JPH09257785A - Analysis of composition of foundry sand sample - Google Patents

Analysis of composition of foundry sand sample

Info

Publication number
JPH09257785A
JPH09257785A JP7180096A JP7180096A JPH09257785A JP H09257785 A JPH09257785 A JP H09257785A JP 7180096 A JP7180096 A JP 7180096A JP 7180096 A JP7180096 A JP 7180096A JP H09257785 A JPH09257785 A JP H09257785A
Authority
JP
Japan
Prior art keywords
foundry sand
sand sample
sample
carbon content
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7180096A
Other languages
Japanese (ja)
Other versions
JP3073693B2 (en
Inventor
Keiichi Morita
啓一 森田
Yoshizumi Senda
善純 千田
Hiromi Tomishige
博美 富重
Yasunori Yamamoto
靖則 山本
Takeshi Iwamoto
剛 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Toyota Motor Corp
Original Assignee
Shimadzu Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Toyota Motor Corp filed Critical Shimadzu Corp
Priority to JP08071800A priority Critical patent/JP3073693B2/en
Publication of JPH09257785A publication Critical patent/JPH09257785A/en
Application granted granted Critical
Publication of JP3073693B2 publication Critical patent/JP3073693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately calculate both analytical values within a short time by obtaining the solid carbon analytical value of a foundary sand sample by performing a carbon measuring method in a solid carbon measuring process while perfectly burning the foundry sand sample in a combustion furnace in an ignition loss measuring process in succession to the solid carbon measuring process to obtain the ignition loss analytical value of the foundary sand sample on the basis of loss of wt. SOLUTION: In a drying process, a sample 1 is put in a container 2 to be dried by using an infrared lamp 3 and, in a next cooling process, the sample 1 is cooled along with the container. Next, the sample 1 is weighed by a spoon 4 in a weighing process and subsequently ground by using a vibration grinder 5. Next, in an analyzing process, a board 6 is heated in a combustion furnace 7 and generated carbon monoxide and carbon dioxide are guided to an analyzer 8 and the generation amt. of gas is measured by a data processor 9 to obtain the analytical value of the sample 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋳物砂から取得さ
れた鋳物砂サンプルの組成分析方法に関する。
TECHNICAL FIELD The present invention relates to a method for analyzing the composition of a foundry sand sample obtained from foundry sand.

【0002】[0002]

【従来の技術】主に鋳鉄鋳物の製造に用いられる鋳型を
造型する場合、例えば生型については、珪砂と、ベント
ナイト等の活性粘土からなる粘結剤と、石炭粉や澱粉等
の添加剤とを所定量づつ混練機により混練してなる生砂
により造型が行われ、シェル型については、珪砂と樹脂
との混合物により造型が行われる。
2. Description of the Related Art When molding a mold mainly used for producing cast iron castings, for example, for a green mold, silica sand and a binder made of activated clay such as bentonite, and an additive such as coal powder or starch are used. Molding is performed by using raw sand obtained by kneading a predetermined amount by a kneader, and molding is performed by using a mixture of silica sand and resin for the shell mold.

【0003】そして、バラシにより得られた鋳物砂は、
再度粘結剤等が所定量づつ添加され、一般に造型砂とし
て繰返して使用される。この際、鋳物砂がいかなる固定
炭素分(FC)、強熱減量(IL)、活性粘土分(A
C)、澱粉量、有機レジン量等の組成であるかが明らか
でなければ、鋳物砂を再調製するための粘結剤等の添加
量が定まらず、正確な所望組成の造型砂が得られないこ
とから、強度の安定した鋳型の造型が困難になってしま
う。このため、鋳物砂の組成分析は鋳型の好適な造型の
ために重要な要素となっている。
The foundry sand obtained by the separation is
A binder and the like are again added in a predetermined amount, and generally used repeatedly as molding sand. At this time, the molding sand contains any fixed carbon content (FC), ignition loss (IL), activated clay content (A).
If it is not clear that the composition is C), the amount of starch, the amount of organic resin, etc., the amount of the binder, etc. for re-preparing the foundry sand cannot be determined, and a molding sand having an accurate desired composition can be obtained. Since it does not exist, it becomes difficult to form a mold having stable strength. For this reason, composition analysis of foundry sand is an important factor for suitable molding of a mold.

