JPH09257796A - Analyser and analyzing method - Google Patents

Analyser and analyzing method

Info

Publication number
JPH09257796A
JPH09257796A JP6288696A JP6288696A JPH09257796A JP H09257796 A JPH09257796 A JP H09257796A JP 6288696 A JP6288696 A JP 6288696A JP 6288696 A JP6288696 A JP 6288696A JP H09257796 A JPH09257796 A JP H09257796A
Authority
JP
Japan
Prior art keywords
reaction container
reaction
magnetic particles
liquid
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6288696A
Other languages
Japanese (ja)
Other versions
JP3670383B2 (en
Inventor
Ryoichi Himeda
亮一 姫田
Akio Toyama
昭夫 外山
Shinya Matsuyama
真也 松山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP06288696A priority Critical patent/JP3670383B2/en
Publication of JPH09257796A publication Critical patent/JPH09257796A/en
Application granted granted Critical
Publication of JP3670383B2 publication Critical patent/JP3670383B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To contrive accurate quantitative analysis by measuring the quantity of the transmitted light passing through a reaction container in analysis using magnetic particles to confirm the re-dispertion of manetic particles when a reagent containing a labelling substance is injected into the reaction container and detecting the residual liquid after suction in a magnetic particle washing process. SOLUTION: A first reagent containing magnetic particles and an analytical sample are injected into a reaction container. A magnet is set after a predetermined time to attract magnetic particles to the inner wall surface of the reaction container by magnetic force and the magnetic particles are washed by a magnetic particle washing mechanism 10. After washing, it is detected whether a washing soln. remains by a transmitted light quantity measuring device 19. If there is no washing soln., the magnet is reset and a second reagent containing a lagelling substance is injected to stirr the reaction container and the re- dispersion of magnetic particles is confirmed by the device 19. The magnet is set after a predetermined time to perform washing in the same way. After it is confirmed that no washing soln. remains by the device 19, a component to be analyzed is detected by a labelling substance detection mechanism 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、血清等の試料を分
析検査する時に用いられる分析装置および分析方法に係
り、特に試料中の被分析成分を磁性粒子を用いて定量分
析する分析装置および分析方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analyzer and an analytical method used when analytically testing a sample such as serum, and more particularly to an analytical device and an analytical instrument for quantitatively analyzing an analyte in a sample using magnetic particles. Regarding the method.

【0002】[0002]

【従来の技術】血清等の試料を分析検査する方法とし
て、試料中の被分析成分を磁性粒子を用いて定量分析す
る方法が従来から知られている。この分析方法は直径が
0.2〜0.8ミクロン程度好ましくは0.4〜0.6
ミクロン程度の磁性粒子に試料中の被分析成分と免疫反
応(抗原抗体反応)を生ずる物質を固定化した不溶性担
体(以下、磁性粒子と称する。)を用い、この磁性粒子
と試料とを一定時間反応させる。その後、磁性粒子を洗
浄液で洗浄して、B/F分離(磁性粒子に結合したもの
と結合していないものとを分離する)を行なう。このと
き、反応容器の外部から磁力を与えて磁性粒子を反応容
器内の一箇所に集めておき、洗浄途中で磁性粒子が反応
容器内から流出しないようにしておく。そして、この
後、磁性粒子と反応した被分析成分を、その一部に酵
素、蛍光物質または化学発光物質を標識した抗体または
抗原と反応させ、一定時間経過後に再度B/F分離を行
なう。その後、標識した物質に応じた反応を行なわせ
て、生じる発色、蛍光、化学発光をそれぞれに応じた検
出系により検出する。
2. Description of the Related Art As a method for analytically inspecting a sample such as serum, a method for quantitatively analyzing an analyte in a sample using magnetic particles has been known. This analysis method has a diameter of about 0.2 to 0.8 microns, preferably 0.4 to 0.6.
An insoluble carrier (hereinafter referred to as magnetic particles) in which a substance that causes an immune reaction (antigen-antibody reaction) with an analyte component in a sample is immobilized on magnetic particles of the order of microns is used for a certain period of time. React. After that, the magnetic particles are washed with a washing liquid to perform B / F separation (separate those bound to the magnetic particles and those not bound). At this time, a magnetic force is applied from the outside of the reaction container to collect the magnetic particles in one place in the reaction container so that the magnetic particles do not flow out of the reaction container during washing. Then, after this, the component to be analyzed which has reacted with the magnetic particles is reacted with an antibody or an antigen, a part of which has been labeled with an enzyme, a fluorescent substance or a chemiluminescent substance, and B / F separation is carried out again after a certain period of time. After that, a reaction depending on the labeled substance is performed, and the generated color development, fluorescence, and chemiluminescence are detected by the respective detection systems.

【0003】このように1ステップ目で磁性粒子と試料
との反応、次の2ステップ目で磁性粒子上の免疫複合体
と標識した抗体または抗原との反応、といったように2
段階で反応を行なう方法は、2ステップサンドイッチ法
と言われており、途中2回のB/F分離が必要である。
Thus, the reaction between the magnetic particles and the sample in the first step, the reaction between the immune complex on the magnetic particles and the labeled antibody or antigen in the second step, and so on.
The method of carrying out the reaction in stages is called a two-step sandwich method, and it is necessary to perform B / F separation twice during the process.

【0004】また、上記の中で標識した抗体または抗原
として、磁性粒子に固相した抗体または抗原とは試料中
の被分析成分と反応する部位が異なり、固相した担体ま
たは抗原とは反応しない抗体または抗原を使用して2回
目のB/F分離を必要としない方法があり、これは1ス
テップサンドイッチ法と言われている。
Further, the labeled antibody or antigen in the above is different from the antibody or antigen immobilized on magnetic particles in the site that reacts with the component to be analyzed in the sample, and does not react with the immobilized carrier or antigen. There is a method that does not require a second B / F separation using an antibody or an antigen, which is called a one-step sandwich method.

【0005】このような分析方法を利用して試料中の被
分析成分を自動的に定量分析する従来の分析装置は、透
光性を有する反応容器に試料中の被分析成分と免疫反応
を生ずる磁性粒子を第1の試薬として分注する第1の試
薬分注機構と、この第1の試薬分注機構から反応容器に
分注された磁性粒子を洗浄して前記磁性粒子と反応した
前記被分析成分を除く成分を前記反応容器内から除去す
る磁性粒子洗浄機構と、反応容器内を撹拌する撹拌機構
とを備えており、磁性粒子の洗浄が終了すると、第2の
試薬分注機構から反応容器に標識物質を含んだ第2の試
薬を分注するようになっている。そして、反応容器に第
2の試薬を分注してから所定時間が経過すると、被分析
成分と反応した標識物質を光学的または化学的な方法に
より検出して被分析成分を定量分析するように構成され
ている。
A conventional analyzer for automatically quantitatively analyzing a component to be analyzed in a sample using such an analysis method causes an immune reaction with the component to be analyzed in the sample in a translucent reaction container. A first reagent dispensing mechanism that dispenses magnetic particles as a first reagent, and the target that has washed the magnetic particles dispensed from the first reagent dispensing mechanism into a reaction container and reacted with the magnetic particles. A magnetic particle washing mechanism for removing components other than analytical components from the reaction vessel and a stirring mechanism for stirring the inside of the reaction vessel are provided, and when the washing of the magnetic particles is completed, the reaction is performed from the second reagent dispensing mechanism. The second reagent containing the labeling substance is dispensed into the container. Then, when a predetermined time has elapsed after the second reagent was dispensed into the reaction container, the labeled substance that reacted with the analyte was detected by an optical or chemical method to quantitatively analyze the analyte. It is configured.

