JPH09260050A - Induction heating roller - Google Patents

Induction heating roller

Info

Publication number
JPH09260050A
JPH09260050A JP8709296A JP8709296A JPH09260050A JP H09260050 A JPH09260050 A JP H09260050A JP 8709296 A JP8709296 A JP 8709296A JP 8709296 A JP8709296 A JP 8709296A JP H09260050 A JPH09260050 A JP H09260050A
Authority
JP
Japan
Prior art keywords
coil
magnetic
induction heating
roller
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8709296A
Other languages
Japanese (ja)
Inventor
Morio Kawabe
盛男 河邊
Takashi Narita
隆 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP8709296A priority Critical patent/JPH09260050A/en
Publication of JPH09260050A publication Critical patent/JPH09260050A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure the temperature control of roller surface by applying to an induction heating coil a magnetic guide member guiding flux generated by the induction heating coil to a secondary conductor. SOLUTION: A magnetic guide 15' is structured to have a plurality of convex magnetic poles extending radially outwardly to provide uniform temperature on the roller surface. A direct current coil is provided radially inside the convex pole, to detect jule loss generated by the convex pole by a temperature sensor mounted on the roller surface to instruct direct current control instructions from a controller to a plurality of coils located axially at both ends to control the direct current to provide homogenous temperature at the roller surface. The entire coil comprising the direct current coils located axially at both ends and the alternative current coil therebetween is instructed by the controller with alternative current instructions, a plurality of coils located axially at both ends are provided with control instructions for both direct and alternative current, the interposed coil is provided only with the alternative current instructions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、合成繊維の直接延
伸方式に採用される誘導加熱ローラのうち、特に高温、
高速用に適する誘導加熱ローラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating roller used in a direct drawing method for synthetic fibers, particularly at high temperature.
The present invention relates to an induction heating roller suitable for high speed.

【0002】[0002]

【従来の技術】図10は、出願人の先願考案である実願
昭57−19516号(実開昭58−122393号公報)中に、その
出願以前の従来技術として記載された合成繊維の直接延
伸に使用される誘導加熱ローラを示す側断面図である
(従来技術1)。この誘導加熱ローラの概略構造を次に
述べる。回転ローラ(誘導加熱ローラ)1は底付2重中
空円柱状に形成されて、この中空部分には軸心(回転
軸)2と共軸にコイル8が挿入され、前記の回転ローラ
1の内周に沿って導電性の高い材料製の2次導体(導電
環)9が形成される。この回転ローラ1の中空部分には
コイル8が卷回され、ボビン(鉄心)6の軸方向両端部
にはコイル8の係止部材6a、6bが形成され、回転ロ
ーラ1の開口部側の係止部材6aは、その外径が回転ロ
ーラ1の外径と同一で、回転ローラ1の軸方向外側に配
置されている。コイル8に交流電流を通じると、ボビン
6、回転ローラ1に交番磁束Φ0が発生し、2次導体9
には、図11に示すように、この磁束Φ0を打ち消す向
きに渦電流ioが流れて2次導体9が発熱して、その熱
が回転ローラ1の外周面に伝達され所定温度に加熱され
る。一方、コイル8の両端には漏れ磁束Φeが発生し、
2次導体9の両端部には、漏れ磁束Φeを打ち消す向き
に渦電流ieが前記の渦電流ioと逆向きに流れ、このた
め2次導体9における渦電流ioの電流密度は2次導体
9の軸方向両端部において減少し、図12に示すよう
に、回転ローラ1の外周面温度も中央部に比較し両端部
で低下し、さらに両端部での放熱による熱低下も加わり
回転ローラ1の外周面温度が均一とならず、化学繊維な
どの被加熱物の太さなどを一定にできない。
2. Description of the Related Art FIG. 10 shows a synthetic fiber described as prior art prior to the application in Japanese Patent Application No. 57-19516 (Japanese Utility Model Application Laid-Open No. 58-122393), which is a prior invention of the applicant. It is a sectional side view which shows the induction heating roller used for direct drawing (prior art 1). The schematic structure of this induction heating roller will be described below. The rotating roller (induction heating roller) 1 is formed in a double hollow cylinder with a bottom, and a coil 8 is inserted into this hollow portion coaxially with the shaft center (rotating shaft) 2 so that the rotating roller 1 A secondary conductor (conductive ring) 9 made of a highly conductive material is formed along the circumference. A coil 8 is wound around the hollow portion of the rotary roller 1, and locking members 6a and 6b of the coil 8 are formed at both ends of the bobbin (iron core) 6 in the axial direction. The stop member 6 a has the same outer diameter as the outer diameter of the rotating roller 1 and is arranged outside the rotating roller 1 in the axial direction. When an alternating current is passed through the coil 8, an alternating magnetic flux Φ 0 is generated in the bobbin 6 and the rotating roller 1, and the secondary conductor 9
11, an eddy current io flows in a direction to cancel this magnetic flux Φ 0 and the secondary conductor 9 generates heat, and the heat is transferred to the outer peripheral surface of the rotating roller 1 and heated to a predetermined temperature. It On the other hand, leakage flux Φe is generated at both ends of the coil 8,
At both ends of the secondary conductor 9, an eddy current ie flows in a direction opposite to the eddy current io in a direction of canceling the leakage magnetic flux Φe. Therefore, the current density of the eddy current io in the secondary conductor 9 is 12, the temperature of the outer peripheral surface of the rotating roller 1 also decreases at both ends as compared with the central portion as shown in FIG. 12, and further heat reduction due to heat dissipation at both ends is added to the rotating roller 1. The temperature of the outer peripheral surface is not uniform, and the thickness of the heated object such as chemical fiber cannot be made constant.

