JPH09260125A - Magnetic material - Google Patents

Magnetic material

Info

Publication number
JPH09260125A
JPH09260125A JP8070248A JP7024896A JPH09260125A JP H09260125 A JPH09260125 A JP H09260125A JP 8070248 A JP8070248 A JP 8070248A JP 7024896 A JP7024896 A JP 7024896A JP H09260125 A JPH09260125 A JP H09260125A
Authority
JP
Japan
Prior art keywords
phase
atomic
alloy
magnetic material
quasicrystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8070248A
Other languages
Japanese (ja)
Inventor
Akihisa Inoue
明久 井上
Yoshihiko Yokoyama
嘉彦 横山
Jiyunichi Nagahora
純一 永洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp filed Critical YKK Corp
Priority to JP8070248A priority Critical patent/JPH09260125A/en
Publication of JPH09260125A publication Critical patent/JPH09260125A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/009Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity bidimensional, e.g. nanoscale period nanomagnet arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a good strength and wear resistance as well as magnetic characteristics by forming a two-dimensional quasicrystal decagonal phase to produce a novel alloy revealing a controllable soft magnetic or ferromagnetic property. SOLUTION: A magnetic material has a quasi-crystal single phase composed of a decagonal Phase(D phase) or quasi-crystals composed of the D phase as a main phase, contg. Mn as a main element and at least Al, Ge and B. An alloy composed of or contg. the D phase is a magnetic material composed of Mna Alb Gec Bd (a=40-55atm.%, b=15-30atm.%, c=10-30atm.%, d=3-20atm.%, 45 atm.%<=b+c+d<=60atm.%. The quasicrystal composed of the D phase has a laminate structure having a quasi-crystal size of 50-200nm. Thus it is possible to obtain a magnetic material having a superior mechanical property.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、強磁性材料として
各種用途に応用し得る実質的に正十角形相の準結晶から
なる磁性材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic material composed of a substantially regular decagonal phase quasicrystal which can be applied to various applications as a ferromagnetic material.

【0002】[0002]

【従来の技術】Al−Mn系合金において、5回、10
回対称性の結晶構造をもつ新しい合金、いわゆる準結晶
が発見されて以来、準結晶合金は新規な材料としてその
形成範囲、構造解折、基礎物性の解明等の目的で多くの
研究がなされてきた。それに伴い、理想的(化学量論的
組成比を持つ)準結晶の特性として、硬い、脆い、ヤン
グ率が高い、電気抵抗が高い等の物性が明らかになって
きた。いくつかの高強度材料としての応用の提案はある
ものの、準結晶の結晶構造に起因する物性を利用する提
案は少ない。その内、電磁気特性に関する研究として、
Al40%−Cu10%−Mn25%−Ge25%合金
(いずれも原子%)(A.P.Tsaiet al;T
pn.Appl.Phys.27[1988],L22
52)およびAl−Mn−Si系合金(R.A.Dun
lap et al.Phys.Rev.B.39[1
989]4808)、Al−Cu−(Pd,Mn)−B
系合金(特開平6−53021号公報)が強磁性を示す
ことが報告されている。
2. Description of the Related Art In an Al--Mn alloy, 5 times, 10
Since the discovery of a new alloy having a rotationally symmetric crystal structure, a so-called quasicrystal, a quasicrystal alloy has been extensively studied as a new material for the purpose of elucidating the range of formation, structural analysis, and basic physical properties. It was Along with that, physical properties such as hardness, brittleness, high Young's modulus, and high electric resistance have become clear as characteristics of an ideal quasicrystal (having a stoichiometric composition ratio). Although there are some proposals for application as high-strength materials, few proposals utilize physical properties due to the crystal structure of quasicrystals. Among them, as research on electromagnetic characteristics,
Al40% -Cu10% -Mn25% -Ge25% alloy (all are atomic%) (AP Tsai et al; T
pn. Appl. Phys. 27 [1988], L22
52) and an Al-Mn-Si based alloy (RA Dun.
lap et al. Phys. Rev .. B. 39 [1
989] 4808), Al-Cu- (Pd, Mn) -B.
It has been reported that a system alloy (Japanese Patent Laid-Open No. 6-53021) exhibits ferromagnetism.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記合
金の磁気的特性は磁性材料として実用に供するには改善
の必要があった。本発明では特に2次元の原子配列を特
徴とする準結晶の異方性に起因する物性を引き出す研究
を行うことにより、磁性材料として有用な材料を提供す
ることを目的とする。
However, the magnetic properties of the above alloys need to be improved before they can be put to practical use as magnetic materials. It is an object of the present invention to provide a material useful as a magnetic material by conducting a study to bring out physical properties due to anisotropy of a quasicrystal characterized by a two-dimensional atomic arrangement.

