JPH09255331A - Production of monodispersed hyperfine particles of oxide of rare earth element by inverse micelle method - Google Patents

Production of monodispersed hyperfine particles of oxide of rare earth element by inverse micelle method

Info

Publication number
JPH09255331A
JPH09255331A JP7166796A JP7166796A JPH09255331A JP H09255331 A JPH09255331 A JP H09255331A JP 7166796 A JP7166796 A JP 7166796A JP 7166796 A JP7166796 A JP 7166796A JP H09255331 A JPH09255331 A JP H09255331A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
rare
earth
micelle
oxide
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7166796A
Other languages
Japanese (ja)
Inventor
Kinya Adachi
Kenichi Machida
Toshiyuki Masui
敏行 増井
憲一 町田
吟也 足立
Original Assignee
Kinya Adachi
吟也 足立
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PROBLEM TO BE SOLVED: To obtain hyperfine particles of a monodispersed rare earth oxide having a very small average particle diameter by forming inverse micelle of a surfactant in a nonpolar org. solvent, solubilizing an aq. soln. contg. ions of a rare earth element and a precipitant in the micelle and allowing them to react with each other after mixing.
SOLUTION: Inverse micelle formed by a surfactant in a nonpolar org. solvent such as cyclohexane is used as a reaction field, an aq. soln. contg. ions of a rare earth element and a precipitant such as an ammonia soln. are solubilized in the micelle and they are allowed to react with each other after mixing to produce the objective monodispersed hyperfine particles of oxide of the rare earth element having ≤5nm average particle diameter. When an aq. soln. of salts of various rare earth elements is used as starting material, hyperfine particles of multiple oxide of the rare earth elements are easily produced.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、平均粒径が極めて小さく、かつ単分散性に優れた希土類酸化物および複合酸化物の超微粒子を簡便に製造する技術、に関するものである。 The present invention relates to an average particle diameter is extremely small, and monodispersity excellent rare earth oxides and conveniently producing a technology for ultra-fine particles of composite oxide, it relates to.

【0002】 [0002]

【従来の技術】従来の希土類酸化物微粒子では、粒径が大きい上に粒度分布が広く粒子の形状にばらつきがあるために、電子材料、機能性セラミックス材料、蛍光体材料および触媒材料等、近年特に高度精密化が要求されている分野での使用に際し、粒径を均一化するための粉砕および分級等の工程を必要としている。 In a conventional rare earth oxide particles, because of the variation in the shape of a wide particle size distribution on particle size is large, electronic materials, functional ceramics material, phosphor material and catalyst material and the like, in recent years in particular in use in areas where high precision has been required, in need of grinding and classification such step for uniformizing the particle size. このため、粒子製造工程における操作の複雑化および煩雑化、ならびにこれに伴う不純物の混入等の問題が生ずる。 Therefore, complexity and complication of the operation in the particle production processes, as well as problems of contamination of impurities due to this occurs.

【0003】 [0003]

【発明が解決しようという課題】本発明の目的は、従来の共沈法、加水分解法、均一沈澱法および水熱法等の製造法では成し得なかった、平均粒子径の極めて小さい単分散の希土類酸化物超微粒子ならびに複合酸化物超微粒子、およびそれらの製造方法を提供することにある。 The object of the invention NOW that solving the problems] The present invention, conventional coprecipitation, hydrolysis, could not constitute a homogeneous precipitation method and a hydrothermal method of preparation, the average very small monodisperse particle size there the rare earth oxide ultrafine particles and complex oxide ultrafine particles, and to provide a process for their preparation.

【0004】 [0004]

【課題を解決するための手段】前記の目的を達成するためには、物理的に大きさの限定された反応場において加水分解反応を進行させることにより粒成長を防ぐことが有効である。 To SUMMARY OF THE INVENTION To achieve the above object, it is effective to prevent the grain growth by advancing the hydrolysis reaction in the physical size of the limited reaction field. 本発明では、希土類硝酸塩を始めとする希土類塩の水溶液を逆ミセル内部に可溶化させ、これを同様に可溶化したアンモニア水または尿素を始めとする沈澱剤の逆ミセル溶液と、常圧下、室温で反応させることで酸化イットリウム、酸化セリウムを始めとする希土類酸化物超微粒子、および複合酸化物超微粒子を単分散状態で製造する。 In the present invention, the aqueous solution of rare earth salt, including a rare earth nitrate was solubilized inside reverse micelles, reverse micelle solution of precipitant to this similarly started aqueous ammonia or urea solubilized under normal pressure, at room temperature in yttrium oxide by reacting, for producing rare earth oxide ultrafine particles including cerium oxide, and a composite oxide ultrafine particles in monodisperse.

