JPH09258115A - Optical external modulator and its production - Google Patents

Optical external modulator and its production

Info

Publication number
JPH09258115A
JPH09258115A JP6045896A JP6045896A JPH09258115A JP H09258115 A JPH09258115 A JP H09258115A JP 6045896 A JP6045896 A JP 6045896A JP 6045896 A JP6045896 A JP 6045896A JP H09258115 A JPH09258115 A JP H09258115A
Authority
JP
Japan
Prior art keywords
frequency
modulator
optical
optical fiber
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6045896A
Other languages
Japanese (ja)
Inventor
Matsue Murata
松枝 村田
Takezou Sugimura
竹三 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6045896A priority Critical patent/JPH09258115A/en
Publication of JPH09258115A publication Critical patent/JPH09258115A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to obtain a desired frequency characteristic by adjusting the resonance frequency of a suppuration substrate and an optical fiber so that the frequency coincides perfectly with the frequency of a driving ultrasonic wave. SOLUTION: The modulator 8 is manufactured by forming a piezoelectric element part 5 consisting of a lower electrode 2, a piezoelectric film 3 and an upper electrode 4, on a supporting substrate 1 and connecting lead wires 9a, 9b respectability to the upper electrode 2 and the lower electrode 4. Next the resonance frequency of the modulator 8 is measured. The measurement of the frequency is elected by the impedance measurement between the lead wires 9a and 9b. The difference between the two reference frequencies is determined and the final thickness adjustment quantify of the supporting substrate 1 is determined in the case the substrate frequency is made coincident with the fiber resonance frequency, the modulator 8 with which the frequency measurement ends is immersed into an etching liquid and is adjusted to the desired thickness,. Finally, the optical external modulator having the desired frequency characteristic is obtd. by fixing the optical fiber to the modulator 8 with which the thickness adjustment ends.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光伝送路の外側か
ら機械的応力を加え、光伝送路中を伝播している光に対
し変調を与える光外部変調器及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical external modulator that applies mechanical stress from the outside of an optical transmission line to modulate light propagating in the optical transmission line and a method for manufacturing the optical external modulator. .

【0002】[0002]

【従来の技術】光伝送路の外部から機械的信号を印加し
て光伝送路中を伝搬する光に対し間接的に変調する光外
部変調器としては、例えば特願平3−196291号の
光外部変調器が提案されている。これは、図4に示すよ
うに石英ガラスからなる支持基板1の一方の面に薄膜型
の下部電極2、圧電膜3、上部電極4がこの順序で積層
されて薄膜型圧電素子部5が形成され、下部電極2と上
部電極4に圧電膜3を駆動するための変調信号を導入す
るリード9a・9bが接続され、更に図5に示すよう
に、支持基板1の他方の面のうち前記圧電膜3の真下の
位置にシングルモード光ファイバ6の所望長の部分が同
光ファイバ6のクラッドの固有音響インピーダンスと近
接した固有音響インピーダンスを有する被覆材7で被覆
されて基板1に固定されてなるものである。
2. Description of the Related Art As an optical external modulator for indirectly modulating a light propagating in an optical transmission line by applying a mechanical signal from the outside of the optical transmission line, for example, the light disclosed in Japanese Patent Application No. 3-196291. External modulators have been proposed. As shown in FIG. 4, a thin film type lower electrode 2, a piezoelectric film 3, and an upper electrode 4 are laminated in this order on one surface of a support substrate 1 made of quartz glass to form a thin film type piezoelectric element portion 5. The leads 9a and 9b for introducing a modulation signal for driving the piezoelectric film 3 are connected to the lower electrode 2 and the upper electrode 4, and further, as shown in FIG. A portion of a desired length of the single mode optical fiber 6 is covered with a coating material 7 having a specific acoustic impedance close to the specific acoustic impedance of the cladding of the optical fiber 6 and fixed to the substrate 1 just below the film 3. It is a thing.