【0004】[0004]

【課題を解決するための手段】本発明の第一は、2次元
の準結晶であるD相又はD相を含む合金であって、下記
の組成式からなることを特徴とする磁性材料である。
The first aspect of the present invention is a magnetic material which is a two-dimensional quasi-crystal D phase or an alloy containing the D phase and which has the following composition formula. .

【0005】MnaAlbGecd ただし、a:40〜55原子%、b:15〜30原子
%、c:10〜30原子%、d:3〜20原子%、45
原子%≦b+c+d≦60原子%。
M a Al b Ge c B d However, a: 40 to 55 atomic%, b: 15 to 30 atomic%, c: 10 to 30 atomic%, d: 3 to 20 atomic%, 45
Atom% ≦ b + c + d ≦ 60 atom%.

【0006】又、第二の発明は、上記合金組成のMnを
M元素(Fe;Coから選ばれた1種又は2種の元素)
によって10〜15原子%の範囲で置換したことを特徴
とする磁性材料である。
A second invention is that Mn of the above alloy composition is M element (one or two elements selected from Fe; Co).
It is a magnetic material characterized by being replaced in the range of 10 to 15 atomic%.

【0007】準結晶として知られる代表的な構造は、正
20面体相(icosahedral phase;I
相)と前記D相がある。I相は3次元の準結晶であり、
D相は2次元の準結晶である。いずれも2回、3回、5
回の対称性の原子配列を持つが、D相はa−b面の2次
元では準結晶構造であるが、C軸方向では周期的に積層
した構造をもっている。磁気的特性を引き出すためには
D相のように強い異方性をもって配列した原子構造を利
用することが有用である。
A typical structure known as a quasicrystal is an icosahedral phase (I).
Phase) and the D phase. Phase I is a three-dimensional quasicrystal,
Phase D is a two-dimensional quasicrystal. 2 times, 3 times, 5
Although it has a symmetric atomic arrangement of times, the D phase has a quasicrystalline structure in the two-dimensional a-b plane, but has a periodically stacked structure in the C-axis direction. In order to bring out the magnetic properties, it is useful to use an atomic structure arranged with strong anisotropy like the D phase.

【0008】本発明はかかる考え方に基づいて発明され
た。すなわち、Mn−Al−Ge−B(−M)系合金を
液体急冷法によって急冷凝固するとD相を得ることがで
きる。上記に示す組成範囲に限定したのは、その範囲か
らはずれると準結晶を形成しないかもしくは所望の磁気
的特性が得られないためである。
The present invention was invented based on this concept. That is, the D phase can be obtained by rapidly solidifying the Mn-Al-Ge-B (-M) based alloy by the liquid quenching method. The reason why the composition range is limited to the above is that if it deviates from the range, quasicrystals are not formed or desired magnetic characteristics cannot be obtained.

【0009】Mn、Al、GeはD相を形成する必須成
分であり、原子半径の小さいBは準結晶中に固溶するこ
とにより準結晶の格子定数を減少させ、磁化等の磁気的
特性の因子であるMn−BおよびMn−Mn対の相互作
用を強くする。M(Fe又は/及びCo)は合金中に固
溶することによってM−B対を形成し、保磁力等の増大
に寄与する。本合金の準結晶は準安定相であり、加熱す
ることによって金属間化合物などの結晶相に変化する
が、結晶化によってその磁気的特性を減ずる。
Mn, Al, and Ge are essential components for forming the D phase, and B having a small atomic radius forms a solid solution in the quasicrystal to reduce the lattice constant of the quasicrystal, thereby reducing magnetic properties such as magnetization. It strengthens the interaction of the factors Mn-B and Mn-Mn pairs. M (Fe or / and Co) forms an M-B pair by forming a solid solution in the alloy, and contributes to an increase in coercive force and the like. The quasi-crystal of the present alloy is a metastable phase and changes to a crystal phase such as an intermetallic compound by heating, but its magnetic characteristics are reduced by crystallization.

