JPH09260356A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPH09260356A
JPH09260356A JP6675196A JP6675196A JPH09260356A JP H09260356 A JPH09260356 A JP H09260356A JP 6675196 A JP6675196 A JP 6675196A JP 6675196 A JP6675196 A JP 6675196A JP H09260356 A JPH09260356 A JP H09260356A
Authority
JP
Japan
Prior art keywords
gas
etching
reactive gas
dry etching
containing compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6675196A
Other languages
Japanese (ja)
Inventor
Katsuaki Aoki
克明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6675196A priority Critical patent/JPH09260356A/en
Publication of JPH09260356A publication Critical patent/JPH09260356A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable improving the etching rate of a high melting point metal and sufficiently setting the etching selection ratio of the high melting point metal and SiO2 , by using reactive gas which contains fluorine containing compound gas and chlorine gas, or contains chloride material gas and oxygen gas. SOLUTION: Reactive gas is introduced in a discharge tube 12 as a pumping mechanism, the reactive gas is pumped and made a plasma state, and active species are generated. The active species in the discharge tube 12 is introduced in a treatment container 14, and a high melting point metal thin film on the surface of a board 19 mounted in the treatment container 14 is etched by using a resist pattern as a mask. In the case that dry etching is performed in the above processes, gas which contains fluorine containing compound gas and chlorine gas, or gas which contains chloride gas and oxygen gas is used as the reactive gas. For example, Mo, W, MoW alloy, etc., are used as the high melting point metal, CF3 , SF6 , CF2 H2 , etc., are used as the fluorine containing compound, and BCl3 , etc., are used as the chloride.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、反応性ガスを励起
してプラズマ化することにより生成された活性種を利用
してゲート電極等に用いられる高融点金属薄膜をエッチ
ングするためのドライエッチング方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry etching method for etching a refractory metal thin film used for a gate electrode or the like by utilizing active species generated by exciting a reactive gas into plasma. It is about.

【0002】[0002]

【従来の技術】例えばガラス基板上に薄膜トランジスタ
のゲート電極を形成するには、次のようなダウンフロー
形のエッチング装置を用いて行われている。このドライ
エッチング装置は、ガス導入部を有する誘電体からなる
放電管と、この放電管に連結され、マイクロ波を前記放
電管に照射するための導波管と、前記放電管と輸送管を
介して連結された処理容器と、前記輸送管の出口近傍の
前記処理容器内に配置された拡散板と、前記処理容器に
連結された排気管と、前記処理容器内に配置された保持
台とを具備する。
2. Description of the Related Art For example, a gate electrode of a thin film transistor is formed on a glass substrate by using the following downflow type etching apparatus. This dry etching apparatus includes a discharge tube made of a dielectric material having a gas introduction part, a waveguide connected to the discharge tube for irradiating the discharge tube with microwaves, and the discharge tube and the transport tube. A processing container connected to the processing container, a diffusion plate arranged in the processing container near the outlet of the transport pipe, an exhaust pipe connected to the processing container, and a holding table arranged in the processing container. To have.

【0003】まず、表面にモリブデン−タングステン合
金(MoW)のような高融点金属薄膜が被覆され、かつ
前記薄膜にレジストパターンが形成されたガラス基板を
前記保持台上に載置する。つづいて、前記排気管を通し
て前記処理容器、前記輸送管および前記放電管内のガス
を排気することにより所定の真空度にする。ひきつづ
き、前記放電管内にガス導入部を通して反応性ガスを導
入し、前記導波管からマイクロ波を前記放電管に照射し
て前記反応性ガスを励起してプラズマ状態にすることに
よりエッチングに必要な活性種およびイオンを生成す
る。これらの活性種およびイオンを前記輸送管を通して
前記処理容器内に輸送する。この輸送途中に基板等にダ
メージを与えるイオンは消滅され、前記活性種のみが前
記拡散板を通して前記処理容器に導入され、前記ホルダ
上のレジストパターンから露出する高融点金属薄膜が選
択的にエッチングされることにより所望のゲート電極が
形成される。
First, a glass substrate, the surface of which is coated with a refractory metal thin film such as molybdenum-tungsten alloy (MoW), and a resist pattern is formed on the thin film, is placed on the holding table. Subsequently, the gas in the processing container, the transport pipe, and the discharge pipe is exhausted through the exhaust pipe, so that a predetermined degree of vacuum is obtained. Subsequently, a reactive gas is introduced into the discharge tube through a gas introducing part, and microwaves are applied to the discharge tube from the waveguide to excite the reactive gas to generate a plasma state, which is necessary for etching. Generates active species and ions. These active species and ions are transported into the processing container through the transport pipe. During this transportation, ions that damage the substrate and the like are extinguished, only the active species are introduced into the processing container through the diffusion plate, and the refractory metal thin film exposed from the resist pattern on the holder is selectively etched. As a result, a desired gate electrode is formed.