【0003】実願昭57−19516号(実開昭58−122393号
公報)は、従来技術1の回転ローラの表面温度が不均一
であった点を改良したもので、図13に示すように、前
記コイル8の軸方向の両端部に前記コイル8から発生す
る磁束を前記の2次導体9へ導く導磁部材15を加えた
ものである。図13と図14とにおいて、前記の導磁部
材15以外の部材は前記の従来技術の回転ローラ1と同
一なので、同一または類似の符号を使用し重複した説明
は省略する。ボビン(鉄心)6の軸方向両端の係止部材
6d、6cは、ボビン6と一体に形成され、これらの半
径方向外周部には透磁率の高い材料でリング状に形成さ
れた左右一対の導磁部材15、15が、係止部材6d、
6cと同軸に接合される。この構成において、図13と
図14とにおいて、実線矢印の経路で磁束Φ0が発生し
て渦電流ioが発生し、回転ローラ1の軸方向両端には
一点鎖線で示す磁束Φdが発生する。図14の部分Cに
ついて述べると、回転ローラ1が矢印F方向に回転する
と、2次導体9の両端部分が磁束Φdを切り、この部分
に回転ローラ1の回転速度に対応する起電力が発生し、
この起電力により2次導体9の両端部分には経路D、E
で示す渦電流idが流れ2次導体9の軸方向両端部が発
熱し、この熱が回転ローラ1の外周両端部に伝わり温度
が上昇し、図12で実線で示す温度特性曲線Tの裾野部
分を矢印で示すように軸Zに平行に近づくように上昇さ
せる。
Japanese Patent Application No. 57-19516 (Japanese Utility Model Application Laid-Open No. 58-122393) is an improvement of the prior art 1 in that the surface temperature of the rotating roller is not uniform, as shown in FIG. A magnetic conducting member 15 for guiding the magnetic flux generated from the coil 8 to the secondary conductor 9 is added to both ends of the coil 8 in the axial direction. In FIGS. 13 and 14, members other than the magnetic conducting member 15 are the same as those of the conventional rotary roller 1 described above, and therefore, the same or similar reference numerals are used and duplicate description is omitted. Locking members 6d and 6c at both axial ends of the bobbin (iron core) 6 are formed integrally with the bobbin 6, and a pair of left and right conductive members formed of a material having a high magnetic permeability in a ring shape are formed on outer peripheral portions thereof in the radial direction. The magnetic members 15, 15 are locking members 6d,
6c is coaxially joined. In this configuration, in FIGS. 13 and 14, the magnetic flux Φ 0 is generated in the path indicated by the solid arrow to generate the eddy current io, and the magnetic flux Φd indicated by the alternate long and short dash line is generated at both axial ends of the rotating roller 1. Referring to part C in FIG. 14, when the rotary roller 1 rotates in the direction of arrow F, both ends of the secondary conductor 9 cut the magnetic flux Φd, and an electromotive force corresponding to the rotation speed of the rotary roller 1 is generated in this part. ,
Due to this electromotive force, the paths D and E are provided to both ends of the secondary conductor 9.
The eddy current id shown in Fig. 12 flows and both ends of the secondary conductor 9 in the axial direction generate heat. This heat is transmitted to both ends of the outer periphery of the rotating roller 1 and the temperature rises. Is raised so as to approach parallel to the axis Z as indicated by the arrow.

【0004】特公昭52−14856号公報(従来技術2)
は、回転ローラの表面温度が、軸方向両端部が低く不均
一であった点を、ジャケット室を設けるという機械的手
段により解決したものである。前述した本発明の先願で
ある実願昭57−19516号(実開昭58−122393号公報)
が、ボビン(鉄心)6の軸方向両端の係止部材6d、6
cの半径方向外部に導磁部材15を配置して、電磁気的
手段により解決したのとは対照をなすものであるが、図
面による説明は省略する。この従来技術2の公報には、
磁性材料からなる回転ローラの内部に交番磁束発生機構
を設け、前記ローラの内壁面に高導性(熱、電気)の厚
肉筒(2次導体)を密着させて挿入し、厚肉筒(2次導
体)の内部に筒軸に沿って熱媒体が封入された多数の貫
通孔からなるジャケット室を設け、このジャケット室の
内部に封入された熱媒体により回転ローラの表面温度が
均一に保持されるものであって、さらにジャケット室の
内壁面にジャケット室を保護する保護筒を密着させてな
るものである。
Japanese Examined Patent Publication No. 52-14856 (Prior Art 2)
The problem is that the surface temperature of the rotating roller is low at both ends in the axial direction and is non-uniform, which is solved by a mechanical means of providing a jacket chamber. Japanese Patent Application No. 57-19516 (Japanese Utility Model Application Laid-Open No. 58-122393), which is the prior application of the present invention.
Are locking members 6d, 6 at both axial ends of the bobbin (iron core) 6.
This is in contrast to the case where the magnetic conducting member 15 is arranged on the outer side in the radial direction of c and the problem is solved by an electromagnetic means, but the description with the drawings is omitted. In the publication of this prior art 2,
An alternating magnetic flux generating mechanism is provided inside a rotating roller made of a magnetic material, and a thick tube (secondary conductor) having high conductivity (heat and electricity) is closely attached to the inner wall surface of the roller to insert the thick tube ( A jacket chamber consisting of a large number of through holes in which a heat medium is enclosed along the cylinder axis is provided inside the secondary conductor, and the heat medium enclosed inside this jacket chamber keeps the surface temperature of the rotating roller uniform. In addition, a protective cylinder for protecting the jacket chamber is closely attached to the inner wall surface of the jacket chamber.

【0005】特公昭62−62431号公報(従来技術3)
は、合成繊維の直接延伸という同じ目的に使用するため
の誘導加熱による高温ローラに関するものであり、誘導
磁束発生機構の半径方向外周面を断熱層でカバーする一
方、温度検出端を断熱層内または断熱層と誘導磁束発生
機構の間に設け、さらにローラ本体の内周面と温度検出
端の感温部を黒化処理してローラ本体の温度を検出しや
すくしたものである。また、この従来技術の特許請求の
範囲第2項と実施例には、磁束発生機構を複数の区画に
分割すると共に、前記の温度検出端を分割された各部毎
に設けて、各部分を独立して温度制御するようにした高
温ローラについて開示している。この従来技術3につい
ても図面による説明は省略する。
Japanese Patent Publication No. 62-62431 (Prior Art 3)
Relates to a high temperature roller by induction heating for use for the same purpose of direct drawing of synthetic fiber, in which the radial outer peripheral surface of the induction magnetic flux generating mechanism is covered with a heat insulating layer, while the temperature detecting end is in the heat insulating layer or It is provided between the heat insulating layer and the induction magnetic flux generating mechanism, and the inner peripheral surface of the roller body and the temperature sensing portion at the temperature detecting end are blackened to facilitate detection of the temperature of the roller body. Further, in the claims and the embodiments of the prior art, the magnetic flux generating mechanism is divided into a plurality of sections, and the temperature detecting end is provided for each divided section, and each section is independent. It discloses a high temperature roller in which the temperature is controlled. The description of the related art 3 will also be omitted with reference to the drawings.

【0006】特公昭62−8912号公報(従来技術4)は、
同じ目的に使用するため誘導加熱による回転ローラに関
するものであり、回転ローラの内部の誘導磁束発生機構
の環状成層鉄心脚と、この鉄心脚を3等分した箇所と、
その両端に設けられた環状形ヨークと、このヨーク間で
鉄心脚上に巻かれた巻線とから成り、これらの巻線が互
いに隣接する部分においてオーバーラップすることによ
り、巻線により発生する磁束を重畳して、この部分の誘
起電圧を高くすることにより、回転ローラの表面温度分
布を平均化したものである。この従来技術4においても
図面を参照した説明は省略する。
Japanese Patent Publication No. 62-8912 (Prior Art 4) discloses
The present invention relates to a rotary roller by induction heating for use for the same purpose, and includes an annular layered iron core leg of an induction magnetic flux generating mechanism inside the rotary roller, and a position where the iron core leg is divided into three equal parts,
It consists of annular yokes provided at both ends and windings wound on the iron core legs between the yokes, and these windings overlap each other at the adjacent portions, so that the magnetic flux generated by the windings. By superimposing and increasing the induced voltage in this portion, the surface temperature distribution of the rotating roller is averaged. The description of the related art 4 will be omitted with reference to the drawings.

