JPH09253814A - Method for restraining surface crack on cast slab - Google Patents

Method for restraining surface crack on cast slab

Info

Publication number
JPH09253814A
JPH09253814A JP7226596A JP7226596A JPH09253814A JP H09253814 A JPH09253814 A JP H09253814A JP 7226596 A JP7226596 A JP 7226596A JP 7226596 A JP7226596 A JP 7226596A JP H09253814 A JPH09253814 A JP H09253814A
Authority
JP
Japan
Prior art keywords
slab
cooling
mold
cast slab
average water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7226596A
Other languages
Japanese (ja)
Other versions
JP3042398B2 (en
Inventor
Toru Kato
徹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8072265A priority Critical patent/JP3042398B2/en
Publication of JPH09253814A publication Critical patent/JPH09253814A/en
Application granted granted Critical
Publication of JP3042398B2 publication Critical patent/JP3042398B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To promote a restraining method of the surface cracking on a cast slab which reduces or prevents the surface cracking of traverse crazing, etc., developed on the cast slab surface at the time of executing continuous casting. SOLUTION: In a second cooling pattern immediately executed after drawing the cast slab from a mold at the time of producing the cast slab, in which a carbon equivalent satisfies relations of formulas I and II, by using a bending type or a vertical-curving type continuous caster, the cooling is executed so that an average water quantity density (d) 1/(cm<2> .min) of the cooling water at an arbitrary time zone in the range of the time (t) (min) after passing the cast slab through the mold in the formula III, satisfies the range shown with the formula IV and in the range of (t), (d) is to satisfy the formula V. (I) Cp=C (%)+Mn(%)/33+Ni(%)/25+Cu(%)/44+N(%)/1.7 (II) Cp<0.18 (III) 0.5<=t<=2.5 (IV) (-0.009t+0.043)<d (V) d<(-0.02t+0.11) By this method, the surface crack of the traverse crazing, etc., can be reduced or prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の連続鋳造時に
おける鋳片表面割れを減少または防止する方法に関する
TECHNICAL FIELD The present invention relates to a method for reducing or preventing slab surface cracking during continuous casting of steel.

【0002】[0002]

【従来の技術】近年、材料特性上の要求からNb、V、Ni
およびCuなど種々の合金元素を含有した低合金鋼の生産
量が増加している。しかしながら、これらの合金元素の
添加に伴い、連続鋳造時に鋳片表面部分に横割れ、横ひ
び割れと呼ばれる表面割れ(以下、表面割れという)が
発生する場合があり、製造上の問題となっている。
2. Description of the Related Art In recent years, Nb, V, and Ni have been demanded due to the requirement for material characteristics.
The production of low alloy steels containing various alloying elements such as Cu and Cu is increasing. However, with the addition of these alloy elements, lateral cracks and surface cracks called lateral cracks (hereinafter referred to as surface cracks) may occur on the surface of the slab during continuous casting, which is a manufacturing problem. .

【0003】表面割れは、連続鋳造鋳片の2次冷却時に
鋳片の表面温度が熱間延性の低下するγ→α変態温度近
傍(約 600〜850 ℃)になり、このとき鋳片の矯正によ
る矯正応力を受けるのが原因で発生することが知られて
いる。この対策として通常、鋳片矯正時の表面温度が熱
間延性の低下する温度域(以下、脆化温度域という)を
低温側もしくは高温側に回避し、表面割れを抑制する方
法が採用されている。
Surface cracking occurs when the surface temperature of the slab becomes close to the γ → α transformation temperature (about 600 to 850 ° C.) at which the hot ductility decreases during secondary cooling of the continuously cast slab, at which time the slab is straightened. It is known that it is caused by being subjected to a correction stress due to. As a countermeasure against this, a method is usually adopted in which the surface temperature during straightening of the cast slab is avoided on the low temperature side or high temperature side of the temperature range in which the hot ductility decreases (hereinafter referred to as the embrittlement temperature range) to suppress surface cracking. There is.

