JPH0925662A - Controller of pneumatic working valve - Google Patents

Controller of pneumatic working valve

Info

Publication number
JPH0925662A
JPH0925662A JP17644595A JP17644595A JPH0925662A JP H0925662 A JPH0925662 A JP H0925662A JP 17644595 A JP17644595 A JP 17644595A JP 17644595 A JP17644595 A JP 17644595A JP H0925662 A JPH0925662 A JP H0925662A
Authority
JP
Japan
Prior art keywords
valve
water level
vacuum valve
differential pressure
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17644595A
Other languages
Japanese (ja)
Inventor
Yosuke Takemoto
洋介 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP17644595A priority Critical patent/JPH0925662A/en
Publication of JPH0925662A publication Critical patent/JPH0925662A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Driven Valves (AREA)
  • Sewage (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate malfunctions of a vacuum valve and omit an air supply pipe leading the ambient air from the outside of a vacuum valve pit and a complicated changeover control device to simplify the structure. SOLUTION: When the level of the water pool 4 in a vacuum valve pit 1 rises up to HWL and the differential pressure between a water level detector tube 8 and the outside air gets to a preset upper limit of a pressure switch 12B for detecting the high water level, the first changeover signal is output from a controller 14 to a motor-driven three-way changeover valve 15 to connect the outflow pipe 5 and the working chamber 2A of a vacuum valve 2 and open the vacuum valve 2 and suck the sewage in the water pool 4 to the sewage- collecting site 7 to discharge it. When the level of water pool 4 goes down to LWL and the differential pressure between the water level detector tube 8 and the outside air gets to a preset lower limit of the differential pressure switch 12A for lower water level detection, the second changeover signal is output from the controller 14 to the motor-driven three-way changeover switch 15 to connect the inside of the vacuum valve pit 1 and the working chamber 2A of the vacuum valve 2 and close the vacuum valve 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、真空式下水収集シ
ステムの真空弁のような、空気圧によって開閉作動する
空気式作動弁の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a pneumatic actuated valve that is opened and closed by pneumatic pressure, such as a vacuum valve of a vacuum sewage collection system.

【0002】[0002]

【従来の技術】従来より、真空式下水収集システムの真
空弁の制御装置として、たとえば米国特許第4,37
3,838号に示すものが知られている。この制御装置
は、図2に示すように、真空弁マス1内に設置した真空
弁2の上流側の吸込管3の入口を、水溜まり部4内に臨
ませ、真空弁2の下流側の流出管5の出口を、真空ポン
プによってなる吸引手段6を備えた下水収集場7に開口
し、水溜まり部4内に水位検知管8を設置して、水溜ま
り部4内の水位変動に伴う水位検知管8内の圧力変化に
よって水位を検出し、水溜まり部4内の水位が上限HW
Lまで上昇した場合の水位検知管8内の高い圧力を切替
制御装置9に導くことで、流出管5側の負圧(真空)に
よって切替制御装置9を切替作動させ、かつ真空弁2の
作動室内に流出管5側の負圧を負荷させることで真空弁
2を弁開させる。これにより、水溜まり部4内の汚水に
作用している大気圧と下水収集場7側の差圧により、水
溜まり部4中の汚水、つまり、自然流下管11から水溜
まり部4に流下してきた家庭排水などの汚水は、吸込管
3→開弁している真空弁2→流出管5の経路で下水収集
場7側に吸引排出される。
2. Description of the Related Art Conventionally, as a control device for a vacuum valve of a vacuum type sewage collection system, for example, US Pat.
The one shown in No. 3,838 is known. As shown in FIG. 2, this control device causes the inlet of the suction pipe 3 on the upstream side of the vacuum valve 2 installed in the vacuum valve mass 1 to face the inside of the water pool 4 and to flow out of the vacuum valve 2 on the downstream side. The outlet of the pipe 5 is opened to a sewage collection site 7 equipped with a suction means 6 composed of a vacuum pump, and a water level detection pipe 8 is installed in the water pool part 4 to detect the water level in accordance with the water level fluctuation in the water pool part 4. The water level is detected by the pressure change in 8 and the water level in the water reservoir 4 is the upper limit HW.
By guiding the high pressure in the water level detection pipe 8 when it rises to L to the switching control device 9, the switching control device 9 is switched and operated by the negative pressure (vacuum) on the outflow pipe 5 side, and the vacuum valve 2 is operated. The vacuum valve 2 is opened by applying a negative pressure on the outflow pipe 5 side to the inside of the chamber. As a result, due to the atmospheric pressure acting on the wastewater in the water reservoir 4 and the differential pressure on the side of the sewage collection site 7, the wastewater in the water reservoir 4, that is, the domestic drainage flowing down from the natural flow pipe 11 to the water reservoir 4. Waste water such as is sucked and discharged to the side of the sewage collection site 7 through the path of the suction pipe 3, the open vacuum valve 2, and the outflow pipe 5.