【0003】前記光外部変調器では、図示しない駆動電
源からリード線9a・9b間に所定周波数の変調信号を
印加すると、圧電膜3から周期的に弾性波が生じ、その
応力が基板1を介してシングルモード光ファイバ6に印
加され、シングルモード光ファイバの内部屈折率の変化
が生じて通過光の偏波状態が変化する。
In the optical external modulator, when a modulation signal having a predetermined frequency is applied between the lead wires 9a and 9b from a driving power source (not shown), elastic waves are periodically generated from the piezoelectric film 3, and the stress is transmitted through the substrate 1. Is applied to the single-mode optical fiber 6, the internal refractive index of the single-mode optical fiber changes, and the polarization state of the passing light changes.

【0004】[0004]

【発明が解決しようとする課題】このような光外部変調
器は、同一条件で製造しているにもかかわらず、周波数
特性がばらつくという問題があり、所望する周波数特性
を有する変調器を安定して得ることができず、歩留まり
の低下、コストアップの原因となっていた。
Such an optical external modulator has a problem that the frequency characteristic varies even though it is manufactured under the same conditions. Therefore, a modulator having a desired frequency characteristic can be stabilized. Could not be obtained, resulting in a decrease in yield and an increase in cost.

【0005】[0005]

【課題を解決するための手段】本発明は、このような技
術的課題に鑑み、所望する周波数特性を有する変調器を
安定して製造し、かつ技術的に平易な方法で安価に装置
を提供しようとするものである。
In view of the above technical problems, the present invention stably manufactures a modulator having a desired frequency characteristic, and provides a device at a low cost by a technically simple method. Is what you are trying to do.

【0006】上記問題について考察した結果を下記に示
す。当該光外部変調器において、発生された弾性波は支
持基板内で共振現象を起こし、この共振周波数において
強い超音波が光ファイバに入射する。同様に光ファイバ
内でも共振が生じる。したがって変調器全体の特性とし
ては支持基板と光ファイバの両方の特性が加算された特
性となる。
The results of considering the above problems are shown below. In the optical external modulator, the generated elastic wave causes a resonance phenomenon in the support substrate, and a strong ultrasonic wave is incident on the optical fiber at this resonance frequency. Similarly, resonance also occurs in the optical fiber. Therefore, the characteristic of the entire modulator is a characteristic obtained by adding the characteristics of both the supporting substrate and the optical fiber.

【0007】支持基板および光ファイバ中の共振周波数
は、以下の計算から求められる。まず、支持基板中の弾
性波の共振周波数間隔fb0は次式で表される。 fb0=vb /(2×t) [vb :基板中の弾性波の速
度、t:基板厚さ] また、共振周波数fbnはfbn=n×fb0 [n:整数]
で表される。したがって、基板厚さは次式で求められ
る。 t=n×vb /(2×fbn)、 さらに光ファイバ中の共振周波数間隔ff0は、ff0=v
f /(2×d) [ファイバ径]で、共振周波数f
fnは、ffn=(n−1/2)×ff0で表される。したが
って、ファイバ径は次式で求められる。 d=(n−1/2)×vf /ffn
The resonance frequency in the supporting substrate and the optical fiber can be obtained from the following calculation. First, the resonance frequency interval f b0 of elastic waves in the supporting substrate is expressed by the following equation. f b0 = v b / (2 × t) [v b : velocity of elastic wave in the substrate, t: substrate thickness] Further, the resonance frequency f bn is f bn = n × f b0 [n: integer]
It is represented by Therefore, the substrate thickness is calculated by the following equation. t = n × v b / (2 × f bn ), and the resonance frequency interval f f0 in the optical fiber is f f0 = v
f / (2 × d) [fiber diameter], resonance frequency f
fn is represented by f fn = (n−1 / 2) × f f0 . Therefore, the fiber diameter is calculated by the following equation. d = (n−1 / 2) × v f / f fn