【0006】ところで、このような従来の分析装置で
は、反応容器内の検液を吸引する際に磁性粒子が反応容
器内に分散していると、被分析成分と反応した磁性粒子
が検液と共に吸引されてしまい、正確な検査結果を得る
ことができなくなる。そこで、従来では反応容器内の検
液を吸引する際に反応容器の両側に磁性試薬粒子吸着手
段としてのマグネットをセットし、これらのマグネット
で磁性粒子を反応容器の内面に吸着させることにより、
被分析成分と反応した磁性粒子が検液と共に吸引される
ことを防止している。そして、検液の吸引が終了する
と、磁性粒子が再び反応容器内で分散するように、マグ
ネットをマグネット・オフセット機構によりセット位置
からリセット位置にオフセットし、第2の試薬を分注し
た後、反応容器内を撹拌していた。
By the way, in such a conventional analyzer, if the magnetic particles are dispersed in the reaction container when the test liquid in the reaction container is sucked, the magnetic particles that have reacted with the component to be analyzed are together with the test liquid. It will be sucked and it will not be possible to obtain accurate test results. Therefore, conventionally, when aspirating the test liquid in the reaction container, magnets as magnetic reagent particle adsorbing means are set on both sides of the reaction container, and by adsorbing the magnetic particles to the inner surface of the reaction container with these magnets,
The magnetic particles that have reacted with the component to be analyzed are prevented from being sucked together with the test liquid. When the aspiration of the test solution is completed, the magnet is offset from the set position to the reset position by the magnet offset mechanism so that the magnetic particles are dispersed in the reaction vessel again, and after the second reagent is dispensed, the reaction is performed. The inside of the container was being stirred.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来の分析装置では、磁性粒子の洗浄工程において反
応容器内の検液を吸引した後にマグネット・オフセット
機構が作動しなかった場合や撹拌機構が作動しなかった
場合には、磁性粒子が反応容器の内面に吸着されたまま
の状態となるため、次の工程で反応容器内に第2の試薬
を分注しても第2の試薬に含まれる標識物質と被分析成
分との反応が促進されず、検査結果に悪影響を及ぼす虞
があった。
However, in the above-described conventional analyzer, the magnet / offset mechanism does not work after the test solution in the reaction container is sucked in the magnetic particle washing step, or the stirring mechanism operates. If not performed, the magnetic particles remain adsorbed on the inner surface of the reaction container, so that even if the second reagent is dispensed into the reaction container in the next step, it is still contained in the second reagent. The reaction between the labeling substance and the component to be analyzed is not promoted, which may adversely affect the test result.

【0008】本発明は上述した問題点に鑑みてなされた
もので、その目的は反応容器に標識物質を含んだ試薬を
分注した際に磁性粒子が反応容器内で再分散しているか
どうかを確認することができ、これにより試料中の被分
析成分を正確に定量分析することのできる分析装置を提
供せんとするものである。また、本発明は試料中の被分
析成分を正確に定量分析することのできる分析方法を提
供せんとするものである。
The present invention has been made in view of the above-mentioned problems, and its purpose is to determine whether magnetic particles are redispersed in a reaction container when a reagent containing a labeling substance is dispensed into the reaction container. It is intended to provide an analyzer that can be confirmed and thereby can accurately and quantitatively analyze an analyte component in a sample. Further, the present invention aims to provide an analysis method capable of accurately quantitatively analyzing an analyte component in a sample.

【0009】[0009]

【課題を解決するための手段】請求項1に係る発明は、
上述した課題を解決するために、少なくとも試料を含む
第1の液体と微粒子とにより抗原抗体反応した検液をB
/F分離して、第2の液体を添加して微粒子を懸濁させ
た後に、反応又は測定を行なう分析装置において、前記
第2の液体の添加直後又は一定時間後に、反応容器内の
粒子の懸濁度を測定する懸濁度測定手段と、この懸濁度
測定手段の出力に基づいて分析作業の適否判断を行なう
制御手段とを備え、所要の反応または測定時間に応じた
適宜の時点で前記微粒子が前記反応容器内に再分散して
いるか否かを判定することを特徴とするものである。
The invention according to claim 1 is
In order to solve the above-mentioned problems, a test liquid in which an antigen-antibody reaction has occurred with a first liquid containing at least a sample and fine particles is
/ F is separated, and the second liquid is added to suspend the fine particles, and then the reaction or measurement is performed. In an analyzer, immediately after the addition of the second liquid or after a certain period of time, Suspension measuring means for measuring the degree of suspension, and a control means for judging the suitability of the analytical work based on the output of this suspension measuring means, at an appropriate time depending on the required reaction or measurement time. It is characterized by determining whether or not the fine particles are redispersed in the reaction container.

【0010】請求項2に係る発明は、請求項1に係る発
明において、前記反応容器内の検液を吸引する検液吸引
機構部と、前記反応容器内に洗浄液を分注する洗浄液分
注機構部とを具備してなり、前記制御手段は、前記懸濁
度測定手段の出力に基づいて前記反応容器内に前記検液
が残留しているか否かを判定することを特徴とするもの
である。
According to a second aspect of the present invention, in the first aspect of the invention, a test solution suction mechanism section for sucking the test solution in the reaction container and a cleaning solution dispensing mechanism for dispensing the cleaning solution in the reaction container. And a control unit for determining whether or not the test solution remains in the reaction container based on the output of the suspension measuring unit. .

【0011】請求項3に係る発明は、少なくとも試料を
含む第1の液体と微粒子とにより抗原抗体反応した検液
をB/F分離して、第2の液体を添加して微粒子を懸濁
させた後に、反応又は測定を行なう分析方法において、
前記第2の液体の添加直後又は一定時間後に、反応容器
内の粒子の懸濁度を測定する工程と、前記懸濁度の測定
工程による出力を設定値と比較して分析作業の適否判断
を行なう工程とを備え、所要の反応または測定時間に応
じた適宜の時点で前記微粒子が前記反応容器内に再分散
しているか否かを判定することを特徴とするものであ
る。
According to a third aspect of the present invention, a test liquid in which an antigen-antibody reaction is caused by the first liquid containing at least the sample and the fine particles is subjected to B / F separation, and the second liquid is added to suspend the fine particles. In an analytical method in which the reaction or measurement is performed after
Immediately after the addition of the second liquid or after a certain period of time, a step of measuring the suspension degree of particles in the reaction vessel and a comparison between the output of the suspension degree measuring step and a set value are performed to judge the suitability of the analysis work. It is characterized in that it is determined whether or not the fine particles are redispersed in the reaction container at an appropriate time point according to a required reaction or measurement time.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態を図1
ないし図5を参照して説明する。図2は本発明の一実施
形態に係る分析装置の平面図であり、同図に示すよう
に、本発明の一実施形態に係る分析装置の基台1上に
は、円形状の反応テーブル2が回転自在に設けられてい
る。
FIG. 1 is a block diagram showing an embodiment of the present invention.
This will be described with reference to FIG. FIG. 2 is a plan view of an analyzer according to an embodiment of the present invention. As shown in FIG. 2, a circular reaction table 2 is provided on a base 1 of the analyzer according to an embodiment of the present invention. Is rotatably provided.

【0013】前記反応テーブル2は鉄等の金属材料で形
成されており、この反応テーブル2の周縁部には、複数
個の反応容器保持孔3が反応テーブル2の周方向に沿っ
て一定間隔で穿設されている。これらの反応容器保持孔
3は反応テーブル2の周縁部に複数個の反応容器を一定
ピッチで配置するためのものであり、これらの反応容器
保持孔3に挿入保持される反応容器は透光性を有する材
料(例えば硝子、アクリル樹脂等)で形成されている。
The reaction table 2 is made of a metal material such as iron, and a plurality of reaction container holding holes 3 are provided at a peripheral portion of the reaction table 2 at regular intervals along the circumferential direction of the reaction table 2. Has been drilled. These reaction container holding holes 3 are for arranging a plurality of reaction containers at a constant pitch in the peripheral portion of the reaction table 2, and the reaction containers inserted and held in these reaction container holding holes 3 are translucent. It is formed of a material having (for example, glass, acrylic resin, etc.).