【0003】水溜まり部4中の汚水が下水収集場7側に
吸引排出されることで、汚水面のレベルが下限LWLま
で低下して、水位検知管8内の圧力がほぼ大気圧まで低
下すると、この大気圧を切替制御装置9に導くことで、
給気管10から供給される外気(大気)によって切替制
御装置9を切替作動させ、かつ真空弁2の作動室内に給
気管10の大気圧を負荷させることで真空弁2を弁閉さ
せる。
When the sewage in the water reservoir 4 is sucked and discharged to the sewage collection site 7 side, the level of the sewage surface lowers to the lower limit LWL and the pressure in the water level detection pipe 8 drops to almost atmospheric pressure. By guiding this atmospheric pressure to the switching control device 9,
The vacuum control valve 9 is switched by the outside air (atmosphere) supplied from the air supply pipe 10, and the atmospheric pressure of the air supply pipe 10 is loaded into the operation chamber of the vacuum valve 2 to close the vacuum valve 2.

【0004】一方、切替制御装置9には、真空弁2の弁
閉タイミングを遅らせる遅延機構として働く絞り機構が
組込まれている。つまり、水位検知管8内の空気圧が前
述の理由でほぼ大気圧に低下しても、給気管10から切
替制御装置9を通って真空弁2の作動室に供給される大
気を切替制御装置9の通過時に絞り機構によって絞るこ
とで、直ちに真空弁2を閉弁させず、汚水と空気との気
水混合比が予め定められ値になる時点まで真空弁2の閉
弁を遅延させるようになっている。
On the other hand, the switching control device 9 incorporates a throttling mechanism which works as a delay mechanism for delaying the valve closing timing of the vacuum valve 2. That is, even if the air pressure in the water level detection pipe 8 drops to almost atmospheric pressure for the above-mentioned reason, the atmosphere supplied from the air supply pipe 10 to the working chamber of the vacuum valve 2 through the switching control device 9 is switched to the switching control device 9. The throttle valve mechanism does not immediately close the vacuum valve 2 by passing through the throttle valve when passing through, and delays the closing of the vacuum valve 2 until the point where the air-water mixture ratio of sewage and air reaches a predetermined value. ing.

【0005】このように、従来の制御装置は、流出管5
側の負圧(真空)と給気管10から導入される大気(大
気圧)を利用して、切替制御装置9を切替作動させるよ
うに構成され、また、切替制御装置9には遅延機構とし
て働く絞り機構が組込まれている。したがって、大気供
給のために給気管10を必要とする。ところが、給気管
10の布設長さが長過ぎたり、あるいは管径が小さい場
合には、大気の供給が不十分となり、真空弁2の弁閉が
遅れる誤動作の原因になる虞れを有している。また、切
替制御装置9に組込まれている絞り機構は、孔径が1m
m前後のきわめて小さいオリフィスによって構成されて
いるので、大気中に含まれている固体粒子や大気中水蒸
気の結露によって生じた水滴などによって塞がれ、真空
弁2の弁閉を大幅に遅らせる誤動作の原因になり、この
ような誤動作が生じることで、真空ポンプによってなる
吸引手段6に不必要な負荷(空運転)をかけることにな
る。しかも、構造がきわめて複雑で比較的高価な切替制
御装置9を必要とする欠点もある。
As described above, the conventional control device has the outflow pipe 5
The negative pressure (vacuum) on the side and the atmosphere (atmospheric pressure) introduced from the air supply pipe 10 are used to switch the switching control device 9, and the switching control device 9 functions as a delay mechanism. A diaphragm mechanism is incorporated. Therefore, the air supply pipe 10 is required for air supply. However, if the laid length of the air supply pipe 10 is too long or the pipe diameter is small, there is a risk that the supply of the atmosphere will be insufficient and the valve closing of the vacuum valve 2 will be delayed. There is. The aperture mechanism incorporated in the switching control device 9 has a hole diameter of 1 m.
Since it is composed of an extremely small orifice around m, it is blocked by solid particles contained in the atmosphere or water droplets caused by condensation of atmospheric water vapor, which causes a malfunction that greatly delays the closing of the vacuum valve 2. As a result of such a malfunction, such an erroneous operation causes an unnecessary load (idle operation) on the suction means 6 which is a vacuum pump. Moreover, there is a drawback that the switching control device 9 having a very complicated structure and relatively expensive is required.

【0006】[0006]