【0004】従来の鋳物砂のFC及びILの化学的組成
分析方法では、鋳物砂サンプルを取得し、この鋳物砂サ
ンプルについて、図2に示すように、まず前処理工程と
して、(A)乾燥工程、(B)冷却工程、(C)秤量工
程、(D)粉砕工程及び(E)秤量工程を順次実行す
る。そして、分析工程として、(F)燃焼工程、(G)
冷却・計量工程、(H)燃焼工程及び(I)冷却・計量
工程を順次実行する。ここで、(F)燃焼工程及び
(G)冷却・計量工程により、固体炭素分分析値が得ら
れる。また、(F)燃焼工程、(H)燃焼工程及び
(I)冷却・計量工程により、強熱減量分析値が得られ
る。
In the conventional chemical composition analysis method for FC and IL of foundry sand, a foundry sand sample is obtained, and as shown in FIG. 2, first, as a pretreatment step, (A) a drying step is performed. , (B) cooling step, (C) weighing step, (D) crushing step, and (E) weighing step. Then, as the analysis process, (F) combustion process, (G)
The cooling / measurement process, (H) combustion process, and (I) cooling / measurement process are sequentially executed. Here, the solid carbon content analysis value is obtained by the (F) combustion step and the (G) cooling / measurement step. Further, the ignition loss analysis value is obtained by the (F) combustion step, the (H) combustion step, and the (I) cooling / measurement step.

【0005】こうして得られた固体炭素分分析値等に基
づき、混練する粘結剤等の添加量を設定し、鋳物砂を再
調製する。そして、得られた造型砂により新たに造型を
行い、注湯を行なう。この後、再度バラシ等が繰り返さ
れる。また、海洋、河川の堆積物等を検査対象とする分
野において、少量の固体サンプルを燃焼炉内において加
熱し、発生した一酸化炭素及び二酸化炭素のガス発生量
を赤外線ガス分析計等で測定することにより固体サンプ
ルの固体炭素分分析値を得る炭素計測法が知られてい
る。
Based on the thus obtained solid carbon content analysis value and the like, the addition amount of the binder or the like to be kneaded is set, and the molding sand is re-prepared. Then, new molding is performed using the obtained molding sand, and pouring is performed. After this, dispersal and the like are repeated again. In addition, in the field where sea and river sediments are subject to inspection, a small amount of solid sample is heated in a combustion furnace and the amount of carbon monoxide and carbon dioxide gas generated is measured with an infrared gas analyzer, etc. There is known a carbon measuring method for obtaining a solid carbon content analysis value of a solid sample.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記従来のF
C及びILの化学的組成分析方法では、固体炭素分分析
値を得るために鋳物砂サンプルを一旦冷却した後、強熱
減量分析値を得るために再度燃焼しているため、全体と
して約227分程度が必要であり、長時間を要してい
た。
However, the above-mentioned conventional F
In the chemical composition analysis method of C and IL, the casting sand sample is once cooled to obtain the solid carbon content analysis value, and then burnt again to obtain the ignition loss analysis value. It needed a degree and took a long time.

【0007】この点、上記炭素計測法を鋳物砂サンプル
の組成分析方法に適用すれば、鋳物砂サンプルの組成分
析を短時間で終えることができるとも考えられる。確か
に、炭素計測法は炭素についての分析値が得られるもの
であるため、乾燥及び粉砕され、所定量に秤量された鋳
物砂サンプルを固体サンプルとすれば、その鋳物砂サン
プルの固体炭素分分析値は得られる。しかも、その固体
炭素分分析値は炭素1元素のみのものであるため、高精
度である。
In this respect, it is considered that the composition analysis of the foundry sand sample can be completed in a short time by applying the above carbon measuring method to the composition analysis method of the foundry sand sample. Certainly, since the carbon measurement method obtains an analysis value for carbon, if a foundry sand sample that is dried and crushed and weighed to a predetermined amount is used as a solid sample, the solid carbon content analysis of the foundry sand sample is performed. The value is obtained. Moreover, the solid carbon content analysis value is highly accurate because it contains only one element of carbon.

