JPH0926102A - Ash cooler of pressure fluidized bed boiler - Google Patents
Ash cooler of pressure fluidized bed boilerInfo
- Publication number
- JPH0926102A JPH0926102A JP17566495A JP17566495A JPH0926102A JP H0926102 A JPH0926102 A JP H0926102A JP 17566495 A JP17566495 A JP 17566495A JP 17566495 A JP17566495 A JP 17566495A JP H0926102 A JPH0926102 A JP H0926102A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- ash
- fluidized bed
- ash cooler
- bed boiler
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
- Gasification And Melting Of Waste (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、加圧流動層ボイラの排
気から分離された灰を冷却する灰クーラに関する。FIELD OF THE INVENTION The present invention relates to an ash cooler for cooling ash separated from the exhaust of a pressurized fluidized bed boiler.
【0002】[0002]
【従来の技術】加圧下で石炭を流動燃焼させる加圧流動
層ボイラ(Pressurised Fluidized Bed Combuster)は、
ガスタービンと組み合わせたコンバインドサイクルによ
り40%以上の熱効率を有し、炉内脱硫率が高く、NO
x の発生量が少ない、等の特徴を有することから、従来
の微粉焚ボイラに代わる新型ボイラとして現在開発が進
められている。2. Description of the Related Art A pressurized fluidized bed combuster for fluidized combustion of coal under pressure is
Combined cycle combined with gas turbine has thermal efficiency of 40% or more, high desulfurization rate in furnace, NO
Since it has features such as a small amount of x generation, it is currently being developed as a new type boiler that replaces the conventional fine powder boiler.
【0003】かかる加圧流動層ボイラは、例えば図2に
示すように、ボイラ本体1、サイクロン2、灰クーラ
3、ベッド材貯蔵容器4等が圧力容器5内に格納された
構成のものであり、外部から供給さた石炭Cをボイラ本
体1内で燃焼させ、その排ガスがサイクロン2に送ら
れ、サイクロン2で除去された灰が灰クーラ3で冷却さ
れて圧力容器5の外部に排出され、灰を除去された排ガ
スが外部のガスタービン(図示せず)に供給され仕事
(例えば発電機の駆動)をするようになっている。Such a pressurized fluidized bed boiler has a structure in which a boiler body 1, a cyclone 2, an ash cooler 3, a bed material storage container 4 and the like are housed in a pressure container 5, as shown in FIG. 2, for example. , Coal C supplied from the outside is burned in the boiler body 1, the exhaust gas is sent to the cyclone 2, the ash removed by the cyclone 2 is cooled by the ash cooler 3 and discharged to the outside of the pressure vessel 5, The ash-removed exhaust gas is supplied to an external gas turbine (not shown) to perform work (for example, driving a generator).
【0004】また、ボイラ本体1内には、石炭灰、石灰
石等のベッド材が下方から供給される空気Aにより流動
した流動層Bが形成されており、この流動層B内には、
水蒸気を発生させるための蒸発器6a、過熱器6b、及
び再熱器6cが挿入されている。流動層B内で石炭の燃
焼により発生した熱により、蒸発器6a内で水が蒸発し
て水蒸気となり、過熱器6b内で水蒸気が更に加熱され
て過熱蒸気となり、この過熱蒸気は外部に設けられた蒸
気タービン(図示せず)で膨張し仕事をする。更に、蒸
気タービンで温度が下がった蒸気は、再熱器6cで再度
加熱されて過熱蒸気となり、外部の蒸気タービンで再び
仕事をするようになっている。Further, a fluidized bed B in which a bed material such as coal ash or limestone is flowed by air A supplied from below is formed in the boiler body 1. In the fluidized bed B,
An evaporator 6a for generating steam, a superheater 6b, and a reheater 6c are inserted. Due to the heat generated by the combustion of coal in the fluidized bed B, water is evaporated in the evaporator 6a to become steam, and the steam is further heated in the superheater 6b to become superheated steam, which is provided outside. The steam turbine (not shown) expands and does work. Further, the steam whose temperature has dropped in the steam turbine is reheated by the reheater 6c to become superheated steam, and the steam turbine outside works again.