【0005】 [0005]

【作用】本発明では、高圧、高温プロセスを用いることなしに、単分散で平均粒径の極めて小さい希土類酸化物超微粒子ならびに複合酸化物超微粒子を製造することができる。 According to the present invention, high pressure, without the use of high-temperature process, it is possible to produce a very small rare earth oxide ultrafine particles and complex oxide ultrafine particles having an average particle diameter of monodisperse.

【0006】製造は、所定量の希土類イオンを含む水溶液を、界面活性剤および必要に応じてコサーファクタントを溶解した非極性有機溶媒中に加え、逆ミセルの形成により可溶化したのち、同様にしてアンモニア水あるいは尿素を逆ミセル内に可溶化した溶液と混合することで容易に行うことができる。 [0006] production, an aqueous solution containing rare earth ions of a predetermined amount, in addition to non-polar organic solvent to dissolve the co-surfactant if surfactant and necessary, after solubilized by the formation of reverse micelles, in a similar manner aqueous ammonia or urea can be easily performed by mixing the solubilized solution reverse micelles. 生成した沈澱粒子は高速遠心分離され、炭化水素、アルコール、アセトン、石油エーテル等により洗浄する。 The resulting precipitate particles are high speed centrifugation, washed hydrocarbons, alcohols, acetone, petroleum ether or the like.

【0007】さらに、本発明では出発物質に高純度の試薬を用いることが可能であるため、極めて高純度の酸化物超微粒子を得る手段としても有用である。 [0007] Further, since the present invention can be used a reagent of high purity in the starting material, it is also useful as a means to obtain very high purity oxide ultrafine particles. また、原料物質に2種類以上の金属イオンを含む溶液を用いることにより、常圧下、室温において、2成分系酸化物と同様の方法で単分散の複合酸化物超微粒子を製造することができる。 Further, by using a solution containing two or more metal ions in raw materials, atmospheric pressure, at room temperature, it is possible to produce monodisperse composite oxide ultrafine particles in the two-component oxide and a similar method.

【0008】 [0008]

【実施例】図1に示す操作および製造工程により、希土類酸化物を始めとする各種酸化物または複合酸化物の単分散超微粒子を製造することができる。 The EXAMPLES operations and manufacturing processes shown in FIG. 1, it is possible to produce monodisperse ultrafine particles various oxides or composite oxides, including rare earth oxides.

【0009】操作および製造は、以下の工程により行った。 [0009] The operation and production was carried out by the following steps. シクロヘキサン等の無極性有機溶媒中に、界面活性剤あるいは界面活性剤とコサーファクタントである炭素数4〜8の中級アルコールの混合溶液を加え、界面活性剤の逆ミセルを生成させる。 Nonpolar organic solvent such as cyclohexane, a mixed solution of Intermediate alcohols of 4 to 8 carbon atoms is a surfactant or surfactant and co-surfactant is added, to produce a reverse micelle of the surfactant. 種々の希土類イオンを含む水溶液および加水分解反応を起こさせる沈澱剤を上記の逆ミセル内にそれぞれ可溶化し、室温にて両者を混合、 Various precipitating agent to cause an aqueous solution, and hydrolysis reactions including rare earth ions respectively solubilized in reverse micelles above, mixing both at room temperature,
攪拌して反応させ、生成した沈澱を炭化水素、アセトン、アルコールにより洗浄した。 Stirring and reacted, the resulting precipitate hydrocarbons, washed acetone, an alcohol. これにより、酸化セリウムを始めとする平均粒径の極めて小さい各種の希土類酸化物超微粒子が得られた。 Thus, very small variety of rare earth oxide ultrafine particles having an average particle size including cerium oxide was obtained.

【0010】得られた超微粒子の透過型高分解能電子顕微鏡観察より、粒子径の非常に揃ったナノメートルサイズの超微粒子の生成が確認された。 [0010] From the obtained transmission high-resolution electron microscopy of ultrafine particles, the generation of ultrafine particles of very uniform nanometer-sized particle diameter were confirmed. また制限視野電子線回折リングからは、得られた超微粒子がすでに酸化物であることが確認された。 From also area electron diffraction ring, it obtained ultrafine particles are already oxide was confirmed.

