JPH0926147A - Method for controlling power in heat accumulative type heating system - Google Patents

Method for controlling power in heat accumulative type heating system

Info

Publication number
JPH0926147A
JPH0926147A JP7176166A JP17616695A JPH0926147A JP H0926147 A JPH0926147 A JP H0926147A JP 7176166 A JP7176166 A JP 7176166A JP 17616695 A JP17616695 A JP 17616695A JP H0926147 A JPH0926147 A JP H0926147A
Authority
JP
Japan
Prior art keywords
temperature
energization
time
heat storage
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7176166A
Other languages
Japanese (ja)
Other versions
JP3536445B2 (en
Inventor
Yasumichi Nanba
康通 難波
Shigeo Uemoto
茂雄 上本
Akira Mori
章 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP17616695A priority Critical patent/JP3536445B2/en
Publication of JPH0926147A publication Critical patent/JPH0926147A/en
Application granted granted Critical
Publication of JP3536445B2 publication Critical patent/JP3536445B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

PROBLEM TO BE SOLVED: To eliminate a useless consumption of electrical power and to enable an economical floor heating system to be operated by a method wherein a variation of an electrical energization time which is different under various conditions is calculated by a numerical value analyzing method so as to determine an electrical energization starting time. SOLUTION: Measured values of T and θi are inputted into an estimating equation T=Ζaiθi+Bi... (1) indicating a relation between an electrical energization time T and a temperature element θi before starting an electrical energization (where, (i) is a serial No. of a temperature measuring position element, a temperature element 9i is a temperature before starting an electrical energization of the temperature measuring position element (i), (ai) is a coefficient of θi, (bi) is a constant item, θi is selected from a group including a heat accumulative material temperature θ1 , a floor temperature θ2 , an indoor temperature θ3 and a surrounding air temperature θ4 . The floor temperature θ2 is an essential temperature element θi) and then the coefficient ai and the constant item (bi) in the equation are calculated by multivariate analysis so as to obtain a multiple recurrence formula. Then, an actual measured value of θi is inputted to the obtained multiple recurrence formula so as to obtain an electrical energization time T and then an electrical energization is started by the time T before an electrical energization completion line (a floor heating start time under a heat radiation of a latent heat accumulation material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は蓄熱式暖房システム
の制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type heating system control method.

【0002】[0002]

【従来の技術】潜熱蓄熱式の床暖房システムは、室の使
用開始前特に深夜に、床下の潜熱蓄熱材に電熱により蓄
熱し、その蓄熱された熱で使用時に床暖房をするもので
ある。この方式の床暖房は、割安な深夜電力供給時間帯
に通電が行なわれ蓄熱するもので、通電により蓄熱材が
所定の温度に達すると温度センサー等により通電が遮断
され、所定の温度まで低下すると通電が再開されるとい
うように、通電開始から通電終了までの間を通して蓄熱
電力のON−OFF運転がなされるのが一般的である。
場合によっては季節、気候条件により、通電時間(以
下、蓄熱時間ということがある)が深夜電力供給時間帯
に比べ大幅に少なくて済むことが予想される場合には、
経験的に蓄熱時間を予想して床暖房性能が確保されるよ
うに、タイマー等により所定時間のON−OFF運転す
ることも行なわれる。
2. Description of the Related Art A latent heat storage type floor heating system stores electric power in an underfloor latent heat storage material by electric heat before the start of use of a room, especially in the middle of the night, and heats the floor when using the stored heat. In this type of floor heating, electricity is stored and heat is stored during a cheap midnight power supply time.When the heat storage material reaches a predetermined temperature due to electricity supply, the temperature sensor etc. shuts off the electricity and when the temperature drops to a predetermined temperature. Generally, the heat storage power is turned on and off from the start of energization to the end of energization such that energization is restarted.
In some cases, depending on the season and climatic conditions, if it is expected that the energization time (hereinafter sometimes referred to as heat storage time) will be significantly shorter than the midnight power supply time,
An ON-OFF operation for a predetermined time is also performed by a timer or the like so that the floor heating performance can be ensured by empirically predicting the heat storage time.

【0003】また、蓄熱時間の制御でなく、加熱ヒータ
ー回路の増減により床暖房面積を調節することによって
室内への蓄熱エネルギーの調節を行なうことも一般に行
なわれている。しかしながら、より制御性能を向上する
ためには、特開昭63−62012号公報に記載されて
いるように過去の外気温データと床暖房の昇温特性を幾
通りかメモリーに記憶させておいて、暖房しようとする
ときの外気温度を測定し、過去の記憶させたデータから
近似したモードにより昇温特性を判定し電源投入時刻を
判定する方法が提案されている。
It is also common practice to control the heat storage energy in the room by controlling the floor heating area by increasing or decreasing the heating heater circuit instead of controlling the heat storage time. However, in order to further improve the control performance, some past ambient temperature data and floor heating temperature rising characteristics are stored in a memory as described in JP-A-63-62012. A method has been proposed in which the temperature of outside air when heating is being measured, the temperature rise characteristic is determined by a mode approximated from the stored data in the past, and the power-on time is determined.

