること
が考えられる。そこで、本発明は、冷却能力が高く、強
度の優れた回転子の冷却方法を提供することを課題とす
る。
Generally, the rotor of an induction type rotary electric machine has a rotor core in which ferromagnetic materials are laminated, and
For example, the rotor bar having a large linear expansion coefficient and the end ring are integrally formed by die casting. However, in the conventional technique, although the cooling capacity is high, since the end ring is partially cooled by the cooling liquid, the thermal stress due to the difference in the linear expansion coefficient between the rotor core and the rotor bar is repeatedly applied to the rotor bar at the time of start-up and load fluctuation, and Can be damaged by fatigue. Therefore, it is an object of the present invention to provide a method of cooling a rotor having high cooling capacity and excellent strength.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、固定子コアのスロットに巻線を収納した固定子の内
周側に、空隙を介し対向させた回転子コアを有する回転
子の冷却方法において、回転子コアの軸方向両側面に、
外周側に傾斜側面を持つ円周溝を設けた係止部材を設
け、この円周溝に冷媒を吹き付ける。
In order to solve the above problems, cooling of a rotor having a rotor core facing the inner circumference of a stator having windings housed in slots of the stator core with a gap therebetween. In the method, on both axial side surfaces of the rotor core,
A locking member provided with a circumferential groove having an inclined side surface on the outer peripheral side is provided, and the refrigerant is sprayed to the circumferential groove.

【0005】[0005]

【発明の実施の形態】固定子コアのスロットに巻線を収
納した固定子の内周側に、空隙を介し対向させた回転子
コアを有する回転子の冷却方法において、回転子コアの
軸方向両側面に密着させてシャフトの段部とカラを設
け、段部とカラの外周側に傾斜側面を持つ円周溝を設
け、固定子側に設けたノズルから、円周溝の傾斜側面に
向けて、冷媒を吹き付ける。回転子コアに発生した熱
は、シャフトの段部およびカラとの接触面を通り冷媒に
より持ち去られるので、エンドリングおよびロータバー
に熱応力が掛かることはない。
BEST MODE FOR CARRYING OUT THE INVENTION In a method of cooling a rotor having a rotor core facing each other with a gap on the inner peripheral side of a stator having windings housed in slots of the stator core, an axial direction of the rotor core The step and the collar of the shaft are provided in close contact with both sides, and the circumferential groove with the inclined side surface is provided on the outer peripheral side of the step and the collar. From the nozzle provided on the stator side, face the inclined side surface of the circumferential groove. And spray the refrigerant. Since the heat generated in the rotor core is carried away by the refrigerant through the step portion of the shaft and the contact surface with the collar, thermal stress is not applied to the end ring and the rotor bar.

【0006】[0006]