【0004】ところで、前記反応性ガスは従来よりCF
4 とO2 の混合ガスが使用されている。しかしながら、
前記組成の反応性ガスを用いて前述したダウンフロー形
のエッチング装置によりガラス基板表面のMoW薄膜を
その上のレジストパターンをマスクとしてエッチングす
ると、MoWを高速度でエッチングすることができない
という問題があった。
By the way, the reactive gas has conventionally been CF.
A mixed gas of 4 and O 2 is used. However,
When the MoW thin film on the surface of the glass substrate is etched by using the above-described downflow type etching apparatus using the reactive gas having the above composition with the resist pattern as a mask, there is a problem that MoW cannot be etched at a high speed. It was

【0005】すなわち、前記組成の反応性ガスをガス導
入部を通して放電管に導入する前述したダウンフロー形
のエッチング装置において、マイクロ波出力を700
W、圧力を40Paとし、CF4 ガス+O2 ガスの流量
を400sccmとし、これらのガスの流量比率[CF
4 /(CF4 +O2 )]を変化させた時のMoWおよび
レジストのエッチングレートを測定した。その結果を図
5に示す。
That is, in the above-described downflow type etching apparatus in which the reactive gas having the above composition is introduced into the discharge tube through the gas introduction part, the microwave output is 700
W, the pressure was 40 Pa, the flow rate of CF 4 gas + O 2 gas was 400 sccm, and the flow rate ratio of these gases [CF
4 / (CF 4 + O 2 )] was changed, and the etching rates of MoW and the resist were measured. The result is shown in FIG.

【0006】図5から明らかなようにCF4 とO2 の混
合ガスを反応性ガスとして用いる従来のドライエッチン
グ法では、MoWのエッチングレートが最大で440n
m/分{[CF4 /(CF4 +O2 )]の流量比率が約
0.3}と高速エッチングが困難であった。
As is clear from FIG. 5, in the conventional dry etching method using a mixed gas of CF 4 and O 2 as a reactive gas, the maximum etching rate of MoW is 440 n.
High-speed etching was difficult because the flow rate ratio of m / min {[CF 4 / (CF 4 + O 2 )] was about 0.3}.

【0007】さらに、前記組成の反応性ガスを用いて前
述したダウンフロー形のエッチング装置によるエッチン
グにおいて、MoWと酸化膜(SiO2 膜)とのエッチ
ング選択比を十分にとれない問題があった。すなわち、
前述した図5に前記エッチング条件でのSiO2 のエッ
チングレートを併記する。この図5から前記[CF4
(CF4 +O2 )]の比率によってはSiO2 のMoW
に対するエッチングレートが1/2〜1/3程度になる
ため、SiO2 膜(特に熱酸化膜)上にMoW薄膜を堆
積し、前記組成の反応性ガスを用いてMoW薄膜をレジ
ストパターンをマスクとして選択的にエッチングする
と、SiO2 膜をも打ち抜かれてしまうという問題があ
った。
Further, there is a problem that the etching selection ratio between MoW and the oxide film (SiO 2 film) cannot be sufficiently obtained in the etching by the down-flow type etching apparatus using the reactive gas having the above composition. That is,
The etching rate of SiO 2 under the above etching conditions is also shown in FIG. 5 described above. From FIG. 5, the above [CF 4 /
(CF 4 + O 2)] MoW of SiO 2 by the ratio of
Since the etching rate of the MoW thin film is about 1/2 to 1/3, the MoW thin film is deposited on the SiO 2 film (particularly the thermal oxide film), and the MoW thin film is masked with the resist pattern using the reactive gas of the above composition There is a problem that the SiO 2 film is also punched out by the selective etching.

【0008】[0008]

【発明が解決しようとする課題】本発明は、MoWのよ
うな高融点金属のエッチングレートを向上できると共に
前記高融点金属とSiO2 とのエッチング選択択比を十
分にとることが可能なドライエッチング方法を提供しよ
うとするものである。
DISCLOSURE OF THE INVENTION The present invention provides a dry etching method capable of improving the etching rate of refractory metal such as MoW and having a sufficient etching selection ratio between the refractory metal and SiO 2. It is intended to provide a method.