【0014】前記基台1の上面には、テーブル駆動手段
としてのモータ4が設置されている。このモータ4は反
応テーブル2を一定ピッチで回転駆動するものであり、
モータ4の回転軸4aに取付けられた駆動ギヤ5と反応
テーブル2の下面に取付けられたリング状の従動ギヤ
(図示せず)との間には、タイミングベルト6が掛け渡
されている。
A motor 4 as a table driving means is installed on the upper surface of the base 1. This motor 4 drives the reaction table 2 to rotate at a constant pitch.
A timing belt 6 is stretched between a drive gear 5 attached to the rotary shaft 4 a of the motor 4 and a ring-shaped driven gear (not shown) attached to the lower surface of the reaction table 2.

【0015】また、図2中7は前記反応容器保持孔3に
挿入保持された反応容器に試料を分注する試料分注機
構、8は同じく反応容器保持孔3に挿入保持された反応
容器に試料中の被分析成分と免疫反応を生ずる磁性粒子
を第1の試薬として分注する第1の試薬分注機構、9は
同じく反応容器保持孔3に挿入保持された反応容器に被
分析成分と免疫反応を生ずる標識物質を第2の試薬とし
て分注する第2の試薬分注機構、10は反応容器に分注
された磁性粒子を洗浄して磁性粒子と反応した被分析成
分を除く余剰の成分を反応容器内から除去する磁性粒子
洗浄機構、28は反応容器内を撹拌する撹拌機構であ
り、前記磁性粒子洗浄機構10は、図2に示すように、
反応容器内の検液を吸引する検液吸引機構部10aと反
応容器内に洗浄液を分注する洗浄液分注機構部10bを
具備して構成されている。
Further, in FIG. 2, 7 is a sample dispensing mechanism for dispensing a sample into the reaction container held and inserted in the reaction container holding hole 3, and 8 is a reaction container similarly inserted and held in the reaction container holding hole 3. A first reagent dispensing mechanism for dispensing, as a first reagent, magnetic particles that cause an immunological reaction with a component to be analyzed in a sample, and 9 denotes a component to be analyzed in a reaction container that is also inserted and held in a reaction container holding hole 3. The second reagent dispensing mechanism 10 dispenses a labeling substance that causes an immune reaction as a second reagent, and 10 is an excess for removing the analyte component that has washed with the magnetic particles dispensed in the reaction container and reacted with the magnetic particles. A magnetic particle cleaning mechanism for removing components from the reaction container, 28 is a stirring mechanism for stirring the inside of the reaction container, and the magnetic particle cleaning mechanism 10 is, as shown in FIG.
It comprises a test solution suction mechanism section 10a for sucking the test solution in the reaction vessel and a wash solution dispensing mechanism section 10b for dispensing the wash solution in the reaction vessel.

【0016】なお、図2中11は被分析成分と反応した
標識物質(この場合は被分析成分と免疫反応を生ずる物
質を蛍光物質に固定化したもの)を光学的に検出する標
識物質検出機構であり、この標識物質検出機構11は、
例えば反応容器に励起光を照射する光源部と、この光源
部と反応容器を挟んで対向する位置に設けられた蛍光強
度測定部とから構成されている。
Reference numeral 11 in FIG. 2 denotes a labeling substance detection mechanism for optically detecting a labeling substance that has reacted with the analyte (in this case, a substance that causes an immune reaction with the analyte is immobilized on a fluorescent substance). And the labeling substance detection mechanism 11 is
For example, it is composed of a light source section for irradiating the reaction container with excitation light, and a fluorescence intensity measuring section provided at a position opposed to the light source section with the reaction container in between.

【0017】図3は図2のA−A線に沿う断面図であ
り、同図に示すように、反応テーブル2の反応容器保持
孔3に挿入保持された反応容器12とその両側に位置す
る反応容器12との間には、マグネットホルダ13がそ
れぞれ設けられている。これらのマグネットホルダ13
は、図4に示すように、反応テーブル2の下面に固定さ
れた固定ブロック14に枢支軸15を介して上下方向に
回動自在に支持されており、これらマグネットホルダ1
3の先端部には、磁性試薬粒子吸着手段としてのマグネ
ット16が保持されている。
FIG. 3 is a sectional view taken along the line AA in FIG. 2. As shown in FIG. 3, the reaction container 12 inserted into and held in the reaction container holding hole 3 of the reaction table 2 is located on both sides of the reaction container 12. Magnet holders 13 are provided between the reaction vessels 12 and the reaction vessels 12. These magnet holders 13
As shown in FIG. 4, the magnet holder 1 is supported by a fixed block 14 fixed to the lower surface of the reaction table 2 via a pivot shaft 15 so as to be vertically rotatable.
A magnet 16 serving as a magnetic reagent particle adsorbing means is held at the tip of the magnet 3.

【0018】前記マグネット16は磁性粒子を反応容器
の内壁面に吸着させるためのものであり、このマグネッ
ト16は反応テーブル2の上方に設けられたマグネット
・セット機構17(図2参照)により図4中実線で示す
位置(以下、リセット位置と称する。)から図4中二点
鎖線で示す位置(以下、セット位置と称する。)にセッ
トされ、また反応テーブル2の下方に設けられたマグネ
ット・リセット機構18(図2参照)によりセット位置
からリセット位置にオフセットするようになっている。
The magnet 16 is for adsorbing magnetic particles to the inner wall surface of the reaction container, and the magnet 16 is provided by a magnet setting mechanism 17 (see FIG. 2) provided above the reaction table 2 as shown in FIG. A magnet reset provided from the position indicated by the solid line (hereinafter referred to as the reset position) to the position indicated by the chain double-dashed line in FIG. 4 (hereinafter referred to as the set position) and provided below the reaction table 2. The mechanism 18 (see FIG. 2) is designed to offset the set position to the reset position.

【0019】また、図2中19は標識物質が分注された
反応容器12に光を照射して反応容器12内を透過する
光の透過光量を測定する懸濁度測定手段としての透過光
量測定装置であり、この透過光量測定装置19は反応容
器12に光を照射する光源部19aと、この光源部19
aと反応容器12を挟んで相対向する位置に設けられた
測光部19bとから構成されている。
Further, reference numeral 19 in FIG. 2 is a transmitted light amount measurement as a suspension degree measuring means for irradiating the reaction container 12 in which the labeling substance is dispensed with light and measuring the transmitted light amount of the light transmitted through the reaction container 12. This device is a device, and the transmitted light amount measuring device 19 includes a light source unit 19 a for irradiating the reaction container 12 with light and a light source unit 19 a.
a and a photometric section 19b provided at positions facing each other with the reaction container 12 interposed therebetween.

【0020】前記測光部19bは受光素子20を備えて
おり、この受光素子20から出力された信号は、図1に
示すように、増幅器21で増幅され、さらに図示しない
A/D変換器でデジタル信号に変換された後、入出力ポ
ート22およびデータバス23aを介して制御手段とし
てのCPU(中央処理装置)24に供給されるようにな
っている。
The photometric unit 19b includes a light receiving element 20, and the signal output from the light receiving element 20 is amplified by an amplifier 21 as shown in FIG. 1 and further digitalized by an A / D converter (not shown). After being converted into a signal, it is supplied to a CPU (central processing unit) 24 as a control means via the input / output port 22 and the data bus 23a.