【0004】冬期の暖房期間は通常11月〜3月の5ケ
月間であるが、1〜2月の厳寒期とその前後の緩暖期で
は床暖房システムの運転方法は異なる筈である。床暖房
システムの設計施工にあたっては、その建物の構造、冬
期の外気温等を考慮して厳寒期においても暖房効果が確
保出来るよう熱負荷量を計算して、加熱電源および蓄熱
材を設計している。
The heating period in winter is usually five months from November to March, but the operating method of the floor heating system should be different between the severe cold season of January to February and the mild warming season before and after that. When designing and constructing a floor heating system, consider the structure of the building, the outside temperature in winter, etc., calculate the heat load amount to ensure the heating effect even in the severe cold season, and design the heating power source and heat storage material. There is.

【0005】深夜電力供給時間を通して加熱電源を投入
した場合には、厳寒期の暖房熱負荷に対しては十分であ
るが、緩暖期に対しては蓄熱が過剰になり、深夜電力の
供給の終了前に蓄熱材が所定の温度に達し、以後温度セ
ンサーにより電源がON−OFF運転となり、無駄な電
源投入となる。
When the heating power source is turned on during the midnight power supply time, it is sufficient for the heating heat load in the severe cold season, but the heat storage becomes excessive during the mild warm season, and the midnight power is not supplied. Before the end, the heat storage material reaches a predetermined temperature, and thereafter the power is turned on and off by the temperature sensor, and the power is turned on wastefully.

【0006】また、季節、気候条件や、暖房状況により
蓄熱時間を予想してタイマー等でON−OFF運転する
方法では極めて感覚的なもので、実際の暖房条件を快適
に維持することは困難である。加熱ヒータ回路の増減に
より床暖房面積を調節する方法では、部屋の中で暖房し
ているところと暖房をしていないところができ、快適な
暖房が得られ難い。
[0006] Further, a method of predicting the heat storage time depending on the season, climatic conditions and heating conditions and performing ON-OFF operation with a timer is extremely sensuous, and it is difficult to maintain actual heating conditions comfortably. is there. With the method of adjusting the floor heating area by increasing / decreasing the heating heater circuit, it is difficult to obtain comfortable heating because some rooms are heated and some are not.

【0007】そこで、例えば特開昭63−62012号
公報に記載されているような方法も提案されているが、
経験的に外気温と床暖房の昇温特性の典型的なモードを
幾通りもメモリーに記憶させ、電源投入時間を判定させ
るというこのような方法はかなり複雑な測定装置と長期
間の時間を要するものと思われる。
Therefore, a method described in, for example, Japanese Patent Application Laid-Open No. 63-62012 has been proposed.
Empirically, such a method of storing the typical modes of the outside air temperature and the heating characteristic of the floor heating in the memory and determining the power-on time requires a considerably complicated measuring device and a long time. It seems to be.

【0008】[0008]

【発明が解決しようとする課題】本発明では、季節や気
候条件により異なる必要な通電時間(蓄熱時間)の変化
を数値解析法により求め、季節や気候条件に応じた通電
開始時刻を決定することにより、無駄な電力消費を省
き、経済的な床暖房システムの運転を可能とする制御方
法を提案しようとするものである。
In the present invention, a change in the required energization time (heat storage time) that varies depending on the season and climatic conditions is obtained by a numerical analysis method, and the energization start time according to the season and climatic conditions is determined. Therefore, it is intended to propose a control method that enables economical operation of a floor heating system while saving unnecessary power consumption.

【0009】[0009]

【課題を解決するための手段】本発明はつぎに記す発明
からなる。 〔1〕通電時間Tと通電開始前の温度要素θi との関係
を示す予測式(1)
The present invention comprises the following inventions. [1] Prediction formula (1) showing the relationship between the energization time T and the temperature element θi before the start of energization

【数3】T=Σai θi +bi ───(1) (ここで、i は温度測定位置要素の通し番号、温度要素
θi は温度測定位置要素i の通電開始前の温度、ai は
θi の係数、bi は定数項であり、θi は、蓄熱材温度
θ1 、床温度θ2 、室内温度θ3 および外気温度θ4
含む群から選ばれるものであり、床温度θ2 を必須の温
度要素θi とする。)に、Tおよびθi の実測値を入力
して、多変量解析により該式(1)の係数ai および定
数項bi を求めることにより重回帰式を得て、次に、得
られた重回帰式にθi の実測値を入力し、通電時間Tを
求めて、通電終了時刻(潜熱蓄熱材の放熱により床暖房
が開始される時刻)よりT時間前に通電を開始するよう
制御されていることを特徴とする蓄熱式暖房システムの
熱量投入の制御方法。
(3) T = Σai θi + bi ─────────── (1) (where i is the serial number of the temperature measurement position element, temperature element θi is the temperature before the energization of temperature measurement position element i, ai is the coefficient of θi, bi is a constant term, θi is selected from the group including heat storage material temperature θ 1 , floor temperature θ 2 , indoor temperature θ 3 and outside air temperature θ 4 , and floor temperature θ 2 is an essential temperature element θi. The measured values of T and .theta.i are input to the equation (1) and the coefficient ai and the constant term bi of the equation (1) are obtained by multivariate analysis to obtain a multiple regression equation, which is then obtained. The measured value of θi is input to the multiple regression equation, the energization time T is obtained, and the energization is controlled to start T hours before the energization end time (the time when floor heating is started by the heat dissipation of the latent heat storage material). A method for controlling the heat input of a heat storage type heating system, characterized in that