【発明が解決しようとする課題】すなわち、従来の真空
弁の制御装置は、切替制御装置を切替作動させるのに真
空と大気圧を利用しているので、給気管を必要とするた
め、給気管の布設長さや管径によって大気の供給が不十
分となり、真空弁(空気式作動弁)の弁閉が遅れる点、
切替制御装置に組込まれている絞り機構の詰まりによっ
て、空気式作動弁の弁閉を大幅に遅らせる点および構造
がきわめて複雑で比較的高価な切替制御装置を必要とす
る点などの欠点を有していた。そこで、請求項1記載の
発明は、空気式作動弁の誤動作を無くすとともに、給気
管および構造の複雑な切替制御装置の使用を省略して、
構造の簡略化を図った空気式作動弁の制御装置の提供を
目的としたものである。また、請求項2記載の発明は、
簡単な電源設備によって作動させることができるように
したものである。
That is, since the conventional vacuum valve control device uses the vacuum and the atmospheric pressure to switch the switching control device, the air supply pipe is required. Due to the insufficient air supply due to the installation length and pipe diameter of the vacuum valve, the closing of the vacuum valve (pneumatic actuation valve) is delayed,
Due to the clogging of the throttling mechanism incorporated in the switching control device, there are drawbacks such as a significant delay in closing the pneumatically operated valve and the need for a switching control device which is extremely complicated in structure and relatively expensive. Was there. Therefore, the invention according to claim 1 eliminates the malfunction of the pneumatic actuating valve and omits the use of the switching control device having a complicated air supply pipe and structure.
The purpose of the present invention is to provide a control device for a pneumatic actuated valve, which has a simplified structure. The invention according to claim 2 is
It is designed so that it can be operated by a simple power supply facility.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
に、請求項1記載の発明は、水溜まり部の水位変動に伴
う水位検知管内の圧力変化によって前記水溜まり部の水
位を検出し、マス内に設置されている空気式作動弁の作
動室内を、前記検出した水位に基づいて負圧化すること
により空気式作動弁を弁開して、該空気式作動弁下流側
の吸引手段の吸引力により空気式作動弁上流側の吸込管
から前記水溜まり部の水を吸込んで排出し、前記検出し
た水位に基づいて前記作動室内を正圧化することによ
り、空気式作動弁を弁閉して、前記吸引手段の吸引力が
前記吸込管に及ぶのを遮断するように構成した空気式作
動弁の制御装置において、前記水位検知管内の大気圧と
の差圧が上限設定値以上でONし、下限設定値以下でO
FFする2つの差圧スイッチと、この上限設定差圧スイ
ッチのON信号に基づいて制御器から第1切替信号を出
力されて切替えられるとともに、下限差圧スイッチのO
FF信号に基づいて制御器から第2切替信号を出力され
て切替えられる電動式三方切替弁とを備え、該電動式三
方切替弁が前記マス内に設置されているとともに、電動
式三方切替弁の共通ポートと前記作動室の内部を連通さ
せる共通管と、電動式三方切替弁の第1ポートと空気式
作動弁下流側負圧部を連通させる負圧導入管を具備し、
電動式三方切替弁の第2ポートが前記マス内に開口して
いることを特徴としたものである。請求項1記載の発明
によれば、水溜まり部の水位上昇に伴って水位検知管内
の大気圧との差圧が上限設定差圧スイッチの上限設定値
以上になると、上限設定差圧スイッチがONして制御器
にON信号を出力し、制御器から電動式三方切替弁に第
1切替信号が出力されて電動式三方切替弁を切替える。
これにより、負圧導入管→電動式三方切替弁の第1ポー
ト→電動式三方切替弁の共通ポート→共通管の経路で、
空気式作動弁下流側負圧部と空気式作動弁の作動室内が
連通し、該作動室に負圧(真空)を負荷して、空気式作
動弁を弁開させる。一方、水溜まり部の水位下降に伴っ
て水位検知管内の大気圧との差圧が下限設定差圧スイッ
チの下限設定値以下になると、下限設定差圧スイッチが
OFFして制御器にOFF号を出力し、制御器から電動
式三方切替弁に第2切替信号が出力されて電動式三方切
替弁を切替える。これにより、電動式三方切替弁の第2
ポート→電動式三方切替弁の共通ポート→共通管の経路
で、マスの内部と空気式作動弁の作動室内が連通し、該
作動室に正圧(大気圧)を負荷して、空気式作動弁を弁
閉させる。請求項2記載の発明は、前記制御器の制御電
源および電動式三方切替弁の切替電源が前記マス内に設
置したバッテリーによってなることを特徴としたもので
ある。請求項2記載の発明によれば、制御器の制御電源
および電動式三方切替弁の切替電源をマス内に設置した
バッテリーによって賄うことができる。
In order to achieve the above-mentioned object, the invention according to claim 1 detects the water level in the water pool by detecting the pressure change in the water level detection pipe accompanying the water level fluctuation in the water pool, and The air-operated valve is opened by reducing the pressure inside the air-operated valve installed in the air-operated valve based on the detected water level, and the suction force of the suction means on the downstream side of the air-operated valve. By sucking and discharging the water in the water reservoir from the suction pipe on the upstream side of the pneumatic valve, by positively compressing the working chamber based on the detected water level, the pneumatic valve is closed. In a control device for a pneumatically actuated valve configured to block the suction force of the suction means from reaching the suction pipe, the differential pressure from the atmospheric pressure in the water level detection pipe is turned on when the differential pressure is equal to or higher than an upper limit set value, and the lower limit is set. O below the set value
Based on the ON signal of the two differential pressure switches that perform FF and the upper limit setting differential pressure switch, the controller outputs the first switching signal to switch the differential pressure switch and the O switch of the lower limit differential pressure switch.
An electric three-way switching valve that outputs a second switching signal from the controller based on the FF signal to switch the electric three-way switching valve, and the electric three-way switching valve is installed in the mass. A common pipe for communicating the common port with the inside of the working chamber; and a negative pressure introducing pipe for communicating the first port of the electric three-way switching valve with the negative pressure portion of the pneumatic working valve downstream side,
The second port of the electric three-way switching valve is open in the mass. According to the invention of claim 1, when the differential pressure from the atmospheric pressure in the water level detection pipe becomes equal to or higher than the upper limit set value of the upper limit set differential pressure switch as the water level in the water pool increases, the upper limit set differential pressure switch is turned on. To output the ON signal to the controller, and the controller outputs the first switching signal to the electric three-way switching valve to switch the electric three-way switching valve.
By this, the negative pressure introducing pipe → the first port of the electric three-way switching valve → the common port of the electric three-way switching valve → the path of the common pipe,
The negative pressure portion on the downstream side of the pneumatic actuation valve communicates with the actuation chamber of the pneumatic actuation valve, and a negative pressure (vacuum) is applied to the actuation chamber to open the pneumatic actuation valve. On the other hand, when the differential pressure from the atmospheric pressure in the water level detection pipe becomes less than the lower limit set value of the lower limit set differential pressure switch as the water level in the water pool falls, the lower limit set differential pressure switch turns off and the controller outputs the OFF signal. Then, the controller outputs the second switching signal to the electric three-way switching valve to switch the electric three-way switching valve. As a result, the second electric three-way switching valve
Port-> Common port of electric three-way switching valve-> Common pipe path, the inside of the mass communicates with the working chamber of the pneumatic actuating valve, and positive pressure (atmospheric pressure) is applied to the working chamber to operate pneumatically. Close the valve. The invention according to claim 2 is characterized in that the control power source of the controller and the switching power source of the electric three-way switching valve are constituted by batteries installed in the mass. According to the invention described in claim 2, the control power source of the controller and the switching power source of the electric three-way switching valve can be covered by the battery installed in the mass.