【0021】前記CPU24は前述したモータ4、試料
分注機構7、第1の試薬分注機構8、第2の試薬分注機
構9、磁性粒子洗浄機構10、撹拌機構28、標識物質
検出機構11、マグネット・セット機構17およびマグ
ネット・リセット機構18を予め定められた制御シーケ
ンスに従って駆動制御するものであり、このCPU24
とデータバス23bを介して接続された記憶装置25に
は、磁性粒子が反応容器内で再分散している時に反応容
器内を透過した光の透過光量が設定値として格納されて
いる。
The CPU 24 includes the motor 4, the sample dispensing mechanism 7, the first reagent dispensing mechanism 8, the second reagent dispensing mechanism 9, the magnetic particle washing mechanism 10, the stirring mechanism 28, and the labeling substance detection mechanism 11 described above. , The magnet set mechanism 17 and the magnet reset mechanism 18 are driven and controlled according to a predetermined control sequence.
A storage device 25 connected via a data bus 23b and a storage device 25 stores, as a set value, the amount of light transmitted through the reaction container while the magnetic particles are redispersed in the reaction container.

【0022】なお、図1中26は表示装置、27はキー
ボード装置を示している。図5はCPU24の制御シー
ケンスを説明するためのフローチャートであり、以下、
この図を参照して本発明の一実施形態の作用について説
明する。図5に示すように、反応テーブル2の反応容器
保持孔3に反応容器12が挿入保持され、キーボード装
置27からCPU24に検査開始指令が入力されると、
CPU24からの制御信号により第1の試薬分注機構8
が作動し、これにより第1の試料分注機構8から反応容
器12に磁性粒子を含んだ第1の試薬が分注される(ス
テップST1)。そして、反応容器12に第1の試薬が
分注されると、CPU24からの制御信号により試料分
注機構7が作動し、これにより試料分注機構7から反応
容器12に試料が分注される(ステップST2)。
In FIG. 1, reference numeral 26 is a display device and 27 is a keyboard device. FIG. 5 is a flowchart for explaining the control sequence of the CPU 24.
The operation of the embodiment of the present invention will be described with reference to this drawing. As shown in FIG. 5, when the reaction container 12 is inserted and held in the reaction container holding hole 3 of the reaction table 2 and an inspection start command is input from the keyboard device 27 to the CPU 24,
The first reagent dispensing mechanism 8 is controlled by the control signal from the CPU 24.
Is activated, whereby the first sample dispensing mechanism 8 dispenses the first reagent containing magnetic particles into the reaction container 12 (step ST1). Then, when the first reagent is dispensed into the reaction container 12, the sample dispensing mechanism 7 is activated by the control signal from the CPU 24, whereby the sample is dispensed from the sample dispensing mechanism 7 into the reaction container 12. (Step ST2).

【0023】試料分注機構7から反応容器12に試料が
分注された後、所定時間が経過すると、CPU24はマ
グネット・セット機構17を作動させる(ステップST
3)。これによりマグネット16がリセット位置からセ
ット位置にセットされ、マグネット16の磁力により第
1の試薬に含まれる磁性粒子が反応容器12の内壁面に
吸着する。
When a predetermined time has elapsed after the sample was dispensed from the sample dispensing mechanism 7 into the reaction container 12, the CPU 24 operates the magnet setting mechanism 17 (step ST
3). As a result, the magnet 16 is set from the reset position to the set position, and the magnetic force of the magnet 16 causes the magnetic particles contained in the first reagent to be adsorbed to the inner wall surface of the reaction container 12.

【0024】マグネット16がリセット位置からセット
位置にセットされると、CPU24は磁性粒子洗浄機構
10の検液吸引機構部10aを作動させる(ステップS
T4)。これにより反応容器12に分注された検液が磁
性粒子を除いて反応容器12内から吸引除去され、磁性
粒子を除く検液が反応容器12内から吸引除去される
と、CPU24からの制御信号により磁性粒子洗浄機構
10の洗浄液分注機構部10bが作動し、洗浄液分注機
構部10bから反応容器12に洗浄液が分注される(ス
テップST5)。そして、反応容器12に洗浄液が分注
されてから所定時間が経過すると、CPU24からの制
御信号により磁性粒子洗浄機構10の検液吸引機構部1
0aが作動し、反応容器12に分注された洗浄液が検液
吸引機構部10aにより吸引される(ステップST
6)。
When the magnet 16 is set from the reset position to the set position, the CPU 24 operates the test liquid suction mechanism section 10a of the magnetic particle cleaning mechanism 10 (step S).
T4). As a result, when the test liquid dispensed into the reaction container 12 is removed by suction from the reaction container 12 excluding the magnetic particles, and the test liquid excluding the magnetic particles is removed by suction from the reaction container 12, a control signal from the CPU 24 Thus, the cleaning liquid dispensing mechanism unit 10b of the magnetic particle cleaning mechanism 10 is activated, and the cleaning liquid is dispensed from the cleaning liquid dispensing mechanism unit 10b into the reaction container 12 (step ST5). Then, when a predetermined time elapses after the cleaning liquid is dispensed into the reaction container 12, the test liquid suction mechanism unit 1 of the magnetic particle cleaning mechanism 10 is controlled by a control signal from the CPU 24.
0a is activated, and the cleaning liquid dispensed into the reaction container 12 is sucked by the test liquid suction mechanism 10a (step ST
6).

【0025】反応容器12に分注された洗浄液が検液吸
引機構部10aにより吸引されると、CPU24からの
制御信号により透過光量測定装置19の光源部19aが
点灯し、光源部19aから反応容器12に光が照射され
る(ステップST7)。このとき、光源部19aから反
応容器12に照射された光は反応容器12内を透過して
測光部19bの受光素子20に入射し、この受光素子2
0から透過光信号として出力される(ステップST
8)。
When the cleaning liquid dispensed into the reaction container 12 is sucked by the test liquid suction mechanism portion 10a, the light source portion 19a of the transmitted light amount measuring device 19 is turned on by the control signal from the CPU 24, and the reaction container is fed from the light source portion 19a. 12 is irradiated with light (step ST7). At this time, the light emitted from the light source unit 19a to the reaction container 12 passes through the reaction container 12 and enters the light receiving element 20 of the photometric unit 19b.
The transmitted light signal is output from 0 (step ST
8).

【0026】受光素子20から出力された透過光信号は
増幅器21で増幅された後、CPU24に供給される。
このとき、CPU24は受光素子20から出力された透
過光信号の電圧レベルを記憶装置25に格納された設定
値1(反応容器12に洗浄液が入っていないときの透過
光量)と比較する(ステップST9)。
The transmitted light signal output from the light receiving element 20 is amplified by the amplifier 21 and then supplied to the CPU 24.
At this time, the CPU 24 compares the voltage level of the transmitted light signal output from the light receiving element 20 with the set value 1 (the transmitted light amount when the cleaning liquid is not contained in the reaction container 12) stored in the storage device 25 (step ST9). ).

【0027】ここで、透過光信号の電圧レベルが記憶装
置25に格納された設定値1より大きい場合には、CP
U24は反応容器12内に洗浄液が残っていると判定す
る。つまり、反応容器12に洗浄液が残っていないとき
には反応容器12内を透過する透過光の光量が減少する
ので、反応容器12に分注された洗浄液を検液吸引機構
10aで吸引した後に反応容器12内を透過する透過光
の光量を測定し、その測光値を記憶装置25に格納され
た設定値と比較することにより、反応容器12に洗浄液
が残っているか否かを検知することができる。
Here, when the voltage level of the transmitted light signal is higher than the set value 1 stored in the storage device 25, CP
U24 determines that the cleaning liquid remains in the reaction container 12. That is, when the cleaning liquid does not remain in the reaction container 12, the amount of transmitted light that passes through the reaction container 12 decreases, so that the cleaning liquid dispensed into the reaction container 12 is sucked by the test liquid suction mechanism 10a and then the reaction container 12 is sucked. It is possible to detect whether or not the cleaning liquid remains in the reaction container 12 by measuring the amount of transmitted light that passes through the inside and comparing the photometric value with the set value stored in the storage device 25.