【0010】上記一般式MnaAlbGecd合金におい
て、D相からなる準結晶の大きさは50nm〜200n
mであることが好ましく、上記一般式MnaAlbGec
de合金ではその大きさが5nm〜20nmであるこ
とが好ましい。
[0010] In the general formula Mn a Al b Ge c B d alloy, the size of the quasi-crystals consisting of D phase 50nm~200n
It is preferably m, the general formula Mn a Al b Ge c
It is preferred B d M e alloy whose magnitude is 5 nm to 20 nm.

【0011】[0011]

【発明の実施の形態】本発明の材料を製造するには、従
来から知られたメルトスピニング装置等の液体急冷装置
によって製造できるが、やはり従来から知られたガスア
トマイズ法、スパッタリング等の102K/sec程度
以上の急冷効果をもつその他の製造法によっても製造可
能である。又、本発明は急冷凝固によって得られる非晶
質相又は過飽和固溶体を加熱するなどの結晶化、分解処
理によっても製造可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The material of the present invention can be manufactured by a liquid quenching device such as a conventionally known melt spinning device. However, the conventionally known gas atomizing method, sputtering or the like 10 2 K is used. It can also be manufactured by another manufacturing method having a quenching effect of about / sec or more. The present invention can also be produced by crystallization or decomposition treatment such as heating an amorphous phase or a supersaturated solid solution obtained by rapid solidification.

【0012】本発明準結晶はすべり等の変形帯を持たな
いため、強度が強く、ヤング率が高く、高硬度であり、
変形および摩耗に対して強い抵抗力を示し、優れた構造
材料としての特性および利用価値をもっている。すなわ
ち、磁性材料という新物質を提供するだけでなく、同時
に機械的性質にも優れた複合機能材料を提供するもので
ある。
Since the quasicrystal of the present invention has no deformation zone such as slip, it has high strength, high Young's modulus and high hardness.
It has strong resistance to deformation and abrasion, and has excellent properties and utility as a structural material. That is, not only a new substance called a magnetic material is provided, but also a composite functional material excellent in mechanical properties is provided at the same time.

【0013】[0013]

【実施例】以下、実施例によって本発明を具体的に説明
する。
The present invention will be specifically described below with reference to examples.

【0014】実施例1 99.999wt%の純度のAl、MnおよびGe、9
9.9wt%の純度のBの原料を所定量分取し、アルゴ
ン雰囲気中でアーク溶解炉で均一な母合金を溶製した。
この母合金を単ロール式液体急冷装置によって厚さ0.
02mm、幅1mmのリボンとした。その際の急冷ロー
ルは直径200mの銅製ロールを用い、ロールの回転速
度は毎分2000回転とした。急冷凝固したままのサン
プルと種々の温度で熱処理したサンプルをX線回折、透
過型電子顕微鏡で結晶構造を調査した。磁気的特性は1
8kOeの磁場中で4.2〜950Kの温度範囲で振動
式磁気測定装置(VSM)で測定した。
Example 1 99.999 wt% pure Al, Mn and Ge, 9
A predetermined amount of a B raw material having a purity of 9.9 wt% was sampled, and a uniform master alloy was melted in an arc melting furnace in an argon atmosphere.
This master alloy was made to have a thickness of 0.
The ribbon was 02 mm in width and 1 mm in width. At that time, a copper roll having a diameter of 200 m was used as the quenching roll, and the rotation speed of the roll was 2000 rpm. The crystal structure of the as-quenched and solidified sample and the sample heat-treated at various temperatures were investigated by X-ray diffraction and a transmission electron microscope. Magnetic characteristic is 1
It was measured by a vibrating magnetometer (VSM) in a temperature range of 4.2 to 950 K in a magnetic field of 8 kOe.

【0015】図1にMnを45原子%に固定し、Al、
GeおよびBの組成を変化させ、その組織構造を調査し
た結果を示す。その結果、Alが22〜28原子%、G
eが12〜24原子%、Bが7〜17原子%の範囲でD
相を形成していることが分かる。このD相の組成範囲か
らはずれるとAlリッチ側では斜方晶の結晶相、Alプ
ア側ではB2タイプの結晶相が現われる。
In FIG. 1, Mn is fixed at 45 atom%, Al,
The result of having investigated the histological structure by changing the composition of Ge and B is shown. As a result, Al is 22 to 28 atomic%, G
e in the range of 12 to 24 atomic% and B in the range of 7 to 17 atomic% D
It can be seen that they form a phase. If deviating from the composition range of the D phase, an orthorhombic crystal phase appears on the Al-rich side and a B 2 type crystal phase appears on the Al poor side.