【0008】しかしながら、従来の炭素計測法では、分
析対象たる一酸化炭素ガス等のガス発生量が飽和すれ
ば、そこで加熱及びガス発生量の測定を停止し、固体サ
ンプルを廃棄することとしていた。また、鋳物砂サンプ
ルの強熱減量分析値は、炭化水素、水素、一酸化炭素、
二酸化炭素、硫化硫黄、アンモニア、ベンゼン、タール
その他の高温での揮発性物質を全て含んで計測されるも
のである。このため、炭素計測法を鋳物砂サンプルのI
Lの分析方法にそのまま適用することは、炭素1元素の
みの分析では足りず、困難である。また、仮に炭素計測
法と同様の方法の組合せにより多元素の分析を可能とし
ても、誤差が集積し、分析精度の悪化をもたらしてしま
う。
However, in the conventional carbon measuring method, when the amount of gas generated such as carbon monoxide gas to be analyzed is saturated, heating and measurement of the amount of gas generated are stopped there, and the solid sample is discarded. In addition, the ignition loss analysis values of the foundry sand samples are hydrocarbon, hydrogen, carbon monoxide,
It is measured including all carbon dioxide, sulfur sulfide, ammonia, benzene, tar and other volatile substances at high temperatures. For this reason, the carbon measurement method was applied to
It is difficult to apply it to the L analysis method as it is, because analysis of only one carbon element is not sufficient. Further, even if it is possible to analyze multi-elements by a combination of methods similar to the carbon measurement method, errors will be accumulated and the accuracy of analysis will be deteriorated.

【0009】本発明は、上記従来の実情に鑑みてなされ
たものであって、固体炭素分分析値及び強熱減量分析値
を短時間でかつ精度良く求めることを解決すべき課題と
する。
The present invention has been made in view of the above-mentioned conventional circumstances, and it is an object to be solved to accurately obtain a solid carbon content analysis value and an ignition loss reduction analysis value in a short time.

【0010】[0010]

【課題を解決するための手段】[Means for Solving the Problems]

(1)請求項1の鋳物砂サンプルの組成分析方法は、乾
燥及び粉砕され、所定量に秤量された鋳物砂サンプルを
燃焼炉内において加熱し、発生した一酸化炭素及び二酸
化炭素のガス発生量を測定することにより該鋳物砂サン
プルの固体炭素分分析値を得る固定炭素分計測工程と、
該固定炭素分計測工程から継続して該鋳物砂サンプルを
該燃焼炉内において完全燃焼し、減量により該鋳物砂サ
ンプルの強熱減量分析値を得る強熱減量計測工程と、を
有することを特徴とする。
(1) The composition analysis method for a foundry sand sample according to claim 1, wherein the foundry sand sample that has been dried and pulverized and weighed to a predetermined amount is heated in a combustion furnace, and the generated carbon monoxide and carbon dioxide gas amounts are generated. A fixed carbon content measuring step for obtaining a solid carbon content analysis value of the foundry sand sample by measuring
A continuous ignition from the fixed carbon content measuring step, a complete burning of the foundry sand sample in the combustion furnace, and an ignition loss measuring step of obtaining an ignition loss analysis value of the foundry sand sample by weight loss. And