【0028】なお、反応容器12内に洗浄液が残ってい
ると判定すると、CPU24は該当する反応容器12で
行なわれた磁性粒子の洗浄が不十分である旨を表示装置
26に表示する(ステップST24)。
When it is determined that the cleaning liquid remains in the reaction container 12, the CPU 24 displays on the display device 26 that the cleaning of the magnetic particles performed in the corresponding reaction container 12 is insufficient (step ST24). ).

【0029】また、受光素子20から出力された透過光
信号の電圧レベルが設定値より小さい場合には、CPU
24は反応容器12内に洗浄液が残っていないと判定
し、次にマグネット・リセット機構18を作動させる
(ステップST10)。これによりマグネット16がセ
ット位置からリセット位置にオフセットされ、マグネッ
ト16の磁力により反応容器12の内壁面に吸着してい
た磁性粒子が反応容器12内に遊離しはじめる。
If the voltage level of the transmitted light signal output from the light receiving element 20 is lower than the set value, the CPU
24 determines that no cleaning liquid remains in the reaction container 12, and then activates the magnet reset mechanism 18 (step ST10). As a result, the magnet 16 is offset from the set position to the reset position, and the magnetic force of the magnet 16 causes the magnetic particles adsorbed on the inner wall surface of the reaction container 12 to start to be released into the reaction container 12.

【0030】マグネット16がセット位置からリセット
位置にオフセットされると、CPU24からの制御信号
により第2の試薬分注機構9が作動し、第2の試薬分注
機構9から反応容器12に標識物質を含んだ第2の試薬
が分注される(ステップST11)。そして、反応容器
12に第2の試薬が分注されると、CPU24は撹拌機
構28を作動させる(ステップST12)。これにより
反応容器12内が撹拌機構28により撹拌され、撹拌機
構28による撹拌工程が終了すると、CPU24からの
制御信号により透過光量測定装置19の光源部19aが
点灯し、光源部19aからの光が反応容器12に照射さ
れる(ステップST13)。このとき、光源部19aか
ら反応容器12に照射された光は反応容器12内を透過
して測光部19bの受光素子20に入射し、この受光素
子20から透過光信号として出力される(ステップST
14)。
When the magnet 16 is offset from the set position to the reset position, the second reagent dispensing mechanism 9 is activated by the control signal from the CPU 24, and the second reagent dispensing mechanism 9 causes the labeling substance to enter the reaction container 12. The second reagent containing is dispensed (step ST11). Then, when the second reagent is dispensed into the reaction container 12, the CPU 24 operates the stirring mechanism 28 (step ST12). As a result, the inside of the reaction container 12 is stirred by the stirring mechanism 28, and when the stirring process by the stirring mechanism 28 is completed, the light source unit 19a of the transmitted light amount measuring device 19 is turned on by the control signal from the CPU 24, and the light from the light source unit 19a is emitted. The reaction container 12 is irradiated (step ST13). At this time, the light emitted from the light source unit 19a to the reaction container 12 passes through the reaction container 12 and enters the light receiving element 20 of the photometric unit 19b, and is output as a transmitted light signal from the light receiving element 20 (step ST
14).

【0031】受光素子20から出力された透過光信号は
増幅器21で増幅された後、CPU24に供給される。
このとき、CPU24は受光素子20から出力された透
過光信号の電圧レベルを記憶装置25に格納された設定
値2(反応容器中に磁性粒子が分散していない状態での
測光値)と比較する(ステップST15)。
The transmitted light signal output from the light receiving element 20 is amplified by the amplifier 21 and then supplied to the CPU 24.
At this time, the CPU 24 compares the voltage level of the transmitted light signal output from the light receiving element 20 with a set value 2 (a photometric value in a state where magnetic particles are not dispersed in the reaction container) stored in the storage device 25. (Step ST15).

【0032】ここで、受光素子20から出力された透過
光信号の電圧レベルが記憶装置25に格納された設定値
2より大きい場合には、CPU24は磁性粒子が反応容
器12内で再分散していないと判定する。つまり、反応
容器12に第2の試薬を分注し、撹拌したときに磁性粒
子が反応容器12内に一様に分散されずに反応容器12
の内壁付近にかたまったままの状態であると、反応容器
12内を透過する透過光の光量が増加するので、反応容
器12に第2の試薬を分注した際に反応容器12内を透
過する透過光の光量を測定し、その測光値を記憶装置2
5に格納された設定値2と比較することにより磁性粒子
が反応容器12内に再分散しているか否かを検知するこ
とができる。
When the voltage level of the transmitted light signal output from the light receiving element 20 is larger than the set value 2 stored in the storage device 25, the CPU 24 causes the magnetic particles to be redispersed in the reaction container 12. It is determined not to. That is, when the second reagent is dispensed into the reaction container 12 and stirred, the magnetic particles are not uniformly dispersed in the reaction container 12 and the reaction container 12
If the second reagent is dispensed into the reaction container 12, the amount of transmitted light that passes through the reaction container 12 increases if it remains collected near the inner wall of the reaction container 12. The amount of transmitted light is measured, and the photometric value is stored in the storage device 2
It is possible to detect whether or not the magnetic particles are redispersed in the reaction container 12 by comparing with the set value 2 stored in 5.

【0033】磁性粒子が反応容器12内で再分散してい
ないと判定すると、CPU24は撹拌機構28による撹
拌が不十分である旨を表示装置26に表示する(ステッ
プST24)。
When it is determined that the magnetic particles are not redispersed in the reaction vessel 12, the CPU 24 displays on the display device 26 that the stirring by the stirring mechanism 28 is insufficient (step ST24).

【0034】また、受光素子20から出力された透過光
信号の電圧レベルが記憶装置25に格納された設定値2
より小さい場合には、CPU24は磁性粒子が反応容器
12内で再分散していると判定し、所定時間が経過する
と、次にマグネット・セット機構17を作動させる(ス
テップST16)。これによりマグネット16がリセッ
ト位置からセット位置にセットされ、マグネット16の
磁力により磁性粒子が反応容器12の内壁面に吸着す
る。
Further, the voltage level of the transmitted light signal output from the light receiving element 20 is the set value 2 stored in the storage device 25.
If it is smaller, the CPU 24 determines that the magnetic particles are redispersed in the reaction container 12, and when a predetermined time has passed, the magnet setting mechanism 17 is operated next (step ST16). As a result, the magnet 16 is set from the reset position to the set position, and the magnetic force of the magnet 16 attracts the magnetic particles to the inner wall surface of the reaction container 12.