【0007】[0007]

【発明が解決しようとする課題】合成繊維の直接延伸系
においては、巻取速度が速いことが要求され、このため
多くの困難な技術上の問題が生じている。合成繊維の延
伸系において、紡糸筒よりの未延伸系が初段及びこれに
続く回転熱ローラに案内され、同ローラに大きな熱負荷
を与えるため、同ローラの温度分布に好ましからざる影
響を及ぼし、その為、糸質を左右する重大な結果をもた
らすものである。そこで、前述の各従来技術でもローラ
表面温度を均一化する構成が採用されていたが、ローラ
両端部が構造的に温度が低下しやすく、この温度の低下
分を補いきれないため温度の均一化が完全でなかった。
誘導加熱ローラが接触する繊維の状態による負荷の変動
に対する温度のコントロールは、出願人の先願に係わる
導磁部材などを設けても的確に対応できなかった。この
ような点から、本発明では誘導加熱コイルから発生する
磁束を2次導体へ導く導磁部材を誘導加熱コイルに適用
して、ローラ表面の温度コントロールを的確に行うこと
を課題とする。
In the direct drawing system for synthetic fibers, a high winding speed is required, which causes many difficult technical problems. In the synthetic fiber drawing system, the undrawn system from the spinning cylinder is guided to the first stage and the subsequent rotary heating roller, and a large heat load is applied to the roller, which adversely affects the temperature distribution of the roller. Therefore, it has serious consequences that affect the yarn quality. Therefore, in each of the above-mentioned related arts, a structure for equalizing the roller surface temperature was also adopted, but the temperature is easily reduced structurally at both ends of the roller, and this temperature decrease cannot be compensated, so the temperature is equalized. Was not perfect.
The temperature control with respect to the variation of the load due to the state of the fiber which the induction heating roller contacts could not be adequately dealt with even by providing the magnetic conducting member or the like according to the applicant's prior application. From this point of view, it is an object of the present invention to apply a magnetic conducting member that guides the magnetic flux generated from the induction heating coil to the secondary conductor to the induction heating coil to accurately control the temperature of the roller surface.

【0008】[0008]

【課題を解決するための手段】[Means for Solving the Problems]

1)前記の導磁部材を、半径方向外方に突出する複数の
凸形磁極を有する構造としてローラの回転により発生す
るジュール熱によりローラ表面の温度の均一化を行うも
の、 2)さらに、凸形磁極の半径方向内方に直流コイルを設
け、凸形磁極により発生するジュール損をローラ表面に
設置した温度センサにより検出し、さらに軸方向両端の
複数のコイルには制御装置から直流制御指令を与え、直
流電流を制御することによりローラ表面の温度の均一化
を行うもの、 3)軸方向両端の直流コイルと中間の交流コイルを含め
たコイル全体には、制御装置から交流制御指令を与え、
軸方向両端の複数のコイルには制御装置から直流と交流
の制御指令を与え、中間のコイルには交流制御指令のみ
が与えられるようにして課題を解決した。
1) The magnetic conducting member has a structure having a plurality of convex magnetic poles protruding outward in the radial direction to make the temperature of the roller surface uniform by Joule heat generated by the rotation of the roller, 2) Furthermore, convex A DC coil is provided radially inward of the magnetic pole, and the Joule loss generated by the convex magnetic pole is detected by the temperature sensor installed on the roller surface. A uniform temperature of the roller surface is controlled by applying a direct current. 3) An AC control command is given from the control device to the entire coil including the DC coils at both axial ends and the intermediate AC coil,
The problem has been solved by providing control commands of direct current and alternating current from the control device to the plurality of coils at both ends in the axial direction, and by providing only alternating current control commands to the intermediate coil.

【0009】[0009]

【発明の実施の形態】図1は、本発明の第1の実施の形
態を示す側断面図であり、図2は、図1のA−A矢視正
面断面図であり、これらの図を参照して本発明の第1の
実施の形態を説明する。誘導加熱ローラ1の内周に密着
して環状の2次導体9が配置され、誘導加熱ローラ1の
鉄心6の、軸方向両端に一体に形成された係止部材6
d、6cの半径方向外方に向かって突出した先端には、
図2に示すように円周方向に隔置された凸形の複数の磁
極15aを有する第1の導磁部材15′が配置されてい
る。鉄心6にはコイル8のみが巻回される。これらの複
数の凸形磁極(以下、凸極とも呼ぶ)15aを有する第
1の導磁部材15′を設けたことにより、ローラの回転
によって発生するジュール熱により、ローラ温度の均一
化がある程度達成される。
1 is a side sectional view showing a first embodiment of the present invention, and FIG. 2 is a front sectional view taken along the line AA of FIG. The first embodiment of the present invention will be described with reference to FIG. An annular secondary conductor 9 is arranged in close contact with the inner circumference of the induction heating roller 1, and locking members 6 integrally formed at both axial ends of the iron core 6 of the induction heating roller 1.
At the tips protruding outward in the radial direction of d and 6c,
As shown in FIG. 2, a first magnetic conducting member 15 'having a plurality of convex magnetic poles 15a spaced in the circumferential direction is arranged. Only the coil 8 is wound around the iron core 6. By providing the first magnetic conducting member 15 'having the plurality of convex magnetic poles (hereinafter, also referred to as convex poles) 15a, the Joule heat generated by the rotation of the roller achieves the uniformization of the roller temperature to some extent. To be done.