【0010】〔2〕通電開始前の蓄熱式暖房システムの
床表面温度θ2 と通電時間Tの関係を表すものとして求
められる簡易的な予測式(2)
[2] A simple prediction formula (2) obtained as a relationship between the floor surface temperature θ 2 of the heat storage type heating system before the start of energization and the energization time T

【数4】T=a2 θ2 +b2 ───(2) (ここで、θ2 は通電開始前の床温度、a2 はθ2 の係
数、b2 は定数項を表す。)に、Tおよびθ2 の実測値
を入力して、多変量解析により、前記式(1)の係数a
2 および定数項b2 を求めることにより重回帰式を求
め、次に、得られた重回帰式にθ2 の実測値を入力し、
通電時間Tを求めて、通電終了時刻(潜熱蓄熱材の放熱
により床暖房が開始される時刻)よりT時間前に通電を
開始するよう制御されていることを特徴とする蓄熱式暖
房システムの熱量投入の制御方法。
(4) T = a 2 θ 2 + b 2- (2) (where, θ 2 is the bed temperature before the start of energization, a 2 is the coefficient of θ 2 , and b 2 is a constant term). , T and θ 2 are input, and the coefficient a of the equation (1) is calculated by multivariate analysis.
A multiple regression equation is obtained by obtaining 2 and the constant term b 2 , and then the obtained multiple regression equation is input with the measured value of θ 2 .
The heat quantity of the heat storage type heating system is characterized in that the energization time T is obtained and the energization is controlled to start energization T hours before the energization end time (the time when floor heating is started by heat dissipation of the latent heat storage material). Control method of input.

【0011】〔3〕蓄熱式暖房システムが蓄熱式床暖房
システムである前記項〔1〕または〔2〕記載の蓄熱式
暖房システムの熱量投入の制御方法。
[3] The method for controlling heat input of the heat storage type heating system according to the above item [1] or [2], wherein the heat storage type heating system is a heat storage type floor heating system.

【0012】通電時間Tと通電開始前の蓄熱材温度、床
温度、室内温度および外気温度等の温度測定位要素i の
温度要素θi との関係を示す予測式は、次のように表さ
れる。
A prediction equation showing the relationship between the energization time T and the temperature element θi of the temperature measuring element i such as the heat storage material temperature, the floor temperature, the room temperature and the outside air temperature before the start of the energization is expressed as follows. .

【数5】T=Σai θi +bi ───(1) θi :温度測定位置要素i の通電開始前温度 ai :θi の係数 bi :定数項[Equation 5] T = Σai θi + bi ─── (1) θi: Temperature before energization of temperature measurement position element i ai: Coefficient of θi bi: Constant term

【0013】Tおよびθi の実測値を入力して、多変量
解析によりTの予測式(1)の係数ai および定数項b
i を求めて、重回帰式を得ることができる。ここで、温
度要素θi に関する該重回帰式の予測精度が十分あれ
ば、前記予測式(1)は床暖房設備を設置した建物にお
ける通電時間Tを予測する固有式となり、季節や気候条
件等にかかわらず、その時点、時点での通電開始前の温
度要素θi を得られた重回帰式に入力すれば、その時
点、時点での必要な通電時間Tを予測することができ
る。
The measured values of T and θi are input, and the coefficient a i and the constant term b of the prediction formula (1) for T are calculated by multivariate analysis.
The multiple regression equation can be obtained by obtaining i. Here, if the prediction accuracy of the multiple regression equation with respect to the temperature element θi is sufficient, the prediction equation (1) becomes a unique equation for predicting the energization time T in the building in which the floor heating facility is installed, and it depends on the season, climatic conditions, etc. Regardless, if the temperature element θi before the start of energization at that point in time is input to the obtained multiple regression equation, the required energization time T at that point in time can be predicted.