【0011】請求項1の組成分析方法では、固定炭素分
計測工程において炭素計測法を実行し、鋳物砂サンプル
の固体炭素分分析値を得る。ここで、炭素計測法により
得られる固体炭素分分析値は、炭素1元素のみのもので
あるため、高精度である。そして、強熱減量計測工程で
は、固定炭素分計測工程から継続して鋳物砂サンプルを
燃焼炉内において完全燃焼し、固定炭素分計測工程で分
析対象たる一酸化炭素ガス等のガス発生量が飽和した後
も他の種類のガス発生量が飽和するまで鋳物砂サンプル
を加熱し続ける。ここで、多元素が関与する強熱減量分
析値は、固定炭素分計測工程前の鋳物砂サンプルの重量
から完全燃焼後の鋳物砂サンプルの重量を差し引いた減
量により高精度に得られる。
In the composition analysis method of the first aspect, the carbon measurement method is executed in the fixed carbon content measurement step to obtain a solid carbon content analysis value of the foundry sand sample. Here, the solid carbon content analysis value obtained by the carbon measurement method is highly accurate because it is only one element of carbon. Then, in the ignition loss measurement step, the foundry sand sample is completely burned in the combustion furnace continuously from the fixed carbon content measurement step, and the gas generation amount of carbon monoxide gas or the like to be analyzed in the fixed carbon content measurement step is saturated. After that, continue to heat the foundry sand sample until other types of gas generation are saturated. Here, the ignition loss analysis value involving multiple elements can be obtained with high accuracy by subtracting the weight of the foundry sand sample after complete combustion from the weight of the foundry sand sample before the fixed carbon content measurement step.

【0012】こうして、この組成分析方法では、鋳物砂
サンプルを冷却することなく継続して加熱することで固
体炭素分分析値及び強熱減量分析値が得られ、鋳物砂サ
ンプルの組成分析を短時間で終えることができる。ま
た、その精度は良好なものである。 (2)請求項2の鋳物砂サンプルの組成分析方法は、請
求項1記載の鋳物砂サンプルの組成分析方法において、
固定炭素分計測工程及び強熱減量計測工程の少なくとも
一方は、酸素を積極的に供給した雰囲気中で実行するこ
とを特徴とする。
Thus, in this composition analysis method, solid carbon content analysis value and ignition loss analysis value are obtained by continuously heating the foundry sand sample without cooling, and the composition analysis of the foundry sand sample is performed in a short time. You can finish with. Also, its accuracy is good. (2) The composition analysis method for a foundry sand sample according to claim 2 is the composition analysis method for a foundry sand sample according to claim 1, wherein
At least one of the fixed carbon content measuring step and the ignition loss measuring step is characterized by being performed in an atmosphere in which oxygen is actively supplied.

【0013】請求項2の組成分析方法では、酸素を積極
的に供給した雰囲気中で固定炭素分計測工程及び強熱減
量計測工程の少なくとも一方を実行するため、これらの
工程の燃焼時間が短縮される。
According to the composition analysis method of the second aspect, at least one of the fixed carbon content measuring step and the ignition loss measuring step is executed in an atmosphere in which oxygen is positively supplied, so that the combustion time of these steps is shortened. It

【0014】[0014]

【発明の実施の形態】以下、請求項1、2の発明を具体
化した実施形態を比較形態とともに説明する。 (実施形態)鋳物砂サンプルを取得し、この鋳物砂サン
プルについて、図1に示すように、以下の前処理工程と
分析工程とを実行する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments embodying the inventions of claims 1 and 2 will be described below together with comparative embodiments. (Embodiment) A foundry sand sample is acquired, and the following pretreatment process and analysis process are performed on the foundry sand sample as shown in FIG. 1.

【0015】「前処理工程」まず、(A)乾燥工程とし
て、20gの鋳物砂サンプル1を容器2に入れ、赤外線
ランプ3を用い、160℃の温度で鋳物砂サンプル1を
乾燥する。これに要する時間は3分間である。次に、
(B)冷却工程として、容器2とともに鋳物砂サンプル
1を大気放冷し、鋳物砂サンプル1を冷却する。これに
要する時間は1分間である。
"Pretreatment Step" First, as a drying step (A), 20 g of a molding sand sample 1 is put in a container 2 and an infrared lamp 3 is used to dry the molding sand sample 1 at a temperature of 160 ° C. The time required for this is 3 minutes. next,
(B) In the cooling step, the foundry sand sample 1 is allowed to cool in the atmosphere together with the container 2 to cool the foundry sand sample 1. The time required for this is 1 minute.