【0035】マグネット16がリセット位置からセット
位置にセットされると、CPU24は磁性粒子洗浄機構
10の検液吸引機構部10aを作動させる(ステップS
T17)。これにより反応容器12に分注された標識物
質が被分析成分と反応した標識物質を除いて反応容器1
2内から吸引除去され、被分析成分と反応した標識物質
を除く標識物質が反応容器12内から吸引除去される
と、CPU24からの制御信号により磁性粒子洗浄機構
10の洗浄液分注機構部10bが作動し、洗浄液分注機
構部10bから反応容器12に洗浄液が分注される(ス
テップST18)。そして、反応容器12に洗浄液が分
注されてから所定時間が経過すると、CPU24からの
制御信号により磁性粒子洗浄機構10の検液吸引機構部
10aが作動し、反応容器12に分注された洗浄液が検
液吸引機構部10aにより吸引される(ステップST1
9) 反応容器12に分注された洗浄液が検液吸引機構部10
aにより吸引されると、CPU24からの制御信号によ
り透過光量測定装置19の光源部19aが点灯し、光源
部19aから反応容器12に光が照射される(ステップ
ST20)。このとき、光源部19aから反応容器12
に照射された光は反応容器12内を透過して測光部19
bの受光素子20に入射し、この受光素子20から透過
光信号として出力される(ステップST21)。
When the magnet 16 is set from the reset position to the set position, the CPU 24 operates the test liquid suction mechanism section 10a of the magnetic particle cleaning mechanism 10 (step S).
T17). As a result, the labeling substance dispensed into the reaction container 12 is removed except for the labeling substance reacted with the analyte.
When the labeling substance other than the labeling substance that has reacted with the analyte is aspirated and removed from the reaction container 12, the cleaning liquid dispensing mechanism unit 10b of the magnetic particle cleaning mechanism 10 is controlled by the control signal from the CPU 24. The cleaning liquid is dispensed into the reaction container 12 from the cleaning liquid dispensing mechanism 10b (step ST18). Then, when a predetermined time has elapsed after the cleaning liquid was dispensed into the reaction container 12, the test liquid suction mechanism section 10a of the magnetic particle cleaning mechanism 10 was activated by the control signal from the CPU 24, and the cleaning liquid dispensed into the reaction container 12 was activated. Is sucked by the test liquid suction mechanism section 10a (step ST1).
9) The cleaning solution dispensed into the reaction container 12 is the test solution suction mechanism section 10
When aspirated by a, the light source unit 19a of the transmitted light amount measuring device 19 is turned on by the control signal from the CPU 24, and the reaction container 12 is irradiated with light from the light source unit 19a (step ST20). At this time, from the light source unit 19a to the reaction container 12
The light radiated on the light is transmitted through the reaction container 12 and the photometric unit 19
It is incident on the light receiving element 20 of b and is output as a transmitted light signal from this light receiving element 20 (step ST21).

【0036】受光素子20から出力された透過光信号は
増幅器21で増幅された後、CPU24に供給される。
このとき、CPU24は受光素子20から出力された透
過光信号の電圧レベルを記憶装置25に格納された設定
値1(反応容器12に洗浄液が入っていないときの透過
光量)と比較する(ステップST22)。
The transmitted light signal output from the light receiving element 20 is amplified by the amplifier 21 and then supplied to the CPU 24.
At this time, the CPU 24 compares the voltage level of the transmitted light signal output from the light receiving element 20 with the set value 1 (the amount of transmitted light when the cleaning liquid is not contained in the reaction container 12) stored in the storage device 25 (step ST22). ).

【0037】ここで、受光素子20から出力された透過
光信号の電圧レベルが記憶装置25に格納された設定値
1より大きい場合には、CPU24は反応容器12内に
洗浄液が残っていると判定する。そして、反応容器12
内に洗浄液が残っていると判定すると、CPU24は該
当する反応容器12で行なわれた磁性粒子の洗浄が不十
分である旨を表示装置26に表示する(ステップST2
4)。
When the voltage level of the transmitted light signal output from the light receiving element 20 is larger than the set value 1 stored in the storage device 25, the CPU 24 determines that the cleaning liquid remains in the reaction container 12. To do. And the reaction container 12
When it is determined that the cleaning liquid remains inside, the CPU 24 displays on the display device 26 that the cleaning of the magnetic particles performed in the corresponding reaction container 12 is insufficient (step ST2).
4).

【0038】また、受光素子20から出力された透過光
信号の電圧レベルが設定値より小さい場合には、CPU
24は反応容器12内に洗浄液が残っていないと判定す
る。そして、CPU24は標識物質検出機構11を作動
させて標識物質と反応した被分析成分の定量分析を行な
う(ステップST23)。
When the voltage level of the transmitted light signal output from the light receiving element 20 is lower than the set value, the CPU
No. 24 determines that no cleaning liquid remains in the reaction container 12. Then, the CPU 24 operates the labeling substance detection mechanism 11 to perform a quantitative analysis of the component to be analyzed which has reacted with the labeling substance (step ST23).

【0039】したがって、本発明の一実施形態では第2
の試薬分注機構9から反応容器12に標識物質を含む第
2の試薬を分注した際に磁性粒子が反応容器12内で再
分散しているか否かを受光素子20からの信号により検
知することができ、磁性試薬粒子が反応容器12内で再
分散していると判定したときのみ被分析成分の定量分析
が行なわれるので、試料中の被分析成分を正確に定量分
析することができる。
Therefore, in one embodiment of the present invention, the second
When a second reagent containing a labeling substance is dispensed from the reagent dispensing mechanism 9 into the reaction container 12, whether or not magnetic particles are redispersed in the reaction container 12 is detected by a signal from the light receiving element 20. Since the quantitative analysis of the component to be analyzed is performed only when it is determined that the magnetic reagent particles are redispersed in the reaction container 12, the component to be analyzed in the sample can be accurately quantitatively analyzed.

【0040】また、本発明の一実施形態では受光素子2
0から出力された信号の電圧レベルが記憶装置25に格
納された設定値1より大きい場合には、反応容器12内
に洗浄液が残っていると判定するので、洗浄液残りによ
り検液が希釈されてしまったり、B/F分離が正しく行
なわれずに分析結果に与える影響を除去することができ
る。
In the embodiment of the present invention, the light receiving element 2
When the voltage level of the signal output from 0 is larger than the set value 1 stored in the storage device 25, it is determined that the cleaning liquid remains in the reaction container 12, and therefore the test liquid is diluted by the remaining cleaning liquid. It is possible to eliminate the influence of the error or the B / F separation on the analysis result.

【0041】なお、上述した本発明の一実施形態では磁
性粒子が反応容器12内で再分散していないとCPU2
4が判定したときに、その旨を表示装置26に表示する
ようにしたが、磁性粒子が反応容器12内で再分散して
いない旨をプリンタから出力しても良いし、あるいは磁
性粒子が反応容器12内で再分散していないとCPU2
4が判定したときにブザーで報知するようにしてもよ
い。
In the above-described embodiment of the present invention, if the magnetic particles are not redispersed in the reaction vessel 12, the CPU 2
When it is judged by No. 4, the fact is displayed on the display device 26. However, the fact that the magnetic particles are not redispersed in the reaction container 12 may be output from the printer, or the magnetic particles may not react. CPU2 if not re-dispersed in container 12
You may make it notify by buzzer when 4 determines.

【0042】また、上述した一実施形態では反応容器内
の撹拌に撹拌機構28を用いて説明したが、撹拌機構2
8を用いることなく撹拌することができれば、撹拌機構
28を用いた場合と同様の効果を得ることができる。
In the above-described embodiment, the stirring mechanism 28 is used for stirring in the reaction vessel, but the stirring mechanism 2
If the stirring can be performed without using 8, the same effect as in the case of using the stirring mechanism 28 can be obtained.

【0043】また、上述した本発明の一実施形態では反
応容器12に洗浄液が入っていないときの透過光量を第
1の設定値1として記憶装置25に予め格納しておいた
が、例えば反応容器12に第1の試薬及び試料を分注す
る前の透過光量を測定し、その測定値を第1の設定値1
として記憶装置25に格納するようにしても良い。
In the above-described embodiment of the present invention, the amount of transmitted light when the cleaning liquid is not contained in the reaction container 12 is stored in the storage device 25 in advance as the first set value 1. Measure the amount of transmitted light before dispensing the first reagent and sample to 12 and set the measured value to the first set value 1
Alternatively, it may be stored in the storage device 25.