【0011】図2は、硝酸セリウム水溶液を可溶化した逆ミセル溶液と、アンモニア水を同様に可溶化した溶液とを反応させて合成した酸化セリウム超微粒子の粒径分布図である。 [0011] Figure 2 is a particle size distribution diagram of the synthesized cerium oxide ultrafine particles is reacted with the reverse micelle solution was solubilized cerium nitrate solution, and a solution obtained by solubilizing similarly aqueous ammonia. 図より、生成粒子の粒径は1.6〜5.6nmに分布しており、その平均値は3.4nmであることが分かった。 From the figure, the particle size of the product particles are distributed 1.6~5.6Nm, it was found that the average value is 3.4 nm.

【0012】更に、その粒径分布の標準偏差は0.72nm [0012] In addition, the standard deviation of the grain size distribution is 0.72nm
となり、得られた超微粒子は極めて単分散性にも優れていることが明らかとなった。 Next, ultrafine particles obtained was found to be superior in very monodisperse.

【0013】 [0013]

【発明の効果】本発明は、粒子径の極めて小さい単分散の希土類酸化物超微粒子、および複合酸化物超微粒子を簡便に製造する技術である。 According to the present invention, a very small monodisperse rare earth oxide ultrafine particles and complex oxide ultrafine particles easily produce a technique for particle size. このため、出発原料に種々の希土類塩水溶液を用いることにより容易に目的の希土類酸化物超微粒子を製造することが可能であり、また複数の金属イオンを含む溶液を出発物質に用いることで各種の複合酸化物超微粒子の製造も可能となる。 Thus, easily it is possible to produce the rare earth oxide ultrafine particles of interest, also various by using a solution containing a plurality of metal ions in the starting material by the use of a variety of rare earth salt solution as a starting material production of a composite oxide ultrafine particles is also possible.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】逆ミセル内部を反応場とした単分散希土類酸化物超微粒子の製造工程図である。 1 is a manufacturing process diagram of monodisperse rare earth oxide ultrafine particles and reaction field inside reverse micelles.

【図2】逆ミセル法で製造した酸化セリウム超微粒子の粒径分布図である。 2 is a particle size distribution diagram of the cerium oxide ultrafine particles produced by the reversed micelle method.

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 平均粒径が5ナノメートル以下の単分散希土類酸化物超微粒子および複合酸化物超微粒子。 1. A mean particle size of 5 nm or less monodisperse rare earth oxide ultrafine particles and complex oxide ultrafine particles.
  2. 【請求項2】 無極性有機溶媒中において界面活性剤が形成する逆ミセル内部を反応場とし、逆ミセル内に可溶化された種々の希土類イオンを含む水溶液と、同様に可溶化された沈澱剤とを、それぞれ逆ミセル内部で混合および反応させることにより、ナノメートルサイズの単分散希土類酸化物ならびに複合酸化物超微粒子を製造する技術。 2. A nonpolar in an organic solvent inside reverse micelles surfactant is formed as a reaction field, an aqueous solution containing various rare earth ions solubilized in reverse micelles, similarly solubilized precipitant preparative, by mixing and reacting in the reverse micelle internally respectively, to produce monodisperse rare earth oxide and complex oxide ultrafine particles nanometer-sized technology.
JP7166796A 1996-03-27 1996-03-27 Production of monodispersed hyperfine particles of oxide of rare earth element by inverse micelle method Pending JPH09255331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7166796A JPH09255331A (en) 1996-03-27 1996-03-27 Production of monodispersed hyperfine particles of oxide of rare earth element by inverse micelle method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7166796A JPH09255331A (en) 1996-03-27 1996-03-27 Production of monodispersed hyperfine particles of oxide of rare earth element by inverse micelle method

Publications (1)

Publication Number Publication Date
JPH09255331A true true JPH09255331A (en) 1997-09-30

Family

ID=13467186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7166796A Pending JPH09255331A (en) 1996-03-27 1996-03-27 Production of monodispersed hyperfine particles of oxide of rare earth element by inverse micelle method

Country Status (1)