【0014】したがって、四箇所の温度測定位置要素i
における通電開始前の温度要素θi、すなわち蓄熱材温
度θ1 、床温度θ2 、室内温度θ3 および外気温度θ4
について、各々単独または組合せによる重回帰式と予測
精度を示す相関係数を求めたところ、温度要素θi とし
て床温度θ2 を用いることにより十分に予測精度の高い
重回帰式を得ることができることを見いだし、本発明を
完成させるに至った。以下、本発明を実施例により具体
的に説明する。
Therefore, the four temperature measurement position elements i
Before the start of energization in θ, that is, the heat storage material temperature θ 1 , the floor temperature θ 2 , the indoor temperature θ 3 and the outside air temperature θ 4
For each of the above, the multiple regression equations obtained individually or in combination and the correlation coefficient indicating the prediction accuracy were obtained.By using the bed temperature θ 2 as the temperature element θi, it is possible to obtain a multiple regression expression with sufficiently high prediction accuracy. They have found the present invention and completed the present invention. Hereinafter, the present invention will be described specifically with reference to examples.

【0015】[0015]

【実施例】【Example】

実施例1 某中学校の鉄筋コンクリート造3階建ての校舎に施工さ
れた潜熱蓄熱式電気床暖房につき、蓄熱材温度θ1 、床
温度θ2 、室内温度θ3 および外気温度θ4 を、熱電対
温度計にて24時間連続測定した。測定されたデータか
ら通電開始前の温度要素θi と通電時間Tにつき、45
標本を作製した。それらのデータを表1および表2に示
した。
Example 1 Regarding a latent heat storage type electric floor heating constructed in a reinforced concrete three-story school building of a certain junior high school, a heat storage material temperature θ 1 , a floor temperature θ 2 , an indoor temperature θ 3 and an outside air temperature θ 4 are set as a thermocouple temperature. The measurement was performed continuously for 24 hours. From the measured data, 45 for the temperature element θi and the energization time T before the energization starts
A specimen was prepared. Those data are shown in Tables 1 and 2.

【0016】[0016]

【表1】 ─────────────────────────────────── 月 日 θ1 θ2 θ3 θ4 T (℃) (℃) (℃) (℃) (分) ─────────────────────────────────── 12 1 14.97 13.29 3.56 13.12 280 12 2 22.19 17.16 6.67 15.87 200 12 3 22.21 16.48 2.59 15.22 240 12 4 22.94 16.45 -1.02 15.43 230 12 5 22.47 16.08 1.61 15.24 240 12 7 16.76 13.93 2.32 14.01 250 12 8 24.12 18.73 12.16 17.5 170 1 27 22.54 16.52 0.31 15.3 210 1 28 21.93 16.22 2.39 15.37 230 1 29 22.14 15.23 -3.0 14.18 220 2 3 13.77 10.48 -3.37 10.67 360 2 4 20.77 14.63 -1.82 13.7 240 2 5 22.3 15.8 0.4 14.86 220 2 6 23.8 16.58 -0.76 15.85 220 2 8 17.85 14.78 3.48 14.68 250 2 9 23.32 16.34 -5.06 14.99 220 2 10 21.51 15.39 -1.54 14.61 230 2 12 17.19 13.76 -0.17 13.67 260 2 15 14.73 12.04 -2.44 11.78 390 2 16 22.57 16.45 -0.41 15.48 220 2 17 24.6 18.53 6.72 17.58 170 2 18 24.07 18.75 4.17 17.63 170 ───────────────────────────────────[Table 1] ─────────────────────────────────── Date θ 1 θ 2 θ 3 θ 4 T (℃) (℃) (℃) (℃) (min) ──────────────────────────────────── 12 1 14.97 13.29 3.56 13.12 280 12 2 22.19 17.16 6.67 15.87 200 12 3 22.21 16.48 2.59 15.22 240 12 4 22.94 16.45 -1.02 15.43 230 12 5 22.47 16.08 1.61 15.24 240 12 7 16.76 13.93 2.32 14.01 250 12 8 24.12 18.73 12.16 17.5 170 1 27 22.54 16.52 0.31 15.3 210 1 28 21.93 16.22 2.39 15.37 230 1 29 22.14 15.23 -3.0 14.18 220 2 3 13.77 10.48 -3.37 10.67 360 2 4 20.77 14.63 -1.82 13.7 240 2 5 22.3 15.8 0.4 14.86 220 2 6 23.8 16.58- 0.76 15.85 220 2 8 17.85 14.78 3.48 14.68 250 2 9 23.32 16.34 -5.06 14.99 220 2 10 21.51 15.39 -1.54 14.61 230 2 12 17.19 13.76 -0.17 13.67 260 2 15 14.73 12.04 -2.44 11.78 390 2 16 22.57 16.45 -0.41 15.48 220 2 17 24.6 18.53 6.72 17.58 170 2 18 24.07 18.75 4.17 17.63 1 70 ───────────────────────────────────

【0017】[0017]