【0009】[0009]

【課題を解決するための手段】本発明に係わるドライエ
ッチンク方法は、励起機構に反応性ガスを導入し、ここ
で前記反応性ガスを励起してプラズマ化することにより
活性種を生成する工程と、前記励起機構内の活性種を処
理容器内に導入し、この処理容器内に配置された基板表
面の高融点金属薄膜をレジストパターンをマスクとして
エッチングする工程とを具備したドライエッチング方法
において、前記反応性ガスは、フッ素含有化合物ガスと
塩素ガスもしくは塩化物ガスと酸素ガスとを含むことを
特徴とするものである。
In the dry etching method according to the present invention, a step of introducing a reactive gas into an excitation mechanism and exciting the reactive gas to generate plasma to generate active species In the dry etching method, which comprises a step of introducing active species in the excitation mechanism into a processing container, and etching the refractory metal thin film on the surface of the substrate arranged in the processing container using a resist pattern as a mask, The reactive gas contains a fluorine-containing compound gas and chlorine gas or a chloride gas and oxygen gas.

【0010】[0010]

【発明の実施の形態】以下、本発明のドライエッチング
方法を図面を参照して詳細に説明する。図1のダウンフ
ロー形のエッチング装置を示す概略図である。ガス導入
部11を有する誘電体からなる放電管12は、例えばポ
リテトラフルオロエチレンからなる輸送管13を介して
処理容器14に連結されている。マイクロ波を前記放電
管12に照射するための導波管15は、前記放電管12
に連結されている。なお、前記ガス導入部11を有する
放電管12および導波管15により励起機構が構成され
る。拡散板16は、前記輸送管13の出口近傍の前記処
理容器14内に配置されている。排気管17は、前記処
理容器14の底部に連結されている。基板支持台18
は、前記処理容器14内に配置されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The dry etching method of the present invention will be described in detail below with reference to the drawings. FIG. 2 is a schematic diagram showing the downflow type etching apparatus of FIG. 1. The discharge tube 12 made of a dielectric material having the gas introduction part 11 is connected to the processing container 14 via a transport tube 13 made of polytetrafluoroethylene, for example. The waveguide 15 for irradiating the discharge tube 12 with microwaves is
It is connected to. The discharge tube 12 having the gas introduction part 11 and the waveguide 15 constitute an excitation mechanism. The diffusion plate 16 is arranged in the processing container 14 near the outlet of the transport pipe 13. The exhaust pipe 17 is connected to the bottom of the processing container 14. Substrate support 18
Are arranged in the processing container 14.

【0011】次に、前述したダウンフロー形のエッチン
グ装置を用いて本発明のドライエッチング方法を説明す
る。まず、表面に高融点金属薄膜が被覆され、かつ前記
薄膜にレジストパターンが形成された基板19を支持台
18上に載置する。つづいて、排気管17を通して処理
容器14、輸送管13および放電管12内のガスを排気
することにより所定の真空度にする。ひきつづき、前記
放電管12内にガス導入部11を通してフッ素含有化合
物ガスと塩素ガスもしくは塩化物ガスと酸素ガスとを含
む反応性ガスを導入し、導波管15からマイクロ波を前
記放電管12に照射して前記反応性ガスを励起してプラ
ズマ状態にすることによりエッチングに必要な活性種お
よびイオンを生成する。これらの活性種およびイオンを
前記輸送管13を通して前記処理容器12内に輸送す
る。この輸送途中にイオンは消滅され、前記活性種のみ
が拡散板16を通して前記処理容器14に導入され、前
記支持台18上の基板19表面の高融点金属薄膜がドラ
イエッチングされる。
Next, the dry etching method of the present invention will be described using the downflow type etching apparatus described above. First, a substrate 19 whose surface is coated with a refractory metal thin film and a resist pattern is formed on the thin film is placed on a support base 18. Then, the gas in the processing container 14, the transport tube 13 and the discharge tube 12 is exhausted through the exhaust pipe 17 to obtain a predetermined degree of vacuum. Subsequently, a reactive gas containing a fluorine-containing compound gas and a chlorine gas or a chloride gas and an oxygen gas is introduced into the discharge tube 12 through the gas introduction part 11, and a microwave is guided from the waveguide 15 to the discharge tube 12. By irradiating and exciting the reactive gas into a plasma state, active species and ions necessary for etching are generated. These active species and ions are transported into the processing container 12 through the transport pipe 13. During this transportation, the ions are extinguished, only the active species are introduced into the processing container 14 through the diffusion plate 16, and the refractory metal thin film on the surface of the substrate 19 on the support 18 is dry-etched.

【0012】前記基板19としては、例えば半導体基
板、ガラス基板等を用いることができる。前記高融点金
属としては、例えばモリブデン、タングステン、タンタ
ル、モリブデン−タングステン合金、モリブデン−タン
タル合金等を用いることができる。
As the substrate 19, for example, a semiconductor substrate, a glass substrate or the like can be used. As the refractory metal, for example, molybdenum, tungsten, tantalum, molybdenum-tungsten alloy, molybdenum-tantalum alloy, or the like can be used.