【0016】そして、(C)秤量工程として、スプーン
4で10gの鋳物砂サンプル1を秤量する。これに要す
る時間は1分間である。次に、(D)粉砕工程として、
振動粉砕機5を用い、鋳物砂サンプル1を粉砕する。こ
れに要する時間は1分間である。そして、(E)秤量工
程として、スプーン4で0.3±0.0001gの鋳物
砂サンプル1を秤量し、アルミナ製ボート6に入れる。
これに要する時間は1分間である。
Then, as the (C) weighing step, 10 g of the foundry sand sample 1 is weighed with the spoon 4. The time required for this is 1 minute. Next, as the (D) crushing step,
The vibration sand mill 5 is used to grind the foundry sand sample 1. The time required for this is 1 minute. Then, in the (E) weighing step, 0.3 ± 0.0001 g of the molding sand sample 1 is weighed with the spoon 4 and put into the alumina boat 6.
The time required for this is 1 minute.

【0017】「分析工程」まず、(F)固定炭素分計測
工程として、ボート6を燃焼炉7内に入れ、鋳物砂サン
プル1を燃焼炉7内において980℃で加熱する。この
とき、酸素を積極的に供給する。発生した一酸化炭素及
び二酸化炭素を赤外線ガス分析計8に導き、そのガス発
生量をデータ処理装置9で測定する。こうして、鋳物砂
サンプル1の固体炭素分分析値を得る。得られる固体炭
素分分析値は、炭素1元素のみのものであるため、高精
度であった。これに要する時間は5分間である。
[Analyzing Step] First, as the (F) fixed carbon content measuring step, the boat 6 is placed in the combustion furnace 7 and the foundry sand sample 1 is heated in the combustion furnace 7 at 980 ° C. At this time, oxygen is positively supplied. The generated carbon monoxide and carbon dioxide are guided to the infrared gas analyzer 8, and the amount of generated gas is measured by the data processing device 9. Thus, the solid carbon content analysis value of the foundry sand sample 1 is obtained. The obtained solid carbon content analysis value was highly accurate because it contained only one carbon element. The time required for this is 5 minutes.

【0018】そして、(F・G)強熱減量計測工程とし
て、(F)固定炭素分計測工程から継続して鋳物砂サン
プル1を燃焼炉7内において完全燃焼し、(F)固定炭
素分計測工程で分析対象たる一酸化炭素ガス等のガス発
生量が飽和した後も他の種類のガス発生量が飽和するま
で鋳物砂サンプル1を加熱し続ける。ボート6とともに
鋳物砂サンプル1を大気放冷し、鋳物砂サンプル1を冷
却する。常温への冷却後、ボート6とともに鋳物砂サン
プル1を秤量し、(F)固定炭素分計測工程前の鋳物砂
サンプル1の重量から差し引くことにより、完全燃焼に
よる減量を求める。かかる減量により、多元素が関与す
る強熱減量分析値が高精度に得られる。(G)の加熱、
大気放冷及び計量に要する時間は10分間である。
Then, as the (FG) ignition loss measuring step, the foundry sand sample 1 is completely combusted in the combustion furnace 7 continuously from the (F) fixed carbon measuring step, and the (F) fixed carbon measuring is performed. Even after the gas generation amount of the carbon monoxide gas or the like to be analyzed is saturated in the process, the foundry sand sample 1 is continuously heated until the gas generation amounts of other types are saturated. The foundry sand sample 1 is left to cool in the air together with the boat 6, and the foundry sand sample 1 is cooled. After cooling to room temperature, the foundry sand sample 1 is weighed together with the boat 6 and subtracted from the weight of the foundry sand sample 1 before the (F) fixed carbon content measurement step to obtain the weight loss due to complete combustion. By this weight loss, the ignition loss analysis value involving many elements can be obtained with high accuracy. (G) heating,
The time required for air cooling and measurement is 10 minutes.