【0008】そこで,本発明にかかる光外部変調器にお
いて、所期の目的を達成するために下記の手段をとる。
上記の関係にしたがって支持基板および光ファイバの共
振周波数を微調整することで所望の周波数特性を実現す
る。例えば、支持基板と光ファイバの共振周波数を駆動
超音波の周波数に完全に一致させる様に調整すれば狭帯
域ながら高出力の周波数特性を得ることができ、また支
持基板と光ファイバの共振周波数を意図的に微小ずらす
ことで広帯域の周波数特性を得ることができる。
Therefore, in the optical external modulator according to the present invention, the following means are taken to achieve the intended purpose.
A desired frequency characteristic is realized by finely adjusting the resonance frequencies of the supporting substrate and the optical fiber according to the above relationship. For example, if the resonance frequency of the supporting substrate and the optical fiber is adjusted so as to be completely matched with the frequency of the driving ultrasonic wave, a high output frequency characteristic can be obtained in a narrow band, and the resonance frequency of the supporting substrate and the optical fiber can be obtained. By intentionally making a slight shift, a wide band frequency characteristic can be obtained.

【0009】[0009]

【発明の実施の形態】上記支持基板の共振周波数、光フ
ァイバの共振周波数及び駆動超音波の周波数は、駆動超
音波の周波数が300〜400(MHz)程度において
は、±0.9MHzまで、それぞれずらすことが可能で
あり、この際、前記三者の周波数を一致させる程、効率
が高くものとなり、またずらすことの差が大きくなると
効率が悪いものとなる。支持基板及び光ファイバの共振
周波数を調整する手段としては、上式より基板、光ファ
イバの共振周波数がそれぞれ基板厚さ、光ファイバの外
径により決定されることから、フッ酸溶液等で化学的に
浸食し厚さ又は外径を調整する方法があげられ、これに
よればサブミクロンオーダーでの加工が可能であり共振
周波数を高精度に制御することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The resonance frequency of the supporting substrate, the resonance frequency of the optical fiber, and the frequency of the driving ultrasonic wave are up to ± 0.9 MHz when the frequency of the driving ultrasonic wave is about 300 to 400 (MHz), respectively. It is possible to shift, and in this case, the efficiency becomes higher as the frequencies of the three are matched, and the efficiency becomes worse if the difference between the shifts becomes large. As a means for adjusting the resonance frequency of the supporting substrate and the optical fiber, since the resonance frequency of the substrate and the optical fiber are determined by the thickness of the substrate and the outer diameter of the optical fiber according to the above formula, it can be chemically treated with a hydrofluoric acid solution. There is a method in which the thickness or the outer diameter is eroded to adjust the thickness or the outer diameter. According to this method, it is possible to perform processing in the submicron order and control the resonance frequency with high accuracy.

【0010】[0010]

【実施例】【Example】

【0011】(実施例1)図1は本発明の第1の実施例
の外部光変調器の基本構成を示す斜視図である。まず、
支持基板1上に下部電極2、圧電膜3、上部電極4から
なる圧電素子部5を形成し、上部電極2および下部電極
4に各々リード線9a・9bを接続して変調器8を作製
する。ここで支持基板1は厚さ0.3mmの石英ガラス
であり、下部電極2および上部電極4は、真空蒸着法に
より製膜された厚さ約0.2μmの金(Au)からな
る。尚、下部電極2および上部電極4はアルミニウム
(Al)、クロム−金(Cr−Au)、又はチタン−金
(Ti−Au)で形成しても構わない。圧電膜3は、ス
パッタリング法により製膜された酸化亜鉛(ZnO)よ
り形成され、厚さは約5μmである。尚圧電膜3は、ニ
オブ酸リチウム(LiNbO3 )、ポリフッ化ビニリ
デン(PVDF)、あるいは窒化アルミニウム(Al
N)等の圧電材料で形成しても構わない。
(Embodiment 1) FIG. 1 is a perspective view showing the basic structure of an external optical modulator of the first embodiment of the present invention. First,
A piezoelectric element portion 5 including a lower electrode 2, a piezoelectric film 3, and an upper electrode 4 is formed on a supporting substrate 1, and lead wires 9a and 9b are connected to the upper electrode 2 and the lower electrode 4, respectively, to manufacture a modulator 8. . Here, the support substrate 1 is a quartz glass having a thickness of 0.3 mm, and the lower electrode 2 and the upper electrode 4 are made of gold (Au) having a thickness of about 0.2 μm formed by a vacuum deposition method. The lower electrode 2 and the upper electrode 4 may be formed of aluminum (Al), chromium-gold (Cr-Au), or titanium-gold (Ti-Au). The piezoelectric film 3 is made of zinc oxide (ZnO) formed by a sputtering method and has a thickness of about 5 μm. The piezoelectric film 3 is made of lithium niobate (LiNbO3), polyvinylidene fluoride (PVDF), or aluminum nitride (Al.
It may be formed of a piezoelectric material such as N).