【0005】上述した灰クーラ3は千鳥配置の伝熱管で
構成されるが、サイクロン2で分離され少量のガスを含
み流動状態となった多量の灰が伝熱管内を流れるため、
途中で分岐、合流などすると伝熱管が摩耗するのでサイ
クロン2からの1本の灰輸送管に連結した1本の伝熱管
が千鳥配置で連続し下方から上方に灰が流れるようにな
っている。灰クーラ3より流出した灰は外部に設けられ
た図示しない灰処理設備に送られ処理される。図3は従
来の灰クーラの構成を示し、(A)は横断面図、(B)
は縦断面図である。灰クーラ3は2基のサイクロン2か
らそれぞれ1本づつ出された灰輸送管と接続されてい
る。伝熱管8は水平にかつ千鳥配列され、1本の灰輸送
管に連結した伝熱管8は両端で接続されて下方から上方
に一本に連結されている。(A)において伝熱管に記載
した×印は灰の流れが紙面の表から裏側であることを示
し、黒丸は紙面の裏側から表側へ流れることを示す。胴
本体9の頂部に給気口10、底部に排気口11が設けら
れボイラ1に供給する空気Aの一部を給気口10より供
給して伝熱管8を冷却する。The above-mentioned ash cooler 3 is composed of staggered heat transfer tubes, but since a large amount of ash separated by the cyclone 2 and containing a small amount of gas and flowing into the heat transfer tube flows,
If the heat transfer tube is worn off if branched or merged in the middle, one heat transfer tube connected to one ash transport tube from the cyclone 2 is continuously arranged in a staggered arrangement so that ash flows from the bottom to the top. The ash flowing out from the ash cooler 3 is sent to an ash processing facility (not shown) provided outside to be processed. FIG. 3 shows the structure of a conventional ash cooler, (A) is a cross-sectional view, (B)
Is a longitudinal sectional view. The ash cooler 3 is connected to the ash transport pipes, one from each of the two cyclones 2. The heat transfer pipes 8 are arranged horizontally and in a staggered arrangement, and the heat transfer pipes 8 connected to one ash transport pipe are connected at both ends and are connected to one from the bottom to the top. In (A), a cross mark on the heat transfer tube indicates that the flow of ash is from the front side to the back side of the paper surface, and a black circle indicates that it flows from the back side of the paper surface to the front side. An air supply port 10 is provided on the top of the body 9 and an exhaust port 11 is provided on the bottom of the body 9, and a part of the air A supplied to the boiler 1 is supplied from the air supply port 10 to cool the heat transfer tube 8.
【0006】[0006]
【発明が解決しようとする課題】灰を所定の温度まで冷
却するためには空気Aの温度を一定とすれば、空気Aと
接触する伝熱管8が所定の長さを有する必要がある。水
平方向の長さは圧力容器5の大きさとその中の機器の配
置によって決められ、一定の長さしか取れないため図3
に示すように高さ方向に伝熱管8を多段(例えば12
段)に配置している。このため灰クーラ3の高さが大き
くなっている。灰クーラ3は伝熱管8の灰詰りや摩耗が
大きくなると、圧力容器5の外側に取り出して補修が行
われる。このため圧力容器5には図2に示すように灰ク
ーラ3近傍の圧力容器5にサービスホール7が設けられ
ている。灰クーラ3の高さが大きくなるとサービスホー
ル7が大きくなりコストアップとなる。また灰クーラ3
の高さが大きくなると空気Aの流路の断面積が少なくな
り長くなるため圧力損失が大きくなるという問題も生じ
ていた。In order to cool the ash to a predetermined temperature, if the temperature of the air A is constant, the heat transfer tube 8 in contact with the air A needs to have a predetermined length. The length in the horizontal direction is determined by the size of the pressure vessel 5 and the arrangement of the equipment in the pressure vessel 5, and since only a fixed length can be obtained, FIG.
As shown in, the heat transfer tubes 8 are arranged in multiple stages in the height direction (for example, 12
It is arranged in a row. Therefore, the height of the ash cooler 3 is increased. The ash cooler 3 is taken out to the outside of the pressure vessel 5 and repaired when ash clogging or wear of the heat transfer tube 8 becomes large. Therefore, the pressure vessel 5 is provided with a service hole 7 in the pressure vessel 5 near the ash cooler 3 as shown in FIG. If the height of the ash cooler 3 becomes large, the service hole 7 becomes large and the cost increases. Also ash cooler 3
When the height of the air A becomes large, the cross-sectional area of the flow path of the air A becomes small and becomes long.