【0010】図3は、第2の実施の形態を示す側断面図
であり、前記第1の実施の形態の第1の導磁部材15′
に加えて、鉄心(ボビン)6の軸方向両端の係止部材6
d、6cのそれぞれの軸方向内方で、前記第1の導磁部
材15′の半径方向内方に直流磁束発生コイル(以下、
直流コイルと略称する)52、53を設け、これらの直
流コイル52と53とが中間の交流磁束発生コイル(以
下、交流コイルと略称する)51を挟んで巻回される。
直流コイル52により発生した磁束は、軸方向反対側
(図で左)の第1の導磁部材15′側の直流コイル53
にも貫通するので、磁気回路が両端に対し対称であれ
ば、直流コイル52と53とにより、それぞれの端部の
ジュール熱を個別に制御することは不可能である。しか
し、図3に示した構造において、鉄心6の図で右側の係
止部材6cの軸方向外端面6″と2重中空管体の誘導加
熱ローラ1の底壁1″の内面との間にはギャップgがあ
るので、その分だけ非対称になり、直流コイル52と5
3とにより、温度センサS1、S2、S3を使用して個別
に制御できる。
FIG. 3 is a side sectional view showing the second embodiment, and the first magnetic conducting member 15 'of the first embodiment.
In addition to the above, the locking members 6 at both axial ends of the iron core (bobbin) 6
A direct current magnetic flux generating coil (hereinafter, referred to as "inward" in the radial direction inward of the first magnetic conducting member 15 'in each inward axial direction of d and 6c).
DC coils 52 and 53 are provided, and these DC coils 52 and 53 are wound with an intermediate AC magnetic flux generating coil (hereinafter abbreviated as AC coil) 51 interposed therebetween.
The magnetic flux generated by the DC coil 52 is the DC coil 53 on the side opposite to the axial direction (left in the figure) on the side of the first magnetic conducting member 15 '.
If the magnetic circuit is symmetrical with respect to both ends, it is impossible to individually control the Joule heat at each end by the DC coils 52 and 53. However, in the structure shown in FIG. 3, between the axially outer end surface 6 ″ of the locking member 6c on the right side in the drawing of the iron core 6 and the inner surface of the bottom wall 1 ″ of the induction heating roller 1 of the double hollow tubular body. Since there is a gap g in the DC coil 52 and the DC coil 52 and 5
3 can be individually controlled using the temperature sensors S 1 , S 2 , S 3 .

【0011】軸方向両端の磁気回路が非対称であり、さ
らに直流コイル52と53とによる磁気回路を、直流磁
束の漏れΦl1を多くすることにより、直流の制御の独立
性が改善される。そこで、第3の実施の形態を示す図4
では、前記図3の鉄心6の軸方向両端の係止部材6d、
6cの代わりに、図4のように第2の導磁部材15d、
15cを配置し、これらの第2の導磁部材15d、15
cのそれぞれの内方で、鉄心6の回転軸2に平行な直線
部分6′に、第3の導磁部材15f、15eを配置し
た。これにより、前記第2の導磁部材15dと第3の導
磁部材15fにより、軸方向左端の直流コイル53を囲
み、同様に右方では前記第2の導磁部材15cと第3の
導磁部材15eにより、軸方向右端の直流コイル52を
囲む。これにより、前記の各直流コイル52と53とに
よる直流磁束に対する磁気回路を、積極的に直流磁束の
漏れΦl1を多くする凸極形状にすることにより、直流コ
イル52、53の制御の独立性を改善した。
The independence of DC control is improved by increasing the leakage of DC flux Φl 1 in the magnetic circuit formed by the DC coils 52 and 53, since the magnetic circuits at both ends in the axial direction are asymmetric. Therefore, FIG. 4 showing the third embodiment.
Then, the locking members 6d at both axial ends of the iron core 6 of FIG.
Instead of 6c, as shown in FIG. 4, the second magnetic conducting member 15d,
15c is arranged, and these second magnetic conducting members 15d, 15
The third magnetic conducting members 15f and 15e are arranged in the straight part 6'parallel to the rotation axis 2 of the iron core 6 inside each c. Thus, the second magnetic conducting member 15d and the third magnetic conducting member 15f surround the DC coil 53 at the left end in the axial direction. Similarly, on the right side, the second magnetic conducting member 15c and the third magnetic conducting member 15f are surrounded. The member 15e surrounds the DC coil 52 at the right end in the axial direction. As a result, the magnetic circuit for the DC magnetic flux generated by the DC coils 52 and 53 is formed into a convex pole shape that positively increases the leakage Φl 1 of the DC magnetic flux, so that the control of the DC coils 52 and 53 is independent. Improved.

【0012】さらに、図5は、第4の実施の形態を示す
側断面図であり、各コイルの発生した磁束が単独に磁気
回路を形成するようにしたものである。図5において、
鉄心6の軸方向左端の係止部材6dから内方に所定の距
離を保った6eの位置から、断面が逆L字形の第4の導
磁部材15jが設けられている。同様に、鉄心6の軸方
向右端の係止部材6cから内方に所定の距離を保った6
fの位置から、断面が逆L字形の第4の導磁部材15k
が設けられている。前記第4の導磁部材15jの一方の
脚15mは鉄心6の平行部6′に垂直に半径方向外方に
延び、他方の脚15nがこれと垂直に一体に軸に平行
に、且つ2次導体9の内周に平行に係止部材6dの手前
まで軸方向外方に延びている。軸方向右端の前記第4の
導磁部材15kの一方の脚15pは鉄心6の平行部6′
に垂直に半径方向外方に延び、他方の脚15qはこれと
垂直に一体に軸に平行に、且つ2次導体9の内周に平行
に係止部材6cの手前まで軸方向外方に延びている。係
止部材6dと、鉄心6の平行部6′と、軸方向左方のL
字形第4の導磁部材15jに囲まれた内部には直流コイ
ル53が巻回され、同様に軸方向右端部には係止部材6
cと、鉄心6の平行部6′と、L字形第4の導磁部材1
5kとに囲まれた内部には直流コイル52が巻回され
る。
FIG. 5 is a side sectional view showing a fourth embodiment, in which the magnetic flux generated by each coil independently forms a magnetic circuit. In FIG.
A fourth magnetic conducting member 15j having an inverted L-shaped cross section is provided from a position 6e which is kept inward from the locking member 6d at the axially left end of the iron core 6 by a predetermined distance. Similarly, a predetermined distance is maintained inward from the locking member 6c at the right end of the iron core 6 in the axial direction.
The fourth magnetic conducting member 15k having an inverted L-shaped cross section from the position of f
Is provided. One leg 15m of the fourth magnetic conducting member 15j extends outward in the radial direction perpendicularly to the parallel portion 6'of the iron core 6, and the other leg 15n is perpendicular to the leg 15m in parallel with the axis and in the secondary direction. The conductor 9 extends axially outward in parallel to the inner circumference of the conductor 9 to the front of the locking member 6d. One leg 15p of the fourth magnetically conductive member 15k at the right end in the axial direction is a parallel portion 6'of the iron core 6.
And the other leg 15q extends axially outward to the front of the locking member 6c in parallel with the axis and integrally with the leg 15q. ing. The locking member 6d, the parallel portion 6'of the iron core 6, and the left L in the axial direction
A DC coil 53 is wound inside the character-shaped fourth magnetic conducting member 15j, and similarly, a locking member 6 is provided at the right end in the axial direction.
c, the parallel portion 6'of the iron core 6, and the L-shaped fourth magnetic conducting member 1
A DC coil 52 is wound inside the area surrounded by 5k.