【0012】次に上記変調器8の共振周波数の測定を行
う。周波数の測定はリード線9a〜9b間のインピーダ
ンス測定により容易に行うことができる。例えばファイ
バ共振周波数に基板共振周波数を一致させる場合は、2
つの共振周波数との差を求め支持基板1の最終的な厚さ
調整量を決定する。
Next, the resonance frequency of the modulator 8 is measured. The frequency can be easily measured by measuring the impedance between the lead wires 9a and 9b. For example, when matching the substrate resonance frequency with the fiber resonance frequency, 2
The final thickness adjustment amount of the support substrate 1 is determined by calculating the difference between the two resonance frequencies.

【0013】周波数測定の終了した変調器8は、図2に
示すように、エッチング液10中に浸漬され所望の厚さ
に調整される。ここで圧電素子部5およびリード線9
は、必要に応じ樹脂等の被覆材11で保護される。エッ
チング液としては緩衝フッ酸溶液等が使用できる。
After the frequency measurement, the modulator 8 is dipped in the etching solution 10 and adjusted to a desired thickness, as shown in FIG. Here, the piezoelectric element portion 5 and the lead wire 9
Is protected by a covering material 11 such as a resin, if necessary. A buffered hydrofluoric acid solution or the like can be used as the etching solution.

【0014】最後に、厚さ調整の終わった変調器8に光
ファイバ6を固定することで所望の周波数特性を有する
光外部変調器が得られる。
Finally, by fixing the optical fiber 6 to the modulator 8 whose thickness has been adjusted, an optical external modulator having a desired frequency characteristic can be obtained.

【0015】この方法により、基板の当初の共振周波数
が331.96MHzの変調器について、共振周波数を
光ファイバの共振周波数である334.0MHzさせる
目的でガラス基板をエッチングした結果、334.05
MHzにすることができ、所望の周波数特性を得た。こ
のように、支持基板をエッチングすることにより、所望
の周波数に対し±0.1MHzの精度で制御することが
できる。
By this method, the glass substrate was etched for the purpose of setting the resonance frequency of the modulator whose initial resonance frequency was 331.96 MHz to 334.0 MHz which is the resonance frequency of the optical fiber.
It can be set to MHz, and a desired frequency characteristic is obtained. By etching the supporting substrate in this manner, it is possible to control the desired frequency with an accuracy of ± 0.1 MHz.

【0016】また同様に、基板の共振周波数を意図的に
光ファイバの共振周波数よりずれるように基板をエッチ
ングすることで、両共振周波数を一致させたときよりも
帯域幅の広い周波数特性を得ることができる。
Similarly, by intentionally etching the substrate so that the resonant frequency of the substrate deviates from the resonant frequency of the optical fiber, it is possible to obtain a frequency characteristic having a wider bandwidth than when both resonant frequencies are matched. You can