【0016】図2にMnを50原子%に固定した場合の
D相形成範囲を示す。この場合、Alが18〜28原子
%、Geが18〜23原子%、Bが5〜15原子%の範
囲でD相を形成していることが分かる。この2つの事例
を比較すると、Mnが44.5原子%から50原子%に
増えるとBの組成範囲が減縮されており、このことはM
nとBの占める原子サイトがほぼ同じであることを示し
ていると思われれる。Mn45Al25Ge1515合金とM
50Al20Ge22.57.5合金のX線回折の測定結果を
図3に例示する。その結果、いずれの回折ピークもD相
と判定できる。後者の合金のピークが弱くなり、Mnの
45原子%から50原子%の増加はD相の形成を減ずる
傾向を示しているものと思われる。第2相の存在を確認
するために透過型電子顕微鏡で観察したところ、第2相
は存在せず、その代わり、回折スポットが2回回転軸方
向(010010)に伸びたストリークが観察され、C
軸方向に1.2nmの周期構造をもつD相(2次元準結
晶)であることが確認された。その際のa−b2次元平
面のD相の大きさは50〜200nmであった。このD
相は950Kの温度で60秒の加熱によって結晶相に変
化した。
FIG. 2 shows the range of D phase formation when Mn is fixed at 50 atomic%. In this case, it is understood that the D phase is formed in the range of 18 to 28 atomic% of Al, 18 to 23 atomic% of Ge, and 5 to 15 atomic% of B. Comparing these two cases, the composition range of B was reduced when Mn was increased from 44.5 atomic% to 50 atomic%.
This seems to indicate that the atomic sites occupied by n and B are almost the same. Mn 45 Al 25 Ge 15 B 15 alloy and M
The measurement result of the X-ray diffraction of the n 50 Al 20 Ge 22.5 B 7.5 alloy is illustrated in FIG. As a result, any diffraction peak can be determined to be the D phase. It is considered that the peak of the latter alloy becomes weaker, and an increase of Mn from 45 atom% to 50 atom% tends to reduce the formation of D phase. When observed with a transmission electron microscope to confirm the presence of the second phase, the second phase was not present, and instead, a streak in which the diffraction spot extended twice in the rotation axis direction (010010) was observed, and C
It was confirmed to be a D phase (two-dimensional quasicrystal) having a periodic structure of 1.2 nm in the axial direction. At that time, the size of the D phase on the ab two-dimensional plane was 50 to 200 nm. This D
The phase changed to a crystalline phase by heating for 60 seconds at a temperature of 950K.

【0017】Mn45Al25Ge1515合金とMn50Al
20Ge22.57.5合金の磁化曲線(J−H曲線)の測定
結果を図4に示す。磁場18kOeの磁化、残留磁化お
よび保磁力は、各々Mn45Al25Ge1515合金で、2
6emu/g、8emu/gおよび300Oe、Mn50
Al20Ge22.57.5合金で7emu/g、3emu/
gおよび350Oeであった。Mnの5原子%の増加に
よって保磁力は若干増加したが、磁化および残留磁化は
急激に減少した。これはMnの増加によってBが減少し
たため、強磁性(フェロ磁性)の起源と考えられている
Mn−B原子対が減少したことによるものと思われる。
Mn 45 Al 25 Ge 15 B 15 alloy and Mn 50 Al
The measurement result of the magnetization curve (JH curve) of the 20 Ge 22.5 B 7.5 alloy is shown in FIG. The magnetization, remanent magnetization and coercive force of a magnetic field of 18 kOe are 2 Mn 45 Al 25 Ge 15 B 15 alloy, respectively.
6 emu / g, 8 emu / g and 300 Oe, Mn 50
Al 20 Ge 22.5 B 7.5 alloy with 7 emu / g, 3 emu / g
g and 350 Oe. The coercive force was slightly increased by the increase of 5 atom% of Mn, but the magnetization and the residual magnetization were sharply decreased. This is considered to be due to the decrease of Mn-B atom pairs, which is considered to be the origin of ferromagnetism, due to the decrease of B due to the increase of Mn.