【表2】 ─────────────────────────────────── 月/日 θ1 θ2 θ3 θ4 T ─────────────────────────────────── 2 19 24.33 18.66 2.21 17.29 170 2 20 24.19 18.8 -1.81 17.39 170 2 22 17.02 15.16 3.27 14.61 240 2 23 24.66 20.16 3.22 18.04 140 2 24 22.86 18.47 0.15 16.67 180 2 25 23.95 19.33 -1.17 17.43 160 2 26 24.25 19.51 -1.79 17.64 160 2 27 24.06 19.51 -0.36 17.79 160 3 1 18.94 16.95 4.41 16.38 220 3 2 23.66 19.41 0.41 17.4 150 3 3 23.25 18.28 -2.3 16.33 170 3 4 23.82 18.94 0.06 17.15 160 3 5 24.16 19.18 0.4 17.42 150 3 6 24.9 19.92 1.39 18.15 140 3 8 18.5 16.34 3.69 15.34 220 3 9 22.65 18.04 1.85 16.25 180 3 10 23.16 18.39 1.07 16.7 170 3 11 23.44 18.84 1.42 17.02 160 3 12 23.41 18.42 1.04 16.52 170 3 15 15.34 13.61 -0.94 12.8 290 3 16 21.22 16.54 2.93 14.47 210 3 17 19.94 15.27 -1.62 13.5 220 3 18 21.08 16.06 -1.48 13.91 210 ───────────────────────────────────[Table 2] ─────────────────────────────────── Month / Day θ 1 θ 2 θ 3 θ 4 T ─────────────────────────────────── 2 19 24.33 18.66 2.21 17.29 170 2 20 24.19 18.8 -1.81 17.39 170 2 22 17.02 15.16 3.27 14.61 240 2 23 24.66 20.16 3.22 18.04 140 2 24 22.86 18.47 0.15 16.67 180 2 25 23.95 19.33 -1.17 17.43 160 2 26 24.25 19.51 -1.79 17.64 160 2 27 24.06 19.51 -0.36 17.79 160 3 1 18.94 16.95 4.41 16.38 220 3 2 23.66 19.41 0.41 17.4 150 3 3 23.25 18.28 -2.3 16.33 170 3 4 23.82 18.94 0.06 17.15 160 3 5 24.16 19.18 0.4 17.42 150 3 6 24.9 19.92 1.39 18.15 140 3 8 18.5 16.34 3.69 15.34 220 3 9 22.65 18.04 1.85 16.25 180 3 10 23.16 18.39 1.07 16.7 170 3 11 23.44 18.84 1.42 17.02 160 3 12 23.41 18.42 1.04 16.52 170 3 15 15.34 13.61 -0.94 12.8 290 3 16 21.22 16.54 2.93 14.47 210 3 17 19.94 15.27 -1.62 13.5 220 3 18 21.08 16.06 -1.48 13.91 210 ──── ──────────────────────────────

【0018】これらのデータを用いて、各温度要素θi
(蓄熱材温度θ1 、床温度θ2 、室内温度θ3 および外
気温度θ4 )につき、各々単独または組み合わせた予測
式(2)の重回帰式および実測値Tとの相関係数rを求
めた。その結果を表3に示した。
Using these data, each temperature element θi
For each of the heat storage material temperature θ 1 , the floor temperature θ 2 , the indoor temperature θ 3 and the outside air temperature θ 4 , the multiple regression equation of the prediction equation (2) and the correlation coefficient r with the actual measurement value T are obtained individually or in combination. It was Table 3 shows the results.

【0019】[0019]

【表3】 ─────────────────────────────────── No. 重回帰式 相関係数:r ─────────────────────────────────── 1 T=−22.622θ2 +590.09 0.9560 2 T=−15.043θ1 +534.11 0.8719 3 T=−27.653θ3 +641.30 0.9241 4 T=−1.5891θ1 −20.678θ2 +591.68 0.9568 5 T=−26.346θ2 +4.8299θ3 +577.33 0.9567 6 T=−22.615θ2 −0.019934θ4 +590.00 0.9560 7 T=−5.1356θ1 −20.006θ3 +632.72 0.9366 8 T=−1.4549θ1 −24.127θ2 +4.2605θ3 +580.28 0.9574 ───────────────────────────────────[Table 3] ─────────────────────────────────── No. Multiple regression equation Correlation coefficient: r ─ ────────────────────────────────── 1 T = −22.622 θ 2 +590.09 0.9560 2 T = −15.043 θ 1 +534.11 0.8719 3 T = -27.653θ 3 +641.30 0.9241 4 T = -1.5891θ 1 -20.678θ 2 +591.68 0.9568 5 T = -26.346θ 2 + 4.8299θ 3 +577.33 0.9567 6 T = −22.615 θ 2 −0.019934 θ 4 +590.00 0.9560 7 T = −5.1356 θ 1 −20.006 θ 3 +632.72 0.9366 8 T = −1.4549 θ 1 −24.127 θ 2 +4.2605 θ 3 +580.28 0.9574 ──── ───────────────────────────────

【0020】表3よりわかるように、床温度単独でも相
関係数rは0.9560と高い予測精度が得られることが認め
られた。床温度と床温度以外の温度要素との組合せにお
いても、床温度単独の場合と比較して、予測精度の向上
は殆ど認められないことから、温度要素としては通電前
の床温度θ2 のみの予測式(1)について、多変量解析
して求めた次の重回帰式(3)で、通電時間Tを精度高
く予測することができることがわかった。
As can be seen from Table 3, it was confirmed that the correlation coefficient r was 0.9560 and a high prediction accuracy was obtained even when the bed temperature was used alone. Even in the combination of the floor temperature and a temperature element other than the floor temperature, almost no improvement in the prediction accuracy is recognized as compared with the case of the floor temperature alone, and therefore the floor temperature θ 2 before energization is the only temperature element. Regarding the prediction formula (1), it was found that the energization time T can be predicted with high accuracy by the following multiple regression formula (3) obtained by performing multivariate analysis.