【実施例】以下に、本発明の実施例を図に基づいて説明
する。図1は本発明の実施例を示す正断面図、図2は図
1の部分断面図である。この例は、誘導電動機の回転子
に適用する場合である。フレーム1の内径には、積層コ
アのスロット内に巻線を設けた固定子2を嵌め合わせて
ある。固定子2の内周側には、空隙を介し、回転子3を
対向させてある。回転子3には、円板状の薄板を積層し
た回転子コア31に、ロータバー34とエンドリング3
5をダイキャストにより一体に形成してある。回転子コ
ア31の一方側面は、側面にエンドリング35を収納す
るリング溝37と、外周面にノズル51の傾斜方向に傾
斜させた傾斜側面33Cを有する円周溝33を設けたシ
ャフト30の段部32に密着させてある。回転子コア3
1の他方側面は、側面にエンドリング35を収納するリ
ング溝37と、外周面にノズル51の傾斜方向に傾斜さ
せた傾斜側面33Cを有する円周溝33を設けたカラ4
の側面に密着させてある。なお、円周溝33は傾斜側面
33Cを設けずストレートにしてもよい。回転子コア3
1とカラ4をシャフト30に焼き嵌めしてある。円周溝
33に対向させて、冷媒を吹き出す複数のノズル51
を、冷媒10を吹き出したとき、冷媒10が傾斜側面3
3Cの根元近傍に当たるように、放射状に設けてある。
なお、回転子3の回転方向が決まっているときは、ノズ
ル51の向きを回転方向に傾斜させると、冷媒10の吹
き付けによる抵抗が減り、回転電機の効率が良くなる。
ノズル51は、固定子2の両側面に設けた一対の冷媒供
給ジャケット5の内周側に放射状に設けてあり、ノズル
51のおのおのの外端はリングの連通環52に連通させ
てある。連通環52の外径側の上側には、連通穴53を
設けてある。連通穴53は冷媒供給ジャケット5の外径
側に連通している。冷媒供給ジャケット5の上側には、
連通穴53を囲んでOリング収納溝54を設けてあり、
Oリング収納溝54内にOリング55を収納し、下側に
は軸方向の切り欠き56を設けてある。冷媒供給ジャケ
ット5の外径側はフレーム1の内周側に嵌め合わてあ
る。フレーム1には、連通穴53と連通する冷媒供給穴
11を設けてある。冷媒供給穴11には、冷媒供給配管
6を接続し、ポンプ等の冷媒供給装置7から冷媒10を
与圧して供給するようにしてある。冷媒供給ジャケット
5と固定子2の間のフレーム1の下側には、円周溝33
と対向する位置に冷媒排出口12を設けてあり、冷媒回
収配管8を接続し、真空ポンプ等の冷媒回収装置9で冷
媒10を吸引して回収するようにしてある。なお、冷媒
供給装置7と冷媒回収装置9間に放熱装置(図示せず)
を設け,冷媒10を循環させてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a front sectional view showing an embodiment of the present invention, and FIG. 2 is a partial sectional view of FIG. This example is applied to a rotor of an induction motor. A stator 2 having a winding provided in a slot of a laminated core is fitted to the inner diameter of the frame 1. The rotor 3 is opposed to the inner peripheral side of the stator 2 via a gap. The rotor 3 includes a rotor core 31 formed by laminating disk-shaped thin plates, a rotor bar 34, and an end ring 3.
5 is integrally formed by die casting. One side surface of the rotor core 31 is a step of the shaft 30 in which a ring groove 37 for accommodating the end ring 35 is formed on a side surface, and a circumferential groove 33 having an inclined side surface 33C inclined in the inclination direction of the nozzle 51 is provided on the outer peripheral surface. It is in close contact with the portion 32. Rotor core 3
The other side surface of 1 is a collar 4 provided with a ring groove 37 for accommodating the end ring 35 on the side surface and a circumferential groove 33 having an inclined side surface 33C inclined on the outer peripheral surface in the inclination direction of the nozzle 51.
It is closely attached to the side of. The circumferential groove 33 may be straight without providing the inclined side surface 33C. Rotor core 3
The shaft 1 and the collar 4 are shrink-fitted onto the shaft 30. A plurality of nozzles 51 facing the circumferential groove 33 and blowing out the refrigerant.
When the refrigerant 10 is blown out of the
It is provided radially so as to hit the vicinity of the root of 3C.
When the direction of rotation of the rotor 3 is fixed, if the direction of the nozzle 51 is tilted in the direction of rotation, the resistance due to the spraying of the refrigerant 10 is reduced, and the efficiency of the rotary electric machine is improved.
The nozzles 51 are radially provided on the inner peripheral side of the pair of refrigerant supply jackets 5 provided on both side surfaces of the stator 2, and the outer ends of the nozzles 51 are communicated with the communication ring 52 of the ring. A communication hole 53 is provided on the outer diameter side of the communication ring 52. The communication hole 53 communicates with the outer diameter side of the refrigerant supply jacket 5. Above the coolant supply jacket 5,
An O-ring storage groove 54 is provided surrounding the communication hole 53,
An O-ring 55 is housed in the O-ring housing groove 54, and an axial notch 56 is provided on the lower side. The outer diameter side of the coolant supply jacket 5 is fitted to the inner peripheral side of the frame 1. The frame 1 is provided with a coolant supply hole 11 that communicates with the communication hole 53. The refrigerant supply pipe 6 is connected to the refrigerant supply hole 11, and the refrigerant 10 is pressurized and supplied from the refrigerant supply device 7 such as a pump. On the lower side of the frame 1 between the coolant supply jacket 5 and the stator 2, a circumferential groove 33 is formed.
A refrigerant discharge port 12 is provided at a position opposite to, and a refrigerant recovery pipe 8 is connected to the refrigerant recovery device 9 such as a vacuum pump to suck and recover the refrigerant 10. A heat dissipation device (not shown) is provided between the refrigerant supply device 7 and the refrigerant recovery device 9.
May be provided to circulate the refrigerant 10.

【0007】さらに、実施例では誘導電動機の回転子の
例について説明したが、エンドリングを持たない磁気軸
受の回転子や永久磁石を設けた同期回転電機の回転子に
適用してもよい。この場合は、段部32とカラ4の側面
にエンドリング35を収納するリング溝37を設けず平
坦とし、回転子コア31の両側面に段部32とカラ4の
側面を直接密着させる。
Further, although the example of the rotor of the induction motor has been described in the embodiment, it may be applied to a rotor of a magnetic bearing having no end ring or a rotor of a synchronous rotating electric machine provided with a permanent magnet. In this case, the side surface of the step portion 32 and the collar 4 is made flat without providing the ring groove 37 for accommodating the end ring 35, and the side surfaces of the step portion 32 and the collar 4 are directly adhered to both side surfaces of the rotor core 31.