【0018】図5にキューリー温度(Tc)を調べるた
め実施した。本合金の10Oeの磁場中の加熱磁気特性
曲線を示す。図中、D相と記してあるのは急冷凝固のま
ま、一方は950K、60sec熱処理した試料であ
る。D相の磁化に比べて結晶相は若干磁化が減少してい
る。(磁化)2と温度の関係から求められるD相および
結晶相のTcは、Mn45原子%の合金で570K及び
530K、Mn50原子%の合金で558K及び530
Kであった。磁化挙動は合金組成には依存せず、Mn−
B原子対によって現われ、その強さはMn−Bの数によ
って変化していることを示しているものと思われる。
FIG. 5 was carried out to examine the Curie temperature (Tc). The heating magnetic characteristic curve of this alloy in the magnetic field of 10 Oe is shown. In the figure, what is described as D phase is a sample which was heat-treated at 950 K for 60 seconds while being rapidly solidified. The magnetization of the crystal phase is slightly reduced as compared with the magnetization of the D phase. The Tc of the D phase and the crystalline phase obtained from the relationship between (magnetization) 2 and temperature is 570K and 530K for the alloy of 45 atomic% Mn and 558K and 530 for the alloy of 50 atomic% Mn.
It was K. The magnetization behavior does not depend on the alloy composition, and Mn-
It appears to be due to the B atom pair, and its strength seems to indicate that it varies depending on the number of Mn-B.

【0019】実施例2 Mn−Al−Ge−B系合金のMnの一部を遷移金属
(Cr、Fe、CoまたはNi、但し、Cr及びNiは
参考)で置換した合金を実施例1と同様の方法で作成し
た。組成範囲はMn45-xAl25Ge1515Fex(x:
5、10、15)である。これら遷移金属の保磁力に対
する効果を図6に示す。図に示すようにCr及びNiは
保磁力を減じ、Fe及びCoは増加させる効果をもって
おり、特にFeの効果が著しく、Fe1原子%増加毎に
11.1kA/mの増加を示す。
Example 2 An alloy in which a part of Mn of the Mn-Al-Ge-B system alloy was replaced with a transition metal (Cr, Fe, Co or Ni, where Cr and Ni are for reference) was the same as in Example 1. It was created by the method. Composition range Mn 45-x Al 25 Ge 15 B 15 Fe x (x:
5, 10, 15). The effect of these transition metals on the coercive force is shown in FIG. As shown in the figure, Cr and Ni have the effect of reducing the coercive force and increasing Fe and Co, and the effect of Fe is particularly remarkable, showing an increase of 11.1 kA / m for every 1 atomic% increase in Fe.

【0020】図7にMn45-xAl25Ge1515Fex
金におけるFe量の違い(但し、x:0、5、10、1
5、参考として25、35)によるX線回折の結果を示
す。図に示す様にFeが15原子%まではD相単相であ
り、さらに増えるに従ってD相と結晶相の混相組織(2
5原子%)、結晶相(35原子%)と変化していた。透
過電子顕微鏡観察の結果、Feが15原子%の合金は第
2相は存在せず、a−b平面の粒径5〜20nm、C軸
方向に1.2nmの周期性をもったD相であること、a
−b面内((100000)方向)にフェイゾン欠陥を
含んでいることが分かった。この内部欠陥はFeが多量
に強制固溶しているためと急冷凝固時に歪みが内部に凍
結されているためと思われる。
FIG. 7 shows the difference in the amount of Fe in the Mn 45-x Al 25 Ge 15 B 15 Fe x alloy (however, x: 0, 5, 10, 1
5 shows the result of X-ray diffraction according to 25, 35) as a reference. As shown in the figure, the Fe phase is a single phase up to 15 atomic%, and as the Fe content further increases, the mixed phase structure of the D phase and the crystalline phase (2
5 atomic%) and the crystal phase (35 atomic%). As a result of observation by a transmission electron microscope, the alloy having 15 atomic% Fe does not have the second phase, and has a grain size of 5 to 20 nm in the ab plane and a D phase having a periodicity of 1.2 nm in the C-axis direction. Be a
It was found that a -P plane defect was included in the -b plane ((100000) direction). This internal defect is considered to be due to a large amount of Fe being forced to form a solid solution and the strain being frozen inside during rapid solidification.

