JPH09257443A - Online measuring method for substance surface property - Google Patents

Online measuring method for substance surface property

Info

Publication number
JPH09257443A
JPH09257443A JP6597096A JP6597096A JPH09257443A JP H09257443 A JPH09257443 A JP H09257443A JP 6597096 A JP6597096 A JP 6597096A JP 6597096 A JP6597096 A JP 6597096A JP H09257443 A JPH09257443 A JP H09257443A
Authority
JP
Japan
Prior art keywords
light
angle
measured
degrees
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6597096A
Other languages
Japanese (ja)
Inventor
Ryuichi Katayama
竜一 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP6597096A priority Critical patent/JPH09257443A/en
Publication of JPH09257443A publication Critical patent/JPH09257443A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable online measurement of a less smooth region by adjusting an illuminating angle of a shed beam to a normal line on a surface of running coated paper for printing and a light reception angle of normally reflected light with respect to a normal line of an object to be measured in a specific range. SOLUTION: Light from a light source 1 is shed with an illuminating light angle of 78 to 85 degrees with respect to a normal line 10 on a surface 11 of an object to be measured with a reflector 2a changed in position and angle as a reflector 2b. In order to apply normally reflected light of 78 to 85 degrees corresponding to each illuminating angle to a condenser lens 4, a reflector 3a is changed in position and angle as a reflector 3b, a light flux is received by a CCD sensor 5, and an intensity distribution 12 of the reflected light is detected and output as an electric signal for measuring surface property of paper. When the illuminating angle of a light beam with respect to a normal line of the object to be measured is thus made to be 78 degrees or more, a sufficient reflected light amount can be obtained with less smooth coated paper, thereby enabling measurement of brilliance and smoothness. When the illuminating angle exceeds 85 degrees, scattering of the reflected light is remarkable, lowering measuring accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明はシート、特にパルプ
からなる原紙に顔料を塗布する印刷用塗被紙、中でも光
沢を抑えたマット紙の物質表面性オンライン測定方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-line measuring method for material surface properties of a sheet, particularly a coated paper for printing, in which a base paper made of pulp is coated with a pigment, and in particular, matte paper whose gloss is suppressed.

【0002】[0002]

【従来の技術】紙は植物体から取った繊維、すなわちパ
ルプを互いに接着し薄くすいた物である。また紙にはク
レーと喚ばれる填料を入れてある。紙はその原料となる
パルプの種類によってまた填料の有無、種類等のほか、
製造方法によって表面の状態が著しく異なる。出来上が
った紙表面に塗工機によって顔料(炭酸カルシウム・カ
オリン)及び接着剤(ラテックス・澱粉)を塗布し、光
沢性及び平滑性を増すためにスーパーカレンダーをかけ
る場合もある。紙の主要な用途は印刷用であるが目的に
よって表面のなめらかな印刷用塗被紙あるいは表面の粗
い印刷用塗工紙もありさまざまである。
2. Description of the Related Art Paper is a thin fiber obtained by adhering fibers, that is, pulp, taken from a plant to each other. In addition, the paper contains a filler called clay. Depending on the type of pulp used as the raw material for paper, the presence or absence of filler, type, etc.
The surface condition remarkably differs depending on the manufacturing method. In some cases, a pigment (calcium carbonate / kaolin) and an adhesive (latex / starch) are applied to the surface of the finished paper by a coating machine, and a super calendar is applied to increase gloss and smoothness. The main use of paper is for printing, but there are various types of paper such as coated paper with a smooth surface or coated paper with a rough surface, depending on the purpose.

【0003】印刷用塗被紙の製造においてもっとも留意
すべき点はそれぞれの用途に応じた平滑性・光沢性・塗
工面質を保有する紙を効率よく製造することである。そ
の塗工紙にとって重要な紙表面平滑性を検出する測定装
置として、ベック(JISP 8119)・スムースタ
ー・シェフィールド・パーカープリントサーフ・ベント
セン・チャップマン・ウイリアムス・ガーレー・王研式
平滑度計といずれも空気漏れ法に基づいた測定法が一般
的である。平滑の空気漏れ法に基づいた測定法は紙の塗
層表面および塗被紙内部の空隙の影響または紙の透気性
の影響を受け易く、人間の視覚評価を必ずしも的確に反
映しない場合があり、しかも測定時、被測定物を損傷さ
せるため同じ試料での再測定は不可能である。また、ス
ーパーカレンダーで仕上げを行う際、通常生産現場にお
いては目的の平滑性及び光沢性が得られているかを確認
するためにラインを一時停止しウエブをサンプルとして
切り取り上述の平滑測定装置等を用い、測定を行い、品
質管理を行っているが、高速で操業しているラインを停
止するために破損紙が多く発生し効率が良くない。
The most important point in the production of coated paper for printing is to efficiently produce paper having smoothness, glossiness and coated surface quality according to each application. Beck (JISP 8119), Smoother, Sheffield, Parker Print Surf, Bentsen, Chapman, Williams, Gurley, Woken type smoothness meter are all used as measuring devices for detecting the smoothness of the paper surface which is important for the coated paper. The measurement method based on the air leakage method is common. The measurement method based on the smooth air leak method is susceptible to the influence of the air gap of the coating layer surface of the paper and the inside of the coated paper or the air permeability of the paper, and may not necessarily accurately reflect the human visual evaluation. Moreover, it is impossible to re-measure with the same sample during measurement because it damages the object to be measured. In addition, when finishing with a super calender, usually at the production site, in order to confirm whether the desired smoothness and glossiness are obtained, the line is temporarily stopped and the web is cut as a sample and the above-mentioned smoothness measuring device is used. , Measurement is performed and quality control is performed, but the line operating at high speed is stopped and a lot of damaged paper is generated, resulting in poor efficiency.