【0008】[0008]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。なお、前記従来例と同一もしくは
相当部分には同一符号を付して詳しい説明は省略する。
図1において、水溜まり部4の上位に真空弁マス1を形
成して、水溜まり部4と真空弁マス1を一体化してい
る。そして、水溜まり部4内の水位がLWLまで上昇す
ることによって、水位検知管8内の圧力が下限値に達し
た時にONするバネ定数の小さい低水位検出用差圧スイ
ッチ12Aと、水溜まり部4内の水位がHWLまで上昇
することによって、水位検知管8内の圧力が上限値に達
した時にONするバネ定数の大きい高水位検出用差圧ス
イッチ12Bが設けられている。つまり、水位検知管8
内の大気圧との差圧が上限設定値以上でONし、下限設
定値以下でOFFする差圧スイッチ12A,12Bの2
つが設けられている。また、吸込管3の下端開口近傍に
空気取込口3Aが形成されている。
Embodiments of the present invention will be described below with reference to the drawings. The same or corresponding parts as those in the conventional example are denoted by the same reference numerals, and detailed description thereof will be omitted.
In FIG. 1, the vacuum valve mass 1 is formed above the water sump 4, and the water sump 4 and the vacuum valve mass 1 are integrated. Then, when the water level in the water pool portion 4 rises to LWL, the low water level detection differential pressure switch 12A having a small spring constant that is turned on when the pressure in the water level detection pipe 8 reaches the lower limit value, and the water pool portion 4 inside. There is provided a high water level detecting differential pressure switch 12B having a large spring constant, which is turned on when the pressure in the water level detecting pipe 8 reaches the upper limit value by increasing the water level to HWL. That is, the water level detection pipe 8
2 of differential pressure switches 12A and 12B that are turned on when the pressure difference from the atmospheric pressure inside is higher than the upper limit set value and turned off when the pressure is lower than the lower limit set value.
One is provided. An air intake port 3A is formed near the lower end opening of the suction pipe 3.

【0009】低水位検出用差圧スイッチ12Aおよび高
水位検出用差圧スイッチ12BそれぞれのON・OFF
信号は制御器14に入力され、制御器14からは、低水
位検出用差圧スイッチ12Aと高水位検出用差圧スイッ
チ12Bの両者からON信号が入力された時点、すなわ
ち、水位検知管8内の大気圧との差圧が高水位時まで高
くなった時点で、電動式三方切替弁15の切替駆動部1
5Aに第1切替信号を出力し、高水位検出用差圧スイッ
チ12Bと低水位検出用差圧スイッチ12Aの両者から
OFF信号が入力された時点,すなわち、水位検知管8
内の大気圧との差圧が低水位時まで低下した時点で、電
動式三方切替弁15の切替駆動部15Aに第2切替信号
を出力するようになっている。
ON / OFF of each of the low water level detecting differential pressure switch 12A and the high water level detecting differential pressure switch 12B.
The signal is input to the controller 14, and from the controller 14, the ON signal is input from both the low water level detection differential pressure switch 12A and the high water level detection differential pressure switch 12B, that is, inside the water level detection pipe 8. At the time when the differential pressure from the atmospheric pressure of the electric water becomes high up to the high water level, the switching drive unit 1 of the electric three-way switching valve 15
The first switching signal is output to 5A and the OFF signal is input from both the high water level detecting differential pressure switch 12B and the low water level detecting differential pressure switch 12A, that is, the water level detecting pipe 8
The second switching signal is output to the switching drive unit 15A of the electric three-way switching valve 15 when the differential pressure from the internal atmospheric pressure decreases to the low water level.

【0010】電動式三方切替弁15は、真空弁マス1内
に設置されており、その共通ポート15Bと真空弁2の
作動室2Aの内部は、共通管16を介して互いに連通し
ており、第1ポート15Cと真空弁2の下流側流出管5
(負圧部)は、負圧導入管17を介して互いに連通して
いるとともに、第2ポート15Dは真空弁マス1内に開
口している。また、真空弁マス1内に設置したバッテリ
ー19によって、制御器14の制御電源および電動式三
方切替弁15の切替電源を構成している。
The electric three-way switching valve 15 is installed in the vacuum valve mass 1, and its common port 15B and the inside of the working chamber 2A of the vacuum valve 2 communicate with each other via a common pipe 16. Outflow pipe 5 downstream of the first port 15C and the vacuum valve 2
The (negative pressure portion) communicates with each other via the negative pressure introducing pipe 17, and the second port 15D is opened in the vacuum valve mass 1. Further, the battery 19 installed in the vacuum valve mass 1 constitutes a control power supply for the controller 14 and a switching power supply for the electric three-way switching valve 15.