【0008】以下に、動作を説明する。冷媒供給装置7
から与圧された冷媒10が、冷媒供給配管6、冷媒供給
穴11、連通穴53、連通環52を通りノズル51か
ら、円周溝33の傾斜側面33Cの根元近傍に吹き付け
られると、冷媒10は傾斜側面33Cを伝わり遠心力に
より吹き飛ばされる。このとき、冷媒10は傾斜側面3
3Cを根元から外周に向かってなぞってゆくので、接触
する面が広くなり吸熱がよくなる。そして、回転子3に
発生した銅損や鉄損による熱は、段部32とカラ4を通
り、円周溝33で冷媒10に奪われる。熱を奪った冷媒
10は、傾斜側面33Cで吹き飛ばされ、冷媒排出口1
2付近に溜まる。冷媒排出口12付近に溜った冷媒10
は、冷媒回収配管8を通り、冷媒回収装置9により吸引
され回収される。
The operation will be described below. Refrigerant supply device 7
When the refrigerant 10 pressurized from is sprayed from the nozzle 51 through the refrigerant supply pipe 6, the refrigerant supply hole 11, the communication hole 53, and the communication ring 52 to the vicinity of the base of the inclined side surface 33C of the circumferential groove 33, Is transmitted through the inclined side surface 33C and is blown away by centrifugal force. At this time, the refrigerant 10 has the inclined side surface 3
Since 3C is traced from the root toward the outer circumference, the contact surface becomes wider and the heat absorption is improved. Then, the heat generated by the copper loss and the iron loss generated in the rotor 3 passes through the step 32 and the collar 4 and is taken by the refrigerant 10 in the circumferential groove 33. The refrigerant 10 that has taken the heat is blown off by the inclined side surface 33C, and the refrigerant outlet 1
Accumulates around 2. Refrigerant 10 accumulated near the refrigerant outlet 12
Passes through the refrigerant recovery pipe 8 and is sucked and recovered by the refrigerant recovery device 9.

【0009】[0009]

【発明の効果】以上に述べたように、本発明によれば、
回転子コアは通常のままで、回転子コアの両側面に密着
させたシャフトの段部とカラに設けた円周溝の傾斜側面
に冷媒を吹き付けることにより、回転子コアに発生した
熱を奪うようにしたので、発熱源に近い所で効率良く冷
却でき、エンドリングおよびロータバーに熱応力が掛か
ることがないので強度的に優れ、冷媒を回収するように
したので回転電機の内部に冷媒が溜まることがないとい
う効果がある。
As described above, according to the present invention,
While the rotor core remains normal, the heat generated in the rotor core is removed by blowing the refrigerant onto the stepped part of the shaft that is in close contact with both sides of the rotor core and the inclined side surfaces of the circumferential groove provided in the collar. As a result, it is possible to cool efficiently near the heat source, and the end ring and rotor bar are not subject to thermal stress, which is excellent in strength.The refrigerant is collected so that it accumulates inside the rotating electric machine. It has the effect of never happening.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す正断面図。FIG. 1 is a front sectional view showing an embodiment of the present invention.

【図2】図1の部分断面図。FIG. 2 is a partial sectional view of FIG.

【符号の説明】[Explanation of symbols]