【0004】しかし、鋳片矯正時の表面温度を制御する
のみでは表面割れを防止することは不可能であり、種々
の方法が提案されている。
However, it is impossible to prevent the surface cracks only by controlling the surface temperature at the time of slab straightening, and various methods have been proposed.

【0005】例えば、特公昭58−3790号公報に
は、前述の矯正点での表面温度が延性の低下する温度域
を低温側に回避できるような冷却パターンを採り、かつ
2次冷却帯の上部を強制冷却して鋳片表面温度を 650〜
700 ℃とすることで、いったんγ(オーステナイト)→
α(フェライト)変態させる方法が開示されている。特
開平5−329505号公報には、加熱炉装入前に鋳片
表層部を 350〜500 ℃の温度に1分間以上冷却・保持す
る方法が開示されている。
For example, Japanese Patent Publication No. 58-3790 discloses a cooling pattern which can avoid the temperature range where the surface temperature at the above-mentioned correction point is low in ductility on the low temperature side, and the upper part of the secondary cooling zone. Forcibly cooling the slab surface temperature from 650 to
By setting the temperature to 700 ° C, once γ (austenite) →
A method of α (ferrite) transformation is disclosed. Japanese Unexamined Patent Publication No. 5-329505 discloses a method of cooling and holding the surface layer of the cast slab at a temperature of 350 to 500 ° C. for 1 minute or more before charging the heating furnace.

【0006】これらの方法はいずれも、いったん鋳片の
表面温度を低下させることにより、鋳片の大部分もしく
は全体の相変態を生じさせ、組織的に割れ感受性を鈍く
する方法である。しかし、鋳片の表面温度をいったん 7
00℃以下にまで低下させると、その後複熱させても脆化
温度域を高温側に回避することは熱的に困難である。
[0006] In all of these methods, the surface temperature of the slab is once lowered to cause the phase transformation of most or all of the slab to structurally weaken the crack susceptibility. However, once the surface temperature of the slab is raised to 7
If the temperature is lowered to 00 ° C. or less, it is thermally difficult to avoid the embrittlement temperature range on the high temperature side even if it is subjected to multiple heating thereafter.

【0007】一方、合金含有量が多く割れ感受性の高い
鋼種では、冷却特性の変化により鋳片矯正時の脆化温度
域を低温側に回避することは困難である。
On the other hand, it is difficult to avoid the embrittlement temperature range at the low temperature side during slab straightening due to changes in the cooling characteristics of steel types having a high alloy content and high crack susceptibility.

【0008】さらに、表面割れはγ粒界に発生すること
からγ粒径に着目し、これを微細化しようとする提案が
数多くある。本出願人はγ粒の成長を抑制するために、
特開昭63−63559号公報でオーステナイト単晶化
温度からの冷却速度を10℃/sec以上とする方法、および
特開昭61−195742号公報で鋳型長さの関係式を
規定し、早めに鋳片を引き出し直ちに2次冷却する方法
を提案した。しかし、鋳片表面近傍の凝固部は通常、鋳
型内でオーステナイト単晶化温度を通過することから、
冷却速度の制御が困難であり、また鋳型長さを通常より
極端に短くすることは操業上のトラブルを招きやすいた
め、上記二つの方法ではいずれも実用化が困難であっ
た。
Further, since surface cracks occur at the γ grain boundary, there are many proposals for paying attention to the γ grain size and refining it. In order to suppress the growth of γ grains, the applicant has
Japanese Patent Laid-Open No. 63-63559 discloses a method of setting the cooling rate from the austenite single crystallization temperature to 10 ° C./sec or more, and Japanese Laid-Open Patent Publication No. 61-195742 defines a relational expression of the mold length, which should be set earlier. A method was proposed in which the slab was pulled out and immediately secondarily cooled. However, since the solidified portion near the slab surface usually passes the austenite single crystallization temperature in the mold,
Since it is difficult to control the cooling rate, and making the mold length extremely shorter than usual tends to cause operational troubles, it was difficult to put the two methods into practical use.