【0021】[0021]

【数6】T=−22.622θ2 +590.09 ───(3)[Equation 6] T = −22.622 θ 2 +590.09 ─── (3)

【0022】実施例2 実施例1において、通電前の床温度θ2 と通電時間Tと
の間に高い相関があることがわかった。そして、θ2
Tとの線形回帰式により、蓄熱に必要最小限の通電時間
が予測可能であることがわかった。そこで、この線形回
帰式を用いて通電時間を予測しヒーターへの通電時間を
制御(以下、このことを予測制御ということがある。)
した場合の消費電力削減効果および暖房効果を検証する
ため、平成7年3月22日から27日の期間に、某化学
会社の鉄筋コンクリート造の研究所講堂の潜熱貯蓄熱式
電気床暖房装置を用いて上記の予測制御方式による実験
運転を行った。比較実験として同年3月13日から17
日の期間に非制御運転も行った。消費電力および暖房効
果(室内温度の推移)を比較した結果を表4および表5
に示した。
Example 2 In Example 1, it was found that there is a high correlation between the bed temperature θ 2 before energization and the energization time T. Then, it was found that the minimum energization time required for heat storage can be predicted by the linear regression equation of θ 2 and T. Therefore, the energization time is predicted by using this linear regression equation and the energization time to the heater is controlled (hereinafter, this may be referred to as predictive control).
In order to verify the power consumption reduction effect and the heating effect in the case of using, the latent heat storage heat storage type electric floor heating system of the reinforced concrete construction laboratory auditorium of a certain chemical company was used during the period from March 22 to 27, 1995. The experimental operation was performed by the above predictive control method. As a comparative experiment, 17 from March 13 of the same year
Uncontrolled operation was also performed during the day. The results of comparing the power consumption and the heating effect (transition of the indoor temperature) are shown in Table 4 and Table 5.
It was shown to.

【0023】[0023]

【表4】 予測制御運転の結果 ─────────────────────────────────── 月日 床温度 消費電力 翌日の室内温度〔℃〕 〔℃〕 〔kwh 〕 8:00 11:00 14:00 17:00 ─────────────────────────────────── 3 22 24.9 69.3 − − 23.3 22.2 23 22.4 96.2 23.3 22.8 22.4 21.5 24 22.0 101.4 23.1 22.1 21.4 20.4 25 20.8 115.1 21.7 21.0 20.2 19.2 26 19.8 126.3 21.2 20.9 20.3 20.0 27 20.2 121.1 21.3 20.6 20.1 20.0 平均値 21.7 104.9 22.1 21.5 21.3 20.6 ───────────────────────────────────[Table 4] Results of predictive control operation ─────────────────────────────────── Month day Floor temperature Power consumption Room temperature on the next day [℃] [℃] [kwh] 8:00 11:00 14:00 17:00 ────────────────────────── ────────── 3 22 24.9 69.3 − − 23.3 22.2 23 22.4 96.2 23.3 22.8 22.4 21.5 24 22.0 101.4 23.1 22.1 21.4 20.4 25 20.8 115.1 21.7 21.0 20.2 19.2 26 19.8 126.3 21.2 20.9 20.3 20.0 27 20.2 121.1 21.3 20.6 20.1 20.0 Average 21.7 104.9 22.1 21.5 21.3 20.6 ────────────────────────────────────

【0024】[0024]

【表5】 非御運転の結果 ─────────────────────────────────── 月日 床温度 消費電力 翌日の室内温度〔℃〕 〔℃〕 〔kwh 〕 8:00 11:00 14:00 17:00 ─────────────────────────────────── 3 13 16.5 250.2 21.8 21.1 21.3 20.9 14 21.3 236.1 23.1 22.2 21.6 21.6 15 22.2 228.0 23.6 22.8 − 23.1 16 23.5 183.4 23.9 23.2 22.6 22.1 17 23.3 178.5 23.9 22.8 22.1 21.2 平均値 21.4 215.2 23.3 22.4 21.9 21.8 ───────────────────────────────────[Table 5] Non-operating results ─────────────────────────────────── Month floor temperature Power consumption Room temperature on the next day [℃] [℃] [kwh] 8:00 11:00 14:00 17:00 ────────────────────────── ────────── 3 13 16.5 250.2 21.8 21.1 21.3 20.9 14 21.3 236.1 23.1 22.2 21.6 21.6 15 22.2 228.0 23.6 22.8 − 23.1 16 23.5 183.4 23.9 23.2 22.6 22.1 17 23.3 178.5 23.9 22.8 22.1 21.2 Average 21.4 215.2 23.3 22.4 21.9 21.8 ───────────────────────────────────

【0025】表4および表5からわかるように、予測制
御を行った場合には、平均して51.3%の消費電力が
削減された。また暖房効果についても、各時間帯での室
内温度は21℃前後を保持しており、快適な暖房が達成
されていたことがわかる。
As can be seen from Tables 4 and 5, when the predictive control was performed, the power consumption was reduced by 51.3% on average. Regarding the heating effect, the room temperature was kept around 21 ° C in each time zone, indicating that comfortable heating was achieved.