【0004】印刷用塗被紙の表面平滑性を的確に非常に
精度よく検出する測定器として触針3次元粗さ測定器も
しくはレーザー光源等を用いた光学的非接触式の表面3
次元粗さ測定器がある。しかし、これらの方法では測定
時間が非常に長くまた測定面積も狭いため作業性が非常
に悪い。
Optical non-contact type surface 3 using a stylus three-dimensional roughness measuring device or a laser light source as a measuring device for accurately and very accurately detecting the surface smoothness of the coated paper for printing.
There is a dimensional roughness measuring instrument. However, in these methods, the workability is very poor because the measurement time is very long and the measurement area is small.

【0005】このような状況において、簡便な測定を可
能にしたセンサーとして発光ダイオードを光源に用い入
射角を被測定物の法線に対し所定角度に固定し正反射受
光素子にラインCCDセンサーを用いその正反射光のピ
ーク光量と正反射光の分散の大きさをもって光沢性及び
平滑性の尺度としている非接触光学測定方式(例えば特
開昭63−315938号公報)がある。この方式を用
いれば紙製造工程において被測定物を傷つけず簡便にし
かも精度よく印刷用塗被紙表面の平滑性と光沢性のオン
ライン測定が可能である。
In such a situation, a light emitting diode is used as a light source as a sensor that enables simple measurement, and an incident angle is fixed at a predetermined angle with respect to a normal line of an object to be measured, and a line CCD sensor is used as a regular reflection light receiving element. There is a non-contact optical measurement method (for example, Japanese Patent Laid-Open No. 63-315938) in which the peak light amount of specular reflection light and the magnitude of dispersion of specular reflection light are used as a measure of glossiness and smoothness. By using this method, the smoothness and glossiness of the surface of the coated paper for printing can be measured online easily and accurately without damaging the object to be measured in the paper manufacturing process.

【0006】[0006]

【発明が解決しようとする課題】しかし、該方式は光源
の照射角が被測定物の法線に対し所定角度75゜に固定
であるため、触針3次元粗さ計測定器での測定値(中心
面平均粗さ)Ra=10.0μm以上のマット紙等の被
測定物では相関性が得られない。その理由として、該方
式での低平滑被測定物の測定では正反射方向の光量が極
端に減少しピーク光量が得られない為であり、また正反
射光の分散巾も極めて広範囲に拡散するため正反射方向
での検出が不可能となり、低平滑領域の測定は不可能で
ある。
However, in this method, since the irradiation angle of the light source is fixed at a predetermined angle of 75 ° with respect to the normal to the object to be measured, the measurement value with the stylus three-dimensional roughness meter measuring device is measured. (Center Surface Average Roughness) Correlation cannot be obtained with a measured object such as matte paper having Ra = 10.0 μm or more. The reason is that the amount of light in the regular reflection direction is extremely reduced and the peak light amount cannot be obtained in the measurement of the object to be measured with low smoothness by the method, and the dispersion width of the regular reflection light is diffused in an extremely wide range. Detection in the direction of specular reflection becomes impossible, and measurement in a low smooth area is impossible.

【0007】[0007]

【課題を解決するための手段】本発明者は印刷塗被紙の
低平滑領域の光沢性、平滑性をオンラインで簡便に測定
するための鋭意研究を重ねた結果、照射角、及び受光角
を78度から85度の範囲で測定する事によって簡便で
精度の良い測定が可能であることを見いだし本発明をな
すに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to easily measure the glossiness and smoothness of a low-smooth region of a printing coated paper online, and as a result, The present invention has been completed by finding that simple and accurate measurement is possible by measuring in the range of 78 to 85 degrees.