【0009】一方、表面割れの発生した粒界部にはAlN
が析出しており、これに伴う応力集中が割れを助長する
ことが知られている。これに対して鋼中のAlN 析出を抑
制するためにTiを添加し、TiN を析出させることがしば
しば行われ、高い効果が得られている。例えば特公昭5
5−7106号公報では、冷却条件を制御することによ
りAlN の析出を制御している。しかし、材料特性上の要
求によりTiの添加が不可能な鋼種も多く、冷却条件によ
るAlN 析出の制御は安定性を欠くという問題がある。
On the other hand, AlN is present at the grain boundary where surface cracking occurs.
Is deposited, and it is known that stress concentration accompanying this promotes cracking. On the other hand, in order to suppress AlN precipitation in steel, TiN is often added to precipitate TiN, and a high effect is obtained. For example, Shoko 5
According to Japanese Patent Laid-Open No. 5-7106, AlN precipitation is controlled by controlling cooling conditions. However, there are many steel grades in which Ti cannot be added due to the requirement of material properties, and there is a problem that the control of AlN precipitation by cooling conditions lacks stability.

【0010】このように鋳片表面割れの防止方法は数多
く提案されているが、いずれにも一長一短があり、表面
割れが頻発しているのが現状である。
As described above, many methods for preventing the surface cracking of cast slabs have been proposed, but all have advantages and disadvantages, and the current situation is that surface cracks occur frequently.

【0011】[0011]

【発明が解決しようとする課題】本発明は、鋳片のミク
ロ組織(粒界フェライトの生成状況)と割れ感受性(割
れの有無)との関係に着目し、上記の問題点を解決する
ためになされたものである。本発明の目的は、2次冷却
を適切な条件で行うことにより連続鋳造鋳片のミクロ組
織を制御し、横ひび割れなどの表面割れを減少または防
止する方法を提供することにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention focuses on the relationship between the microstructure of the cast slab (formation of grain boundary ferrite) and the susceptibility to cracking (presence or absence of cracks). It was made. An object of the present invention is to provide a method for controlling the microstructure of a continuously cast slab by performing secondary cooling under appropriate conditions to reduce or prevent surface cracks such as lateral cracks.

【0012】[0012]

【課題を解決するための手段】本発明の要旨は、次の鋳
片表面割れの抑制方法にある。
The gist of the present invention resides in the following method for suppressing surface cracking of cast slabs.

【0013】C、Mn、Ni、CuおよびNの各含有量と炭素
当量Cp とが下記式(1) および(2)の関係を満たす鋼の
鋳片を湾曲型または垂直曲げ型の連続鋳造機を用いて製
造する際に、鋳片を鋳型から引き抜いた後直ちに2次冷
却を行い、この2次冷却のパターンにおいて、下記式
(3) で定める鋳片の鋳型通過後の経過時間t(min) の範
囲内の任意の時間帯における冷却水の平均水量密度d
(リットル /(cm2・min))が、下記式 (4)および(5) で
表される領域を満たし、かつ下記式(3) で定める経過時
間tの範囲内では平均水量密度dが、下記式 (6)および
(7) で表される領域を満たすように冷却することを特徴
とする鋳片表面割れの抑制方法。
A curved or vertical bending continuous casting machine for casting steel slabs in which the respective contents of C, Mn, Ni, Cu and N and the carbon equivalent Cp satisfy the relations of the following formulas (1) and (2). When manufacturing using, the secondary cooling is performed immediately after the slab is pulled out from the mold, and in the secondary cooling pattern, the following formula is used.
Average water volume density d of cooling water in an arbitrary time zone within the elapsed time t (min) after passing through the mold of the slab specified in (3)
(Liter / (cm 2 · min)) satisfies the regions represented by the following formulas (4) and (5), and within the range of the elapsed time t defined by the following formula (3), the average water volume density d is Equation (6) and
A method for suppressing slab surface cracking, which comprises cooling so as to fill a region represented by (7).