1 フレーム 10 冷媒 11 冷媒供給穴 12 冷媒排出口 2 固定子 3 回転子 30 シャフト 31 回転子コア 32 段部 33 円周溝 33C 傾斜側面 34 ロータバー 35 エンドリング 37 リング溝 4 カラ 5 冷媒供給ジャケット 51 ノズル 52 連通環 53 連通穴 54 Oリング収納溝 55 Oリング 56 切り欠き 6 冷媒供給配管 7 冷媒供給装置 8 冷媒回収配管 9 冷媒回収装置 1 Frame 10 Refrigerant 11 Refrigerant Supply Hole 12 Refrigerant Discharge Port 2 Stator 3 Rotor 30 Shaft 31 Rotor Core 32 Step Part 33 Circumferential Groove 33C Inclined Side 34 Rotor Bar 35 End Ring 37 Ring Groove 4 Color 5 Refrigerant Supply Jacket 51 Nozzle 52 Communication Ring 53 Communication Hole 54 O Ring Storage Groove 55 O Ring 56 Notch 6 Refrigerant Supply Pipe 7 Refrigerant Supply Device 8 Refrigerant Recovery Pipe 9 Refrigerant Recovery Device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】固定子コアのスロットに巻線を収納した固
定子の内周側に、空隙を介し対向させた回転子コアを有
する回転子の冷却方法において、 前記回転子コアの軸方向両側面に密着させてシャフトの
段部とカラを設け、前記段部と前記カラの外周側に傾斜
側面を持つ円周溝を設け、固定子側に設けたノズルか
ら、前記円周溝の傾斜側面に向けて、冷媒を吹き付ける
ことを特徴とする回転子の冷却方法。
1. A method of cooling a rotor having a rotor core, which is opposed to an inner peripheral side of a stator having windings housed in slots of the stator core with a gap therebetween, wherein both axial sides of the rotor core are provided. The shaft step and the collar are provided in close contact with the surface, the circumferential groove having the inclined side surface is provided on the outer peripheral side of the step portion and the collar, and the inclined side surface of the circumferential groove is formed from the nozzle provided on the stator side. A method for cooling a rotor, characterized in that a refrigerant is sprayed toward the.
【請求項2】前記冷媒を、前記回転子の回転方向に向け
て傾斜させて吹き付ける請求項1に記載の回転子の冷却
方法。
2. The method for cooling a rotor according to claim 1, wherein the refrigerant is sprayed while being inclined in a rotation direction of the rotor.
JP9039796A 1996-03-19 1996-03-19 Rotor cooling method Pending JPH09261924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9039796A JPH09261924A (en) 1996-03-19 1996-03-19 Rotor cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9039796A JPH09261924A (en) 1996-03-19 1996-03-19 Rotor cooling method

Publications (1)

Publication Number Publication Date
JPH09261924A true JPH09261924A (en) 1997-10-03

Family

ID=13997460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9039796A Pending JPH09261924A (en) 1996-03-19 1996-03-19 Rotor cooling method

Country Status (1)

Country Link
JP (1) JPH09261924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0976480A2 (en) * 1998-07-29 2000-02-02 H.S.D. S.r.l. An electric chuck
JP2002286605A (en) * 2001-03-23 2002-10-03 Ishikawajima Harima Heavy Ind Co Ltd Method and device for high strain rate fatigue test
CN102832726A (en) * 2012-08-17 2012-12-19 中国科学院电工研究所 Evaporative cooling system of hybrid motor stator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0976480A2 (en) * 1998-07-29 2000-02-02 H.S.D. S.r.l. An electric chuck
EP0976480A3 (en) * 1998-07-29 2000-08-16 H.S.D. S.r.l. An electric chuck
US6144123A (en) * 1998-07-29 2000-11-07 H.S.D. S.R.L. Electric chuck
JP2002286605A (en) * 2001-03-23 2002-10-03 Ishikawajima Harima Heavy Ind Co Ltd Method and device for high strain rate fatigue test
CN102832726A (en) * 2012-08-17 2012-12-19 中国科学院电工研究所 Evaporative cooling system of hybrid motor stator

Similar Documents

Publication Publication Date Title
US6772504B2 (en) Rotating machine with cooled hollow rotor bars
US4691131A (en) Stator laminate impregnation in a liquid-cooled motor
JP3661529B2 (en) Motor cooling device
US20100231066A1 (en) Electrical machine with permanent magnets
US6072253A (en) Liquid-cooled electrical machine
CA1209186A (en) High speed generator air vent for air gap
AU8767791A (en) Methods and apparatus for ventilating electric machines
NZ299862A (en) External rotor drive motor for front loading washing machine which allows preassembly of motor and ventilation through holes in rotor
JP2000333409A (en) Induction motor
JP2003088013A (en) Rotating electric machine
EP3856451B1 (en) Multi-spindle operating head
JPH09261924A (en) Rotor cooling method
US20230038386A1 (en) Axial flux motor with cooling jacket
JP3777880B2 (en) Electric motor rotor and electric motor cooling method
JPH01243834A (en) Rotary electric machine
WO1994027353A1 (en) Electric motor having cooling means
EP0133571B1 (en) Flat type rotary electric machine
JPH08275421A (en) Rotor structure of dynamo electric machine
JP3748249B2 (en) Motor cooling device
JP2003274607A (en) Cooling structure for generator
JPH08275470A (en) Rotor of permanent-magnet type electric rotating machine and manufacture thereof
JP2001218425A (en) Electric motor having rotor cooling function
JPH0214310Y2 (en)
JP3815274B2 (en) Can fixing method for high-speed rotating electric machine
WO2023053779A1 (en) Rotary electrical machine