【0026】予測制御運転に用いた通電時間の予測式
(線形回帰式)は、非制御運転における通電時間Tと床
温度θ2 の測定値をもとにして作成した。以下にその予
測式を記す。
The energization time prediction formula (linear regression formula) used in the predictive control operation was prepared based on the measured values of the energization time T and the floor temperature θ 2 in the non-control operation. The prediction formula is described below.

【0027】[0027]

【数7】T=−19.0θ2 +641 ───(4) 残差平均: 7.6分 相関係数: 0.988[Equation 7] T = -19.0θ 2 +641 ─── (4) Residual average: 7.6 minutes Correlation coefficient: 0.988

【0028】また、非制御運転における通電時間Tにつ
いて、実測値(純蓄熱分)と上記式(4)によって求め
た計算値との相関を図1に示す。
FIG. 1 shows the correlation between the actually measured value (pure heat storage) and the calculated value obtained by the above equation (4) for the energization time T in the non-controlled operation.

【0029】[0029]

【発明の効果】蓄熱式暖房システムの通電開始前の床温
度θ2 を測定すれば、対象建物の暖房投入熱量に必要な
通電時間Tを精度高く予測することができる。この予測
制御の方式を蓄熱式暖房システムに組み込んで運転する
ことにより、消費電力が削減され、経済的なかつ快適な
暖房が可能となった。
By measuring the floor temperature θ 2 of the heat storage type heating system before the start of energization, it is possible to accurately predict the energization time T required for the heating input heat amount of the target building. By incorporating this predictive control method into a heat storage type heating system and operating it, power consumption was reduced and economical and comfortable heating became possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】通電時間Tの実測値と計算値との相関を表す。FIG. 1 shows a correlation between an actually measured value and a calculated value of an energization time T.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】通電時間Tと通電開始前の温度要素θi と
の関係を示す予測式(1) 【数1】T=Σai θi +bi ───(1) (ここで、i は温度測定位置要素の通し番号、温度要素
θi は温度測定位置要素i の通電開始前の温度、ai は
θi の係数、bi は定数項であり、θi は、蓄熱材温度
θ1 、床温度θ2 、室内温度θ3 および外気温度θ4
含む群から選ばれるものであり、床温度θ2 は必須の温
度要素θi とする。)に、Tおよびθi の実測値を入力
して、多変量解析により該式(1)の係数ai および定
数項bi を求めることにより重回帰式を得て、次に、得
られた重回帰式にθi の実測値を入力し、通電時間Tを
求めて、通電終了時刻(潜熱蓄熱材の放熱により床暖房
が開始される時刻)よりT時間前に通電を開始するよう
制御されていることを特徴とする蓄熱式暖房システムの
熱量投入の制御方法。
1. A prediction formula (1) showing the relationship between the energization time T and the temperature element .theta.i before the energization is started. (1) T = .SIGMA.ai .theta.i + bi --- (1) (where i is the temperature measurement position. The element serial number, the temperature element θi is the temperature of the temperature measurement position element i before the start of energization, ai is the coefficient of θi, bi is a constant term, and θi is the heat storage material temperature θ 1 , the floor temperature θ 2 , the indoor temperature θ 3 and the outside air temperature θ 4 and the floor temperature θ 2 is an indispensable temperature element θi.) The measured values of T and θi are input to the equation ( The multiple regression equation is obtained by obtaining the coefficient ai and the constant term bi of 1), and then the measured value of θi is input to the obtained multiple regression equation to obtain the energization time T and the energization end time (latent heat). Specially, it is controlled to start energization T hours before the time when floor heating starts due to heat dissipation from the heat storage material). The method of heat-up of the heat storage heating system to.
【請求項2】通電開始前の蓄熱式暖房システムの床温度
θ2 と通電時間Tの関係を表すものとして求められる簡
易的な予測式(2) 【数2】T=a2 θ2 +b2 ───(2) (ここで、θ2 は通電開始前の床温度、a2 はθ2 の係
数、b2 は定数項を表す。)に、Tおよびθ2 の実測値
を入力して、多変量解析により、該式(2)の係数a2
および定数項b2 を求めることにより重回帰式を得て、
次に、得られた重回帰式にθ2 の実測値を入力し、通電
時間Tを求めて、通電終了時刻(潜熱蓄熱材の放熱によ
り床暖房が開始される時刻)よりT時間前に通電を開始
するよう制御されていることを特徴とする蓄熱式暖房シ
ステムの熱量投入の制御方法。
2. A simple prediction equation (2) obtained as a relationship between the floor temperature θ 2 of the heat storage type heating system before the start of energization and the energization time T (2) T = a 2 θ 2 + b 2 ─── (2) (where θ 2 is the bed temperature before the start of energization, a 2 is the coefficient of θ 2 and b 2 is a constant term), enter the measured values of T and θ 2 . , The coefficient a 2 of the equation (2) is calculated by multivariate analysis.
And a constant term b 2 are obtained to obtain a multiple regression equation,
Next, input the measured value of θ 2 to the obtained multiple regression equation, calculate the energization time T, and energize it T time before the energization end time (the time when floor heating is started by the heat dissipation of the latent heat storage material). The method for controlling the heat input of the heat storage type heating system is characterized by being controlled so as to start.
【請求項3】蓄熱式暖房システムが蓄熱式床暖房システ
ムである請求項1または2記載の蓄熱式暖房システムの
熱量投入の制御方法。
3. The method for controlling heat input to the heat storage type heating system according to claim 1, wherein the heat storage type heating system is a heat storage type floor heating system.
JP17616695A 1995-07-12 1995-07-12 Control method of heat input of regenerative heating system Expired - Fee Related JP3536445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17616695A JP3536445B2 (en) 1995-07-12 1995-07-12 Control method of heat input of regenerative heating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17616695A JP3536445B2 (en) 1995-07-12 1995-07-12 Control method of heat input of regenerative heating system