【0044】また、上述した本発明の一実施形態では反
応容器中に磁性粒子が分散している状態での透過光量を
第2の設定値2として記憶装置25に予め格納しておい
たが、例えば反応容器12に第1の試薬のみを分注した
ときの透過光量を測定し、その測定値+α(一連のB/
F分離動作中に若干流出してしまう場合のための透過光
量のプラス分)を第2の設定値2として記憶装置25に
格納するようにしても良い。ただし、この場合には本発
明の一実施形態での設定値と反対の状態のときを設定値
に設定しているため、図5のステップST5の比較の判
断が逆になる。
Further, in the above-described one embodiment of the present invention, the amount of transmitted light in the state where the magnetic particles are dispersed in the reaction container is stored in advance in the storage device 25 as the second set value 2. For example, the amount of transmitted light when only the first reagent is dispensed into the reaction container 12 is measured, and the measured value + α (a series of B /
The plus amount of the amount of transmitted light in case of a slight outflow during the F separation operation) may be stored in the storage device 25 as the second set value 2. However, in this case, since the set value is set to the state opposite to the set value in the embodiment of the present invention, the comparison determination in step ST5 of FIG. 5 is reversed.

【0045】また、上述した本発明の一実施形態では標
識物質として蛍光物質を用いた分析原理で試料中の被分
析成分を定量分析する分析装置に適用した場合について
説明したが、本発明はこれに限定されるものではなく、
再分散を行なう任意の分析であれば適用することができ
る。たとえば、上述した一実施形態で用いた標識物質と
は異なる物質を用いる分析装置(特開昭53−1459
12号公報、特開昭47−18597号公報、特開平4
−58157号公報参照)や、標識物質として化学反応
により発光または発色する物質を用いて試料中の被分析
成分を定量分析する分析装置(特開昭60−15965
1号公報参照)、他に分析原理が上述した一実施形態と
異なる分析装置(特開昭52−15815号公報、特公
平6−65989号公報、特開平6−160401号公
報参照)にも適用することができる。
In the above-described one embodiment of the present invention, the case where the present invention is applied to the analyzer for quantitatively analyzing the component to be analyzed in the sample on the basis of the analysis principle using the fluorescent substance as the labeling substance has been described. Is not limited to
Any analysis that performs redispersion can be applied. For example, an analyzer using a substance different from the labeling substance used in the above-described embodiment (Japanese Patent Laid-Open No. 53-1459).
No. 12, JP-A-47-18597, JP-A-4
No. 58157), and an analyzer for quantitatively analyzing the component to be analyzed in the sample using a substance that emits light or develops a color as a labeling substance (Japanese Patent Laid-Open No. 60-15965).
No. 1), and is also applied to an analyzer having an analysis principle different from that of the above-described embodiment (see JP-A-52-15815, JP-B-6-5989, and JP-A-6-160401). can do.

【0046】また、上述した一実施形態では反応のため
に再懸濁を行なう例であったが、これに限らず反応結果
の測定のために再懸濁を行なう場合にも適用できること
は言うまでもない。
In the above-mentioned one embodiment, the resuspension is carried out for the reaction, but it is needless to say that the present invention can be applied to the case where the resuspension is carried out for measuring the reaction result. .

【0047】また、上述した一実施形態ではサンドイッ
チ法による分析について言及していたが、競合法につい
ても適宜変更することは容易である。また、化学発光の
場合は図1ないし図4に示した構成をそのまま適用でき
るし、比色の測光であれば、前述した透過光量測定装置
19で洗浄液の残存の確認と磁性粒子の分散ができたか
どうかの確認を兼用することができる。
Further, in the above-mentioned one embodiment, the analysis by the sandwich method was mentioned, but it is easy to appropriately change the competitive method. Further, in the case of chemiluminescence, the constitution shown in FIGS. 1 to 4 can be applied as it is, and in the case of colorimetric photometry, it is possible to confirm the remaining cleaning liquid and disperse the magnetic particles by the above-mentioned transmitted light amount measuring device 19. It can also be used to confirm whether or not it has been used.

【0048】[0048]

【発明の効果】以上説明したように、請求項1に係る発
明によれば、微粒子が反応容器内で再分散しているかど
うかを確認することができ、試料中の被分析成分を正確
に定量分析することのできる分析装置を提供できる。
As described above, according to the first aspect of the present invention, it is possible to confirm whether or not the fine particles are redispersed in the reaction vessel, and to accurately quantify the component to be analyzed in the sample. An analyzer capable of analyzing can be provided.

【0049】請求項2に係る発明によれば、請求項1に
係る発明による効果に加えて、反応容器内に洗浄液等が
残っているかどうかを確認でき、洗浄液による影響を除
去することができる請求項3に係る発明によれば、試料
中の被分析成分を正確に定量分析することのできる分析
方法を提供できる。
According to the invention of claim 2, in addition to the effect of the invention of claim 1, it is possible to confirm whether or not the cleaning liquid remains in the reaction vessel, and it is possible to eliminate the influence of the cleaning liquid. According to the invention of Item 3, it is possible to provide an analysis method capable of accurately and quantitatively analyzing an analyte component in a sample.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る分析装置のブロック
構成図。
FIG. 1 is a block configuration diagram of an analyzer according to an embodiment of the present invention.

【図2】同実施形態に係る分析装置の平面図。FIG. 2 is a plan view of the analyzer according to the same embodiment.

【図3】図2のA−A線に沿った断面図。FIG. 3 is a sectional view taken along the line AA of FIG. 2;

【図4】図3のB−B線に沿った断面図。FIG. 4 is a sectional view taken along the line BB of FIG. 3;