【0019】こうして、この組成分析方法では、鋳物砂
サンプル1を冷却することなく継続して加熱することで
固体炭素分分析値及び強熱減量分析値が得られ、鋳物砂
サンプル1の組成分析を22分間、分析工程だけでは1
6分間で終えることができる。また、その精度は良好な
ものである。 (比較形態)鋳物砂サンプルを取得し、この鋳物砂サン
プルについて、図2に示すように、以下の前処理工程と
分析工程とを実行する。
Thus, in this composition analysis method, the solid sand carbon content analysis value and the ignition loss analysis value are obtained by continuously heating the foundry sand sample 1 without cooling, and the composition analysis of the foundry sand sample 1 is performed. 22 minutes, 1 in analysis process only
It can be completed in 6 minutes. Also, its accuracy is good. (Comparative embodiment) A foundry sand sample is obtained, and the following pretreatment process and analysis process are performed on the foundry sand sample, as shown in FIG. 2.

【0020】「前処理工程」まず、(A)乾燥工程とし
て、200gの鋳物砂サンプル1を容器2に入れ、温風
循環式乾燥炉10内において、100℃の温度で鋳物砂
サンプル1を乾燥する。これに要する時間は60分間で
ある。次に、(B)冷却工程として、容器2とともに鋳
物砂サンプル1を大気放冷し、鋳物砂サンプル1を冷却
する。これに要する時間は30分間である。
"Pretreatment Step" First, as a drying step (A), 200 g of a molding sand sample 1 is put in a container 2 and the molding sand sample 1 is dried at a temperature of 100 ° C. in a hot air circulation type drying furnace 10. To do. The time required for this is 60 minutes. Next, in the cooling step (B), the foundry sand sample 1 is left to cool in the air together with the container 2, and the foundry sand sample 1 is cooled. The time required for this is 30 minutes.

【0021】そして、(C)秤量工程として、容器2内
の鋳物砂サンプル1の山の上を擦り切った後、スプーン
4で10gの鋳物砂サンプル1を秤量する。これに要す
る時間は1分間である。次に、(D)粉砕工程として、
雷壊機11の乳鉢11aと乳棒11bとにより、鋳物砂
サンプル1を粉砕する。これに要する時間は10分間で
ある。
Then, as the (C) weighing step, after scraping off the pile of the foundry sand sample 1 in the container 2, 10 g of the foundry sand sample 1 is weighed with the spoon 4. The time required for this is 1 minute. Next, as the (D) crushing step,
The foundry sand sample 1 is crushed by the mortar 11a and the pestle 11b of the lightning destroyer 11. The time required for this is 10 minutes.

【0022】そして、(E)秤量工程として、スプーン
4で1±0.0001gの鋳物砂サンプル1を秤量し、
アルミナ製るつぼ12に入れる。これに要する時間は1
分間である。 「分析工程」まず、(F)燃焼工程として、アルミナ製
蓋12aをるつぼ12に被せ、電気炉13内にこれらを
入れて1000℃で加熱する。これに要する時間は3分
間である。
Then, (E) as a weighing step, 1 ± 0.0001 g of the molding sand sample 1 is weighed with a spoon 4,
Place in an alumina crucible 12. The time required for this is 1
It's a minute. [Analysis Step] First, as the (F) combustion step, the alumina lid 12a is covered on the crucible 12, these are placed in the electric furnace 13 and heated at 1000 ° C. The time required for this is 3 minutes.

【0023】次いで、(G)冷却・計量工程として、蓋
12aを被せたるつぼ12ごと大気放冷する。常温への
冷却後、蓋12aを被せたるつぼ12ごと計量し、
(F)燃焼工程前の重量からの減量により、固体炭素分
分析値が得られる。これに要する時間は31分間であ
る。そして、(H)燃焼工程として、再度電気炉13内
にこれらを入れて1000℃で加熱する。このとき、蓋
12aを開け、るつぼ12をその上に載置しておく。こ
れに要する時間は60分間である。
Next, in the cooling and measuring step (G), the crucible 12 covered with the lid 12a is cooled in the atmosphere. After cooling to room temperature, weigh the crucible 12 covered with the lid 12a,
(F) The solid carbon content analysis value is obtained by the reduction from the weight before the combustion step. The time required for this is 31 minutes. Then, as the (H) combustion step, these are put again in the electric furnace 13 and heated at 1000 ° C. At this time, the lid 12a is opened and the crucible 12 is placed on it. The time required for this is 60 minutes.