【0011】このような構成であれば、水溜まり部4の
水位がLWLまで上昇するのに伴って、水位検知管8内
の圧力が下限値に達すると、低水位検出用差圧スイッチ
12AがONして制御器14にON信号を出力する。水
溜まり部4の水位がHWLまで上昇するのに伴って、水
位検知管内8の圧力が上限値に達すると、高水位検出用
差圧スイッチ12BがONして制御器14にON信号を
出力する。このように、2つの差圧スイッチ12A,1
2BからのON信号が制御器14に入力された時点で、
制御器14から電動式三方切替弁15の切替駆動部15
Aに第1切替信号が出力されて、電動式三方切替弁15
が切替えられる。つまり、水位検知管8内の大気圧との
差圧が高水位検出用差圧スイッチ12Bの上限設定値に
なると、第1切替信号により電動式三方切替弁15が切
替えられ、負圧導入管17→電動式三方切替弁15の第
1ポート15C→電動式三方切替弁15の共通ポート1
5B→共通管16の経路で、真空弁2下流側の流出管5
と真空弁2の作動室2Aの内部が連通し、作動室2Aに
負圧(真空)を負荷して、ダイアフラム2aおよび真空
弁2を矢印Y1方向に移動させて真空弁2を弁開させ
る。真空弁2が弁開することで、水溜まり部4内の汚水
に作用している大気圧と下水収集場7側の差圧により、
水溜まり部4中の汚水、つまり、自然流下管11から水
溜まり部4に流下してきた家庭排水などの汚水は、吸込
管3→開弁している真空弁2→流出管5の経路で下水収
集場7側に吸引排出される。
With such a structure, when the pressure in the water level detection pipe 8 reaches the lower limit value as the water level in the water pool 4 rises to LWL, the low water level detection differential pressure switch 12A is turned on. Then, the ON signal is output to the controller 14. When the pressure in the water level detection pipe 8 reaches the upper limit value as the water level in the water pool 4 rises to HWL, the high water level detection differential pressure switch 12B is turned on and an ON signal is output to the controller 14. In this way, the two differential pressure switches 12A, 1
When the ON signal from 2B is input to the controller 14,
The switching drive unit 15 of the electric three-way switching valve 15 from the controller 14
The first switching signal is output to A, and the motorized three-way switching valve 15
Is switched. That is, when the differential pressure from the atmospheric pressure in the water level detection pipe 8 reaches the upper limit set value of the high water level detection differential pressure switch 12B, the electric three-way switching valve 15 is switched by the first switching signal, and the negative pressure introduction pipe 17 is provided. → 1st port 15C of electric three-way switching valve 15 → Common port 1 of electric three-way switching valve 15
5B → outlet pipe 5 on the downstream side of the vacuum valve 2 in the path of the common pipe 16
And the inside of the working chamber 2A of the vacuum valve 2 communicate with each other, a negative pressure (vacuum) is applied to the working chamber 2A, and the diaphragm 2a and the vacuum valve 2 are moved in the arrow Y1 direction to open the vacuum valve 2. By opening the vacuum valve 2, due to the atmospheric pressure acting on the wastewater in the water reservoir 4 and the differential pressure on the side of the sewage collection site 7,
The sewage in the water reservoir 4, that is, the sewage such as domestic drainage that has flowed down from the natural flow pipe 11 to the water reservoir 4, is a suction pipe 3-> an open vacuum valve 2-> an outflow pipe 5 in a sewage collection site. 7 is sucked and discharged.