【0017】(実施例2)本発明の第2の実施例におい
ては、図3に示すように光ファイバ6の偏波面光外部変
調器に接合される部分の被覆を除去し、ファイバクラッ
ドを露出させ光外部変調器8に仮固定し、ファイバ内の
弾性波の共振周波数を測定する。ここで測定されたファ
イバの共振周波数と目的の周波数の差から最終的な外径
調整量が決定される。なお、ファイバ被覆の除去は機械
的に引き剥がしてもよいが、クラッド表面の損傷を考慮
すると加熱処理による被覆溶融や有機溶媒による方式の
方が好ましい。
(Embodiment 2) In the second embodiment of the present invention, as shown in FIG. 3, the coating of the portion of the optical fiber 6 joined to the polarization plane optical external modulator is removed to expose the fiber clad. Then, the optical external modulator 8 is temporarily fixed, and the resonance frequency of the elastic wave in the fiber is measured. The final outer diameter adjustment amount is determined from the difference between the resonance frequency of the fiber measured here and the target frequency. The fiber coating may be removed mechanically by peeling it off, but considering damage to the clad surface, a method of melting the coating by heat treatment or using an organic solvent is preferable.

【0018】被覆を除去された光ファイバ6は、緩衝フ
ッ酸溶液等のエッチング液により目的の外径に調整され
た後、光外部変調器8に固定され所望の周波数特性を有
する光外部変調器が得られる。
The optical fiber 6 from which the coating has been removed is adjusted to a desired outer diameter by an etching solution such as a buffered hydrofluoric acid solution and then fixed to the optical external modulator 8 to have an optical external modulator having a desired frequency characteristic. Is obtained.

【0019】[0019]

【発明の効果】本発明によれば、支持基板や光ファイバ
の形状を制御することにより所望の周波数特性を得るこ
とができる。また、エッチング液などの化学的処理によ
るときは、機械的加工によるよりも高精度でしかも安価
に加工することができ製造費用を削減することができ
る。
According to the present invention, desired frequency characteristics can be obtained by controlling the shapes of the supporting substrate and the optical fiber. Further, when chemical treatment with an etching solution or the like is performed, processing can be performed with higher accuracy and at lower cost than with mechanical processing, and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による外部光変調器の基本構
成を示す斜視図。
FIG. 1 is a perspective view showing a basic configuration of an external light modulator according to an embodiment of the present invention.

【図2】本発明の他の実施例よる外部光変調器の製造方
法を示す説明図。
FIG. 2 is an explanatory diagram showing a method of manufacturing an external optical modulator according to another embodiment of the present invention.

【図3】本発明の更に他の実施例よる外部光変調器の製
造方法を示す説明図。
FIG. 3 is an explanatory view showing a method of manufacturing an external optical modulator according to still another embodiment of the present invention.

【図4】従来の外部光変調器の一例を示す斜視図。FIG. 4 is a perspective view showing an example of a conventional external light modulator.

【図5】図4に示す従来の外部光変調器の断面説明図。5 is an explanatory cross-sectional view of the conventional external optical modulator shown in FIG.

【符号の説明】[Explanation of symbols]