【0024】次いで、(I)冷却・計量工程として、る
つぼ12を蓋12aごと大気放冷する。常温への冷却
後、るつぼ12を蓋12aごと計量し、(F)燃焼工程
前の重量からの減量により、強熱減量分析値が得られ
る。これに要する時間は31分間である。こうして、こ
の組成分析方法では、精度の良い固体炭素分分析値及び
強熱減量分析値が得られるものの、227分間、分析工
程だけでも125分間を要してしまった。
Next, in the cooling / measuring step (I), the crucible 12 together with the lid 12a is left to cool in the atmosphere. After cooling to room temperature, the crucible 12 is weighed together with the lid 12a, and the weight loss from the weight before the combustion step (F) is obtained to obtain an ignition loss analysis value. The time required for this is 31 minutes. In this way, although this composition analysis method can obtain accurate solid carbon content analysis values and ignition loss analysis values, it took 227 minutes and 125 minutes in the analysis step alone.

【0025】[0025]

【発明の効果】以上詳述したように、請求項1、2の鋳
物砂サンプルの組成分析方法では、鋳物砂サンプルの固
体炭素分分析値及び強熱減量分析値を短時間でかつ精度
良く求めることができる。したがって、この組成分析方
法によれば、鋳物砂の管理の徹底、それに伴う不良品の
低減、製造コストの低減が可能である。
As described above in detail, in the composition analysis method for the foundry sand sample according to the first and second aspects, the solid carbon content analysis value and the ignition loss analysis value of the foundry sand sample are accurately obtained in a short time. be able to. Therefore, according to this composition analysis method, it is possible to thoroughly manage the casting sand, reduce the defective products associated therewith, and reduce the manufacturing cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施形態の組成分析方法を示す模式図である。FIG. 1 is a schematic diagram showing a composition analysis method according to an embodiment.

【図2】比較形態の組成分析方法を示す模式図である。FIG. 2 is a schematic diagram showing a composition analysis method of a comparative form.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 富重 博美 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (72)発明者 山本 靖則 京都府京都市北区紫野西御所田町1番地 株式会社島津製作所紫野工場内 (72)発明者 岩本 剛 京都府京都市北区紫野西御所田町1番地 株式会社島津製作所紫野工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiromi Tomishige 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Co., Ltd. (72) Inventor Yasunori Yamamoto 1 Shino Nishi Goshodacho, Kita-ku, Kyoto City, Kyoto Prefecture Shimano Plant, Shino Plant (72) Inventor, Go Iwamoto, No. 1, Shino Nishigoshota-cho, Kita-ku, Kyoto City, Kyoto Prefecture Shimazu Plant, Shino Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】乾燥及び粉砕され、所定量に秤量された鋳
物砂サンプルを燃焼炉内において加熱し、発生した一酸
化炭素及び二酸化炭素のガス発生量を測定することによ
り該鋳物砂サンプルの固体炭素分分析値を得る固定炭素
分計測工程と、 該固定炭素分計測工程から継続して該
鋳物砂サンプルを該燃焼炉内において完全燃焼し、減量
により該鋳物砂サンプルの強熱減量分析値を得る強熱減
量計測工程と、を有することを特徴とする鋳物砂サンプ
ルの組成分析方法。
1. A solid of a foundry sand sample, which is obtained by heating a foundry sand sample that has been dried and crushed and weighed to a predetermined amount in a combustion furnace, and measuring the amount of generated carbon monoxide and carbon dioxide gas. A fixed carbon content measurement step of obtaining a carbon content analysis value, and the foundry sand sample is completely combusted in the combustion furnace continuously from the fixed carbon content measurement step, and the ignition loss analysis value of the foundry sand sample is reduced by weight reduction. And a step of measuring loss on ignition to obtain a composition analysis method of a foundry sand sample.
【請求項2】固定炭素分計測工程及び強熱減量計測工程
の少なくとも一方は、酸素を積極的に供給した雰囲気中
で実行することを特徴とする請求項1記載の鋳物砂サン
プルの組成分析方法。
2. The method for analyzing the composition of a foundry sand sample according to claim 1, wherein at least one of the fixed carbon content measuring step and the ignition loss measuring step is executed in an atmosphere in which oxygen is actively supplied. .
JP08071800A 1996-03-27 1996-03-27 Composition analysis method for foundry sand sample Expired - Fee Related JP3073693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08071800A JP3073693B2 (en) 1996-03-27 1996-03-27 Composition analysis method for foundry sand sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08071800A JP3073693B2 (en) 1996-03-27 1996-03-27 Composition analysis method for foundry sand sample