【0013】前記処理容器14、輸送管13および放電
管12内の真空度は、30〜40Paにすることが好ま
しい。前記反応性ガスの成分であるフッ素含有化合物と
しては、例えばCF4 、SF6 、CF22 等を用いる
ことができる。
The degree of vacuum in the processing container 14, the transport tube 13 and the discharge tube 12 is preferably 30 to 40 Pa. As the fluorine-containing compound that is a component of the reactive gas, for example, CF 4 , SF 6 , CF 2 H 2 and the like can be used.

【0014】前記反応性ガスの他の成分である塩化物と
しては、例えばBCl3 等を用いることができる。前記
反応性ガスを構成するフッ素含有化合物ガス(FG )と
塩素ガスもしくは塩化物ガス(CG )との混合体積比率
は、FG :CG =0.9〜0.3:0.1〜0.7で、
かつ前記FG とCG の混合ガスと酸素ガス(OG )との
混合体積比率は混合ガス:OG =1:3〜6にすること
が好ましい。このような混合比率の反応性ガスを用いる
ことによって、高融点金属薄膜のエッチングレートを高
めることができると共に、高融点金属と酸化膜とのエッ
チング選択比を一層大きくとることが可能になる。
As the chloride which is another component of the reactive gas, for example, BCl 3 or the like can be used. The mixing volume ratio of the reactive gas fluorine-containing compound gas constitutes the and (F G) and chlorine gas or chloride gas (C G) is, F G: C G = 0.9~0.3 : 0.1 ~ 0.7,
In addition, the mixing volume ratio of the mixed gas of F G and C G and the oxygen gas (O G ) is preferably mixed gas: O G = 1: 3 to 6. By using the reactive gas having such a mixing ratio, the etching rate of the refractory metal thin film can be increased and the etching selection ratio between the refractory metal and the oxide film can be further increased.

【0015】以上説明した本発明によれば、フッ素含有
化合物ガスと塩素ガスもしくは塩化物ガスと酸素ガスと
を含む反応性ガスを用い、前述した図1に示すダウンフ
ロー形のエッチング装置により基板表面の高融点金属薄
膜をその上のレジストパターンをマスクとしてエッチン
グすることによって、前記高融点金属薄膜を高速度でエ
ッチングできると共に、前記高融点金属とレジストとの
エッチング選択比を十分に取ることができる。
According to the present invention described above, the surface of the substrate is processed by the down-flow type etching apparatus shown in FIG. 1 using the reactive gas containing the fluorine-containing compound gas and the chlorine gas or the chloride gas and the oxygen gas. By etching the refractory metal thin film with the resist pattern thereon as a mask, the refractory metal thin film can be etched at a high speed, and a sufficient etching selection ratio between the refractory metal and the resist can be obtained. .

【0016】すなわち、前記組成の反応性ガスを図1に
示すガス導入部11を通して放電管12に導入する前述
したダウンフロー形のエッチング装置において、マイク
ロ波出力を700W、圧力を40Paとし、O2 ガスの
流量を380sccm、CF4 ガス+Cl2 ガスの流量
を70sccmとし、これらのガスの流量比率[Cl2
/(Cl2 +CF4 )]を変化させた時のMoWおよび
レジストのエッチングレートを測定した。その結果を図
2に示す。
That is, in the above-described downflow type etching apparatus in which the reactive gas having the above composition is introduced into the discharge tube 12 through the gas introduction section 11 shown in FIG. 1, the microwave output is 700 W, the pressure is 40 Pa, and O 2 The gas flow rate is 380 sccm, the CF 4 gas + Cl 2 gas flow rate is 70 sccm, and the flow rate ratio [Cl 2
/ (Cl 2 + CF 4 )] was changed, and the etching rates of MoW and the resist were measured. The result is shown in FIG.

【0017】図2から明らかなようにCF4 とCl2
2 の混合ガスを反応性ガスとして用いる本発明のドラ
イエッチング法では、前記[Cl2 /(Cl2 +CF
4 )]の比率が0.5前後、つまりCF4 :Cl2 /1
前後でMoWのエッチングレートが最大の約700nm
/分になり、高速エッチングが可能であることがわか
る。また、MoWとレジストとのエッチング選択比を
3.5倍程度に大きく取ることが可能になる。
As is apparent from FIG. 2, in the dry etching method of the present invention in which a mixed gas of CF 4 , Cl 2 and O 2 is used as a reactive gas, the above [Cl 2 / (Cl 2 + CF 2
4)] ratio is 0.5 before and after, that is CF 4: Cl 2/1
The maximum MoW etching rate before and after is about 700 nm
/ Min, which shows that high-speed etching is possible. Further, the etching selection ratio between MoW and the resist can be increased to about 3.5 times.