【0007】本発明は、上述した問題点を解決するため
に創案されたものである。すなわち、本発明の目的は、
高さを低くして圧力容器のサービスホールを小さくする
灰クーラを提供することにある。また伝熱管を冷却する
空気の圧力損失を少なくする灰クーラを提供することに
ある。The present invention was devised to solve the above-mentioned problems. That is, the object of the present invention is:
The purpose is to provide an ash cooler that reduces the height and reduces the service hole of the pressure vessel. Another object is to provide an ash cooler that reduces the pressure loss of the air that cools the heat transfer tubes.
【0008】[0008]
【課題を解決するための手段】本発明によれば、加圧流
動層ボイラの排気からサイクロンにより分離された灰を
ボイラへ供給する給気により冷却する加圧流動層ボイラ
の灰クーラにおいて、伝熱管を水平に且つ千鳥配列し、
伝熱管端部を水平方向に所定本連結し、次に斜め1段上
方の伝熱管と連結し、水平戻り方向に前記所定本連結
し、次に1段上方の伝熱管と連結し、以下同様の繰り返
し連結をする。According to the present invention, in an ash cooler of a pressurized fluidized bed boiler, the ash separated from the exhaust of the pressurized fluidized bed boiler by a cyclone is supplied to the boiler to cool the ash. The heat tubes are arranged horizontally and in a staggered arrangement,
The end of the heat transfer tube is connected in a predetermined direction in the horizontal direction, then connected to the heat transfer tube one step above in the diagonal direction, the predetermined connection is made in the horizontal return direction, and then connected to the heat transfer tube in the next step up, and so on. Is repeatedly connected.
【0009】上記本発明の構成により、伝熱管を水平方
向へ所定本連結し、次に斜め1段上方に連結する。これ
により従来のように各伝熱管を斜め1段上方に連結すこ
とを繰り返し行う場合と比べ、(所定本−1)段、伝熱
管の高さを低くすることができる。また斜め1段上方に
連結した後は、再び水平方向へ所定本戻るので、更に
(所定本−1)段、伝熱管の高さを低くすることができ
る。このような連結方法を繰り返すことにより灰クーラ
の高さを大幅に低くし幅を広くするので、横断面形状が
正方形に近づきサービスホールの大きさを小さくするこ
とができる。このように横断面形状が正方形に近づくこ
とにより伝熱管を冷却する空気流路の断面積が広がり長
さ(高さ)が短かくなるので、流入する空気の圧力損失
が少なくなる。With the above-described structure of the present invention, a predetermined number of heat transfer tubes are connected in the horizontal direction, and then connected one diagonally above. As a result, the height of the heat transfer tube can be reduced by (predetermined number -1) steps, as compared with the case where the connection of each heat transfer tube is diagonally upward one step is repeated as in the conventional case. Further, after connecting one diagonally above, a predetermined number of lines are returned in the horizontal direction again, so that the height of the heat transfer tube can be further reduced by (predetermined number-1) stages. By repeating such a connecting method, the height of the ash cooler is greatly reduced and the width thereof is widened, so that the cross-sectional shape approaches a square and the size of the service hole can be reduced. Since the cross-sectional shape approaches a square in this way, the cross-sectional area of the air flow passage for cooling the heat transfer tube is expanded and the length (height) is shortened, so that the pressure loss of the inflowing air is reduced.
【0010】[0010]
【発明の実施の形態】以下、本発明の好ましい実施の形
態を図面を参照して説明する。なお、各図において、共
通する部分には同一の符号を付して使用する。図1は、
本発明の実施の形態を示す灰クーラの構成図で(A)は
横断面、(B)は縦断面図を示す。本灰クーラ3は図3
で示した灰クーラ3と同様に2個のサイクロン2からそ
れぞれ1本づつ灰輸送管が導設され、これに伝熱管8が
それぞれ接続されている。8aは第1伝熱管群で一方の
灰輸送管に接続され、8bは第2伝熱管群で他方の灰輸
送管に接続されている。(A)に示すように伝熱管8は
水平に1段に6本づつ千鳥配列されている。伝熱管8の
×印は灰の流れが紙面の表から裏側であることを示し、
黒丸は紙面の裏側から表側へ灰が流れることを示す。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG.