【図5】本発明の一実施形態に係る分析装置の作用を説
明するためのフローチャート。
FIG. 5 is a flowchart for explaining the operation of the analyzer according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…反応テーブル 4…モータ 7…試料分注機構 8…第1の試薬分注機構 9…第2の試薬分注機構 10…磁性粒子洗浄機構 10a…検液吸引機構部 10b…洗浄液分注機構部 28…撹拌機構 16…マグネット 17…マグネット・セット機構 18…マグネット・リセット機構 19…透過光量測定装置 19a…光源部 19b…測光部 24…CPU 25…記憶装置 26…表示装置 DESCRIPTION OF SYMBOLS 1 ... Reaction table 4 ... Motor 7 ... Sample dispensing mechanism 8 ... 1st reagent dispensing mechanism 9 ... 2nd reagent dispensing mechanism 10 ... Magnetic particle washing mechanism 10a ... Test liquid suction mechanism part 10b ... Washing liquid dispensing mechanism Part 28 ... Stirring mechanism 16 ... Magnet 17 ... Magnet setting mechanism 18 ... Magnet reset mechanism 19 ... Transmitted light amount measuring device 19a ... Light source part 19b ... Photometric part 24 ... CPU 25 ... Storage device 26 ... Display device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 35/02 G01N 35/02 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location G01N 35/02 G01N 35/02 Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも試料を含む第1の液体と微粒
子とにより抗原抗体反応した検液をB/F分離して、第
2の液体を添加して微粒子を懸濁させた後に、反応又は
測定を行なう分析装置において、 前記第2の液体の添加直後又は一定時間後に、反応容器
内の粒子の懸濁度を測定する懸濁度測定手段と、 この懸濁度測定手段の出力に基づいて分析作業の適否判
断を行なう制御手段とを備え、 所要の反応または測定時間に応じた適宜の時点で前記微
粒子が前記反応容器内に再分散しているか否かを判定す
ることを特徴とする分析装置。
1. A test liquid in which an antigen-antibody reaction has occurred with a first liquid containing at least a sample and fine particles is subjected to B / F separation, and a second liquid is added to suspend the fine particles, followed by reaction or measurement. In the analyzer for performing, the suspension degree measuring means for measuring the suspension degree of the particles in the reaction container immediately after the addition of the second liquid or after a fixed time, and the analysis based on the output of the suspension degree measuring means An analyzer comprising: a control means for judging the suitability of the work, and judging whether or not the fine particles are redispersed in the reaction container at an appropriate time point according to a required reaction or measurement time. .
【請求項2】 前記反応容器内の検液を吸引する検液吸
引機構部と、前記反応容器内に洗浄液を分注する洗浄液
分注機構部とを具備してなり、前記制御手段は、前記懸
濁度測定手段の出力に基づいて前記反応容器内に前記検
液が残留しているか否かを判定することを特徴とする請
求項1記載の分析装置。
2. A test solution suction mechanism section for sucking a test solution in the reaction vessel, and a cleaning solution dispensing mechanism section for dispensing a cleaning solution in the reaction vessel, wherein the control means comprises: The analyzer according to claim 1, wherein it is determined whether or not the test solution remains in the reaction container based on the output of the suspension measuring means.
【請求項3】 少なくとも試料を含む第1の液体と微粒
子とにより抗原抗体反応した検液をB/F分離して、第
2の液体を添加して微粒子を懸濁させた後に、反応又は
測定を行なう分析方法において、 前記第2の液体の添加直後又は一定時間後に、反応容器
内の粒子の懸濁度を測定する工程と、 前記懸濁度の測定工程による出力を設定値と比較して分
析作業の適否判断を行なう工程とを備え、 所要の反応または測定時間に応じた適宜の時点で前記微
粒子が前記反応容器内に再分散しているか否かを判定す
ることを特徴とする分析方法。
3. A test liquid in which an antigen-antibody reaction has occurred with a first liquid containing at least a sample and fine particles is subjected to B / F separation, and a second liquid is added to suspend the fine particles, followed by reaction or measurement. In the analysis method of performing the step of measuring the degree of suspension of particles in the reaction vessel immediately after the addition of the second liquid or after a fixed time, comparing the output of the step of measuring the degree of suspension with a set value. And a step of making a determination as to whether or not the analysis work is appropriate, and determining whether or not the fine particles are redispersed in the reaction container at an appropriate time point according to the required reaction or measurement time. .
JP06288696A 1996-03-19 1996-03-19 Analysis apparatus and analysis method Expired - Lifetime JP3670383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06288696A JP3670383B2 (en) 1996-03-19 1996-03-19 Analysis apparatus and analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06288696A JP3670383B2 (en) 1996-03-19 1996-03-19 Analysis apparatus and analysis method

Publications (2)

Publication Number Publication Date
JPH09257796A true JPH09257796A (en) 1997-10-03
JP3670383B2 JP3670383B2 (en) 2005-07-13

Family

ID=13213195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06288696A Expired - Lifetime JP3670383B2 (en) 1996-03-19 1996-03-19 Analysis apparatus and analysis method

Country Status (1)

Country Link
JP (1) JP3670383B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044311A1 (en) * 2006-10-13 2008-04-17 Olympus Corporation Method for identifying abnormal state, analytical apparatus, and reagent
WO2011099279A1 (en) * 2010-02-09 2011-08-18 ベックマン コールター, インコーポレイテッド Method of managing accuracy in dispensing, method of correcting dispensing volume, method of managing agitating performance, automatic analyzing device, and analyzing kit
CN102608309A (en) * 2010-12-14 2012-07-25 希森美康株式会社 Analyzer and analyzing method
US8743359B2 (en) 2010-06-15 2014-06-03 Roche Molecular Systems, Inc. Optical surveillance of mixing and separation
US10309976B2 (en) 2014-06-30 2019-06-04 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10520521B2 (en) 2014-06-30 2019-12-31 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10539582B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and method for removing liquid from liquid that contains magnetic particles
US10539583B2 (en) 2014-12-12 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10539560B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, and sample analysis apparatus
CN115156215A (en) * 2022-08-02 2022-10-11 宋世琦 Magnetic particle cleaning device and cleaning method for immunoassay device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008044311A1 (en) * 2006-10-13 2010-02-04 オリンパス株式会社 Abnormality identification method, analyzer and reagent
WO2008044311A1 (en) * 2006-10-13 2008-04-17 Olympus Corporation Method for identifying abnormal state, analytical apparatus, and reagent
JP5123859B2 (en) * 2006-10-13 2013-01-23 ベックマン コールター, インコーポレイテッド Abnormality identification method, analyzer and reagent
WO2011099279A1 (en) * 2010-02-09 2011-08-18 ベックマン コールター, インコーポレイテッド Method of managing accuracy in dispensing, method of correcting dispensing volume, method of managing agitating performance, automatic analyzing device, and analyzing kit
JP2016136155A (en) * 2010-06-15 2016-07-28 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Method for optical surveillance of mixing step and separation step
US8743359B2 (en) 2010-06-15 2014-06-03 Roche Molecular Systems, Inc. Optical surveillance of mixing and separation
CN102608309A (en) * 2010-12-14 2012-07-25 希森美康株式会社 Analyzer and analyzing method
US10309976B2 (en) 2014-06-30 2019-06-04 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10520521B2 (en) 2014-06-30 2019-12-31 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
US10539582B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and method for removing liquid from liquid that contains magnetic particles
US10539560B2 (en) 2014-06-30 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, and sample analysis apparatus
US10539583B2 (en) 2014-12-12 2020-01-21 Phc Holdings Corporation Substrate for sample analysis, sample analysis device, sample analysis system, and program for sample analysis system
CN115156215A (en) * 2022-08-02 2022-10-11 宋世琦 Magnetic particle cleaning device and cleaning method for immunoassay device

Also Published As

Publication number Publication date
JP3670383B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
JP2656564B2 (en) Immunoassay method
EP1775574B1 (en) Method for automatic determination of sample
JP5329293B2 (en) Immunodiagnostic test apparatus having at least one imager for providing in advance an aggregation assessment during a centrifugation cycle
JP3547894B2 (en) Method and apparatus for determining blood sedimentation velocity
JP3193443B2 (en) Automatic analyzer
AU2008234977B2 (en) Automated multi-detector analyzer
JP3164403B2 (en) Automatic analyzer
US9310286B2 (en) Patient sample classification based upon low angle light scattering
WO1990010875A1 (en) Analyzer of liquid sample and analyzing method of liquid sample using said analyzer
EP0198513A2 (en) Analytical method and apparatus for determining fluorescence or phosphorescence
EP0288793A2 (en) Cartridge and methods for performing a solid-phase immunoassay
JPH08211071A (en) Device and method for automatic analysis
KR20010020145A (en) Analysis System
JPH0354470A (en) Automatic analyzer
JP6389248B2 (en) Electrochemiluminescence method and analytical system for detecting analytes in liquid samples
JP3670383B2 (en) Analysis apparatus and analysis method
JPH11502625A (en) Apparatus and method for reagent separation in a chemical analyzer
JP4043132B2 (en) Automatic analyzer
JPH0580059A (en) Automatic analyzer
EP0488152A2 (en) Method for immunoassay and apparatus therefor
JPH08114600A (en) Living body sample analyzing system
JP3661605B2 (en) Immunoassay apparatus and immunoassay method
JPH06265554A (en) Method and equipment for analyzing biochemical component of blood
JPH08240594A (en) Sampler system for chemical analysis apparatus
JPH04273065A (en) Immunity analyzing method and device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120422

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130422

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term