【0012】水溜まり部4の汚水の吸引排出によって、
水溜まり部4の水位がHWLより下降するのに伴って、
水位検知管8内の圧力が低下すると、まず、高水位検出
用差圧スイッチ12BがOFFして制御器14にOFF
号を出力する。水溜まり部4の水位がさらにLWLまで
低下して、水位検知管8内の圧力が下限圧力まで低下す
ると、低水位検出用差圧スイッチ12AがOFFして制
御器14にOFF信号を出力する。このように、2つの
差圧スイッチ12A,12BからのOFF信号が制御器
14に入力された時点で、制御器14から電動式三方切
替弁15の切替駆動部15Aに第2切替信号が出力され
て、電動式三方切替弁15が切替えられる。つまり、水
位検知管8内の大気圧との差圧が低水位検出用差圧スイ
ッチ12Aの下限設定値になると、第2切替信号により
電動式三方切替弁15が切替えられ、電動式三方切替弁
15の第2ポート15D→電動式三方切替弁15の共通
ポート15B→共通管16の経路で、真空弁マス1の内
部と真空弁2の作動室2Aの内部が連通し、作動室2A
に真空弁マス1内の大気圧を負荷して、ダイアフラム2
aおよび真空弁2を矢印Y2方向に移動させて真空弁2
を弁閉させる。また、2つの差圧スイッチ12A,12
BからのOFF信号が制御器14に入力された時点か
ら、電動式三方切替弁15が切替えられ、かつ真空弁2
が弁閉するまでの間に、水溜まり部4の水位はLWL未
満に低下して、吸込管3の空気取込口3Aから吸込管3
内に空気を取り込む。
By sucking and discharging the waste water in the water reservoir 4,
As the water level in the water pool 4 drops below HWL,
When the pressure in the water level detection pipe 8 drops, first, the high water level detection differential pressure switch 12B is turned off and then the controller 14 is turned off.
Output a signal. When the water level in the water reservoir 4 further decreases to LWL and the pressure in the water level detecting pipe 8 decreases to the lower limit pressure, the low water level detecting differential pressure switch 12A is turned off and an OFF signal is output to the controller 14. Thus, when the OFF signals from the two differential pressure switches 12A and 12B are input to the controller 14, the controller 14 outputs the second switching signal to the switching drive unit 15A of the electric three-way switching valve 15. Thus, the electric three-way switching valve 15 is switched. That is, when the differential pressure from the atmospheric pressure in the water level detection pipe 8 reaches the lower limit set value of the low water level detection differential pressure switch 12A, the electric three-way switching valve 15 is switched by the second switching signal, and the electric three-way switching valve. The second port 15D of 15 → the common port 15B of the electric three-way switching valve 15 → the common pipe 16 communicates with the inside of the vacuum valve mass 1 and the inside of the working chamber 2A of the vacuum valve 2 so that the working chamber 2A
The atmospheric pressure in the vacuum valve mass 1 is applied to the diaphragm 2
a and the vacuum valve 2 are moved in the direction of the arrow Y2 to move the vacuum valve 2
To close the valve. Also, the two differential pressure switches 12A, 12
From the time when the OFF signal from B is input to the controller 14, the electric three-way switching valve 15 is switched and the vacuum valve 2
Until the valve is closed, the water level in the water reservoir 4 drops below LWL, and the suction pipe 3 is sucked from the air intake port 3A of the suction pipe 3.
Take air in.

【0013】このように、水溜まり部4の水位変動に伴
なう水位検知管8内の圧力変動を差圧スイッチ12A,
12BのON・OFF信号に変換して出力し、このON
・OFF信号出力に基づいて電動式三方切替弁15を切
替えることで、真空弁2を開閉するように構成するとと
もに、真空弁2の弁閉時には、真空弁マス1内の空気
(大気圧)を真空弁2の作動室2Aに負荷するようにし
ているので、従来使用されていた構造が複雑な切替制御
装置9と、外気を供給するための給気管10(図2参
照)を必要としない。したがって、構造を簡略化するこ
とができる。しかも、電動式三方切替弁15の口径は比
較的大きくできるため、真空弁マス1内の空気中に含ま
れている固体粒子や空気中の水蒸気の結露によって生じ
た水滴などによって、電動式三方切替弁15に目詰まり
が生じることはない。その結果、真空弁2を適正なタイ
ミングで閉弁させることができる。このため、従来のよ
うに、真空弁2の弁閉が大幅に遅れる誤動作によって、
真空ポンプによってなる吸引手段6が不必要に空運転す
るような不都合は発生しない。また、制御器14の制御
電源および電動式三方切替弁15の切替電源を真空弁マ
ス1内に設置したバッテリー19によって賄うことがで
きるので、制御電源および切替電源を真空弁マス1の外
部から供給する必要はない、この点から設備の簡略化に
寄与することができる。
As described above, the pressure fluctuation in the water level detecting pipe 8 due to the water level fluctuation in the water reservoir 4 is detected by the differential pressure switch 12A,
12B ON / OFF signal is converted and output.
The vacuum valve 2 is configured to be opened and closed by switching the electric three-way switching valve 15 based on the OFF signal output, and when the vacuum valve 2 is closed, the air (atmospheric pressure) in the vacuum valve mass 1 is removed. Since the load is applied to the working chamber 2A of the vacuum valve 2, the conventionally used switching control device 9 having a complicated structure and the air supply pipe 10 (see FIG. 2) for supplying the outside air are not required. Therefore, the structure can be simplified. Moreover, since the diameter of the electrically operated three-way switching valve 15 can be made relatively large, the electrically operated three-way switching is performed by solid particles contained in the air in the vacuum valve mass 1 or water droplets generated by condensation of water vapor in the air. The valve 15 will not be clogged. As a result, the vacuum valve 2 can be closed at an appropriate timing. Therefore, as in the conventional case, due to the malfunction that the valve closing of the vacuum valve 2 is significantly delayed,
There is no inconvenience that the suction means 6 composed of a vacuum pump runs unnecessarily idle. Further, since the control power supply of the controller 14 and the switching power supply of the electric three-way switching valve 15 can be covered by the battery 19 installed in the vacuum valve mass 1, the control power supply and the switching power supply are supplied from the outside of the vacuum valve mass 1. In this respect, it is possible to contribute to simplification of the equipment.

【0014】さらに、差圧スイッチ12A,12BがO
Nした後に、真空弁2が弁開しない場合には、真空弁2
の弁開不能を判断して、警報を発することができる。ま
た、差圧スイッチ12A,12BがOFFした後に、真
空弁2が弁閉しない場合には、真空弁2の弁閉不能を判
断して、警報を発することもできる。
Further, the differential pressure switches 12A and 12B are turned off.
If the vacuum valve 2 does not open after N, the vacuum valve 2
An alarm can be issued by judging that the valve cannot be opened. Further, if the vacuum valve 2 does not close after the differential pressure switches 12A and 12B are turned off, it is possible to judge that the vacuum valve 2 cannot be closed and issue an alarm.