【0008】[0008]

【発明の実施の形態】本発明に用いられる測定装置の測
定原理及び概略を図1に示す。光源(1)からの光を反
射板(2a)を(2b)の様に位置及び角度変更によっ
て被測定物表面(11)の法線(10)に対する照射光
角度78度(6)以上85度(8)未満で照射し、それ
ぞれの照射角度に対応する78度(7)以上85度
(9)未満の正反射光を集光レンズ(4)に当てる様に
反射板(3a)を(3b)の様に位置及び角度変更を行
い、集光された光束をラインCCDセンサー(5)にて
反射光の強度分布(12)を検出し、電気信号として出
力する方式により紙の表面性の測定を行う。また測定装
置を走行する被測定物上に取り付けた場合の全体図を図
2に示すが、走行する被測定物(13)の上部に図1の
測定原理を有する測定器(14)を設置し測定を実施す
る。測定装置は被測定物に対して下部に取り付ける事も
可能であり、その場合は被測定物の表面、裏面の表面性
の同時測定が可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the measuring principle and outline of a measuring apparatus used in the present invention. Irradiation angle of light from the light source (1) with respect to the normal line (10) of the DUT surface (11) is 78 degrees (6) or more and 85 degrees by changing the position and angle of the reflection plate (2a) like (2b). Irradiation is performed at less than (8), and the reflection plate (3a) is set to (3b) so that the specular reflection light of 78 degrees (7) or more and less than 85 degrees (9) corresponding to each irradiation angle is applied to the condenser lens (4). The position and angle are changed as shown in), the intensity distribution (12) of the reflected light is detected by the line CCD sensor (5), and the condensed light flux is output as an electric signal to measure the surface property of the paper. I do. An overall view of the case where the measuring device is mounted on a moving measured object is shown in FIG. 2. A measuring device (14) having the measuring principle of FIG. 1 is installed on the moving measured object (13). Perform the measurement. The measuring device can be attached to the lower part of the object to be measured, in which case the surface properties of the surface and the back surface of the object to be measured can be simultaneously measured.

【0009】印刷塗被紙の光沢性の測定を実施する場
合、被測定物の法線に対する照射角度は75±0.5゜
とJISP8142に規定されているが、マット紙の様
な低平滑紙では充分な反射光量が得られず、被測定物の
法線に対する光源の照射角を78度以上に高く設定した
場合には触針3次元粗さ測定器での測定値(中心面平均
粗さ)Ra=10.0μm以上の低平滑塗被紙でも反射
光量が充分に得られ光沢性及び平滑性の測定が可能とな
る。しかし照射角85度を越えるような測定になると反
射光の散乱が顕著となり正確な反射光が得られず測定精
度が落ちる。また、被測定物面の法線に対する照射光角
度78度以上85度未満で光源を設置するためには、該
特開昭63−315938号公報に示される様な投光手
段では光源が被測定物と接触する危険性が出てくる為、
光源はウエブの更に上方とし光源から出た光を一端反射
板に照射し反射した光が被測定物に照射され正反射光は
受光側に位置する反射板に反射し受光装置にて受光され
る方式により被測定物に接触する事なく、また装置の大
型化を抑制する事ができる。
When the glossiness of printed coated paper is measured, the irradiation angle with respect to the normal of the measured object is 75 ± 0.5 °, which is specified in JIS P8142, but low smooth paper such as matte paper. In the case where a sufficient amount of reflected light is not obtained and the irradiation angle of the light source with respect to the normal line of the object to be measured is set higher than 78 degrees, the measurement value (center plane average roughness) of the stylus three-dimensional roughness measuring instrument is measured. ) Even with a low-smoothness coated paper having Ra = 10.0 μm or more, a sufficient amount of reflected light can be obtained and glossiness and smoothness can be measured. However, when the measurement is performed at an irradiation angle of more than 85 degrees, the scattering of reflected light becomes remarkable, and accurate reflected light cannot be obtained, resulting in a decrease in measurement accuracy. Further, in order to install the light source at an irradiation light angle of 78 degrees or more and less than 85 degrees with respect to the normal to the surface of the object to be measured, the light source is measured by a light projecting means as disclosed in JP-A-63-315938. Because there is a danger of contact with things,
The light source is located above the web, and the light emitted from the light source is applied to the reflection plate once and the reflected light is applied to the DUT. The specularly reflected light is reflected by the reflection plate located on the light receiving side and received by the light receiving device. With this method, it is possible to prevent the device from being in contact with the object to be measured and prevent the device from becoming large.

【0010】光源としては経時で光量変化のないものが
望ましく、通常JISP8142に規定しているC−光
源とするが、小型電球のようなA−光源もしくは赤外発
光ダイオード、レーザー発光素子等を用いても差し支え
ない。光源から照射される光は光学的な集光法によって
被測定物上で境界の明確で有限な照射面積を持つことが
望ましい。この照射面積の大きさは、通常は、照射角度
を大きくすることによって増大するが、縦5〜20m
m、横10〜30mmの楕円形が適当である。被測定物
上で反射した反射光は反射板、集光レンズを経由して受
光素子上に集光する。
As the light source, one which does not change in light quantity with time is desirable. Normally, the C-light source specified in JIS P8142 is used. However, an A-light source such as a small light bulb, an infrared light emitting diode, a laser light emitting element or the like is used. It doesn't matter. It is desirable that the light emitted from the light source has a finite irradiation area with a clear boundary on the object to be measured by an optical focusing method. The size of this irradiation area is usually increased by increasing the irradiation angle, but the vertical length is 5 to 20 m.
An oval shape with m and a width of 10 to 30 mm is suitable. The reflected light reflected on the object to be measured is condensed on the light receiving element via the reflecting plate and the condenser lens.