【0021】図8及び9にこれらの合金のJ−H曲線を
示す。Feの置換量が増すに従い、磁化が若干減少する
が、保磁力(Hc)、残留磁化(Br)が増加すること
が明らかである。18kOe磁場中の磁化はFeが0原
子%で25emu/g(3.14×10~5Wbm/k
g)、10原子%まで27emu/g(3.39×10
~5Wbm/kg)でほぼ一定、15原子%で23emu
/g(2.89×10~5Wbm/kg)と若干低下す
る。一方、残留磁化(Br)、保磁力(Hc)及びエネ
ルギー積((BH)max)は、各々Fe0原子%で7e
mu/g(0.87×10~5Wbm/kg)、329O
e(26.3kA/m)及び0.16kJ/m3、Fe
15原子%で10emu/g(1.25×10~5Wbm
/kg)、1425Oe(114kA/m)、1.44
kJ/m3であった。
8 and 9 show the JH curves for these alloys. It is apparent that the coercive force (Hc) and the remanent magnetization (Br) increase while the magnetization slightly decreases as the substitution amount of Fe increases. The magnetization in a magnetic field of 18 kOe was 25 emu / g (3.14 × 10 to 5 Wbm / k) with 0 atomic% of Fe.
g) up to 10 atomic% 27 emu / g (3.39 × 10
~ 5 Wbm / kg), almost constant, 23 emu at 15 atom%
/G(2.89×10~ 5 Wbm / kg) and decreased slightly. On the other hand, the remanent magnetization (Br), the coercive force (Hc), and the energy product ((BH) max ) are each 7 e at 0 atomic% Fe.
mu / g (0.87 × 10 ~ 5 Wbm / kg), 329O
e (26.3 kA / m) and 0.16 kJ / m 3 , Fe
10 emu / g (1.25 × 10 ~ 5 Wbm at 15 atom%
/ Kg), 1425 Oe (114 kA / m), 1.44
It was kJ / m 3 .

【0022】また、キューリー温度TcはFe0原子%
で570K、15原子%で620Kと上昇している。
The Curie temperature Tc is 0 atomic% of Fe.
It increased to 570K at 570K and 620K at 15 atom%.

【0023】これらのことより、FeによるMnの置換
はMn−B原子対、Mn−Mn原子対の数を減じて飽和
磁化を下げていることが分かる。また、Fe置換による
D相の微細化及び内部欠陥の増加はHc、BHmaxを
増加させており、良く知られているようにHcがミクロ
組織に敏感で結晶粒界、内部欠陥の増加にともない増加
することと呼応する。
From these facts, it is understood that the substitution of Fe for Mn reduces the saturation magnetization by reducing the number of Mn-B atom pairs and Mn-Mn atom pairs. Further, the miniaturization of the D phase and the increase of internal defects due to Fe substitution increase Hc and BHmax. As is well known, Hc is sensitive to the microstructure and increases with the increase of crystal grain boundaries and internal defects. Correspond to what you do.

【0024】以上の実施例より、Mn−Al−Ge−B
系合金及びMn−Al−Ge−B−Fe系合金は2次元
の準結晶D相を形成し、Mn−Mn原子対及びMn−B
原子対の相互作用によって強磁性または軟磁性の磁気的
特性を発揮する新規な合金であることが分かる。
From the above examples, Mn-Al-Ge-B
The system alloy and the Mn-Al-Ge-B-Fe system alloy form a two-dimensional quasi-crystalline D phase, and the Mn-Mn atom pair and Mn-B are formed.
It can be seen that it is a novel alloy that exhibits ferromagnetic or soft magnetic magnetic properties by the interaction of atomic pairs.

【0025】[0025]

【発明の効果】以上のように、本発明の合金は2次元の
準結晶正十角形相を形成することにより軟磁性または強
磁性を示し、しかもそれらを制御することができる新規
な合金である。また、準結晶は本来機械的性質に優れて
おり、磁気的特性と強度、耐摩耗性を合わせもった複合
機能材料である。
As described above, the alloy of the present invention is a novel alloy which exhibits soft magnetism or ferromagnetism by forming a two-dimensional quasicrystalline regular decagonal phase and can control them. . Further, the quasicrystal is originally a composite functional material having excellent mechanical properties and having magnetic properties, strength, and wear resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】Mn45Al55-X-YGeXYの組織構造を示すグ
ラフである。
FIG. 1 is a graph showing the microstructure of Mn 45 Al 55-XY Ge X BY .