【0014】 Cp =C(%) +Mn(%)/33+Ni(%)/25 +Cu(%)/44+N(%)/1.7 ・・・(1) Cp <0.18 ・・・・・・・・・・・(2) 0.5 ≦t<2.5 ・・・・・・・・・・(3) A<d ・・・・・・・・・・・・・(4) A=−0.009 t+0.043 ・・・・・・(5) d<B ・・・・・・・・・・・・・(6) B=−0.02t+0.11 ・・・・・・・(7) ただし、X(%) は、X成分の質量%を表す。Cp = C (%) + Mn (%) / 33 + Ni (%) / 25 + Cu (%) / 44 + N (%) / 1.7 (1) Cp <0.18・ (2) 0.5 ≦ t <2.5 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3) A <d ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (4) A = −0.009 t + 0.043 ・ ・・ ・ ・ ・ (5) d <B ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (6) B = −0.02t + 0.11 ・ ・ ・ ・ ・ ・ (7) However, X (%) is ,% By mass of the X component.

【0015】上記の「平均水量密度d」は、鋳片の鋳型
通過後の経過時間t(min) の間の合計冷却水量(リット
ル)を、対応する鋳型表面積(cm2)および上記t(min)
で除した値である。
The above-mentioned "average water amount density d" means the total amount of cooling water (liter) during the elapsed time t (min) after the slab has passed through the mold, the corresponding mold surface area (cm 2 ) and the above t (min). )
It is the value divided by.

【0016】本発明者は、種々の鋳造条件における連続
鋳造鋳片の表面割れ発生部のミクロ組織を詳細に調査し
た。その結果、鋳片のミクロ組織(粒界フェライトの生
成状況)と表面割れ感受性(表面割れの有無)とには明
白な相関があることを見いだし、上記の2次冷却条件に
より表面ミクロ組織の制御が可能であることを知見し
た。
The inventor of the present invention has investigated in detail the microstructure of the surface crack occurrence portion of the continuously cast slab under various casting conditions. As a result, it was found that there is a clear correlation between the microstructure of the slab (generation of grain boundary ferrite) and the susceptibility to surface cracking (presence or absence of surface cracking), and control of the surface microstructure by the above secondary cooling conditions. It was found that

【0017】[0017]

【発明の実施の形態】本発明方法を適用する連続鋳造機
は、鋳片に矯正応力が発生する湾曲型または垂直曲げ型
である。前述のように、表面割れは鋳片の矯正歪みによ
り発生するものであるから、本発明方法は鋳片の矯正部
を備えた誓曲型または垂直曲げ型の連続鋳造機を用いて
製造する際に有効となる。
BEST MODE FOR CARRYING OUT THE INVENTION A continuous casting machine to which the method of the present invention is applied is a curved type or a vertical bending type in which a straightening stress is generated in a slab. As described above, the surface cracks are caused by the straightening strain of the slab, and therefore the method of the present invention is performed when using a continuous casting machine of an oath type or a vertical bending type equipped with a straightening part of the slab. Will be effective.

【0018】2次冷却のための装置は、鋳片を鋳型から
引き抜いた後直ちに行う通常のものを用いる。
As a device for secondary cooling, an ordinary device used immediately after the cast slab is pulled out from the mold is used.

【0019】鋳造する鋼鋳片の化学組成は、C、Mn、N
i、CuおよびNの各含有量と炭素当量Cp とが下記式(1)
および(2) の関係を満足するものである。
The chemical composition of the cast steel slab is C, Mn, N
The respective contents of i, Cu and N and the carbon equivalent Cp are represented by the following formula (1)
It satisfies the relationship of and (2).

【0020】 Cp =C(%) +Mn(%)/33+Ni(%)/25 +Cu(%)/44+N(%)/1.7 ・・・(1) Cp <0.18 ・・・・・・・・・・・(2) 上記式(1) において(%) は質量%である。Cp = C (%) + Mn (%) / 33 + Ni (%) / 25 + Cu (%) / 44 + N (%) / 1.7 ・ ・ ・ (1) Cp <0.18 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・-(2) In the above formula (1), (%) is% by mass.