【0011】受光素子は経時で感度変化のないものが望
ましく、本発明で用いたラインCCDセンサーは波長
0.2μm〜30μm程度の電磁波を電気信号として検
出するセンサーで動作原理から分類すると、量子効果型
と熱効果型に分類できるが、本発明は物質表面での反射
光量の測定である為、量子効果型のものを用いたが、信
号の取り出し方から更に光電子放出型、光導電型、光起
電力型に大別できる。光電子放出型センサーには光電子
をそのまま信号電流にする光電管と2次電子倍増機能を
組み込んだ光電子倍増管がある。光導電型の代表的なも
のはCdSセルが一般的で、光起電力型センサーにはフ
ォトダイオード・フォトトランジスター・アバランシェ
フォトダイオード等が上げられる。以上のいずれを用い
ても差し支えないが、本発明では形状的な面から光起電
力型センサーのフォトダイオードを多数並べたラインC
CDセンサーを用いた。
It is desirable that the light receiving element does not change its sensitivity with time, and the line CCD sensor used in the present invention is a sensor that detects electromagnetic waves having a wavelength of about 0.2 μm to 30 μm as an electric signal. Although it can be classified into a type and a thermal effect type, since the present invention is a measurement of the amount of light reflected on the surface of a substance, a quantum effect type was used. It can be roughly divided into electromotive force types. Photoelectron emission type sensors include a phototube that directly converts photoelectrons into a signal current and a photomultiplier tube that incorporates a secondary electron multiplying function. A typical photoconductive type is a CdS cell, and a photovoltaic sensor includes a photodiode, a phototransistor, an avalanche photodiode, and the like. Although any of the above may be used, in the present invention, a line C in which a large number of photodiodes of the photovoltaic sensor are arranged from the viewpoint of shape.
A CD sensor was used.

【0012】正反射方向に反射した光束はラインCCD
センサー上に開き角5゜以下をもって集光し光起電力作
用により起電力を発生させ外部端子にとりだす。これを
このままアナログレコーダーに出力することも可能であ
るが、望ましくはコンピューターでA/D変換を行い、
内部のメモリーに格納するか記録媒体にデータを保存す
る。その結果ラインCCDセンサー上に入射した光束は
巾方向に2048素子、強度は256諧調に分割され光
量に対応する電圧値に変換され、図3の様な紙表面性差
に基づいた反射光強度分布(14)が得られる。分布の
底辺からピーク位置までの高さをピーク高さ(15)と
し、その底辺からの高さ位置に対応する分布巾を分散巾
(16)としたが、分散巾の名称を底辺からの高さ位置
をピーク高さで割った値を位置巾の先頭につけて分散巾
の名称とした。
The light beam reflected in the regular reflection direction is a line CCD
The light is focused on the sensor with an opening angle of 5 ° or less, and an electromotive force is generated by the action of photovoltaic power, which is taken out to the external terminal. It is possible to output this as it is to an analog recorder, but preferably it is A / D converted by a computer,
Store it in the internal memory or save the data in a recording medium. As a result, the luminous flux incident on the line CCD sensor is divided into 2048 elements in the width direction and the intensity is divided into 256 gradations and converted into a voltage value corresponding to the amount of light, and the reflected light intensity distribution ( 14) is obtained. The height from the bottom of the distribution to the peak position was defined as the peak height (15), and the distribution width corresponding to the height position from the bottom was defined as the dispersion width (16). The value obtained by dividing the height position by the peak height was added to the beginning of the position width to give the name of the dispersion width.

【0013】得られた反射光強度分布の積分値をYと
し、屈折率1.567標準板のガラス表面からの正反射
光強度分布の積分値をXとすると光沢性(%)は次式で
規定される。
When the integrated value of the obtained reflected light intensity distribution is Y and the integrated value of the regular reflected light intensity distribution from the glass surface of the refractive index 1.567 standard plate is X, the glossiness (%) is given by the following formula. Stipulated.

【0014】[0014]

【数1】光沢性(%)=(Y/X)×100 X:屈折率1.567標準板のガラス表面からの正反射
光強度分布の積分値 Y:紙からの正反射光強度分布の積分値
## EQU1 ## Glossiness (%) = (Y / X) × 100 X: Integral value of intensity distribution of regular reflection light from the glass surface of the standard plate having a refractive index of 1.567 Y: Intensity distribution of regular reflection light from paper Integrated value

【0015】また、平滑性は得られた反射光強度分布の
1/4位置巾値(t)を分散幅t0で除した数値をもっ
て平滑性の尺度とした。
As for the smoothness, a value obtained by dividing the quarter position width value (t) of the obtained reflected light intensity distribution by the dispersion width t 0 is used as a measure of the smoothness.