【0015】なお、前記実施の形態では、水溜まり部4
と真空弁マス1を一体化した構成で説明しているが、水
溜まり部4と真空弁マス1を別体にしてもよい。
In the above embodiment, the water pool 4
However, the water reservoir 4 and the vacuum valve mass 1 may be separated from each other.

【0016】[0016]

【発明の効果】以上説明したように、請求項1記載の発
明は、空気式作動弁の開閉を電動式三方切替弁の切替え
によって行うとともに、空気式作動弁の弁閉時には、マ
ス内の空気を空気式作動弁の作動室に負荷するようにし
ているので、従来のように、構造が複雑な切替制御装置
と、外気を供給するための給気管を必要としない。した
がって、構造を簡略化することができる。しかも、電動
式三方切替弁の口径は比較的大きいから、マス内の空気
中に含まれている固体粒子や空気中の水蒸気の結露によ
って生じた水滴などによって目詰まりすることはない。
その結果、空気式作動弁を適正なタイミングで閉弁させ
ることができる。このため、従来のように、空気式作動
弁の弁閉が大幅に遅れる誤動作によって、吸引手段が不
必要に空運転するような不都合は発生しない。請求項2
記載の発明は、制御器の制御電源および電動式三方切替
弁の切替電源をマス内に設置したバッテリーによって賄
うことができるので、制御電源および切替電源をマスの
外部から供給する必要はない、この点から設備の簡略化
に寄与することができる。
As described above, according to the first aspect of the present invention, the pneumatic actuating valve is opened and closed by switching the electrically operated three-way switching valve, and when the pneumatic actuating valve is closed, the air in the mass is closed. Is loaded into the working chamber of the pneumatic actuating valve, there is no need for a switching control device having a complicated structure and an air supply pipe for supplying outside air, unlike the conventional case. Therefore, the structure can be simplified. Moreover, since the electric three-way switching valve has a relatively large diameter, it is not clogged with solid particles contained in the air in the mass or water droplets generated by condensation of water vapor in the air.
As a result, the pneumatic actuating valve can be closed at an appropriate timing. For this reason, unlike the conventional case, the malfunction of the pneumatically-operated valve, which greatly delays the closing of the pneumatically operated valve, does not cause the inconvenience of the suction means performing an unnecessary idle operation. Claim 2
In the invention described, the control power supply of the controller and the switching power supply of the electric three-way switching valve can be covered by the battery installed in the mass, so it is not necessary to supply the control power supply and the switching power supply from outside the mass. From the point, it can contribute to simplification of equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】従来例の構成図である。FIG. 2 is a configuration diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1 真空弁マス(マス) 2 真空弁(空気式作動弁) 3 吸込管 4 水溜まり部 5 流出管 6 真空ポンプ(吸引手段) 8 水位検知管 12A 低水位検出用差圧スイッチ(下限差圧スイッ
チ) 12B 高水位検出用差圧スイッチ(上限差圧スイッ
チ) 14 制御器 15 電動式三方切替弁 15A 電動式三方切替弁の切替駆動部 15B 電動式三方切替弁の共通ポート 15C 電動式三方切替弁の第1ポート 15D 電動式三方切替弁の第2ポート 16 共通管 17 負圧導入管 19 バッテリー
1 vacuum valve mass (mass) 2 vacuum valve (pneumatic operation valve) 3 suction pipe 4 water reservoir 5 outflow pipe 6 vacuum pump (suction means) 8 water level detection pipe 12A low water level differential pressure switch (lower limit differential pressure switch) 12B High water level differential pressure switch (upper limit differential pressure switch) 14 Controller 15 Electric three-way switching valve 15A Electric three-way switching valve switching drive unit 15B Electric three-way switching valve common port 15C Electric three-way switching valve No. 1 1 port 15D 2nd port of electrically operated three-way switching valve 16 Common tube 17 Negative pressure introduction tube 19 Battery