【0021】<炭素当量Cp の限定理由>図1により、
炭素当量Cp を上記のように限定した理由について説明
する。図1は種々の化学組成における凝固の機構を模式
的に示す図である。(a) はFe−C系の状態図、(b) は炭
素当量がA、B、CおよびDの場合の凝固を示す模式図
である。包晶組成より左側の亜包晶(Bの場合)あるい
はδ凝固(Aの場合)に当たる組成では、完全凝固後に
相変態しγ相が生成することから、最終凝固位置はγ粒
界と一致する。したがって、粒界への成分元素の偏析、
析出などによる粒界移動のピン留め効果が小さく、凝固
後にγ粒径が成長し、粗大なγ粒となる。前述のミクロ
組織の制御が表面割れの抑制に重要な影響を与えるの
は、この粗大なγ粒となる領域である。
<Reason for limiting carbon equivalent Cp> According to FIG.
The reason why the carbon equivalent Cp is limited as described above will be explained. FIG. 1 is a diagram schematically showing a solidification mechanism in various chemical compositions. (a) is a phase diagram of Fe-C system, (b) is a schematic diagram showing solidification in the case where carbon equivalents are A, B, C and D. In the composition that corresponds to the sub-peritectic (in the case of B) or δ solidification (in the case of A) on the left side of the peritectic composition, the final solidification position coincides with the γ grain boundary because the phase transformation occurs after complete solidification and the γ phase is produced. . Therefore, segregation of constituent elements to the grain boundaries,
The pinning effect of grain boundary migration due to precipitation is small, and the γ grain size grows after solidification, resulting in coarse γ grains. It is in this region where coarse γ grains are formed that the control of the microstructure described above has an important influence on the suppression of surface cracking.

【0022】前記式(1) 式は、鋼中のC、Mn、Ni、Cuお
よびNの各含有量から包晶反応の炭素当量Cp を求める
式として知られるものである。この式で求められるCp
値が0.18よりも小さいときには、図1に示すようにδ凝
固または亜包晶凝固となることから、Cp は式(2) のと
おり0.18未満とした。
The above formula (1) is known as a formula for obtaining the carbon equivalent Cp of the peritectic reaction from the contents of C, Mn, Ni, Cu and N in steel. Cp calculated by this formula
When the value is smaller than 0.18, δ solidification or hypoperitectic solidification occurs as shown in FIG. 1, so Cp is set to less than 0.18 as shown in the equation (2).

【0023】一方、実製造経験によりCp 値と表面割れ
発生とには相関があることが判明しており、表面割れは
Cp が0.10未満のときにはほとんど発生しない。したが
って本発明方法による表面割れ抑制の効果が実質的な意
味を持つのは、Cp が0.10以上のときである。
On the other hand, actual manufacturing experience has revealed that there is a correlation between the Cp value and the occurrence of surface cracks, and surface cracks hardly occur when Cp is less than 0.10. Therefore, the effect of suppressing surface cracking by the method of the present invention has a substantial meaning when Cp is 0.10.

【0024】本発明方法では、上記条件における2次冷
却で、下記式(3) で定める鋳片の鋳型通過後の経過時間
t(min) の範囲内の任意の時間帯における冷却水の平均
水量密度d(リットル /(cm2・min)) が、下記式 (4)お
よび(5) で表される領域を満たし、かつ下記式(3) で定
める経過時間tの範囲内では平均水量密度dが、下記式
(6)および(7) で表される領域を満たすような冷却パタ
ーンとする。
In the method of the present invention, in the secondary cooling under the above conditions, the average amount of cooling water in any time zone within the elapsed time t (min) after passing through the mold of the slab defined by the following formula (3) If the density d (liter / (cm 2 · min)) satisfies the region represented by the following formulas (4) and (5) and within the elapsed time t defined by the following formula (3), the average water volume density d But the following formula
The cooling pattern is set so as to fill the areas represented by (6) and (7).

【0025】0.5 ≦t<2.5 ・・・・・・・・・・(3) A<d ・・・・・・・・・・・・・(4) A=−0.009 t+0.043 ・・・・・・(5) d<B ・・・・・・・・・・・・・(6) B=−0.02t+0.11 ・・・・・・・(7) ただし、X(%) は、X成分の質量%を表す。0.5 ≦ t <2.5 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3) A <d ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (4) A = −0.009 t + 0.043 ・ ・ ・・ ・ ・ (5) d <B ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (6) B = −0.02t + 0.11 ・ ・ ・ ・ ・ ・ (7) However, X (%) is It represents the mass% of the X component.