【0013】本発明の第5の実施の形態は、上記の第1
から第4の実施の形態において、さらに、軸方向両端の
直流コイルと中間の交流コイルを併用し、制御装置によ
り各コイルへの電流供給を制御するものである。一例と
して、第2の実施の形態として示した図3の軸方向両端
の直流コイル52、53と中間の交流コイル51を併用
し、直流コイル52、53にも交流電流を供給可能にす
るため、図6に示すように制御装置20が接続されて制
御回路を構成する。図6において、20b及び20cは
夫々直流コイル52及び53に直流電圧を印加する可調
整の直流電源であり、また、20aは各コイル53、5
1、52に交流電圧を印加する可調整の交流電源であ
る。なお、直流電源20b及び20cの各電圧は、夫々
制御装置20が温度センサ21a、21b、21cから
の検出信号に基づいて出される直流制御指令α2、α1
より制御され、一方、交流電源20aの出力電圧は、温
度センサ21a、21b、21cからの検出信号に基づ
いて制御装置20から出され、交流制御指令β1によっ
て制御されるようになっている。この結果、温度センサ
21a、21b、21cからの検知温度信号を受けて、
両端の直流コイル52と53とに制御された量の交流電
流が供給され、図9のA、Bに相当するジュール熱を増
加させ、ローラ表面温度分布の不均一さを改善するもの
である。図6に示した制御方式は実施の形態2から4に
も同様に適用できる。
The fifth embodiment of the present invention is based on the above first embodiment.
According to the fourth embodiment, a DC coil at both ends in the axial direction and an AC coil in the middle are used together, and the controller controls the current supply to each coil. As an example, in order to use the DC coils 52 and 53 at both ends in the axial direction of FIG. 3 shown as the second embodiment and the AC coil 51 in the middle together to make it possible to supply an AC current to the DC coils 52 and 53, As shown in FIG. 6, the control device 20 is connected to form a control circuit. In FIG. 6, 20b and 20c are adjustable DC power supplies that apply DC voltage to the DC coils 52 and 53, respectively, and 20a is each coil 53, 5
It is an adjustable AC power supply that applies an AC voltage to 1, 52. The respective voltages of the DC power supplies 20b and 20c are controlled by DC control commands α 2 and α 1 issued by the control device 20 based on the detection signals from the temperature sensors 21a, 21b and 21c, respectively, while the AC power supply 20a is controlled. The output voltage of is output from the control device 20 based on the detection signals from the temperature sensors 21a, 21b, and 21c, and is controlled by the AC control command β 1 . As a result, receiving the detected temperature signals from the temperature sensors 21a, 21b, 21c,
A controlled amount of alternating current is supplied to the DC coils 52 and 53 at both ends to increase Joule heat corresponding to A and B in FIG. 9 and improve nonuniformity of the roller surface temperature distribution. The control method shown in FIG. 6 can be similarly applied to the second to fourth embodiments.

【0014】作用:図2において凸形の複数の磁極15
aのそれぞれを、磁束Φd′aが通過する。図7は、図2
に示した2次導体9の一点Pにおける磁束の変化を示
し、図7の(A)は時間による磁束の変化を、図7の
(B)は回転角度θによる磁束の変化を、図7の(C)
は整流波形を示す。図8は、図3に示した構造の誘導加
熱ローラ1における、主磁束Φ0a、側面磁束Φsa、第1
の導磁部材15′を通過する磁束Φd′aの関係を示すた
めの部分側面図である。記号aは交流磁束を示す。 Φ0a=Φd′a+Φsa ・・・・・・・・・・・・・・(1) Φd′a=Φp+Φpa ・・・・・・・・・・・・・・(2) Φ0a、Φd′a及びΦsaは、図3の交流コイル51によっ
て発生する交番磁束であり、Φp、Φpaは、それぞれ、
第1の導磁部材15′を通過する磁束の直流分と交流分
である。(1)と(2)から、 Φ0a=Φp+Φpa+Φsa ・・・・・・・・・・・・(3) よって、交番磁束によって生じる誘起電圧Voは、 Vo=−dΦ0/dt=−ω0(Φpa+Φsa) ・・・・(4) ここに、ω0=2πf00は、電源周波数である。また、dΦpa/dt=0で
ある。図8に示すように、Φd′aは凸形電極(鋼環端
部)の円周上に生じるので、ローラが回転数Nで回転す
ると、次のような電圧Veを誘起する。 Ve=−nωe(Φpa+Φp) ここに、ωe=2πN nは、第1の導磁部材15′の凸極15aの凸極数であ
る。図9は、上記の各作用により誘導電流により発生じ
るジュール熱ioと、ローラ表面の温度分布Tを示グラ
フである。図中で破線(a)、2点鎖線(b)及び1点
鎖線(c)は、それぞれローラ表面のジュール損失io
を、実線a、b、cはローラ表面の温度分布Tを示す。
破線(a)は、ωe(Φpa+Φ0)によるもので、2点鎖
線(b)は、これにnωeΦpaが加わったもの、1点鎖
線(c)は、これにnωeΦpが加わったものである。こ
のうち、nωeΦpは温度センサ20a、20b、20c
などにより検知し、直流巻線をそれぞれ制御することに
より表面温度の均一化を可能にする。
Operation: In FIG. 2, a plurality of convex magnetic poles 15
The magnetic flux Φd′a passes through each of a. FIG. 7 shows FIG.
7A shows a change in magnetic flux at a point P of the secondary conductor 9 shown in FIG. 7, FIG. 7A shows a change in magnetic flux with time, FIG. 7B shows a change in magnetic flux with a rotation angle θ, and FIG. (C)
Indicates a rectified waveform. FIG. 8 shows the main magnetic flux Φ 0 a, the side magnetic flux Φ sa, and the first magnetic flux Φ sa in the induction heating roller 1 having the structure shown in FIG.
FIG. 6 is a partial side view showing the relationship of the magnetic flux Φd′a passing through the magnetic conducting member 15 ′ of FIG. The symbol a indicates an AC magnetic flux. Φ 0 a = Φd′a + Φsa ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (1) Φd′a = Φp + Φpa ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2) Φ 0 a, Φd′a and Φsa are alternating magnetic fluxes generated by the AC coil 51 of FIG. 3, and Φp and Φpa are respectively
They are the direct current component and the alternating current component of the magnetic flux passing through the first magnetic conducting member 15 '. From (1) and (2), Φ 0 a = Φp + Φpa + Φsa (3) Therefore, the induced voltage Vo generated by the alternating magnetic flux is Vo = −dΦ 0 / dt = −ω 0 (Φpa + Φsa) (4) where ω 0 = 2πf 0 f 0 is the power supply frequency. Also, dΦpa / dt = 0. As shown in FIG. 8, .PHI.d'a occurs on the circumference of the convex electrode (end portion of the steel ring), so that when the roller rotates at the rotation speed N, the following voltage Ve is induced. Ve = −nωe (Φpa + Φp) where ωe = 2πN n is the number of convex poles of the convex pole 15a of the first magnetic conducting member 15 ′. FIG. 9 is a graph showing the Joule heat io generated by the induced current due to each of the above actions and the temperature distribution T on the roller surface. In the figure, the broken line (a), the two-dot chain line (b) and the one-dot chain line (c) are the Joule loss io of the roller surface, respectively.
The solid lines a, b and c show the temperature distribution T on the roller surface.
The broken line (a) is based on ωe (Φpa + Φ 0 ), the two-dot chain line (b) is nωeΦpa added thereto, and the one-dot chain line (c) is nωeΦp added thereto. Of these, nωeΦp is the temperature sensor 20a, 20b, 20c
It is possible to make the surface temperature uniform by detecting it by controlling the DC winding.