【0016】[0016]

【数2】平滑性=t/t0 t : 得られた反射光強度分布の1/4位置巾値 t0: 分散底辺巾[Number 2] smoothness = t / t 0 t: 1/4 Position width of the obtained reflected light intensity distribution t 0: Distributed bottom width

【0017】特に反射光ピーク波形のピーク高さの底辺
から1/4位置巾を平滑の指標とした理由は実験的な確
認からである。分散巾の取り方を様々変更して平滑性を
比較したところ、ピーク高さを4等分して底辺から1/
4位置の分散巾を平滑性の指標としたところ、それぞれ
の位置巾に対応するRaとの相関係数との関係を示した
図4に示す様に、触針3次元粗さ計のRa値との相関性
が最も高かったからである。
The reason why the 1/4 position width from the bottom of the peak height of the reflected light peak waveform is used as an index for smoothness is from experimental confirmation. When the smoothness was compared by changing the method of taking the dispersion width, the peak height was divided into four equal parts and
When the dispersion width at four positions was used as an index of smoothness, as shown in FIG. 4 showing the relationship with the Ra corresponding to each position width and the correlation coefficient, the Ra value of the stylus three-dimensional roughness meter was obtained. This is because it had the highest correlation with.

【0018】本発明は光源の照射角度及び反射光角度を
78度以上85度未満にすることを特徴としているが、
これにより触針3次元粗さ測定器での測定値(中心面平
均粗さ)Ra=10.0μm以上の印刷用塗被紙の表面
平滑性の測定が可能となった。特にその相関性は非常に
高く、相関係数r=0.99以上であった。また、光沢
性に対しても75度鏡面光沢度試験法との相関性も高
く、今まで煩わしかった低平滑紙の平滑性と光沢性の簡
便な測定が可能となった。
The present invention is characterized in that the irradiation angle and the reflected light angle of the light source are set to 78 degrees or more and less than 85 degrees.
As a result, it became possible to measure the surface smoothness of the coated paper for printing having a measured value (center surface average roughness) Ra of 10.0 μm or more measured by a stylus three-dimensional roughness measuring instrument. In particular, the correlation was very high, and the correlation coefficient r was 0.99 or more. Further, the glossiness also has a high correlation with the 75-degree specular glossiness test method, and it has become possible to easily measure the smoothness and glossiness of low-smoothness paper, which has been troublesome until now.

【0019】[0019]

【実施例】以下に本発明の効果を実施例により説明する
が本発明はこれにより限定されるものではない。尚実施
例中の諸測定値は次の方法によってえられたものであ
る。 ア)白紙光沢度:JISP8142 に従い角度75度
で測定した。(%) イ)三次元表面粗さ:触針3次元粗さ計測定器SE−3
AK(小坂研究所)により算出されるRa値を用いた。
(μm)
EXAMPLES The effects of the present invention will be described below with reference to examples, but the present invention is not limited thereto. The various measured values in the examples are obtained by the following methods. A) White paper glossiness: Measured at an angle of 75 degrees according to JIS P8142. (%) A) Three-dimensional surface roughness: Stylus three-dimensional roughness meter measuring device SE-3
The Ra value calculated by AK (Kosaka Laboratory) was used.
(Μm)

【0020】本発明で使用されるウエブとしては一般に
使用されるマット紙とするが、下記に示されるパルプ配
合のマット原紙にブレード塗布装置によって、絶乾塗布
量が15g/m2となるように以下の固形分濃度が62
%の塗工液を塗布速度1000m/minで塗布し得ら
れた塗被紙を各条件にてスーパーカレンダーによって処
理を行い、それぞれのサンプルを本装置によって表面性
の測定をおこなった。 パルプ配合 NBKP:300 LBKP:700 塗布液配合 市販重質炭酸カルシウム :20部 市販軽質炭酸カルシウム :30部 市販2級カオリン :50部 市販ポリアクリル酸系分散剤 :0.1部 市販燐酸エステル化澱粉 : 2部 市販スチレン・ブタジエン・ラテックス :15部 水酸化ナトリウム :0.15部 固形分濃度 :62% 以下の実施例、比較例において、特に断らない限り塗布
液は上記の配合で調整される。塗布量も通例上記に同
じ。
As the web used in the present invention, generally used matte paper is used. The matte base paper containing the pulp shown below is coated with a blade coating device so that the absolute dry coating amount becomes 15 g / m 2. The solid concentration below is 62
% Of the coating liquid was applied at a coating speed of 1000 m / min, and the coated paper obtained was treated under a supercalender under each condition, and the surface property of each sample was measured by this apparatus. Pulp blending NBKP: 300 LBKP: 700 Coating liquid blending Commercial heavy calcium carbonate: 20 parts Commercial light calcium carbonate: 30 parts Commercial secondary kaolin: 50 parts Commercial polyacrylic acid-based dispersant: 0.1 parts Commercial phosphate esterified starch : 2 parts Commercially available styrene-butadiene latex: 15 parts Sodium hydroxide: 0.15 parts Solid content concentration: 62% In the following Examples and Comparative Examples, the coating liquid is prepared with the above-mentioned composition unless otherwise specified. The amount applied is usually the same as above.