Country Link
JP (1) JPH09255331A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005320185A (en) * 2004-05-06 2005-11-17 Toyota Motor Corp Method and apparatus for producing multiple oxide powder
JP2006232558A (en) * 2005-01-26 2006-09-07 Fuji Kagaku Kk Composite metallic compound particle with particle size distribution controlled
US7745371B2 (en) 2004-03-09 2010-06-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst, metal oxide particle and production process thereof
JP2011140426A (en) * 2010-01-08 2011-07-21 Murata Mfg Co Ltd Method for producing metal oxide nanocrystal, method for producing metal oxide nanocrystal array film, substrate covered with metal oxide nanocrystal array film and method for producing the same
US7989387B2 (en) 2004-04-27 2011-08-02 Toyota Jidosha Kabushiki Kaisha Process for producing metal oxide particle and exhaust gas purifying catalyst
US8026193B2 (en) 2004-04-27 2011-09-27 Toyota Jidosha Kabushiki Kaisha Metal oxide particle, production process thereof and exhaust gas purifying catalyst
JP2012096962A (en) * 2010-11-02 2012-05-24 Ngk Insulators Ltd Lead-based piezoelectric material and production method therefor
US8293677B2 (en) 2007-05-23 2012-10-23 Toyota Jidosha Kabushiki Kaisha Core-shell structure, process for its production, and exhaust gas purification catalyst comprising core-shell structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745371B2 (en) 2004-03-09 2010-06-29 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying catalyst, metal oxide particle and production process thereof
US8026193B2 (en) 2004-04-27 2011-09-27 Toyota Jidosha Kabushiki Kaisha Metal oxide particle, production process thereof and exhaust gas purifying catalyst
US7989387B2 (en) 2004-04-27 2011-08-02 Toyota Jidosha Kabushiki Kaisha Process for producing metal oxide particle and exhaust gas purifying catalyst
JP2005320185A (en) * 2004-05-06 2005-11-17 Toyota Motor Corp Method and apparatus for producing multiple oxide powder
JP2006232558A (en) * 2005-01-26 2006-09-07 Fuji Kagaku Kk Composite metallic compound particle with particle size distribution controlled
JP4715998B2 (en) * 2005-01-26 2011-07-06 富士化学株式会社 Composite metal compound particles size distribution is controlled
US8293677B2 (en) 2007-05-23 2012-10-23 Toyota Jidosha Kabushiki Kaisha Core-shell structure, process for its production, and exhaust gas purification catalyst comprising core-shell structure
JP2011140426A (en) * 2010-01-08 2011-07-21 Murata Mfg Co Ltd Method for producing metal oxide nanocrystal, method for producing metal oxide nanocrystal array film, substrate covered with metal oxide nanocrystal array film and method for producing the same
JP2012096962A (en) * 2010-11-02 2012-05-24 Ngk Insulators Ltd Lead-based piezoelectric material and production method therefor

Similar Documents

Publication Publication Date Title
Egorova et al. Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin
Li et al. Different microstructures of β-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources
Djuričić et al. Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders
Niederberger et al. Nonaqueous and Halide-Free Route to Crystalline BaTiO3, SrTiO3, and (Ba, Sr) TiO3 Nanoparticles via a Mechanism Involving C− C Bond Formation
US5238671A (en) Chemical reactions in reverse micelle systems
Cao Nanostructures & nanomaterials: synthesis, properties & applications
Chen et al. A simple aqueous mineralization process to synthesize tetragonal molybdate microcrystallites
US5417956A (en) Preparation of nanophase solid state materials
US20050271566A1 (en) Tungsten comprising nanomaterials and related nanotechnology
Ganguli et al. Microemulsion-based synthesis of nanocrystalline materials
Bao et al. Formation mechanism and shape control of monodisperse magnetic CoFe2O4 nanocrystals
US5984997A (en) Combustion of emulsions: A method and process for producing fine powders
Zhang et al. Monodispersity control in the synthesis of monometallic and bimetallic quasi-spherical gold and silver nanoparticles
Chandrappa et al. Hydrothermal synthesis of vanadium oxide nanotubes from V2O5 gels
US20080245186A1 (en) Synthesis of nano-materials in ionic liquids
Sczancoski et al. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal
Vasquez et al. Nanocrystal conversion chemistry: A unified and materials-general strategy for the template-based synthesis of nanocrystalline solids
US4134852A (en) Process for preparing mixed metal oxide catalysts
Zhang et al. Structural characteristics of cerium oxide nanocrystals prepared by the microemulsion method
Komarneni et al. Microwave-hydrothermal processing for synthesis of electroceramic powders
Uskoković et al. Synthesis of materials within reverse micelles
US5938837A (en) Cerium oxide ultrafine particles and method for preparing the same
US20040253170A1 (en) Process for producing nano-powders and poeders of nano-particles loose aggregate
Zhang et al. Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion exchange from their hydroxide [M (OH) 3] parents
Du et al. Ligand-free self-assembly of ceria nanocrystals into nanorods by oriented attachment at low temperature