【0015】[0015]

【発明の効果】本発明の誘導加熱ローラは、2次導体の
軸方向両端に円周方向に隔置された凸極部材を配置し、
さらに誘導加熱コイル全体を交流のみとし、あるいは軸
方向両端を直流コイル、中間を交流コイルとし両端の直
流コイルのみを制御したり、両端の直流コイルの外側端
子に交流電流を加え、さらに両端の直流コイルは直交双
方の制御指令が与えられるように構成したものであるか
ら、次のような優れた効果を有する。 (1)ジュール熱により、ローラ表面温度の均一性を大
幅に改善した。即ち、図9に示されるようにローラ表面
温度の均一化について、従来技術では不足していた発生
ジュール熱分を示す曲線(a)(量A)を、nωeΦpa
を加えることにより曲線(b)で示される(量A+B)
まで改善でき、さらにnωeΦpを加えることにより、曲
線(c)で示される(量A+B+C)まで改善すること
が可能となった。 (2)この場合、交流コイルのほかに両端に直流コイル
も配置し、直流コイルの電流をローラ表面温度の温度セ
ンサの検出結果によって制御するようにしたものでは、
装置の表面温度の均一化の精度をさらに向上できる。
According to the induction heating roller of the present invention, the salient pole members, which are circumferentially spaced, are arranged at both axial ends of the secondary conductor.
In addition, the induction heating coil is entirely AC only, or both ends in the axial direction are DC coils and the middle is an AC coil to control only the DC coils at both ends. Since the coil is configured so that both orthogonal control commands are given, it has the following excellent effects. (1) The Joule heat significantly improved the uniformity of the roller surface temperature. That is, as shown in FIG. 9, regarding the homogenization of the roller surface temperature, the curve (a) (amount A) showing the generated Joule heat component, which was insufficient in the conventional technique, is represented by nωeΦpa
Is shown in curve (b) by adding (amount A + B)
Up to (amount A + B + C) shown by the curve (c) can be improved by adding nωeΦp. (2) In this case, in addition to the AC coil, DC coils are arranged at both ends, and the current of the DC coil is controlled by the detection result of the temperature sensor of the roller surface temperature.
The accuracy of homogenizing the surface temperature of the device can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態を示す側断面図であ
る。
FIG. 1 is a side sectional view showing a first embodiment of the present invention.

【図2】図1のA−A矢視正面断面図である。FIG. 2 is a front sectional view taken along the line AA of FIG.

【図3】本発明の第2の実施の形態を示す側断面図であ
る。
FIG. 3 is a side sectional view showing a second embodiment of the present invention.

【図4】本発明の第3の実施の形態を示す側断面図であ
る。
FIG. 4 is a side sectional view showing a third embodiment of the present invention.

【図5】本発明の第4の実施の形態を示す側断面図であ
る。
FIG. 5 is a side sectional view showing a fourth embodiment of the present invention.

【図6】制御方式を示す制御回路図である。FIG. 6 is a control circuit diagram showing a control method.

【図7】磁束の状態を統括的に示し、同図(A)は時間
による変化を、同図(B)は回転角度による変化を、同
図(C)は整流波形を示す。
7A and 7B collectively show a state of magnetic flux, FIG. 7A shows a change with time, FIG. 7B shows a change with a rotation angle, and FIG. 7C shows a rectified waveform.

【図8】図3に示した誘導加熱ローラにおける磁束の関
係を示すための部分側面図である。
FIG. 8 is a partial side view showing the relationship of magnetic flux in the induction heating roller shown in FIG.

【図9】各作用により誘導電流が発生するジュール熱と
ローラ表面の温度分布を示すグラフである。
FIG. 9 is a graph showing the Joule heat generated by an induced current due to each action and the temperature distribution on the roller surface.

【図10】従来技術による誘導加熱ローラを示す側断面
図である。
FIG. 10 is a side sectional view showing an induction heating roller according to the prior art.

【図11】図10における磁束の発生を示す概略図であ
る。
11 is a schematic diagram showing the generation of magnetic flux in FIG.

【図12】図11において渦電流の発生と温度の変化を
示すグラフである。
12 is a graph showing eddy current generation and temperature change in FIG. 11. FIG.

【図13】従来技術において導磁部材が設けられて改良
された誘導加熱ローラの側断面図である。
FIG. 13 is a side sectional view of an induction heating roller improved in the related art by providing a magnetic conducting member.

【図14】図13における磁束の発生を示す概略図であ
る。
FIG. 14 is a schematic diagram showing the generation of magnetic flux in FIG.

【符号の説明】[Explanation of symbols]

1:誘導加熱ローラ 1″:誘導加熱ローラの底壁 2:回転軸 5:回転軸取付部 6:鉄心 6′:鉄心の平行部 6″:鉄心の外端面 6d、6c:係止部材 8:コイル 8A:交流磁束発生機構 9:2次導体 15′:第1の導磁部材 15a:凸形磁極 15d、15c:第2の導磁部材 15f、15e:第3の導磁部材 15j、15k:第4の導磁部材 15、15n、15p、15q:脚 20a:交流電源 20b、20c:直流電源 51:交流コイル 52、53:直流コイル S1、S2、S3:温度センサ g:ギャップ Φl1:直流磁束の漏れ1: Induction heating roller 1 ": Bottom wall of induction heating roller 2: Rotating shaft 5: Rotating shaft mounting part 6: Iron core 6 ': Parallel part of iron core 6": Outer end surface of iron core 6d, 6c: Locking member 8: Coil 8A: AC magnetic flux generating mechanism 9: Secondary conductor 15 ': First magnetic conducting member 15a: Convex magnetic poles 15d, 15c: Second magnetic conducting member 15f, 15e: Third magnetic conducting member 15j, 15k: the fourth conductive magnetic member 15,15n, 15p, 15q: leg 20a: AC power supply 20b, 20c: a DC power source 51: AC coils 52 and 53: DC coils S 1, S 2, S 3 : temperature sensor g: gap Φl 1 : Leakage of DC magnetic flux