【0021】以下に本発明に用いるサンプルの作成を示
す。
The preparation of samples used in the present invention will be described below.

【0022】サンプル1 上記条件で得られたオフセット印刷用紙の巻き取り品を
下記条件でスーパーカレンダー掛けしたものである。 カレンダー線圧 :200kg/cm ヒートロール温度 :90℃ カレンダー速度 :800m/min ニップ回数 :10回
Sample 1 A roll of offset printing paper obtained under the above conditions was supercalendered under the following conditions. Calender line pressure: 200 kg / cm Heat roll temperature: 90 ° C. Calender speed: 800 m / min Nip frequency: 10 times

【0023】サンプル2 下記条件でスーパーカレンダー掛けした以外は、すべて
サンプル1と同条件でサンプルを作成した。 カレンダー線圧 :200kg/cm ヒートロール温度 :60℃ カレンダー速度 :800m/min ニップ回数 :10回
Sample 2 A sample was prepared under the same conditions as those of sample 1, except that super calendering was performed under the following conditions. Calender line pressure: 200 kg / cm Heat roll temperature: 60 ° C Calender speed: 800 m / min Nip count: 10 times

【0024】サンプル3 下記条件でスーパーカレンダー掛けした。以外は、すべ
てサンプル1と同条件でサンプルを作成した。 カレンダー線圧 :200kg/cm ヒートロール温度 :90℃ カレンダー速度 :800m/min ニップ回数 :2回
Sample 3 A super calendar was applied under the following conditions. Samples were prepared under the same conditions as Sample 1 except for the above. Calender linear pressure: 200 kg / cm Heat roll temperature: 90 ° C Calender speed: 800 m / min Nip frequency: 2 times

【0025】サンプル4 下記条件でスーパーカレンダー掛けした以外は、すべて
サンプル1と同条件でサンプルを作成した。 カレンダー線圧 :180kg/cm ヒートロール温度 :60℃ カレンダー速度 :800m/min ニップ回数 :2回
Sample 4 A sample was prepared under the same conditions as in sample 1, except that super calendaring was performed under the following conditions. Calender line pressure: 180 kg / cm Heat roll temperature: 60 ° C Calender speed: 800 m / min Nip frequency: 2 times

【0026】サンプル5 下記条件でスーパーカレンダー掛けした以外は、すべて
サンプル1と同条件でサンプルを作成した。 カレンダー線圧 :160kg/cm ヒートロール温度 :60℃ カレンダー速度 :800m/min ニップ回数 :2回
Sample 5 A sample was prepared under the same conditions as in sample 1, except that super calendaring was performed under the following conditions. Calender line pressure: 160 kg / cm Heat roll temperature: 60 ° C Calender speed: 800 m / min Nip frequency: 2 times

【0027】サンプル6 上記方法にて得られたオフセット印刷用紙をカレンダー
掛けしなかった以外はすべてサンプル1と同条件でサン
プルを作成した。
Sample 6 A sample was prepared under the same conditions as in sample 1, except that the offset printing paper obtained by the above method was not calendered.

【0028】実施例1 スーパーカレンダー最下段出口付近に本発明のセンサー
を定点で取り付けを行い、上記方法にて得られた巻き取
り各サンプルを速度800m/minで走行させてオン
ラインで平滑及び光沢の測定を行った。センサーの条件
は被測定物表面の法線に対する照射光角度及び受光角度
を78度に設定し、光沢性は数1により求めた値とし、
平滑性は数2により求めた値とした。
Example 1 The sensor of the present invention was installed at a fixed point near the bottom exit of the super calender, and each winding sample obtained by the above method was run at a speed of 800 m / min to make it smooth and glossy online. The measurement was performed. The sensor condition is that the irradiation light angle and the light reception angle with respect to the normal to the surface of the object to be measured are set to 78 degrees, and the glossiness is the value obtained by Equation 1,
The smoothness is a value obtained by the equation 2.

【0029】実施例2 被測定物表面の法線に対する照射光角度及び受光角度を
82度に設定し、光沢性は数1により求めた値とし、平
滑性は数2により求めた値とした以外は実施例1と同様
に測定を実施した。
Example 2 Except that the irradiation light angle and the light receiving angle with respect to the normal to the surface of the object to be measured were set to 82 degrees, the glossiness was the value obtained by the equation 1, and the smoothness was the value obtained by the equation 2. Was measured in the same manner as in Example 1.