【図2】同じくMnを50原子%に固定した場合のD相
形成範囲を示すグラフである。
FIG. 2 is a graph showing a D-phase formation range when Mn is fixed at 50 atom%.

【図3】代表的2種合金のX線回折図である。FIG. 3 is an X-ray diffraction diagram of a representative two-type alloy.

【図4】代表的2種合金の磁化曲線の測定結果を示すグ
ラフである。
FIG. 4 is a graph showing the measurement results of the magnetization curves of typical two type alloys.

【図5】代表的2種合金の磁場中の加熱磁気特性曲線を
示す。
FIG. 5 shows a heating magnetic characteristic curve of a representative two-type alloy in a magnetic field.

【図6】本発明において遷移金属の磁力に対する効果を
示すグラフである。
FIG. 6 is a graph showing the effect of the transition metal on the magnetic force in the present invention.

【図7】Mn45-xAl25Ge1515Fexの合金におけ
るFe量の違いによるX線回折図を示す。
FIG. 7 shows an X-ray diffraction diagram due to a difference in Fe content in an alloy of Mn 45-x Al 25 Ge 15 B 15 Fe x .

【図8】同上合金の磁化曲線を示す。FIG. 8 shows a magnetization curve of the above alloy.

【図9】同上合金の磁化曲線を示す。FIG. 9 shows a magnetization curve of the above alloy.

フロントページの続き (72)発明者 横山 嘉彦 宮城県仙台市太白区長町八丁目2−31− 504 (72)発明者 永洞 純一 宮城県仙台市泉区将監11丁目12−12Front Page Continuation (72) Inventor Yoshihiko Yokoyama 2-31-504, Nagamachi, Taichiro-ku, Sendai-shi, Miyagi Prefecture (12) Inventor Junichi Ei-dong 11-12-12, General Manager, Izumi-ku, Sendai-shi, Miyagi Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 Mnを主元素とし、少なくともAl、G
e及びBを含む正十角形相(decagonal ph
ase;D相)からなる準結晶単相又はD相からなる準
結晶を主相とすることを特徴とする磁性材料。
1. Mn as a main element and at least Al and G
A regular decagonal phase containing e and B (decagonal ph)
and a quasi-crystal single phase composed of D phase) or a quasi-crystal composed of D phase as a main phase.
【請求項2】 上記のD相からなる又は上記のD相を含
む合金が下記の組成式からなることを特徴とする請求項
1記載の磁性材料。 MnaAlbGecd ただし、a:40〜55原子%、b:15〜30原子
%、c:10〜30原子%、d:3〜20原子%、ただ
し、45原子%≦b+c+d≦60原子%。
2. The magnetic material according to claim 1, wherein the alloy composed of the D phase or containing the D phase has the following composition formula. Mn a Al b Ge c B d where a: 40 to 55 atomic%, b: 15 to 30 atomic%, c: 10 to 30 atomic%, d: 3 to 20 atomic%, however, 45 atomic% ≦ b + c + d ≦ 60 atom%.
【請求項3】 上記D相からなる準結晶が、準結晶粒の
大きさが50〜200nmの積層構造であることを特徴
とする請求項1記載の磁性材料。
3. The magnetic material according to claim 1, wherein the quasicrystal composed of the D phase has a laminated structure having a quasicrystal grain size of 50 to 200 nm.
【請求項4】 Mnを主元素とし、少なくともAl、G
e、B及びFe又は/及びCoを含む正十角形相(de
cagonal phase:D相)からなる準結晶単
相又はD相からなる準結晶を主相とすることを特徴とす
る磁性材料。
4. Mn as a main element and at least Al and G
A regular decagonal phase containing e, B and Fe or / and Co (de
A magnetic material characterized by having a quasi-crystal single phase composed of a cationic phase (D phase) or a quasi-crystal composed of a D phase as a main phase.
【請求項5】 上記のD相からなる又は上記のD相を含
む合金が下記の組成式からなることを特徴とする請求項
4記載の磁性材料。 MnAlbGecde (M:Fe、Coから選ばれる1種又は2種の元素) ただし、a´:30〜45原子%、b:15〜30原子
%、c:10〜30原子%、d:3〜20原子%、e:
10〜15原子%、ただし、55原子%≦b+c+d+
e≦75原子%
5. The magnetic material according to claim 4, wherein the alloy composed of the D phase or containing the D phase has the following composition formula. Mn a'Al b Ge c B d M e (M: Fe, 1 kind or two elements selected from Co) however, a': 30-45 atomic%, b: 15 to 30 atomic%, c: 10 -30 atom%, d: 3-20 atom%, e:
10 to 15 atomic%, but 55 atomic% ≦ b + c + d +
e ≦ 75 atom%
【請求項6】 上記D相からなる準結晶が、準結晶粒の
大きさが5〜20nmの積層構造であることを特徴とす
る請求項4に記載の磁性材料。
6. The magnetic material according to claim 4, wherein the quasicrystal composed of the D phase has a laminated structure in which the size of quasicrystal grains is 5 to 20 nm.
JP8070248A 1996-03-26 1996-03-26 Magnetic material Pending JPH09260125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8070248A JPH09260125A (en) 1996-03-26 1996-03-26 Magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070248A JPH09260125A (en) 1996-03-26 1996-03-26 Magnetic material