In the configuration diagram of the ash cooler showing the embodiment of the present invention, (A) is a cross-sectional view and (B) is a vertical cross-sectional view. This ash cooler 3 is shown in Fig. 3.
Similar to the ash cooler 3 shown in, one ash transport pipe is introduced from each of the two cyclones 2, and a heat transfer pipe 8 is connected thereto. The first heat transfer tube group 8a is connected to one ash transport tube, and the second heat transfer tube group 8b is connected to the other ash transport tube. As shown in (A), the heat transfer tubes 8 are horizontally arranged in a staggered manner with six tubes in each stage. The x mark on the heat transfer tube 8 indicates that the ash flow is from the front side to the back side of the paper,
Black circles indicate that ash flows from the back side of the paper to the front side.
【0011】第1、第2伝熱管群8a,8bはそれぞれ
1段では水平に3本接続され、次に斜め上方に1段上が
り、2段では水平に3本1段に対して戻る方向に接続さ
れている。次に斜め上方に1段上がり、3段と4段は1
段と2段の繰り返しとなっている。このように水平方向
へn本連続すると、図3に示した従来の各段とも斜め上
方に接続してゆく方法に比べ、1段当たり(水平連続本
n−1)段、伝熱管8の段数を減らすことができる。図
3と図1を比較してみると図3の従来の方法では12段
であるが図1では4段となっている。これは1段当たり
(3−1=2)段減らせるため4段では8段減らせるこ
とになり、12−8=4段となる。このように水平方向
n本連続すると、伝熱管8の段数が大幅に減少するため
胴本体9は幅が広がり、横断面形状が図3に示した長方
形から正方形に近づいてくる。The first and second heat transfer tube groups 8a and 8b are each connected horizontally in three stages in one stage, then move up one stage diagonally upward, and in the second stage, three lines are horizontally returned to the first stage. It is connected. Next, go up one step diagonally upwards and go up 1 step for 3 steps and 4 steps
It is a repetition of two steps. In this way, when n lines are continuously connected in the horizontal direction, compared to the conventional method in which each of the stages is connected diagonally upward as shown in FIG. 3, one horizontal line (horizontal continuous line n−1) and the number of heat transfer tubes 8 are provided. Can be reduced. Comparing FIG. 3 with FIG. 1, the conventional method of FIG. 3 has 12 stages, but FIG. 1 has 4 stages. Since this can be reduced by (3-1 = 2) steps per step, it means that 8 steps can be reduced in 4 steps, which is 12-8 = 4 steps. As described above, when the number n of the heat transfer tubes is continuous in the horizontal direction, the number of stages of the heat transfer tubes 8 is significantly reduced, so that the width of the body 9 becomes wider, and the cross-sectional shape approaches from the rectangle shown in FIG. 3 to a square.
【0012】胴本体9の頂部にはボイラ1へ供給する空
気の一部を導入する給気口10が設けられ、底部にはこ
の排気口11が設けられている。伝熱管8の長さ方向に
はこの給気口10と排気口11は複数個設けられ、空気
Aが胴本体9内を均一に流れるようになっている。胴本
体9は幅方向に広がったので幅方向の空気Aの分布を均
一にするため整流体12が給気口10出口と排気口11
入口に設けられている。給気口10と排気口11とはフ
ランジ13により図示しないダクトと接続されているの
で、このフランジ13のボルトを外すことによりダクト
より切り離すことができる。An air supply port 10 for introducing a part of the air supplied to the boiler 1 is provided at the top of the body 9, and an exhaust port 11 is provided at the bottom. A plurality of the air supply ports 10 and the exhaust ports 11 are provided in the lengthwise direction of the heat transfer tube 8 so that the air A uniformly flows in the body 9. Since the body 9 is widened in the width direction, the rectifying body 12 is provided with the rectifying body 12 in order to make the distribution of the air A uniform in the width direction.
It is provided at the entrance. Since the air supply port 10 and the air exhaust port 11 are connected to a duct (not shown) by a flange 13, they can be separated from the duct by removing the bolts of the flange 13.