【0018】前記条件でレジストパターンをマスクとし
たMoW薄膜の選択エッチングによりガラス基板上にゲ
ート電極を形成し、ゲート電極端部のテーパ角(Θ)を
求めると、図3に示すように前記[Cl2 /(Cl2
CF4 )]の比率を変化させた時のゲート電極端部のテ
ーパ角が42゜〜65゜となり、前記ゲート電極端部で
のステップカバレージを良好にするための許容テーパ角
(25〜70゜)の範囲内になる。
Under the above conditions, a gate electrode is formed on a glass substrate by selective etching of a MoW thin film using a resist pattern as a mask, and the taper angle (Θ) at the end of the gate electrode is determined. As shown in FIG. Cl 2 / (Cl 2 +
CF 4 )] is changed, the taper angle at the end of the gate electrode becomes 42 ° to 65 °, and the allowable taper angle (25 to 70 ° for improving the step coverage at the end of the gate electrode). ) Is within the range.

【0019】さらに、前記組成の反応性ガスを用いて前
述した図1に示すダウンフロー形のエッチング装置によ
るエッチングにおいて、MoWと酸化膜(SiO2 膜)
とのエッチング選択比を十分にとることが可能になる。
すなわち、前述した図2に前記エッチング条件でのSi
2 のエッチングレートを併記する。この図2から前記
[Cl2 /(Cl2 +CF4 )]の比率を0.5前後に
すると、MoWのSiO2 に対するエッチングレートが
10程度にできる。このため、SiO2 膜(特に熱酸化
膜)上にMoW薄膜を堆積し、前記組成の反応性ガスを
用いてMoW薄膜をレジストパターンをマスクとして選
択的にエッチングしても、SiO2 膜のエッチングを十
分に抑制でき、形成されたMoWゲート電極周囲に酸化
膜を存在させることが可能になる。
Furthermore, in the etching by the downflow type etching apparatus shown in FIG. 1 using the reactive gas having the above composition, MoW and an oxide film (SiO 2 film) are formed.
It is possible to obtain a sufficient etching selection ratio with respect to.
That is, the Si under the etching conditions shown in FIG.
The etching rate of O 2 is also shown. From FIG. 2, if the ratio of [Cl 2 / (Cl 2 + CF 4 )] is set to about 0.5, the etching rate of MoW with respect to SiO 2 can be about 10. Therefore, even if a MoW thin film is deposited on a SiO 2 film (particularly a thermal oxide film) and the MoW thin film is selectively etched by using a reactive gas having the above composition with a resist pattern as a mask, the SiO 2 film is etched. Can be sufficiently suppressed, and an oxide film can be present around the formed MoW gate electrode.

【0020】なお、前述したドライエッチングにおいて
前記ドライエッチング装置の処理容器14内の圧力変動
を測定することによりエッチング終点を検出することが
可能になる。すなわち、前記処理容器14で基板19表
面の高融点金属薄膜のエッチングが進行すると、エッチ
ング生成物の発生により前記処理容器14内の圧力が上
昇する。前記高融点金属薄膜のエッチングが停止すると
前記エッチング生成物による圧力上昇要因がなくなるた
め、前記処理容器14内の圧力が低下する。この圧力変
化を検出することによりエッチングの終点を検出するこ
とが可能になる。
In the dry etching described above, the etching end point can be detected by measuring the pressure fluctuation in the processing container 14 of the dry etching apparatus. That is, when the etching of the refractory metal thin film on the surface of the substrate 19 progresses in the processing container 14, the pressure inside the processing container 14 increases due to the generation of etching products. When the etching of the refractory metal thin film is stopped, the pressure increase factor due to the etching products disappears, and the pressure in the processing container 14 decreases. The end point of etching can be detected by detecting this pressure change.

【0021】[0021]

【実施例】以下、本発明の実施例を前述した図1を参照
して詳細に説明する。 (実施例1)まず、図4の(a)に示すようにガラス基
板21の表面に厚さ300nmのMoW薄膜22をスパ
ッタにより蒸着した後、前記MoW薄膜22上にフォト
エッチング技術により厚さ1200nmのレジストパタ
ーン23を形成した。
An embodiment of the present invention will be described below in detail with reference to FIG. Example 1 First, as shown in FIG. 4A, a MoW thin film 22 having a thickness of 300 nm was deposited on the surface of a glass substrate 21 by sputtering, and then a 1200 nm thick film was formed on the MoW thin film 22 by a photo-etching technique. Resist pattern 23 was formed.