Publications (1)

Publication Number Publication Date
JPH09260125A true JPH09260125A (en) 1997-10-03

Family

ID=13426077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070248A Pending JPH09260125A (en) 1996-03-26 1996-03-26 Magnetic material

Country Status (1)

Country Link
JP (1) JPH09260125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568023A (en) * 2016-01-07 2016-05-11 燕山大学 Preparation method for Al6Mn quasicrystal
CN105568072A (en) * 2016-01-07 2016-05-11 燕山大学 Preparation method for Al-Pd-Mn quasicrystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568023A (en) * 2016-01-07 2016-05-11 燕山大学 Preparation method for Al6Mn quasicrystal
CN105568072A (en) * 2016-01-07 2016-05-11 燕山大学 Preparation method for Al-Pd-Mn quasicrystal

Similar Documents

Publication Publication Date Title
Gheiratmand et al. Finemet nanocrystalline soft magnetic alloy: Investigation of glass forming ability, crystallization mechanism, production techniques, magnetic softness and the effect of replacing the main constituents by other elements
US5340413A (en) Fe-NI based soft magnetic alloys having nanocrystalline structure
US5961745A (en) Fe Based soft magnetic glassy alloy
JP2015127436A (en) High magnetic flux density soft-magnetic iron base amorphous alloy having high extensibility and workability
KR100315074B1 (en) Hard magnetic alloy based on Fe
KR102214392B1 (en) Soft magnetic alloy and magnetic device
JPH08162312A (en) Permanent magnet material, permanent magnet and manufacture of permanent magnet
Ohta et al. Improvement of soft magnetic properties in (Fe0. 85B0. 15) 100− xCux melt-spun alloys
JP3877893B2 (en) High permeability metal glass alloy for high frequency
JPH0639663B2 (en) Magnetic metallic glass at least 90% glassy and method of making same
EP1482064B1 (en) Soft magnetic metallic glass alloy
Chiriac et al. New bulk amorphous magnetic materials
JP3655321B2 (en) Method for producing Fe-based soft magnetic alloy powder
Inoue et al. New Fe-based amorphous alloys with large magnetostriction and wide supercooled liquid region before crystallization
Lopez et al. Microstructure and soft magnetic properties of Finemet-type ribbons obtained by twin-roller melt-spinning
US5397490A (en) Magnetic material
JPH09260125A (en) Magnetic material
WO1992009714A1 (en) Iron-base soft magnetic alloy
Gopalan et al. Mechanically milled and spark plasma sintered FePt-based bulk magnets with high coercivity
Rahman et al. Comparative study of the magnetic properties and glass-forming ability of Fe-based bulk metallic glass with minor Mn, Co, Ni, and Cu additions
Yekta et al. Glass formation and magnetic study of new Fe70Ta5Si10C15 powders prepared by mechanical alloying with high thermal stability
US5725684A (en) Amorphous hard magnetic alloy, amorphous hard magnetic cast alloy, and method for producing the same
Gopalan et al. High saturation magnetization and microstructure in melt-spun Fe–P ribbons
KR19980073499A (en) Fe-based amorphous soft magnetic material and manufacturing method thereof
KR20210152361A (en) Super soft magnetic fe-based amorphous alloy