【0026】上記の「平均水量密度d」は、鋳片の鋳型
通過後の経過時間t(min) の間の合計冷却水量(リット
ル)を、対応する鋳型表面積(cm2)および上記t(min)
で除した値である。
The above-mentioned "average water amount density d" means the total amount of cooling water (liter) during the elapsed time t (min) after the slab has passed through the mold, the corresponding mold surface area (cm 2 ) and the above t (min). )
It is the value divided by.

【0027】<水量密度dおよび経過時間tの限定理由
>前述のように、鋳片のミクロ組織(粒界フェライトの
生成状況)と表面割れ感受性(割れの有無)とには明白
な相関がある。図2により、この例を説明する。
<Reason for limiting water amount density d and elapsed time t> As described above, there is a clear correlation between the microstructure of the slab (generation of grain boundary ferrite) and the surface cracking susceptibility (presence or absence of cracking). . This example will be described with reference to FIG.

【0028】図2は、鋳片表面の割れ発生部および非発
生部の典型的なミクロ組織を示す写真の模写図である。
(a) が表面割れが発生する場合および(b) が表面割れが
発生しない場合である。
FIG. 2 is a copy of a photograph showing a typical microstructure of a cracked part and a non-cracked part on the surface of the cast slab.
(a) is the case where surface cracking occurs and (b) is the case where surface cracking does not occur.

【0029】図示するとおり、鋳片表面のミクロ組織は
いずれもフェライト−パーライト組織である。しかし、
表面割れが発生するときのミクロ組織は、図2(a) に示
すようにγ粒界が明瞭であり、粒界のフェライトがフィ
ルム状に生成し、かつ粗大であるという特徴を持つ。こ
れに対して表面割れが発生しないときには、図2(b)に
示すようにγ粒界が不明瞭となり、ミクロ組織は比較的
微細である。前述のように、表面割れはγ粒界割れであ
り、γ粒界が不明瞭であれば割れの起点は存在せず、結
果的に表面割れ感受性も低下する。
As shown in the drawing, the microstructures on the surface of the slab are all ferrite-pearlite structures. But,
As shown in Fig. 2 (a), the microstructure when surface cracks occur is characterized in that γ grain boundaries are clear, ferrite at grain boundaries is formed in a film shape, and is coarse. On the other hand, when surface cracking does not occur, the γ grain boundary becomes unclear as shown in FIG. 2 (b), and the microstructure is relatively fine. As described above, the surface crack is a γ grain boundary crack, and if the γ grain boundary is unclear, the origin of the crack does not exist, and as a result, the surface crack susceptibility also decreases.

【0030】一般に鋼の組織は温度履歴によって決定さ
れることから、2次冷却条件を適正に制御すれば表面割
れ感受性の鈍いミクロ組織が得られ、鋳片の表面割れを
低減できる可能性がある。この理由から鋳片表面の温度
履歴を種々変化させ、ミクロ組織への影響を調査する基
礎試験を行った。
Since the structure of steel is generally determined by the temperature history, if the secondary cooling conditions are properly controlled, a microstructure with a low susceptibility to surface cracking can be obtained, and surface cracking of the cast slab may be reduced. . For this reason, various temperature histories on the surface of the slab were changed, and basic tests were conducted to investigate the effect on the microstructure.

【0031】この試験では、200kg の溶鋼を静止鋳造に
より約400 ×400 ×200mm の鋳片とし、この鋳片の完全
凝固前に鋳型から取り出し、制御されたスプレーにより
冷却した。冷却には空気と水を混合したミストスプレー
を使用した。放射温度計またはあらかじめ鋳ぐるんだ熱
電対により、鋳片表面部の温度履歴を測定し、種々の温
度履歴に対する鋳片表面のミクロ組織の変化を調査し
た。
In this test, 200 kg of molten steel was statically cast into slabs of approximately 400 x 400 x 200 mm, which were removed from the mold before complete solidification and cooled by controlled spraying. The mist spray which mixed air and water was used for cooling. The temperature history of the surface of the slab was measured with a radiation thermometer or a thermocouple which was previously cast, and changes in the microstructure of the surface of the slab with respect to various temperature histories were investigated.