【0022】次いで、前記ガラス基板を前述した図1に
示す支持台18上に載置した。つづいて、排気管17を
通して処理容器14、輸送管13および放電管12内の
ガスを排気することにより40Paの真空度にした。ひ
きつづき、前記放電管12内にCF4 ガス、Cl2 ガス
およびO2 ガスからなる反応性ガスの流量をCF4
ス、Cl2 ガスおよびO2 ガスをそれぞれ35scc
m、35sccmおよび380sccmの流量で前記ガ
ス導入部11を通して導入した後、導波管15から70
0Wのマイクロ波を前記放電管12に照射して前記反応
性ガスを励起してプラズマ状態にすることによりエッチ
ングに必要な活性種およびイオンを生成した。これらの
活性種およびイオンを前記輸送管13を通して前記処理
容器14内に輸送し、この輸送途中に前記イオンを消滅
させて前記活性種のみを拡散板16を通して前記処理容
器14に導入した。前記活性種により前記支持台18上
のガラス基板表面のMoW薄膜をレジストパターンをマ
スクとして選択的にドライエッチングした。このような
選択的なドライエッチングにより図4の(b)に示すよ
うにガラス基板21表面にMoWからなるゲート電極2
4が形成された。
Next, the glass substrate was placed on the support base 18 shown in FIG. Subsequently, the gas in the processing container 14, the transport tube 13 and the discharge tube 12 was exhausted through the exhaust pipe 17 to obtain a vacuum degree of 40 Pa. Continuously, the flow rate of the reactive gas composed of CF 4 gas, Cl 2 gas and O 2 gas in the discharge tube 12 is set to 35 sccc for CF 4 gas, Cl 2 gas and O 2 gas respectively.
m, 35 sccm and 380 sccm, and then introduced through the gas introduction part 11 and then the waveguides 15 to 70
By irradiating the discharge tube 12 with a microwave of 0 W to excite the reactive gas into a plasma state, active species and ions necessary for etching were generated. These active species and ions were transported into the processing container 14 through the transport pipe 13, the ions were extinguished during the transportation, and only the active species were introduced into the processing container 14 through the diffusion plate 16. The MoW thin film on the surface of the glass substrate on the support 18 was selectively dry-etched with the active species using the resist pattern as a mask. By such selective dry etching, as shown in FIG. 4B, the gate electrode 2 made of MoW is formed on the surface of the glass substrate 21.
4 was formed.

【0023】得られたゲート電極24端部のテーパ角を
測定したところ、60゜であった。また、前記レジスト
パータンを除去した後、ゲート絶縁膜としてのCVD−
SiO2 膜および活性層としての非晶質シリコン膜を堆
積したところ、前記ゲート電極端部での段切れは皆無で
あった。
The taper angle of the end portion of the obtained gate electrode 24 was measured and found to be 60 °. In addition, after removing the resist pattern, CVD-
When a SiO2 film and an amorphous silicon film as an active layer were deposited, no step breakage was found at the end of the gate electrode.

【0024】[0024]

【発明の効果】以上詳述したように、本発明によればM
oWのような高融点金属のエッチングレートを向上でき
ると共に前記高融点金属とSiO2 とのエッチング選択
択比を十分にとることができ、ゲート電極の形成等に有
用なドライエッチング方法を提供することができる。
As described above in detail, according to the present invention, M
To provide a dry etching method which can improve the etching rate of refractory metal such as oW and can sufficiently obtain the etching selection ratio of the refractory metal and SiO 2 and is useful for forming a gate electrode and the like. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のドライエッチング方法に用いられるダ
ウンフロー形のドライエッチング装置を示す断面図。
FIG. 1 is a cross-sectional view showing a downflow type dry etching apparatus used in a dry etching method of the present invention.

【図2】本発明のCF4 とCl2 とO2 の混合ガスから
なる反応性ガスを図1に示すダウンフロー形のエッチン
グ装置に導入してエッチングした際の[Cl2 /(Cl
2 +CF4 )]の比率とMoW、レジストおよびSiO
2 のエッチングレートとの関係を示す特性図。
[Figure 2] of the present invention CF 4, Cl 2 and a reactive gas comprising a mixed gas of O 2 is introduced into the etching apparatus downflow type shown in Figure 1 at the time of etching [Cl 2 / (Cl
2 + CF 4 )] ratio and MoW, resist and SiO
FIG. 3 is a characteristic diagram showing the relationship with the etching rate of 2 .