【0013】このように水平方向に伝熱管8を連続する
ことにより、胴本体9の横断面を正方形に近づけること
ができるので、灰クーラ3の高さも低くなり、圧力容器
5にもうけるサービスホールの大きさを小さくすること
ができる。また胴本体9の幅が広がり高さが大幅に低下
することにより内部を流れる空気Aの圧力損失も減少す
る。上述の実施の形態では伝熱管8の水平方向の連続本
数n=3の例を説明したが、これは一例を示したもので
nを変えることにより伝熱管8の段数を所望の値にする
ことができる。また、2本の灰輸送管が導入される場合
について説明したが、別の本数となっても本発明は同様
に適用できるBy continuously connecting the heat transfer tubes 8 in the horizontal direction in this way, the cross-section of the body 9 can be made closer to a square, so that the height of the ash cooler 3 is lowered and the service hole for the pressure vessel 5 is reduced. The size can be reduced. Further, the width of the body 9 is widened and the height thereof is significantly reduced, so that the pressure loss of the air A flowing therein is also reduced. In the above-described embodiment, an example in which the number of continuous heat transfer tubes 8 in the horizontal direction n = 3 has been described, but this is an example, and the number of stages of the heat transfer tubes 8 can be set to a desired value by changing n. You can Although the case where two ash transport pipes are introduced has been described, the present invention can be similarly applied even if the number of ash transport pipes is different.
【0014】[0014]
【発明の効果】上述したように、本発明は伝熱管を水平
にかつ千鳥配列し、水平方向に所定本連続して接続する
ことにより、高さ方向の段数を減らし灰クーラの高さを
低減できるので、サービスホールの大きさを減少させそ
の製作コストを削減することができる。また高さを減少
することにより幅方向が広がり伝熱管の冷却空気の圧力
損失を減少することができる。また灰クーラは高さが低
くなり幅が広くなるので耐震設計が容易となり、さらに
製作、据え付けも容易となる。As described above, according to the present invention, the heat transfer tubes are arranged horizontally and in a staggered manner, and a predetermined number of them are continuously connected in the horizontal direction to reduce the number of stages in the height direction and reduce the height of the ash cooler. Therefore, the size of the service hole can be reduced and the manufacturing cost can be reduced. Further, by reducing the height, the width direction is expanded and the pressure loss of the cooling air in the heat transfer tube can be reduced. In addition, the ash cooler has a low height and a wide width, which facilitates seismic design, and also facilitates manufacture and installation.
【図1】本発明の灰クーラの構成を示し、(A)は横断
面図、(B)は縦断面図である。FIG. 1 shows a configuration of an ash cooler of the present invention, (A) is a horizontal sectional view and (B) is a vertical sectional view.
【図2】加圧流動層ボイラの構成の一例を示す図であ
る。FIG. 2 is a diagram showing an example of a configuration of a pressurized fluidized bed boiler.
【図3】従来の灰クーラの構成の一例を示し、(A)は
横断面図、(B)は縦断面図である。3A and 3B show an example of the configuration of a conventional ash cooler, in which FIG. 3A is a horizontal sectional view and FIG. 3B is a vertical sectional view.
1 ボイラ本体 2 サイクロン 3 灰クーラ 4 ベット材貯蔵容器 5 圧力容器 6a 蒸発器 6b 加熱器 6c 再熱器 7 サービスホール 8 伝熱管 8a第1伝熱管群 8b第2伝熱管群 9 胴本体 10 給気口 11 排気口 12 整流体 13 フランジ 1 Boiler main body 2 Cyclone 3 Ash cooler 4 Bed material storage container 5 Pressure container 6a Evaporator 6b Heater 6c Reheater 7 Service hole 8 Heat transfer tube 8a 1st heat transfer tube group 8b 2nd heat transfer tube group 9 Trunk body 10 Air supply Port 11 Exhaust port 12 Rectifier 13 Flange
Claims (1)
により分離された灰をボイラへ供給する給気により冷却
する加圧流動層ボイラの灰クーラにおいて、 伝熱管を水平に且つ千鳥配列し、伝熱管端部を水平方向
に所定本連結し、次に斜め1段上方の伝熱管と連結し、
水平戻り方向に前記所定本連結し、次に1段上方の伝熱
管と連結し、以下同様の繰り返し連結をしたことを特徴
とする加圧流動層ボイラの灰クーラ。1. In an ash cooler of a pressurized fluidized bed boiler, which cools the ash separated by a cyclone from the exhaust of the pressurized fluidized bed boiler by an air supply to the boiler, heat transfer tubes are arranged horizontally and in a staggered arrangement. Connect the end of the heat tube in the horizontal direction, and then connect it to the heat transfer tube one step above