1は支持基板 2は下部電極 3は圧電膜 4は上部電極 5は圧電素子部 6は光ファイバ 7は被覆材 8は変調器 9はリード線 10はエッチング液 11は被覆材 1 is a support substrate 2 is a lower electrode 3 is a piezoelectric film 4 is an upper electrode 5 is a piezoelectric element part 6 is an optical fiber 7 is a coating material 8 is a modulator 9 is a lead wire 10 is an etching liquid 11 is a coating material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 支持基板上に圧電素子と光ファイバと
が形成された光外部変調器において、支持基板内の弾性
波の共振周波数と光ファイバ内の弾性波の共振周波数を
駆動超音波の周波数でほぼ一致させたことを特徴とする
光外部変調器。
1. In an optical external modulator in which a piezoelectric element and an optical fiber are formed on a support substrate, the resonance frequency of an elastic wave in the support substrate and the resonance frequency of an elastic wave in the optical fiber drive the frequency of ultrasonic waves. An optical external modulator characterized in that they are almost matched with each other.
【請求項2】 支持基板上に圧電膜と光ファイバとが
形成された光外部変調器の製造方法において、圧電膜が
形成された支持基板の厚さを微調整し、支持基板内の弾
性波の共振周波数をファイバ内の弾性波の共振周波数に
概略一致させることを特徴とする光外部変調器の製造方
法。
2. A method of manufacturing an optical external modulator having a piezoelectric film and an optical fiber formed on a supporting substrate, wherein the thickness of the supporting substrate on which the piezoelectric film is formed is finely adjusted, and elastic waves in the supporting substrate are adjusted. A method of manufacturing an optical external modulator, wherein the resonance frequency of the optical modulator is substantially matched with the resonance frequency of the elastic wave in the fiber.
【請求項3】 支持基板上に圧電膜と光ファイバとが
形成された光外部変調器の製造方法において、光ファイ
バ外径を微調整することにより,光ファイバ内の弾性波
の共振周波数を支持基板内の弾性波の共振周波数に概略
一致させることを特徴とする光外部変調器の製造方法。
3. A method of manufacturing an optical external modulator having a piezoelectric film and an optical fiber formed on a supporting substrate, wherein the resonance frequency of an elastic wave in the optical fiber is supported by finely adjusting the outer diameter of the optical fiber. A method of manufacturing an optical external modulator, which is characterized in that the resonance frequency of an elastic wave in a substrate is approximately matched.
【請求項4】 化学的処理により支持基板の厚さを微
調整することを特徴とする請求項2記載の光外部変調器
の製造方法。
4. The method of manufacturing an optical external modulator according to claim 2, wherein the thickness of the supporting substrate is finely adjusted by chemical treatment.
【請求項5】 化学的処理により光ファイバの外径を
微調整することを特徴とする請求項3記載の光外部変調
器の製造方法。
5. The method of manufacturing an optical external modulator according to claim 3, wherein the outer diameter of the optical fiber is finely adjusted by chemical treatment.
JP6045896A 1996-03-18 1996-03-18 Optical external modulator and its production Pending JPH09258115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6045896A JPH09258115A (en) 1996-03-18 1996-03-18 Optical external modulator and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6045896A JPH09258115A (en) 1996-03-18 1996-03-18 Optical external modulator and its production

Publications (1)

Publication Number Publication Date
JPH09258115A true JPH09258115A (en) 1997-10-03

Family

ID=13142851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6045896A Pending JPH09258115A (en) 1996-03-18 1996-03-18 Optical external modulator and its production

Country Status (1)

Country Link
JP (1) JPH09258115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009435A (en) * 2006-06-28 2008-01-17 Harris Corp Actuator arrangement for excitation of flexural wave on optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008009435A (en) * 2006-06-28 2008-01-17 Harris Corp Actuator arrangement for excitation of flexural wave on optical fiber

Similar Documents

Publication Publication Date Title
US5418883A (en) Optical waveguide device and manufacturing method of the same
JP4183716B2 (en) Optical waveguide device
US7389030B2 (en) Optically functional device
US20140009032A1 (en) Lamb wave device and manufacturing method thereof
EP0162566B1 (en) Fiber optic frequency shifter
US20020048076A1 (en) Travelling wave-type optical modulator
JPH07175024A (en) Optical external modulator
EP1939669A1 (en) Light modulator and its fabrication method
JP4408558B2 (en) Traveling waveform optical modulator and method of manufacturing the same
WO2007058366A1 (en) Optical waveguide device
EP0457761A1 (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof.
JP2009109929A (en) Optical modulator
JPS6063517A (en) Phase modulator
JPH09258115A (en) Optical external modulator and its production
JP5262186B2 (en) Optical waveguide device
JP2008111955A (en) Optical-fiber type optical modulator
JP3090176B2 (en) Optical phase-adjusted optical device chip with warpage and optical phase adjustment
US5146522A (en) Methods for rugged attachment of fibers to integrated optics chips and product thereof
JPH02295212A (en) Surface acoustic wave resonator
JPH05307159A (en) External optical modulator
JP2959881B2 (en) External modulator for optical communication
JP4671335B2 (en) Waveguide type optical device
EP0594117A1 (en) Piezoelectric filter and its production method
JPH0949993A (en) External modulator for optical communication
JP2014199355A (en) Optical waveguide element