Publications (2)

Publication Number Publication Date
JPH09257785A true JPH09257785A (en) 1997-10-03
JP3073693B2 JP3073693B2 (en) 2000-08-07

Family

ID=13471010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08071800A Expired - Fee Related JP3073693B2 (en) 1996-03-27 1996-03-27 Composition analysis method for foundry sand sample

Country Status (1)

Country Link
JP (1) JP3073693B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436718B1 (en) 1998-07-17 2002-08-20 Troxler Electronic Laboratories, Inc. Apparatus and method for determining weight loss of a heated material

Also Published As

Publication number Publication date
JP3073693B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
Lim et al. Determination of black carbon by chemical oxidation and thermal treatment in recent marine and lake sediments and Cretaceous-Tertiary clays
JP5418950B2 (en) Core sand or foundry sand, method for producing core sand or foundry sand, method for producing mold part, mold part, and method of using core sand or foundry sand
US5279971A (en) Method for determining a binder content of bituminous building materials
JP2503197B2 (en) Sand for non-porous carbon mold making and casting method
US2926098A (en) Binder for foundry molds
Zhao et al. Evolved gas analysis of PEP-SET sand by TG and FTIR
Acharya et al. A furan no-bake binder system analysis for improved casting quality
Longbottom et al. Techniques in the study of carbon transfer in ironmaking
JPH09257785A (en) Analysis of composition of foundry sand sample
Svidró et al. Thermophysical aspects of reclaimed moulding sand addition to the epoxy-SO 2 coremaking system studied by Fourier thermal analysis
Dańko et al. Development of inorganic binder systems to minimise emissions in ferrous foundries
Narasimha Murthy et al. Granulated blast furnace slag: potential sustainable material for foundry applications
Payá et al. Loss on ignition and carbon content in pulverized fuel ashes (PFA): two crucial parameters for quality control
JP6048087B2 (en) Method for estimating ratio of organic sulfur in coke, method for estimating ratio of total sulfur in coke, method for blending coal for coke production, and method for producing coke
Ying-Min et al. Research on regeneration methods of animal glue waste sand for foundry
US2862826A (en) Mold material for casting group ivb metals and method of making same
Grabowska et al. Thermal analysis in foundry technology: Part 2. TG–DTG–DSC, TG–MS and TG–IR study of the new class of polymer binders BioCo
Dańko et al. Investigations of physicochemical properties and thermal utilisation of dusts generated in the mechanical reclamation process of spent moulding sands
Grabowska et al. Thermal analysis in foundry technology.
Dańko et al. Criteria of an advanced assessment of the reclamation process products
Kumar et al. Achieving environmental sustainability in the shell mould foundry through thermal reclamation
SU827553A1 (en) Method of reagent preparation
Thaba et al. Thermal reclamation of used sand produced by binder jetting processes
Żymankowska-Kumon Assessment criteria of bentonite binding properties
Hazar et al. Analysis Of Sand Casting Defects On The Basis Of Moulding Sand Properties

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090602

LAPS Cancellation because of no payment of annual fees