An ash cooler for a pressurized fluidized bed boiler, characterized in that the above-mentioned predetermined number is connected in the horizontal return direction, then connected to the heat transfer tube one step above, and the same connection is repeated thereafter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17566495A JPH0926102A (en) | 1995-07-12 | 1995-07-12 | Ash cooler of pressure fluidized bed boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17566495A JPH0926102A (en) | 1995-07-12 | 1995-07-12 | Ash cooler of pressure fluidized bed boiler |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0926102A true JPH0926102A (en) | 1997-01-28 |
Family
ID=16000070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17566495A Pending JPH0926102A (en) | 1995-07-12 | 1995-07-12 | Ash cooler of pressure fluidized bed boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0926102A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102269396A (en) * | 2011-05-17 | 2011-12-07 | 上海锅炉厂有限公司 | Arrangement structure of boiler heating surfaces |
CN110041967A (en) * | 2018-04-25 | 2019-07-23 | 新能能源有限公司 | The second level whirlwind feed back and afterheat utilizing system of high temperature and high pressure flue gas |
-
1995
- 1995-07-12 JP JP17566495A patent/JPH0926102A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102269396A (en) * | 2011-05-17 | 2011-12-07 | 上海锅炉厂有限公司 | Arrangement structure of boiler heating surfaces |
WO2012155558A1 (en) * | 2011-05-17 | 2012-11-22 | 上海锅炉厂有限公司 | Arrangement structure of boiler heating surface |
CN110041967A (en) * | 2018-04-25 | 2019-07-23 | 新能能源有限公司 | The second level whirlwind feed back and afterheat utilizing system of high temperature and high pressure flue gas |
CN110041967B (en) * | 2018-04-25 | 2023-12-22 | 新能能源有限公司 | Secondary cyclone return material and waste heat utilization system for high-temperature and high-pressure flue gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101118509B1 (en) | A fluidized bed heat exchanger for a circulating fluidized bed boiler and a circulating fluidized bed boiler with a fluidized bed heat exchanger | |
US4473032A (en) | Steam generator with circulating atmosphere or pressurized turbulent layer firing, and method for control thereof | |
US5713312A (en) | Syngas cooler with vertical surface superheater | |
US5642614A (en) | Gas turbine combined cycle system | |
US4473035A (en) | Splitter-bifurcate arrangement for a vapor generating system utilizing angularly arranged furnace boundary wall fluid flow tubes | |
US3823693A (en) | Fluidized bed heat exchanger | |
RO117733B1 (en) | Steam boiler | |
US4178881A (en) | Vapor generating system utilizing angularly arranged bifurcated furnace boundary wall fluid flow tubes | |
US4198930A (en) | Gas screen arrangement for a vapor generator | |
EP0977622B1 (en) | Controlling the inlet temperature of a ceramic filter | |
US2715019A (en) | Means for temperature equalization in heat exchanger | |
AU746774B2 (en) | Fluidized bed combustion system with steam generation | |
EP0529310B1 (en) | Topping combustor for an indirect fired gas turbine | |
JPH0926102A (en) | Ash cooler of pressure fluidized bed boiler | |
AU2004274583B2 (en) | Continuous steam generator and method for operating said continuous steam generator | |
RU2132514C1 (en) | Combined-cycle plant with circulating fluidized- bed reactor | |
JPS6014241B2 (en) | Transforming boiler | |
JPH05149508A (en) | Fluidized-bed combustion method utilizing supply fine and coarse adsorbent | |
JPH06229513A (en) | Large scale fluidized bed reactor | |
US5009852A (en) | Cooled fluidization grid | |
US4854854A (en) | Fluidized bed fuel-fired power plant | |
US5555723A (en) | Ducting for an external gas turbine topping combustor | |
US4563194A (en) | Waterwall for a twin tower gasification system | |
FI91559C (en) | A power plant in which the combustion of fuel takes place in a fluidized bed containing particulate matter | |
US5775265A (en) | Cooling surface cladding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050301 |
|
A131 | Notification of reasons for refusal |
Effective date: 20050425 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Effective date: 20050817 Free format text: JAPANESE INTERMEDIATE CODE: A02 |