【0030】実施例3 被測定物表面の法線に対する照射光角度及び受光角度を
85度に設定し、光沢性は数1により求めた値とし、平
滑性は数2により求めた値とした以外は実施例1と同様
に測定を実施した。
Example 3 Except that the irradiation light angle and the light receiving angle with respect to the normal to the surface of the object to be measured were set to 85 degrees, the glossiness was set to the value obtained by the equation 1, and the smoothness was set to the value obtained by the equation 2. Was measured in the same manner as in Example 1.

【0031】比較例1 被測定物表面の法線に対する照射光角度及び受光角度を
75度に設定し、光沢性は数1により求めた値とし、平
滑性は数2により求めた値とした以外は実施例1と同様
に測定を実施した。
Comparative Example 1 Except that the irradiation light angle and the light receiving angle with respect to the normal to the surface of the object to be measured were set to 75 degrees, the glossiness was set to the value obtained by the equation 1, and the smoothness was set to the value obtained by the equation 2. Was measured in the same manner as in Example 1.

【0032】比較例2 被測定物表面の法線に対する照射光角度及び受光角度を
77度に設定し、光沢性は数1により求めた値とし、平
滑性は数2により求めた値とした以外は実施例1と同様
に測定を実施した。
Comparative Example 2 Except that the irradiation light angle and the light receiving angle with respect to the normal to the surface of the object to be measured are set to 77 degrees, the glossiness is the value obtained by the equation 1, and the smoothness is the value obtained by the equation 2. Was measured in the same manner as in Example 1.

【0033】比較例3 被測定物表面の法線に対する照射光角度及び受光角度を
87度に設定し、光沢性は数1により求めた値とし、平
滑性は数2により求めた値とした以外は実施例1と同様
に測定を実施した。
Comparative Example 3 Except that the irradiation light angle and the light receiving angle with respect to the normal to the surface of the object to be measured were set to 87 degrees, the glossiness was set to the value obtained by the equation 1, and the smoothness was set to the value obtained by the equation 2. Was measured in the same manner as in Example 1.

【0034】それぞれのサンプルを上記実施例及び比較
例により測定実施し、表1は各サンプルの触針3次元粗
さ計及びJIS光沢計測定値であり、表2、表3はそれ
ぞれ触針3次元粗さ計測定値及びJIS光沢計測定値と
各実施例、比較例における測定値の比較である。表4は
各実施例及び比較例における触針3次元粗さ計及びJI
S光沢計測定値それぞれの相関係数の比較である。
Each sample was measured by the above-mentioned examples and comparative examples, and Table 1 shows the measured values of the stylus three-dimensional roughness meter and JIS gloss meter of each sample. Tables 2 and 3 show the three-dimensional stylus, respectively. It is a comparison of the roughness meter measurement value and JIS gloss meter measurement value and the measurement value in each Example and a comparative example. Table 4 shows a probe three-dimensional roughness meter and JI in each example and comparative example.
It is a comparison of the correlation coefficient of each S gloss meter measurement value.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【発明の効果】本発明で得られた測定値はいずれも印刷
用塗工紙の表面光沢性及び平滑性をよく表わした数値で
あり、従来法では不可能であった低平滑領域のオンライ
ン測定が可能となった。
EFFECTS OF THE INVENTION The measured values obtained in the present invention are all values that well represent the surface glossiness and smoothness of the coated paper for printing, and online measurement of a low smoothness region which was impossible by the conventional method. Became possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】測定原理概略図。FIG. 1 is a schematic diagram of a measurement principle.

【図2】測定全体図。FIG. 2 is an overall measurement diagram.

【図3】反射光強度分布。FIG. 3 is a reflected light intensity distribution.

【図4】分散巾の取り方による、触針3次元粗さ計との
相関性の比較。
FIG. 4 is a comparison of the correlation with a stylus three-dimensional roughness meter depending on how the dispersion width is taken.

【符号の説明】[Explanation of symbols]

1 光源 2a 照射側反射板 2b 移動後の反射板 3a 反射側反射板 3b 移動後反射板 4 集光レンズ 5 ラインCCDセンサー 6 照射角度78度 7 反射角度78度 8 照射角度85度 9 反射角度85度 10 法線 11 被測定物 12 反射光強度分布 13 走行する被測定物 14 本発明に使用した測定器 15 ピーク高さ 16 分散巾 DESCRIPTION OF SYMBOLS 1 Light source 2a Irradiation side reflection plate 2b Reflection plate after movement 3a Reflection side reflection plate 3b Reflection plate after movement 4 Condensing lens 5 Line CCD sensor 6 Irradiation angle 78 degrees 7 Reflection angle 78 degrees 8 Irradiation angle 85 degrees 9 Reflection angle 85 Degree 10 Normal line 11 Object to be measured 12 Reflected light intensity distribution 13 Object to be measured 14 Measuring instrument used in the present invention 15 Peak height 16 Dispersion width