Publications (2)

Publication Number Publication Date
JPH0926147A true JPH0926147A (en) 1997-01-28
JP3536445B2 JP3536445B2 (en) 2004-06-07

Family

ID=16008825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17616695A Expired - Fee Related JP3536445B2 (en) 1995-07-12 1995-07-12 Control method of heat input of regenerative heating system

Country Status (1)

Country Link
JP (1) JP3536445B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101042A (en) * 2005-10-04 2007-04-19 Sanden Corp Hot water supply device
JP2008298389A (en) * 2007-06-01 2008-12-11 Tetsuzo Fukuda Floor heating system
WO2014109291A1 (en) * 2013-01-11 2014-07-17 パナソニック株式会社 Device for estimating thermal characteristics of room, program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101042A (en) * 2005-10-04 2007-04-19 Sanden Corp Hot water supply device
JP2008298389A (en) * 2007-06-01 2008-12-11 Tetsuzo Fukuda Floor heating system
WO2014109291A1 (en) * 2013-01-11 2014-07-17 パナソニック株式会社 Device for estimating thermal characteristics of room, program
JP2014135015A (en) * 2013-01-11 2014-07-24 Panasonic Corp Room heat characteristic estimation device and program
CN104919477A (en) * 2013-01-11 2015-09-16 松下知识产权经营株式会社 Device for estimating thermal characteristics of room, and program
CN104919477B (en) * 2013-01-11 2018-09-25 松下知识产权经营株式会社 The thermal characteristics estimation device in room and the thermal characteristics method of estimation in room

Also Published As

Publication number Publication date
JP3536445B2 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
US5115967A (en) Method and apparatus for adaptively optimizing climate control energy consumption in a building
US8204628B2 (en) Setpoint recovery with utility time of day pricing
US6478233B1 (en) Thermal comfort controller having an integral energy savings estimator
US5219119A (en) Thermostat-type setback controller having a recovery set point which depends on the time-based value of a sensor signal
US20060124629A1 (en) Water heater control system and method for controlling temperature with same
EP0182239B1 (en) System for determining the optimum start/stop time of a temperature control system
AU4231793A (en) Energy-conserving thermostat and method
US4759498A (en) Thermostatic control without temperature droop using duty cycle control
US6176306B1 (en) Method and device for controlling operation of heat pump
JPH0131101B2 (en)
US4817705A (en) Thermostatic control without temperature droop using duty cycle control
JP3536445B2 (en) Control method of heat input of regenerative heating system
EP3306204A1 (en) Hot-water heating system, control device, and control method
JP2602932B2 (en) Heating and cooling timer
JP3138959B2 (en) Heat storage type electric floor heating system control system
JP3469943B2 (en) Control method of heat input of regenerative heating system
JPS6338855A (en) Temperature control method for heat accumulating tank
JP2006038387A (en) Regenerative floor heating device
JPH02251042A (en) Air conditioning prediction control device
US11346571B2 (en) Method for controlling an air conditioning system using an economic balance point and a capacity balance point
JPH0876858A (en) Heat source control system
EP0150888A3 (en) Computer controlled air consitioning systems
JPS6030930A (en) Control device for hot water storage type electric water heater
JP2819824B2 (en) Heat storage amount control device for heat storage type electric heater
JPS606458B2 (en) air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040308

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees