JPH09253936A - Manufacture of electric discharge machining electrode - Google Patents

Manufacture of electric discharge machining electrode

Info

Publication number
JPH09253936A
JPH09253936A JP8602896A JP8602896A JPH09253936A JP H09253936 A JPH09253936 A JP H09253936A JP 8602896 A JP8602896 A JP 8602896A JP 8602896 A JP8602896 A JP 8602896A JP H09253936 A JPH09253936 A JP H09253936A
Authority
JP
Japan
Prior art keywords
electrode
sheet
applying
conductive metal
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8602896A
Other languages
Japanese (ja)
Inventor
Shoji Okawa
祥二 大川
Toru Nonoyama
透 野々山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP8602896A priority Critical patent/JPH09253936A/en
Publication of JPH09253936A publication Critical patent/JPH09253936A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manufacture an electric discharge processing electrode in a short term of works by forming a sheet material into each sectional form on the basis of the three-dimensional form data of the electric discharge processing electrode, and applying a conductive metal coat on the surface of the sheet layered product. SOLUTION: A master model 13 is designed by a three-dimensional CAD 12, and an electrode 14 is designed from the master model 13 by the three- dimensional CAD 12. The three-dimensional CAD data of this electrode 14 is loaded on a high-speed three-dimensional molding machine 15. The high-speed three-dimensional molding machine 15 forms a slice data from the three- dimensional CAD data, cuts a sheet such as paper into sectional forms by laser, and adheres them together to form an electrode model 1. A surface treatment coat layer 2, a chemical copper plating layer 3 and an electric copper plating layer 4 are formed on this electrode model 1 in this order.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加工液中で電極と
加工物との間に放電を起こさせ、電極の対向部分の材料
を除去して加工する放電加工用電極の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electric discharge machining electrode in which electric discharge is caused between an electrode and a workpiece in a machining liquid to remove the material at a portion facing the electrode for machining. is there.

【0002】[0002]

【従来の技術】放電加工は2次元,3次元の複雑な形状
の加工が容易であり、仕上げに方向性がなく、材料の加
工条件によっては鏡面仕上げができる。
2. Description of the Related Art In electrical discharge machining, it is easy to machine a two-dimensional or three-dimensional complex shape, there is no direction for finishing, and mirror finishing is possible depending on the machining conditions of the material.

【0003】この放電加工に用いられる電極は、銅,銀
タングステン,銅タングステンの導電性金属材料やグラ
ファイトが使用され、この電極の加工方法として、マス
タモデルに倣って旋削,フライス,研削を行う機械加工
方法と、木型や石膏によるマスタモデル(雌型)により
樹脂,ゴム,石膏で電鋳母型(雄型)をとり、これの表
面を導電化処理(エッチングし、化学銅メッキする)を
した後、この電鋳母型を用いて電極補強材の表面に銅メ
ッキ層を形成する銅電鋳法がある。
Electrodes used in this electric discharge machining are made of copper, silver tungsten, conductive metal materials such as copper tungsten or graphite, and as a machining method for these electrodes, a machine for turning, milling and grinding according to a master model. Using the processing method and the master model (female mold) made of wood or gypsum, take the electroformed mother mold (male mold) with resin, rubber, and gypsum, and subject the surface to electroconductivity treatment (etching and chemical copper plating). After that, there is a copper electroforming method in which a copper plating layer is formed on the surface of the electrode reinforcing material using this electroforming mother die.

【0004】[0004]

【発明が解決しようとする課題】上記従来の電極の加工
方法は、何れの方法においてもマスタモデルを必要と
し、このマスタモデルは手作業で作っており、マスタモ
デルの造形に人手の工作がかかり工期が長い。何れの方
法も反転型を作る分だけ工期が長くなり、これらの結
果、コスト高になっている。
In any of the above-mentioned conventional electrode machining methods, a master model is required, and this master model is made by hand, and the master model is manually shaped. The construction period is long. In either method, the construction period is lengthened by the amount of making the inverted type, and as a result, the cost is high.

【0005】本発明の目的は、人手の工作をかけず短期
間の工期で低コストにより放電加工用電極の製造を可能
にしたことである。
An object of the present invention is to make it possible to manufacture an electrode for electric discharge machining at a low cost in a short construction period without manual work.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の方法は、放電加工用電極の3次元形状デー
タに基づいて各断面の形状にシート状素材を形成する工
程と、前記シート素材を積層および接着してシート積層
体を構成する工程と、前記シート積層体の表面に導電性
金属被膜を施す工程とからなることを特徴とするもので
ある。
The method of the present invention for achieving the above object comprises the steps of forming a sheet-like material in the shape of each cross section based on the three-dimensional shape data of an electric discharge machining electrode, The method is characterized by comprising a step of laminating and adhering sheet materials to form a sheet laminate, and a step of applying a conductive metal coating to the surface of the sheet laminate.

【0007】前記シート積層体の表面に導電性金属被膜
を施す工程は、前記シート積層体の表面処理を施す工程
と、化学メッキによって導電性金属被膜を施す工程と、
さらに電気メッキによって導電性金属被膜を施す工程と
からなるものである。
The step of applying a conductive metal coating to the surface of the sheet laminate is a step of subjecting the sheet laminate to a surface treatment, and a step of applying a conductive metal coating by chemical plating,
Further, it comprises a step of applying a conductive metal film by electroplating.

【0008】また、前記シート積層体の表面に導電性金
属被膜を施す工程は、前記シート積層体の表面処理を施
す工程と、スパッタリングによって導電性金属被膜を施
す工程と、さらに電気メッキによって導電性金属被膜を
施す工程とからなるものである。
The step of applying a conductive metal coating to the surface of the sheet laminate is a step of subjecting the sheet laminate to a surface treatment, a step of applying a conductive metal coating by sputtering, and further a step of electroplating to provide conductivity. And a step of applying a metal coating.

【0009】さらに、前記シート積層体の表面に導電性
金属被膜を施す工程は、溶射によって導電性金属被膜を
施す工程からなるものである。
Further, the step of applying a conductive metal coating on the surface of the sheet laminate comprises a step of applying a conductive metal coating by thermal spraying.

【0010】[0010]

【発明の実施の形態】以下本発明の実施の形態を図面に
基づいて説明する。図1において、6は本発明方法によ
って製造した電極の1例であり、1はシート積層体によ
って所要の形態に造形され電極モデルである。この電極
モデル1の表面には表面処理被膜層2,化学銅メッキ層
3及び電気銅メッキ層4がその順に形成されている。図
2は図1の形状の電極モデル1において、上部のA−A
断面形状、図3は中央部のB−B断面形状、図4は下部
のC−C断面形状である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, 6 is an example of an electrode manufactured by the method of the present invention, and 1 is an electrode model formed into a required shape by a sheet laminate. A surface treatment coating layer 2, a chemical copper plating layer 3 and an electrolytic copper plating layer 4 are formed in this order on the surface of the electrode model 1. FIG. 2 is a top view of the electrode model 1 having the shape shown in FIG.
A cross-sectional shape, FIG. 3 is a BB cross-sectional shape of a central portion, and FIG. 4 is a CC cross-sectional shape of a lower portion.

【0011】図5は前記電極6による放電加工を示し、
7は加工液8が入っている加工槽である。この加工槽7
内の底部にワークWを置き、電極送りモータ10によっ
て進退送り移動する電極ホルダ9に装着した電極6と前
記ワークWとを放電発生装置11に接続し、電極6をワ
ークWに接近して、加工液8中で電極6とワークWとの
間に放電を起こさせ、電極6の対向部分の材料を電極6
の形状に従って除去して加工するものである。
FIG. 5 shows electric discharge machining by the electrode 6,
7 is a processing tank containing the processing liquid 8. This processing tank 7
The work W is placed on the bottom of the inside, and the electrode 6 mounted on the electrode holder 9 that is moved forward and backward by the electrode feed motor 10 and the work W are connected to the discharge generator 11, and the electrode 6 is brought close to the work W, An electric discharge is generated between the electrode 6 and the work W in the machining liquid 8 so that the material of the portion facing the electrode 6 is
It is removed according to the shape of and processed.

【0012】本発明は上記のような放電加工に用いられ
る上記図1の電極6を人手の工作をかけず短期間の工期
で低コストにより製造する方法を提供するものである。
以下その製造方法について説明する。
The present invention provides a method for manufacturing the electrode 6 of FIG. 1 used in the above-mentioned electric discharge machining at a low cost in a short construction period without manual work.
The manufacturing method will be described below.

【0013】先ず、電極モデル1の造形までの方法の概
要につい図6で説明すると、3次元CAD12でマスタ
モデル13を設計し、3次元CAD12で前記マスタモ
デルから電極14を設計する。この電極14の3次元C
ADデータを高速3次元成形機15にロードし、高速3
次元成形機15で電極モデル1を造形する。
First, the outline of the method for forming the electrode model 1 will be described with reference to FIG. 6. The master model 13 is designed by the three-dimensional CAD 12, and the electrode 14 is designed by the three-dimensional CAD 12 from the master model. Three-dimensional C of this electrode 14
Load AD data into the high-speed 3D molding machine 15
The electrode model 1 is modeled by the three-dimensional molding machine 15.

【0014】前記高速3次元成形機15(Lamina
ted Obuject Manufactring)
は、3次元CADデータからスライスデータを作成し、
レーザで紙などのシートを断面形状に切断し、貼り重ね
てモデルを作る機械であり、以下LOM15と略称す
る。
The high-speed three-dimensional molding machine 15 (Lamina)
ted Object Manufacturing)
Creates slice data from 3D CAD data,
This is a machine for cutting a sheet of paper or the like into a cross-sectional shape with a laser and laminating them to make a model, which is hereinafter abbreviated as LOM15.

【0015】前記LOM15の構造は、図6で示すよう
に、高さ用エンコーダ32と連結したテーブル上昇用モ
ータ31によって上昇動するテーブル30と、このテー
ブル30の上方に配置され、レーザX軸送り用モータ2
5とレーザY軸送り用モータ26とによってX−Y軸線
方向に制御されるレーザ24と、このレーザ24と平行
してヒータローラ送り用モータ29によりX軸線方向に
制御されるリミットスイッチ28が付設されているヒー
タローラ27とを備えている。
The structure of the LOM 15 is, as shown in FIG. 6, a table 30 which is moved upward by a table lifting motor 31 connected to a height encoder 32, and a laser X-axis feed which is arranged above the table 30. Motor 2
5, a laser 24 controlled in the XY axis direction by the laser 5 and the laser Y-axis feed motor 26, and a limit switch 28 which is controlled in the X-axis direction by the heater roller feed motor 29 in parallel with the laser 24. And a heater roller 27 that is installed.

【0016】さらに、接着剤がコーティングされたシー
トがロール状に巻き取られているロール状シート33を
巻き戻すロール状シート回転用モータ34と、巻き戻さ
れたシート33aを前記テーブル30の上方とレーザ2
4及びヒータローラ27の下方との間を送り走行させる
ガイドローラ35とシート送りモータ37により回転す
る送りローラ36と、排出シート巻き取り用モータ39
によって回転し、前記送りローラ36を通過して排出さ
れるシート33aを巻き取る巻取軸38とを備えてい
る。
Further, a roll-shaped sheet rotating motor 34 for rewinding the roll-shaped sheet 33 in which the adhesive-coated sheet is wound in a roll shape, and a rewound sheet 33a are provided above the table 30. Laser 2
4 and below the heater roller 27, a guide roller 35 that feeds and runs between the roller 4 and the heater roller 27, a feed roller 36 that is rotated by a sheet feed motor 37, and a discharge sheet winding motor 39
And a take-up shaft 38 for taking up the sheet 33a that is discharged by passing through the feed roller 36.

【0017】前記レーザX軸送り用モータ25,レーザ
Y軸送り用モータ26,ヒータローラ送り用モータ2
9,テーブル上昇用モータ31,ロール状シート回転用
モータ34,シート送りモータ37,排出シート巻き取
り用モータ39は、オンラインで結ばれた3次元CAD
12から受け渡しされるフロッピィの3次元CADデー
タを入力するLOM15に組み込まれた制御装置50に
よって制御される。
The laser X-axis feed motor 25, the laser Y-axis feed motor 26, the heater roller feed motor 2
9, a table raising motor 31, a roll-shaped sheet rotating motor 34, a sheet feeding motor 37, and a discharge sheet winding motor 39 are connected online to a three-dimensional CAD.
It is controlled by the control device 50 incorporated in the LOM 15 which inputs the three-dimensional CAD data of the floppy transferred from 12.

【0018】前記LOM15による電極モデル1の造形
までの方法を図7乃至図15によって説明する。図7に
おいて、シート送りモータ37とロール状シート回転用
モータ34を連動させ、シート33aを設定されたピッ
チだけ送る。このシート送りモータ37によってシート
33aが送られると、図略のトルクリミッタで設定され
たトルク以下になるため、排出シート巻き取り用モータ
39の回転がトルクリミッタを介して巻取軸38に伝達
され、シート33aが巻き取られ、このようにして巻き
取られると、設定以上のトルクになって排出シート巻き
取り用モータ39の回転がトルクリミッタでスリップす
る。
A method of forming the electrode model 1 by the LOM 15 will be described with reference to FIGS. 7 to 15. In FIG. 7, the sheet feed motor 37 and the roll-shaped sheet rotation motor 34 are interlocked to feed the sheet 33a by a set pitch. When the sheet 33a is fed by the sheet feeding motor 37, the torque becomes less than or equal to the torque set by a torque limiter (not shown), so that the rotation of the discharged sheet winding motor 39 is transmitted to the winding shaft 38 via the torque limiter. The sheet 33a is wound up. When the sheet 33a is wound up in this manner, the torque becomes higher than the set value, and the rotation of the discharge sheet winding motor 39 slips by the torque limiter.

【0019】図8において、ヒータローラ送り用モータ
29によって、リミットスイッチ28を造形中モデル1
aに当接可能な位置へ移動させる。また、テーブル上昇
用モータ31によってテーブル30を上昇させ、造形中
モデル1aにリミットスイッチ28が当るとテーブル3
0の上昇が停止する。
In FIG. 8, the limit switch 28 is being modeled by the heater roller feeding motor 29.
It is moved to a position where it can contact a. Further, when the table 30 is raised by the table raising motor 31 and the limit switch 28 hits the model 1a during modeling, the table 3 is moved.
The rise of 0 stops.

【0020】図9において、ヒータローラ送り用モータ
29によってヒータローラ27をX軸線方向に往復動さ
せ、シート33aの裏面の接着剤(ホットメルト)を溶
かして造形中モデル1aに貼りつける。
In FIG. 9, the heater roller 27 is reciprocated in the X-axis direction by the heater roller feeding motor 29 to melt the adhesive (hot melt) on the back surface of the sheet 33a and attach the sheet 33a to the modeling model 1a.

【0021】図10において、レーザX軸送り用モータ
25とレーザY軸送り用モータ26とによって、レーザ
24をX,Y軸線方向に移動させ、レーザビーム24a
で電極14の断面形状にシート33aをカットする。
In FIG. 10, the laser X-axis feed motor 25 and the laser Y-axis feed motor 26 move the laser 24 in the X- and Y-axis line directions to produce a laser beam 24a.
The sheet 33a is cut into the sectional shape of the electrode 14 by.

【0022】上記の動作を繰返行うことにより、造形中
モデル1aは図11で示すように、多数の切れ端40と
外枠41のカット線が付され、図12で示すようなシー
ト積層体1bが得られる。
By repeating the above operation, the modeling model 1a is provided with a large number of cut edges 40 and cut lines of the outer frame 41 as shown in FIG. 11, and the sheet laminated body 1b as shown in FIG. Is obtained.

【0023】そして、図13で示すように、外枠41を
外し、図14及び図15で示すように、切れ端40を順
次除いて行くことにより、シート積層体1bよりなる電
極モデル1が得られるのである。
Then, as shown in FIG. 13, the outer frame 41 is removed, and as shown in FIGS. 14 and 15, the cut edges 40 are sequentially removed to obtain the electrode model 1 composed of the sheet laminated body 1b. Of.

【0024】さて、前記LOM15で造形した電極モデ
ル1の表面に銅等の導電性金属被膜を施す必要がある。
この銅等の導電性金属被膜を形成する方法としては、電
気メッキあるいはプラズマ溶射法が適当である。前記電
気メッキ法では、シート積層体1bよりなる電極モデル
1表面を前処理する必要がある。
Now, it is necessary to apply a conductive metal film such as copper on the surface of the electrode model 1 formed by the LOM 15.
As a method for forming the conductive metal coating such as copper, electroplating or plasma spraying is suitable. In the electroplating method, it is necessary to pretreat the surface of the electrode model 1 made of the sheet laminated body 1b.

【0025】この前処理は図16で示すように、電極モ
デル1の表面に樹脂系塗料を刷毛塗り(a)する。これ
は電極モデル1の表面の段差を埋めてメッキしやすくす
るためである。
In this pretreatment, as shown in FIG. 16, the surface of the electrode model 1 is brushed with a resin-based paint (a). This is to fill the steps on the surface of the electrode model 1 to facilitate plating.

【0026】次に脱脂液槽16に電極モデル1を浸漬
(b)し手垢脂等を除去して、化学エッチング槽17に
浸漬(c)し親水性を付与する。さらに、感応性付与液
槽18に浸漬(d)し還元力のある金属塩を吸着させ、
そして最後に活性化付与液槽19に浸漬(e)し触媒作
用のある金属(金,銀,パラジウム,ロジウム等)を吸
着させる。
Next, the electrode model 1 is dipped (b) in the degreasing liquid tank 16 to remove the hand grease and the like, and then immersed (c) in the chemical etching tank 17 to impart hydrophilicity. Further, it is immersed (d) in the sensitivity-imparting liquid tank 18 to adsorb a reducing metal salt,
Finally, it is immersed (e) in the activation imparting liquid tank 19 to adsorb a metal having a catalytic action (gold, silver, palladium, rhodium, etc.).

【0027】前記表面処理した電極モデル1を図17で
示すように、硫酸銅,ロシェル塩,ホルムアルデヒド,
安定剤が収容されている化学銅メッキ槽20に浸漬して
化学銅メッキ層3を形成し、さらに図18で示すよう
に、硫酸銅22の液中に銅電極23が対向して浸漬して
いる電気銅メッキ槽21に浸漬して電気銅メッキ層4を
施す。(請求項2)
As shown in FIG. 17, the surface-treated electrode model 1 was treated with copper sulfate, Rochelle salt, formaldehyde,
The chemical copper plating tank 20 containing the stabilizer is dipped to form the chemical copper plating layer 3, and further, as shown in FIG. The electrolytic copper plating layer 4 is applied by immersing it in the electrolytic copper plating bath 21. (Claim 2)

【0028】また、他の方法として、前記図16(a)
の表面に樹脂系塗料を刷毛塗りした電極モデル1に銅が
付着しやすいようにウレタン系塗料を塗布して表面処理
を施し、これを図19で示すように、真空槽43内に被
覆材の原料である銅ターゲット44と、これと対面して
回転モータ45で回転する電極モデル1とを配置し、銅
ターゲット44を負に印加して真空槽43内にアルゴン
ガスを吹き込み、かつ真空ポンプ引きして、銅ターゲッ
ト44をアルゴンガスによってたたき、その材料の銅粒
子を飛び出させて、回転する電極モデル1の表面に化学
銅メッキ層3とと同様な銅被膜をスパッタリングにて施
し、電気銅メッキ槽21にて電気銅メッキ層4を形成す
る。(請求項3)
Further, as another method, FIG.
The electrode model 1 whose surface is coated with a resin-based paint is coated with a urethane-based paint so that copper is easily attached to the surface of the electrode model 1, and the surface treatment is performed. As shown in FIG. A copper target 44 as a raw material and an electrode model 1 which faces the copper target 44 and is rotated by a rotary motor 45 are arranged, the copper target 44 is negatively applied to blow argon gas into the vacuum chamber 43, and a vacuum pump is pulled. Then, the copper target 44 is hit with argon gas to cause copper particles of the material to fly out, and a copper coating similar to the chemical copper plating layer 3 is sputtered on the surface of the rotating electrode model 1 to perform electrolytic copper plating. The electrolytic copper plating layer 4 is formed in the bath 21. (Claim 3)

【0029】この場合は、図16で示す(b)〜(e)
処理と図17の処理の前処理工程が省略され、図16
(a)の表面に樹脂系塗料を刷毛塗りする工程だけにな
るため、前処理工程の工期が短縮される。
In this case, (b) to (e) shown in FIG.
The process and the pretreatment step of the process of FIG. 17 are omitted, and the process of FIG.
Since only the step of brush-painting the resin-based paint on the surface of (a) is completed, the period of the pretreatment step is shortened.

【0030】ここで上記した実施の形態において、化学
メッキと電気メッキあるいは化学メッキとスパッタリン
グを併用するのは、化学メッキあるいはスパッタリング
のみでは放電加工に必要な厚さの被膜を形成することが
できないからである。
In the above-described embodiment, the chemical plating and the electroplating or the chemical plating and the sputtering are used together because the chemical plating or the sputtering alone cannot form a film having a thickness necessary for electric discharge machining. Is.

【0031】さらに、他の方法として、電極モデル1を
図16(a)〜(e)と図17前処理を行わずに図20
で示すように、アルゴンガスと銅粉末を導入し、かつ陰
極と陽極とによって構成するノズル42から超高温のジ
ェットを噴出させて電極モデル1の表面にプラズマ溶射
法により銅被膜を形成する。(請求項4)
Further, as another method, the electrode model 1 shown in FIGS. 16A to 16E and FIG.
As shown in (1), an argon gas and copper powder are introduced, and an ultrahigh temperature jet is ejected from a nozzle 42 composed of a cathode and an anode to form a copper coating on the surface of the electrode model 1 by plasma spraying. (Claim 4)

【0032】この場合は、図16で示す(b)〜(e)
処理と図17の処理の前処理工程が省略され、LOM1
5で造形した電極モデル1の表面に直接プラズマ溶射法
によって銅被膜を形成する1工程ですみ、これも工期が
著しく短縮する。尚、溶射法としては、上記のプラズマ
溶射法に限られるものではなく、ガス溶射法やアーク溶
射法を適用することもできる。
In this case, (b) to (e) shown in FIG.
The processing and the pretreatment steps of the processing of FIG. 17 are omitted, and LOM1
Only one step of forming a copper coating on the surface of the electrode model 1 shaped in 5 by the plasma spraying method is required, which also shortens the construction period remarkably. The thermal spraying method is not limited to the above plasma thermal spraying method, and a gas thermal spraying method or an arc thermal spraying method can be applied.

【0033】上記本発明では、マスタモデルを手作業で
工作することと、このマスタモデルによって機械加工方
法あるいは銅電鋳法による従来の電極の加工方法に比べ
るとはるかに短期間で、しかも低コストで製造すること
ができる。
In the present invention, the master model is machined by hand, and the master model is used in a much shorter period of time and at a lower cost than the conventional method of machining the electrode by the machining method or the copper electroforming method. Can be manufactured in.

【0034】この短期間で、しかも低コストで製造でき
ることは、最終決定された設計の製品を放電加工するた
めの電極の製造に有利であることは勿論のこと、試行錯
誤が繰り返される試作品を放電加工するための電極とし
ては極めて有益である。
The fact that it can be manufactured in this short period of time and at low cost is of course advantageous for the manufacture of electrodes for electrical discharge machining of the product of the final design, and a trial product in which trial and error is repeated is produced. It is extremely useful as an electrode for electrical discharge machining.

【0035】尚、LOM15で造形する電極モデル1の
シート素材は、紙に接着材がコーティングされたものの
他に、樹脂シートに接着材がコーティングされたものや
金属シートあるいはセラミックと樹脂からなるシートに
接着剤がコーティングされたものが用いられる。
The sheet material of the electrode model 1 modeled by LOM15 is not only the paper coated with the adhesive, but also the resin sheet coated with the adhesive, the metal sheet, or the sheet made of ceramic and resin. The one coated with an adhesive is used.

【0036】[0036]

【発明の効果】以上のように本発明によると、放電加工
に用いられる電極を人手の工作によるマスタモデルの造
形や反転型を作る必要がなく、複雑な形状の電極であっ
ても短期間で低コストにより製造することができる。
As described above, according to the present invention, it is not necessary to form a master model or an inversion model of an electrode used for electric discharge machining by hand, and even an electrode having a complicated shape can be produced in a short period of time. It can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法によって製造した電極の1例を示す
縦断面図
FIG. 1 is a vertical sectional view showing an example of an electrode manufactured by the method of the present invention.

【図2】図1のA−A線断面図FIG. 2 is a sectional view taken along line AA of FIG. 1;

【図3】図1のB−B線断面図FIG. 3 is a sectional view taken along line BB of FIG. 1;

【図4】図1のC−C線断面図FIG. 4 is a sectional view taken along line CC of FIG.

【図5】放電加工している状態図FIG. 5: State diagram of electrical discharge machining

【図6】本発明方法の概要説明図FIG. 6 is a schematic explanatory view of the method of the present invention.

【図7】〜FIG. 7

【図15】電極モデルの造形工程の説明図FIG. 15 is an explanatory diagram of an electrode model forming process.

【図16】電極モデルの表面処理工程の説明図FIG. 16 is an explanatory diagram of a surface treatment process of an electrode model.

【図17】電極モデルの表面処理工程の説明図FIG. 17 is an explanatory diagram of a surface treatment process of an electrode model.

【図18】電極モデルに導電性金属被膜を施す電気メッ
キ工程の説明図
FIG. 18 is an explanatory diagram of an electroplating process for applying a conductive metal film to an electrode model.

【図19】電極モデルに導電性金属被膜を施すスパッタ
リング工程の説明図
FIG. 19 is an explanatory diagram of a sputtering process of applying a conductive metal film to an electrode model.

【図20】電極モデルに導電性金属被膜を施すプラズマ
溶射工程の説明図
FIG. 20 is an explanatory diagram of a plasma spraying process of applying a conductive metal coating to an electrode model.

【符号の説明】[Explanation of symbols]

1 電極モデル 1a 造形中モデル 1b シート積層体 2 表面処理被膜層 3 化学銅メッキ層 4 電気銅メッキ層 12 3次元CAD 15 高速3次元成形機(LOM) 16 脱脂液槽 17 化学エッチング槽 18 感応性付与液槽 19 活性化付与液槽 20 化学銅メッキ槽 21 電気銅メッキ槽 24 レーザ 27 ヒータローラ 30 テーブル 33a シート 42 ノズル(プラズマ溶射の) 43 真空槽 50 制御装置 1 Electrode Model 1a Model during Modeling 1b Sheet Laminate 2 Surface Treatment Coating Layer 3 Chemical Copper Plating Layer 4 Electrocopper Plating Layer 12 3D CAD 15 High Speed 3D Molding Machine (LOM) 16 Degreasing Liquid Tank 17 Chemical Etching Tank 18 Sensitive Application liquid tank 19 Activation application liquid tank 20 Chemical copper plating tank 21 Electrolytic copper plating tank 24 Laser 27 Heater roller 30 Table 33a Sheet 42 Nozzle (plasma spraying) 43 Vacuum tank 50 Control device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 放電加工用電極の3次元形状データに基
づいて各断面の形状にシート状素材を形成する工程と、
前記シート素材を積層および接着してシート積層体を構
成する工程と、前記シート積層体の表面に導電性金属被
膜を施す工程とからなることを特徴とする放電加工用電
極の製造方法。
1. A step of forming a sheet-shaped material in a shape of each cross-section based on three-dimensional shape data of an electric discharge machining electrode,
A method of manufacturing an electric discharge machining electrode, comprising: a step of laminating and adhering the sheet materials to form a sheet laminate; and a step of applying a conductive metal coating to the surface of the sheet laminate.
【請求項2】 前記シート積層体の表面に導電性金属被
膜を施す工程は、前記シート積層体の表面処理を施す工
程と、化学メッキによって導電性金属被膜を施す工程
と、さらに電気メッキによって導電性金属被膜を施す工
程とからなる請求項1に記載の放電加工用電極の製造方
法。
2. The step of applying a conductive metal coating to the surface of the sheet laminate, the step of subjecting the sheet laminate to a surface treatment, the step of applying a conductive metal coating by chemical plating, and the further step of conducting by electroplating. The method for producing an electrode for electric discharge machining according to claim 1, comprising a step of applying a conductive metal coating.
【請求項3】 前記シート積層体の表面に導電性金属被
膜を施す工程は、前記シート積層体の表面処理を施す工
程と、スパッタリングによって導電性金属被膜を施す工
程と、さらに電気メッキによって導電性金属被膜を施す
工程とからなる請求項1に記載の放電加工用電極の製造
方法。
3. The step of applying a conductive metal coating to the surface of the sheet laminate, the step of subjecting the sheet laminate to a surface treatment, the step of applying a conductive metal coating by sputtering, and further the conductivity by electroplating. The method for producing an electrode for electric discharge machining according to claim 1, comprising a step of applying a metal coating.
【請求項4】 前記シート積層体の表面に導電性金属被
膜を施す工程は、溶射によって導電性金属被膜を施す工
程からなる請求項1に記載の放電加工用電極の製造方
法。
4. The method of manufacturing an electrode for electrical discharge machining according to claim 1, wherein the step of applying a conductive metal film on the surface of the sheet laminate comprises a step of applying a conductive metal film by thermal spraying.
JP8602896A 1996-03-15 1996-03-15 Manufacture of electric discharge machining electrode Pending JPH09253936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8602896A JPH09253936A (en) 1996-03-15 1996-03-15 Manufacture of electric discharge machining electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8602896A JPH09253936A (en) 1996-03-15 1996-03-15 Manufacture of electric discharge machining electrode

Publications (1)

Publication Number Publication Date
JPH09253936A true JPH09253936A (en) 1997-09-30

Family

ID=13875210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8602896A Pending JPH09253936A (en) 1996-03-15 1996-03-15 Manufacture of electric discharge machining electrode

Country Status (1)

Country Link
JP (1) JPH09253936A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006058575A2 (en) * 2004-11-29 2006-06-08 Carl Johannes Fruth Workpiece electrochemically processing method and an electrode for said method
JPWO2007026930A1 (en) * 2005-08-30 2009-03-12 国立大学法人東京農工大学 Electrode for electrical discharge machining
US7618514B2 (en) * 2006-02-03 2009-11-17 United Technologies Corporation Photo-etched EDM electrode
EP2418037A1 (en) * 2010-08-12 2012-02-15 Boehringer Ingelheim microParts GmbH ECM Electrode
CN103084676A (en) * 2013-02-05 2013-05-08 深圳大学 Manufacture method of three-dimensional micro electrical discharge electrode
CN105537709A (en) * 2016-01-28 2016-05-04 深圳大学 Three-dimensional microstructure processing method based on bidirectional three-dimensional feature stacking
CN105537703A (en) * 2016-01-12 2016-05-04 深圳大学 Laminated fitting preparing method for three-dimensional microelectrode
CN110814450A (en) * 2019-11-29 2020-02-21 深圳大学 Preparation method of multi-material laminated electrode
US11465223B2 (en) * 2018-12-20 2022-10-11 Agie Charmilles Sa Methods and processing unit for electric discharge machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006058575A2 (en) * 2004-11-29 2006-06-08 Carl Johannes Fruth Workpiece electrochemically processing method and an electrode for said method
WO2006058575A3 (en) * 2004-11-29 2006-09-14 Carl Johannes Fruth Workpiece electrochemically processing method and an electrode for said method
JPWO2007026930A1 (en) * 2005-08-30 2009-03-12 国立大学法人東京農工大学 Electrode for electrical discharge machining
US7618514B2 (en) * 2006-02-03 2009-11-17 United Technologies Corporation Photo-etched EDM electrode
EP2418037A1 (en) * 2010-08-12 2012-02-15 Boehringer Ingelheim microParts GmbH ECM Electrode
CN103084676A (en) * 2013-02-05 2013-05-08 深圳大学 Manufacture method of three-dimensional micro electrical discharge electrode
CN105537703A (en) * 2016-01-12 2016-05-04 深圳大学 Laminated fitting preparing method for three-dimensional microelectrode
CN105537709A (en) * 2016-01-28 2016-05-04 深圳大学 Three-dimensional microstructure processing method based on bidirectional three-dimensional feature stacking
US11465223B2 (en) * 2018-12-20 2022-10-11 Agie Charmilles Sa Methods and processing unit for electric discharge machine
CN110814450A (en) * 2019-11-29 2020-02-21 深圳大学 Preparation method of multi-material laminated electrode
CN110814450B (en) * 2019-11-29 2020-09-29 深圳大学 Preparation method of multi-material laminated electrode

Similar Documents

Publication Publication Date Title
US10781524B2 (en) Methods of preparing articles by electrodeposition and additive manufacturing processes
US10501857B2 (en) Additive manufacturing by localized electrochemical deposition
Arthur et al. Using rapid prototyping to produce electrical discharge machining electrodes
JP6785323B2 (en) Systems and methods for machining workpieces and articles machined from workpieces
US5461769A (en) Method of manufacturing electrically conductive elements particularly EDM or ECM electrodes
JPH04337096A (en) Manufacture of prototype part made of metal
JPH09253936A (en) Manufacture of electric discharge machining electrode
Rajput et al. Micromanufacturing by selective jet electrodeposition process
JP3217999B2 (en) Component manufacturing method and component manufacturing device
Tay et al. The potential of plating techniques in the development of rapid EDM tooling
KR101871350B1 (en) Method for Fabricating the Jewelry
Hsu et al. EDM electrode manufacturing using RP combining electroless plating with electroforming
EP0688624B1 (en) Electric discharge machining method for insulating material using electroconductive layer formed thereon
Phull et al. Copper electroforming optimization for fused deposition modeling produced ABS components for indirect tooling applications
Liu et al. Combined machining of Ti-6Al-4V alloy using electrochemical milling and electrochemical grinding
CN112059335B (en) Preparation method of multi-window revolving body tool electrode for rotary printing electrolytic machining
Alamro et al. Effect of a rapid tooling technique in a 3D printed part for developing an EDM electrode
US7244323B2 (en) Method and materials to inhibit object consolidation in localized areas
CN106964854A (en) A kind of complicated electrode preparation method for electrochemistry processing and forming
JP4333037B2 (en) Discharge surface treatment method and apparatus, and discharge surface treatment electrode
Li et al. Rapid production of customized 3D electronics via hybrid additive manufacturing technology
JP4448271B2 (en) Component manufacturing method and component manufacturing apparatus
JPH10237689A (en) Rapid prototyping method for metallic parts by electrolyte jet processing
Deshmukh et al. Simultaneous electrodeposition and electrochemical machining process planning methodology
JP6662988B1 (en) Mold surface treatment method