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 2重中空円筒状に形成され軸方向の一方
端が開口部とされ、内方管体の双方の内面が回転軸
(2)に密着されて回転軸取付部(5)となり、前記回
転軸(2)と一体に回転し、外方管体の外周面が化学繊
維の太さなどを調整するための誘導加熱ローラ(1)
と;この誘導加熱ローラ(1)の前記外方管体と内方管
体の中間の空間部に前記回転軸(2)に平行に配置され
た環状の平行部(6′)と、この平行部(6′)の軸方
向両端から半径方向外方に立ち上がる係止部材(6d、
6c)を有する環状鉄心(6)と;この環状鉄心(6)
の前記平行部(6′)の外周面に前記誘導加熱ローラ
(1)と同軸に巻回されたコイル(8)とを有し、前記
回転軸(2)と相対回転可能にされた交流磁束発生機構
(8A)と;前記誘導加熱ローラ(1)の外方管体の内
周面に密着された2次導体(9)と、前記係止部材(6
d、6c)の外周面に前記2次導体(9)と所定の空隙
を保って配置され、前記交流磁束発生機構(8A)から
発生する磁束を前記2次導体(9)へ導く環状導磁部材
(15)と;を有する前記誘導加熱ローラ(1)におい
て:前記環状導磁部材(15)に代わり、前記係止部材
(6d、6c)の外周面上から円周方向に所定の間隔を
保って突出し、交流前記磁束発生機構(8A)から発生
する交流磁束を前記2次導体(9)へ導く複数個の凸形
磁極(15a)を有する第1の導磁部材(15′)を設
け、ローラの回転で発生するジュール熱によりローラ温
度の均一化を行うことを特徴とする誘導加熱ローラ
(1)。
1. A double-hollow cylindrical shape, one end of which in the axial direction is an opening, and both inner surfaces of the inner tubular body are in close contact with the rotary shaft (2) to form a rotary shaft mounting portion (5). , An induction heating roller (1) that rotates integrally with the rotating shaft (2), and the outer peripheral surface of the outer tubular body adjusts the thickness of the chemical fiber and the like.
An annular parallel portion (6 ') arranged parallel to the rotation axis (2) in a space between the outer tubular body and the inner tubular body of the induction heating roller (1), The locking member (6d, which rises outward in the radial direction from both axial ends of the portion (6 '),
An annular core (6) having 6c); this annular core (6)
AC magnetic flux which has a coil (8) wound coaxially with the induction heating roller (1) on the outer peripheral surface of the parallel portion (6 ') of the above, and is rotatable relative to the rotating shaft (2). A generating mechanism (8A); a secondary conductor (9) closely attached to the inner peripheral surface of the outer tubular body of the induction heating roller (1), and the locking member (6)
d, 6c) is disposed on the outer peripheral surface of the secondary conductor (9) with a predetermined gap, and guides the magnetic flux generated from the AC magnetic flux generating mechanism (8A) to the secondary conductor (9). In the induction heating roller (1) having members (15) and: In place of the annular magnetic conducting member (15), a predetermined distance is provided in the circumferential direction from the outer peripheral surface of the locking members (6d, 6c). A first magnetic conducting member (15 ') is provided which has a plurality of convex magnetic poles (15a) for keeping and protruding and for guiding the AC magnetic flux generated from the AC magnetic flux generating mechanism (8A) to the secondary conductor (9). An induction heating roller (1) characterized in that the roller temperature is made uniform by Joule heat generated by the rotation of the roller.
【請求項2】 前記誘導加熱ローラ(1)は、さらに軸
方向両端の前記第1の導磁部材(15′)の内周に配置
された複数個の直流コイル(52、53)と、これらの
直流コイル(52、53)の軸方向の中間に配置された
交流コイル(51)と;鉄心(6)の軸方向右側の係止
部材(6c)の軸方向外端面(6″)と、2重中空管体
の前記誘導加熱ローラ(1)の底壁(1″)の内面との
間にあるギャップ(g)によりその分だけ非対象にさ
れ、ローラ表面に軸方向に所定間隔を隔てて設置されロ
ーラ表面の温度を検出する複数個の温度センサ(S1
2、S3)と;を有し、前記直流コイルより凸形磁極か
ら発生するジュール熱を、前記ローラ表面に設置した前
記温度センサ(S1、S2、S3)により検出し、直流電
流を制御して上記ジュール熱の値を調整して、ローラ表
面温度を均一化することを特徴とする請求項1記載の誘
導加熱ローラ(1)。
2. The induction heating roller (1) further comprises a plurality of DC coils (52, 53) arranged on the inner circumference of the first magnetic conducting member (15 ') at both axial ends, and these DC coils (52, 53). An AC coil (51) arranged in the middle of the DC coil (52, 53) in the axial direction; and an axial outer end surface (6 ″) of the locking member (6c) on the axial right side of the iron core (6), The gap (g) between the double hollow tube and the inner surface of the bottom wall (1 ″) of the induction heating roller (1) makes it asymmetrical, and the roller surface has a predetermined interval in the axial direction. A plurality of temperature sensors (S 1 ,
S 2 , S 3 ), and Joule heat generated from the convex magnetic pole from the DC coil is detected by the temperature sensor (S 1 , S 2 , S 3 ) installed on the roller surface, The induction heating roller (1) according to claim 1, characterized in that the roller surface temperature is made uniform by controlling the electric current to adjust the value of the Joule heat.
【請求項3】 前記鉄心(6)の軸方向両端の係止部材
(6d、6c)に代わって配置された第2の導磁部材
(15d、15c)と;これら第2の導磁部材(15
d、15c)のそれぞれの軸方向内方で、前記回転軸
(2)に平行な直線部分(6′)に配置された第3の導
磁部材(15f、15e)と;を有し、これにより前記
第2の導磁部材(15d)と第3の導磁部材(15f)
により軸方向左端の直流コイル(53)を囲み、同様に
右方では前記第2の導磁部材(15c)と第3の導磁部
材(15e)により軸方向右端の直流コイル(52)を
囲むように構成して、前記の各直流コイル(52、5
3)とによる直流磁束に対する磁気回路を積極的に直流
磁束の漏れ(Φl1)を多くする凸極形状にすることによ
り、前記直流コイル(52、53)の制御の独立性を改
善した誘導加熱ローラ(1)。
3. A second magnetic conducting member (15d, 15c) arranged in place of the locking member (6d, 6c) at both axial ends of the iron core (6); and these second magnetic conducting members (15d, 15c). 15
d, 15c) axially inward of each of them, a third magnetic conducting member (15f, 15e) arranged in a straight line portion (6 ') parallel to the rotation axis (2); The second magnetic conducting member (15d) and the third magnetic conducting member (15f)
Surrounds the DC coil (53) at the left end in the axial direction, and similarly surrounds the DC coil (52) at the right end in the axial direction by the second magnetic conducting member (15c) and the third magnetic conducting member (15e) on the right side. The DC coils (52, 5, 5)
3) Induction heating in which the independence of control of the DC coils (52, 53) is improved by making the magnetic circuit for the DC magnetic flux due to 3) and the convex pole shape that positively increases the leakage (Φl 1 ) of the DC magnetic flux. Laura (1).
【請求項4】 前記鉄心(6)の軸方向左右両端の係止
部材(6d)から内方に、所定の距離を保った位置から
回転軸(2)に垂直に立ち上がる脚(15m、15p)
と、この脚(15m、15p)に対し垂直に前記鉄心
(6)の平行部(6′)に平行に、且つ前記2次導体
(9)の内周に平行に係止部材(6d、6c)の手前ま
で軸方向外方に延びる脚(15n、15q)とを有し、
断面が逆L字形の第4の導磁部材(15j、15k)
と;前記軸方向両端の係止部材(6d、6c)と、鉄心
の平行部(6′)と、軸方向両端のL字形第4の導磁部
材(15j、15k)に囲まれた内部に巻回された直流
コイル(53、52)と;前記第4の導磁部材(15
j、15k)の中間に卷回された交流加熱コイル(5
1)と;を有し、各コイルに発生した磁束がそれぞれ独
立した磁気回路を形成することを特徴とする誘導加熱ロ
ーラ(1)。
4. Legs (15m, 15p) standing up inwardly from the locking members (6d) at the left and right ends of the iron core (6) in the axial direction, perpendicularly to the rotating shaft (2) from a position keeping a predetermined distance.
And the locking members (6d, 6c) perpendicular to the legs (15m, 15p), parallel to the parallel part (6 ') of the iron core (6), and parallel to the inner circumference of the secondary conductor (9). ) Has legs (15n, 15q) extending axially outwardly,
Fourth magnetic conducting member (15j, 15k) having an inverted L-shaped cross section
And; in the interior surrounded by the locking members (6d, 6c) at both ends in the axial direction, the parallel portion (6 ') of the iron core, and the L-shaped fourth magnetic conducting members (15j, 15k) at both ends in the axial direction. The wound DC coil (53, 52); and the fourth magnetic conducting member (15)
j, 15k) AC heating coil (5
1) and; and the magnetic flux generated in each coil forms an independent magnetic circuit, respectively.
【請求項5】 請求項2乃至4のいずれかに記載の磁気
回路を有する誘導加熱ローラ(1)の軸方向一方端と他
方端の直流コイル(52、53)のそれぞれの両端子に
直流電源(20b、20c)が接続され、交流電源(2
0a)は軸方向両端の両直流コイルの外側の端子間に接
続され、これらの直流コイル(52、53)はそれぞれ
の制御ユニットで制御され、さらにこれらの軸方向両端
の直流コイル(52、53)に交流電流を通じることに
より、軸方向両端に交流分のジュール熱を増加して、ロ
ーラ表面の温度分布を均一化することを特徴とする誘導
加熱ローラ(1)。
5. A DC power source for both terminals of a DC coil (52, 53) at one end and the other end in the axial direction of the induction heating roller (1) having the magnetic circuit according to any one of claims 2 to 4. (20b, 20c) are connected, AC power supply (2
0a) is connected between the outer terminals of both DC coils at both ends in the axial direction, and these DC coils (52, 53) are controlled by respective control units, and further, the DC coils (52, 53) at both ends in the axial direction are connected. ), The Joule heat corresponding to the alternating current is increased at both ends in the axial direction, and the temperature distribution on the roller surface is made uniform.
JP8709296A 1996-03-18 1996-03-18 Induction heating roller Pending JPH09260050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8709296A JPH09260050A (en) 1996-03-18 1996-03-18 Induction heating roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8709296A JPH09260050A (en) 1996-03-18 1996-03-18 Induction heating roller