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水溜まり部の水位変動に伴う水位検知管
内の圧力変化によって前記水溜まり部の水位を検出し、
マス内に設置されている空気式作動弁の作動室内を、前
記検出した水位に基づいて負圧化することにより空気式
作動弁を弁開して、該空気式作動弁下流側の吸引手段の
吸引力により空気式作動弁上流側の吸込管から前記水溜
まり部の水を吸込んで排出し、前記検出した水位に基づ
いて前記作動室内を正圧化することにより、空気式作動
弁を弁閉して、前記吸引手段の吸引力が前記吸込管に及
ぶのを遮断するように構成した空気式作動弁の制御装置
において、前記水位検知管内の大気圧との差圧が上限設
定値以上でONし、下限設定値以下でOFFする2つの
差圧スイッチと、この上限設定差圧スイッチのON信号
に基づいて制御器から第1切替信号を出力されて切替え
られるとともに、下限差圧スイッチのOFF信号に基づ
いて制御器から第2切替信号を出力されて切替えられる
電動式三方切替弁とを備え、該電動式三方切替弁が前記
マス内に設置されているとともに、電動式三方切替弁の
共通ポートと前記作動室の内部を連通させる共通管と、
電動式三方切替弁の第1ポートと空気式作動弁下流側負
圧部を連通させる負圧導入管を具備し、電動式三方切替
弁の第2ポートが前記マス内に開口していることを特徴
とする空気式作動弁の制御装置。
1. A water level in the water pool is detected by a pressure change in a water level detecting pipe due to a water level fluctuation in the water pool.
The air-operated valve of the suction means on the downstream side of the air-operated valve is opened by reducing the pressure in the working chamber of the air-operated valve installed in the mass based on the detected water level. By suctioning and discharging the water in the water pool from the suction pipe on the upstream side of the pneumatic actuating valve by suction force, and by making the working chamber positive pressure based on the detected water level, the pneumatic actuating valve is closed. In a control device for a pneumatically actuated valve configured to block the suction force of the suction means from reaching the suction pipe, it is turned on when the differential pressure from the atmospheric pressure in the water level detection pipe is equal to or higher than an upper limit set value. , Two differential pressure switches that are turned off below the lower limit set value, and a first switching signal is output from the controller based on the ON signal of the upper limit set differential pressure switch to switch the lower limit differential pressure switch OFF signal. From controller based on An electric three-way switching valve that outputs a switching signal to switch the electric three-way switching valve is installed in the mass, and a common port of the electric three-way switching valve communicates with the inside of the working chamber. With a common pipe to
It is provided with a negative pressure introducing pipe that connects the first port of the electric three-way switching valve and the negative pressure portion on the downstream side of the pneumatic actuating valve, and the second port of the electric three-way switching valve is opened in the mass. A control device for a pneumatically actuated valve.
【請求項2】 前記制御器の制御電源および電動式三方
切替弁の切替電源が前記マス内に設置したバッテリーに
よってなることを特徴とする請求項1記載の空気式作動
弁の制御装置。
2. The control device for the pneumatically actuated valve according to claim 1, wherein the control power source for the controller and the switching power source for the electric three-way switching valve are batteries installed in the mass.
JP17644595A 1995-07-12 1995-07-12 Controller of pneumatic working valve Pending JPH0925662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17644595A JPH0925662A (en) 1995-07-12 1995-07-12 Controller of pneumatic working valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17644595A JPH0925662A (en) 1995-07-12 1995-07-12 Controller of pneumatic working valve

Publications (1)

Publication Number Publication Date
JPH0925662A true JPH0925662A (en) 1997-01-28

Family

ID=16013836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17644595A Pending JPH0925662A (en) 1995-07-12 1995-07-12 Controller of pneumatic working valve

Country Status (1)

Country Link
JP (1) JPH0925662A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008011171A1 (en) * 2008-02-26 2009-08-27 Bonn, Georg, Dipl.-Ing. Valve block for domestic sewage treatment system, comprises air channels and valve seats over which electric valves are arranged so that valve cones tightly close with the valve seat in the closed valve
US8671990B2 (en) 2010-02-12 2014-03-18 Moog Inc. Vacuum valve apparatus and method
CN107989150A (en) * 2017-12-19 2018-05-04 湖南真创环保科技有限公司 A kind of remote vacuum high speed drainage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008011171A1 (en) * 2008-02-26 2009-08-27 Bonn, Georg, Dipl.-Ing. Valve block for domestic sewage treatment system, comprises air channels and valve seats over which electric valves are arranged so that valve cones tightly close with the valve seat in the closed valve
US8671990B2 (en) 2010-02-12 2014-03-18 Moog Inc. Vacuum valve apparatus and method
CN107989150A (en) * 2017-12-19 2018-05-04 湖南真创环保科技有限公司 A kind of remote vacuum high speed drainage system

Similar Documents

Publication Publication Date Title
US20020133869A1 (en) Vacuum waste system having a vacuum control valve
JPH0925662A (en) Controller of pneumatic working valve
JPH0925661A (en) Controller of pneumatic working valve
JP3502698B2 (en) Vacuum valve abnormality detection method
JP3286807B2 (en) Control device for vacuum valve
JP2008150995A (en) Steam ejector
JP3286806B2 (en) Control device for vacuum valve
EP1120500A3 (en) Toilet bowl
JPH07119200A (en) Vacuum valve controlling device for vacuum type sewerage system
JP3258260B2 (en) Vacuum valve forced operation device of vacuum sewer system
JPH04366092A (en) Draining device
JP3083440B2 (en) Vacuum valve failure recovery device
JPH0517435Y2 (en)
KR19990013393U (en) Photoresist Discharge Controller of Pump for Semiconductor Wafer Coater
JPH04366091A (en) Draining device
JP3636779B2 (en) Vacuum valve
KR820002435Y1 (en) Pump device for electric well pump
JP2573940Y2 (en) Air intake device for vacuum sewage collection system
JP2869696B2 (en) Air intake device for vacuum sewage collection system
JPH10185778A (en) Automatic drain discharge device
JPH1066967A (en) Pressurized water purifier
JPH11337458A (en) Sampler of gas analyzer
JPH1193239A (en) Volumetric changeover valve device for flush toilet
JPH07293736A (en) Control device of vacuum valve
JPH09111856A (en) Control device of vacuum valve

Legal Events

Date Code Title Description
A02 Decision of refusal

Effective date: 20040622

Free format text: JAPANESE INTERMEDIATE CODE: A02