【0032】図3は、鋳片表面のミクロ組織に及ぼす、
鋳片が鋳型を通過した後の経過時間tと2次冷却の平均
水量密度dとの影響を示す図である。2次冷却過程では
水量密度を変化させており、このため平均水量密度dは
鋳型通過後の経過時間tとともに変化するが、図3では
平均水量密度dは2次冷却過程において最大となったと
きの値とした。鋳片表面のミクロ組織は、γ粒界が明瞭
である場合(図3中の□印)、部分的に不明瞭である場
合(同じく△印)、不明瞭である場合(同じく○印)お
よび2次冷却が強く十分に復熱しなかったときに得られ
たベイナイト組織(同じく×印)の場合の4種類に分類
した。
FIG. 3 shows the effect on the microstructure of the surface of the slab,
It is a figure which shows the influence of the elapsed time t after a slab passes a mold, and the average water amount density d of secondary cooling. In the secondary cooling process, the water amount density is changed. Therefore, the average water amount density d changes with the elapsed time t after passing through the mold, but in FIG. 3, when the average water amount density d becomes maximum in the secondary cooling process. The value of The microstructure of the slab surface is such that the γ grain boundary is clear (marked with □ in FIG. 3), partially unclear (marked with Δ), unclear (marked with ○), and The bainite structure (also marked with x) obtained when the secondary cooling was strong and did not sufficiently reheat was classified into four types.

【0033】図3において、直線Aは式(5) を表すd=
−0.009 t+0.043 、直線Bは式(7) を表すd=−0.02
t+0.11であり、いずれも実験式である。
In FIG. 3, the straight line A represents the equation (5) d =
-0.009 t + 0.043, the straight line B represents the formula (7) d = -0.02
t + 0.11, which are empirical formulas.

【0034】図3に示すように、鋳片が鋳型を通過した
後の経過時間tと2次冷却の平均水量密度dとを適切な
条件に設定すれば、γ粒界が不明瞭な望ましいミクロ組
織が得られる。
As shown in FIG. 3, if the elapsed time t after the slab has passed through the mold and the average water content density d of the secondary cooling are set to appropriate conditions, a desirable microscopic state where the γ grain boundary is unclear is set. The organization is obtained.

【0035】まず、鋳片表面のミクロ組織と平均水量密
度d、直線AおよびBとの関係について説明する。
First, the relationship between the microstructure of the surface of the cast slab and the average water content density d and the straight lines A and B will be described.

【0036】例えば、鋳片が鋳型を通過した後、平均水
量密度dを0.034 リットル /(cm2・min)以上の条件とし
て1分間冷却し、その後復熱させて適切な冷却速度で冷
却すれば、得られる組織はフェライト−パーライト組織
であり、かつγ粒界が不明瞭となる。鋳片が鋳型を通過
した後1分間冷却する場合に平均水量密度dを極端に増
大させて0.09リットル /(cm2・min)以上とすると、鋳片
表面温度が極端に低下して復熱せず、ベイナイト組織と
なる。また、平均水量密度dを極端に増大させると鋳片
表面の温度むらの発生が避けられず、熱応力が発生し、
表面割れの原因となる。すなわち、直線B以上の高い水
量密度dで冷却した場合には、鋳片が十分復熱せず、ベ
イナイト組織となる。他の鋼種についても同様の調査を
行い、同じ結果が得られた。
For example, after the slab has passed through the mold, it is cooled for 1 minute under the condition that the average water amount density d is 0.034 liter / (cm 2 · min) or more, and then reheated to be cooled at an appropriate cooling rate. The obtained structure is a ferrite-pearlite structure, and the γ grain boundary becomes unclear. When the average water amount density d is extremely increased to 0.09 liters / (cm 2 · min) or more when the slab is cooled for 1 minute after passing through the mold, the slab surface temperature will be extremely reduced and will not reheat. , Becomes a bainite structure. Further, if the average water content density d is extremely increased, the occurrence of temperature unevenness on the surface of the slab cannot be avoided, and thermal stress is generated.
This may cause surface cracks. That is, when cooled at a high water density d equal to or higher than the straight line B, the slab does not sufficiently reheat and has a bainite structure. Similar investigations were conducted for other steel grades and the same results were obtained.