【図3】本発明のCF4 とCl2 とO2 の混合ガスから
なる反応性ガスを図1に示すダウンフロー形のエッチン
グ装置に導入してエッチングした際の[Cl2 /(Cl
2 +CF4 )]の比率とゲート電極端部のテーパ角との
関係を示す特性図。
[Figure 3] of the present invention CF 4, Cl 2 and a reactive gas comprising a mixed gas of O 2 is introduced into the etching apparatus downflow type shown in Figure 1 at the time of etching [Cl 2 / (Cl
2 + CF 4 )] ratio and the taper angle of the end portion of the gate electrode.

【図4】本発明の実施例1におけるゲート電極の形成工
程を示す断面図。
FIG. 4 is a cross-sectional view showing a step of forming a gate electrode in Example 1 of the present invention.

【図5】従来のCF4 とO2 の混合ガスからなる反応性
ガスをダウンフロー形のエッチング装置に導入してエッ
チングした際の[CF4 /(CF4 +O2 )]の比率と
MoW、レジストおよびSiO2 のエッチングレートと
の関係を示す特性図。
FIG. 5 shows a ratio [CF 4 / (CF 4 + O 2 )] and MoW when a conventional reactive gas composed of a mixed gas of CF 4 and O 2 is introduced into a down-flow type etching apparatus for etching. FIG. 6 is a characteristic diagram showing the relationship between the resist and the etching rate of SiO 2 .

【符号の説明】[Explanation of symbols]

12…放電管、 13…導波管、 14…処理容器、 18…支持台、 19…基板、 21…ガスラ基板、 22…MoW薄膜、 23…レジストパターン、 24…ゲート電極。 12 ... Discharge tube, 13 ... Waveguide, 14 ... Processing container, 18 ... Support stand, 19 ... Substrate, 21 ... Gasra substrate, 22 ... MoW thin film, 23 ... Resist pattern, 24 ... Gate electrode.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 励起機構に反応性ガスを導入し、ここで
前記反応性ガスを励起してプラズマ化することにより活
性種を生成する工程と、前記励起機構内の活性種を処理
容器内に導入し、この処理容器内に配置された基板表面
の高融点金属薄膜をレジストパターンをマスクとしてエ
ッチングする工程とを具備したドライエッチング方法に
おいて、 前記反応性ガスは、フッ素含有化合物ガスと塩素ガスも
しくは塩化物ガスと酸素ガスとを含むことを特徴とする
ドライエッチング方法。
1. A step of introducing a reactive gas into an excitation mechanism, and exciting the reactive gas here to generate plasma, thereby generating active species, and the active species in the excitation mechanism being introduced into a processing container. Introduced, in a dry etching method comprising a step of etching the refractory metal thin film of the substrate surface placed in this processing container using a resist pattern as a mask, the reactive gas, fluorine-containing compound gas and chlorine gas or A dry etching method comprising a chloride gas and an oxygen gas.
【請求項2】 前記反応性ガスを構成するフッ素含有化
合物ガス(FG )と塩素ガスもしくは塩化物ガス(C
G )との混合体積比率は、FG :CG =0.9〜0.
3:0.1〜0.7で、かつ前記フッ素含有化合物ガス
と塩素ガスもしくは塩化物ガスとの混合ガスと酸素ガス
(OG )との混合体積比率は混合ガス:OG=1:3〜
6であることを特徴とする請求項1記載のドライエッチ
ング方法。
Wherein the fluorine-containing compound gas constitutes the reactive gas (F G) and chlorine gas or chloride gas (C
G ) is mixed in a volume ratio of F G : C G = 0.9-0.
3: 0.1 to 0.7, and the volume mixing ratio of the fluorine-containing compound gas and chlorine gas or a mixed gas and oxygen gas and chloride gas (O G) is mixed gas: O G = 1: 3 ~
6. The dry etching method according to claim 1, wherein the dry etching method is 6.
JP6675196A 1996-03-22 1996-03-22 Dry etching method Pending JPH09260356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6675196A JPH09260356A (en) 1996-03-22 1996-03-22 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6675196A JPH09260356A (en) 1996-03-22 1996-03-22 Dry etching method

Publications (1)

Publication Number Publication Date
JPH09260356A true JPH09260356A (en) 1997-10-03

Family

ID=13324909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6675196A Pending JPH09260356A (en) 1996-03-22 1996-03-22 Dry etching method

Country Status (1)

Country Link
JP (1) JPH09260356A (en)