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 印刷用塗被紙の表面光沢性及び平滑性を
同時にオンラインで測定する光学測定方法において、走
行する印刷用塗被紙表面の法線に対する照射光源の照射
角度と正反射光の被測定物の法線に対する受光角を78
度以上85度未満の範囲で可変出来る機構を備える事を
特徴とする装置を使用し、被測定物からの反射光をライ
ンCCDセンサーで受光及び検出しその反射光の光量の
積分値を被測定物の光沢指標とし、反射光の波形のピー
ク高の底辺から1/4位置の分散巾の大きさをもって平
滑性の尺度とし簡便かつ高精度に低平滑領域の印刷塗工
紙の光沢性及び平滑性の同時測定を行う測定方法。
1. An optical measurement method for simultaneously measuring the surface glossiness and smoothness of a coated paper for printing simultaneously on-line, comprising: an irradiation angle of an irradiation light source with respect to a normal line of a running coated paper surface; The acceptance angle for the normal of the DUT is 78
Using a device that is equipped with a mechanism that can be varied within a range of not less than 85 degrees and less than 85 degrees, the reflected light from the measured object is received and detected by the line CCD sensor, and the integrated value of the amount of the reflected light is measured. It is used as an index of the gloss of a product, and the size of the dispersion width at the 1/4 position from the bottom of the peak height of the reflected light is used as a measure of smoothness. A measurement method for simultaneous measurement of sex.
JP6597096A 1996-03-22 1996-03-22 Online measuring method for substance surface property Pending JPH09257443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6597096A JPH09257443A (en) 1996-03-22 1996-03-22 Online measuring method for substance surface property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6597096A JPH09257443A (en) 1996-03-22 1996-03-22 Online measuring method for substance surface property

Publications (1)

Publication Number Publication Date
JPH09257443A true JPH09257443A (en) 1997-10-03

Family

ID=13302374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6597096A Pending JPH09257443A (en) 1996-03-22 1996-03-22 Online measuring method for substance surface property

Country Status (1)

Country Link
JP (1) JPH09257443A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329908A (en) * 2005-05-30 2006-12-07 Bridgestone Corp Rubber peel detecting method and its device
US7465948B2 (en) 2003-09-16 2008-12-16 Paper Australia Pty Ltd. Sheet-surface analyser and method of analysing a sheet-surface
JP2017223692A (en) * 2017-08-02 2017-12-21 株式会社リコー Optical sensor and image forming device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7465948B2 (en) 2003-09-16 2008-12-16 Paper Australia Pty Ltd. Sheet-surface analyser and method of analysing a sheet-surface
JP2006329908A (en) * 2005-05-30 2006-12-07 Bridgestone Corp Rubber peel detecting method and its device
JP2017223692A (en) * 2017-08-02 2017-12-21 株式会社リコー Optical sensor and image forming device

Similar Documents

Publication Publication Date Title
JP4342949B2 (en) Method and system for detecting dense coating by multiple measurement / sensors
US5654799A (en) Method and apparatus for measuring and controlling the surface characteristics of sheet materials such as paper
US3956630A (en) Fluorimetric coat weight measurement
EP2198272B1 (en) Microgloss measurement of paper and board
US5146097A (en) Method for measuring gloss profile
JPH06508683A (en) smoothness detector
JPS5886680A (en) Apparatus for detecting tape on sheet paper
CA2373682C (en) Method and measuring arrangement for measuring paper surface
CA2373674A1 (en) Method and measuring arrangement for measuring paper surface
EP2914954B1 (en) Method and apparatus for measuring gloss
Mattsson et al. Assessment of surface finish on bulk scattering materials: a comparison between optical laser stylus and mechanical stylus profilometers
EP1624280A2 (en) Optical triangulation device and method of measuring a variable of a web using the device
JPH09257443A (en) Online measuring method for substance surface property
US20050150288A1 (en) Measuring device
Ashori et al. Surface topography of kenaf (Hibiscus cannabinus) sized papers
US6191430B1 (en) Gel point sensor
CA2483877A1 (en) Method and apparatus for monitoring of the dry line in a fou drinier paper machine and for control based thereupon
US5110212A (en) Smoothness sensor
WÄGBERG et al. 11 CHARACTERIZATION OF PAPER SURFACES USING OPTICAL PROFILOMETRY
FI114119B (en) Method and apparatus for measuring optical quality of paper surface using laser optical sensor
WO1996035112A1 (en) Sheet stabilizer for optical sensor
JP2004536305A (en) Gloss sensor device and method with dirt accumulation compensation mechanism
Koukoulas et al. Understanding gloss anisotropy in machine-made papers
Settlemeyer Gloss-related surface topography visualized with the scanning electron microscope
Bonham et al. A new technique to measure paper roughness