Publications (1)

Publication Number Publication Date
JPH09260050A true JPH09260050A (en) 1997-10-03

Family

ID=13905322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8709296A Pending JPH09260050A (en) 1996-03-18 1996-03-18 Induction heating roller

Country Status (1)

Country Link
JP (1) JPH09260050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040360A (en) * 2008-08-06 2010-02-18 Mitsubishi Electric Corp Induction heating cooker
KR20160012260A (en) * 2014-07-23 2016-02-03 주식회사 엠에스 오토텍 Roller hemming device
KR200487756Y1 (en) * 2017-09-13 2018-10-29 배만재 Artificial Hair Yarn forming Apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040360A (en) * 2008-08-06 2010-02-18 Mitsubishi Electric Corp Induction heating cooker
KR20160012260A (en) * 2014-07-23 2016-02-03 주식회사 엠에스 오토텍 Roller hemming device
KR200487756Y1 (en) * 2017-09-13 2018-10-29 배만재 Artificial Hair Yarn forming Apparatus

Similar Documents

Publication Publication Date Title
JP2001092283A (en) Fixing device
US8941970B2 (en) Method and apparatus for demagnetizing generator components prior to electromagnetic core imperfection testing or EL-CID testing
US3200230A (en) Apparatus for the heating of travelling thread or tape-shaped products on a transport roller
US3448233A (en) Induction heating assembly
US4647744A (en) Rotating heating roller of the type having a three phase circumferentially laminated leg core
JP3882800B2 (en) Induction heating apparatus, induction heating fixing apparatus, and image forming apparatus
JP3749272B2 (en) Induction heating fixing device
JPH09260050A (en) Induction heating roller
KR100446346B1 (en) Advanced goat for heating of synthetic filament yarn
US3412228A (en) Heating rotary drum apparatus
JP3763542B2 (en) Induction heating fixing device
JPH09161963A (en) Heating device for roller
JP3902139B2 (en) Electromagnetic induction heating device
JP3513545B2 (en) Heating roller device
JP3750718B2 (en) Fixing device
JP2003098865A (en) Electrophotographic apparatus
JP2001235962A (en) Fixing device
JP3935657B2 (en) Fixing apparatus and image forming apparatus
JPH08170119A (en) Annealing of iron core
JP4887979B2 (en) Induction heating roller device
JP3773032B2 (en) Heating method of heating roller
SU1563924A1 (en) Method and apparatus for automatic regulation of high-frequency welding
JPH07157938A (en) Hot roller
JPS58184973A (en) Induction heating fixation device
JP2009122692A (en) Fixing device