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045874A (en) * 2001-07-27 2003-02-14 Semiconductor Energy Lab Co Ltd Metallized wiring and its forming method, metallized wiring board and its producing method
KR100433098B1 (en) * 2000-05-30 2004-05-28 샤프 가부시키가이샤 Method of anisotropic plasma etching using non-chlorofluorocarbon, fluorine-based chemistry
JP2006196677A (en) * 2005-01-13 2006-07-27 Sharp Corp Plasma processing device, and semiconductor element manufactured by the same
JP2014508423A (en) * 2011-03-14 2014-04-03 アプライド マテリアルズ インコーポレイテッド Etching method of metal and metal oxide film
CN107949904A (en) * 2015-04-09 2018-04-20 德克萨斯仪器股份有限公司 Inclination terminal in molybdenum layer and preparation method thereof
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424487B2 (en) 2017-10-24 2019-09-24 Applied Materials, Inc. Atomic layer etching processes
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433098B1 (en) * 2000-05-30 2004-05-28 샤프 가부시키가이샤 Method of anisotropic plasma etching using non-chlorofluorocarbon, fluorine-based chemistry
US10854636B2 (en) 2001-07-27 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Metal wiring and method of manufacturing the same, and metal wiring substrate and method of manufacturing the same
US8173478B2 (en) 2001-07-27 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing metal wiring and method of manufacturing semiconductor device
US9153352B2 (en) 2001-07-27 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Metal wiring and method of manufacturing the same, and metal wiring substrate and method of manufacturing the same
US9917107B2 (en) 2001-07-27 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Metal wiring and method of manufacturing the same, and metal wiring substrate and method of manufacturing the same
JP2003045874A (en) * 2001-07-27 2003-02-14 Semiconductor Energy Lab Co Ltd Metallized wiring and its forming method, metallized wiring board and its producing method
JP2006196677A (en) * 2005-01-13 2006-07-27 Sharp Corp Plasma processing device, and semiconductor element manufactured by the same
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
JP2014508423A (en) * 2011-03-14 2014-04-03 アプライド マテリアルズ インコーポレイテッド Etching method of metal and metal oxide film
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US11264213B2 (en) 2012-09-21 2022-03-01 Applied Materials, Inc. Chemical control features in wafer process equipment
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en) 2013-02-08 2021-06-01 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10707061B2 (en) 2014-10-14 2020-07-07 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10796922B2 (en) 2014-10-14 2020-10-06 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
JP2018514156A (en) * 2015-04-09 2018-05-31 日本テキサス・インスツルメンツ株式会社 Inclined termination in a molybdenum layer and manufacturing method
CN107949904A (en) * 2015-04-09 2018-04-20 德克萨斯仪器股份有限公司 Inclination terminal in molybdenum layer and preparation method thereof
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US11158527B2 (en) 2015-08-06 2021-10-26 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US11476093B2 (en) 2015-08-27 2022-10-18 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US11735441B2 (en) 2016-05-19 2023-08-22 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10541113B2 (en) 2016-10-04 2020-01-21 Applied Materials, Inc. Chamber with flow-through source
US11049698B2 (en) 2016-10-04 2021-06-29 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10903052B2 (en) 2017-02-03 2021-01-26 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10529737B2 (en) 2017-02-08 2020-01-07 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10325923B2 (en) 2017-02-08 2019-06-18 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US11101136B2 (en) 2017-08-07 2021-08-24 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10424487B2 (en) 2017-10-24 2019-09-24 Applied Materials, Inc. Atomic layer etching processes
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10699921B2 (en) 2018-02-15 2020-06-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US11004689B2 (en) 2018-03-12 2021-05-11 Applied Materials, Inc. Thermal silicon etch
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Similar Documents

Publication Publication Date Title
JPH09260356A (en) Dry etching method
US4190488A (en) Etching method using noble gas halides
JP2918892B2 (en) Plasma etching method
US5110408A (en) Process for etching
JPH02114525A (en) Removal of organic compound film and its removing device
US4264409A (en) Contamination-free selective reactive ion etching or polycrystalline silicon against silicon dioxide
JP2002533949A (en) Perforated plasma confinement ring in plasma reactor
US6576569B1 (en) Method of plasma-assisted film deposition
JPH05247673A (en) Method for etching body to be treated incorporating oxide part and nitride part
KR20010031586A (en) Method of plasma processing
JP3559691B2 (en) Method for manufacturing semiconductor device
JPS63117423A (en) Method of etching silicon dioxide
JP2001027799A (en) Production of phase shift mask
JPH09129595A (en) Plasma etching method
JPS60120525A (en) Method for reactive ion etching
JPH0363209B2 (en)
JPH11111686A (en) Low-pressure plasma etching method
JPH08115903A (en) Manufacture of semiconductor, and plasma etching device
JPH06275566A (en) Microwave plasma treating device
JPH10150020A (en) Method and device for plasma treatment
JPH08236503A (en) Selective etching method for aluminum oxide thin film
JPH08330294A (en) Plasma treatment device
JPH05234961A (en) Dry etching method
JPH11126773A (en) Plasma treating apparatus and method for introducing gas for same
JPH04349625A (en) Etching method