【0037】一方、γ粒界の不明瞭なフェライト−パー
ライト組織を得るには、鋳片の鋳型通過後速やかにγ→
α変態させることが必要であり、そのためには、平均水
量密度dが直線Aを上回る必要がある。
On the other hand, in order to obtain a ferrite-pearlite structure with unclear γ grain boundaries, γ →
It is necessary to perform α-transformation, and for that purpose, the average water content density d needs to exceed the straight line A.

【0038】次に、鋳片が鋳型を通過した後の経過時間
tmin を、下記式(3) のように限定した理由について説
明する。
Next, the reason why the elapsed time tmin after the slab has passed through the mold is limited as in the following formula (3) will be explained.

【0039】0.5 ≦t<2.5 ・・・・・・・・・・(3) γ粒界を不明瞭化するために、鋳片が鋳型を通過した後
速やかにγ→α変態させるのが必要であることは、前述
のとおりである。しかし実際の連続鋳造において、鋳型
通過後0.5min未満の時点では凝固シェルの強度が不十分
であり、この時点までに速やかにγ→α変態を完了させ
るほど強冷却するのは困難である。よって、上記時間t
は0.5min以上とした。
0.5 ≦ t <2.5 (3) In order to obscure the γ grain boundary, it is necessary to transform the γ into α immediately after the slab has passed through the mold. Is as described above. However, in actual continuous casting, the strength of the solidified shell is insufficient at a time of less than 0.5 minutes after passing through the mold, and it is difficult to perform strong cooling to complete the γ → α transformation promptly by this time. Therefore, the time t
Was 0.5 min or more.

【0040】一方、図3のとおり、鋳型通過後2.5min以
上経過した後の平均水量密度dが直線Aを上回る条件で
は、dが直線Bを上回らなくともベイナイト組織もしく
はγ粒界が明瞭な組織となり、いずれも表面割れ感受性
が高くなる。よって、前記時間tは2.5min未満とした。
On the other hand, as shown in FIG. 3, under the condition that the average water amount density d after the passage through the mold for 2.5 minutes or more exceeds the straight line A, the bainite structure or the structure with clear γ grain boundaries is obtained even if d does not exceed the straight line B. And both of them have high surface cracking susceptibility. Therefore, the time t is set to less than 2.5 min.

【0041】以上のように、前記式(3) で定める鋳片の
鋳型通過後の経過時間t(min) の範囲内の任意の時間帯
における冷却水の平均水量密度d(リットル /(cm2・mi
n))が、前記式 (4)および(5) で表される領域を満た
し、かつ前記式(3) で定める経過時間tの範囲内では平
均水量密度dが、直線B以上の領域に入らないことを必
須とした冷却パターンを採用することにより、2次冷却
の初期に鋳片表面部の温度をいったん低下させた後、未
凝固溶鋼の凝固潜熱により復熱させ、その後適当な冷却
速度とすれば、鋳片のミクロ組織はフェライト−パーラ
イト組織であり、かつγ粒界が不明瞭な組織となる。以
下、図3に示すγ粒界が不明瞭になる領域を、便宜的に
本発明領域という。
As described above, the average water volume density d (liter / (cm 2 ) of the cooling water in any time zone within the elapsed time t (min) after the slab passed through the mold defined by the above formula (3) is determined.・ Mi
n)) satisfies the regions represented by the formulas (4) and (5), and within the range of the elapsed time t defined by the formula (3), the average water density d falls within the region of the straight line B or more. By adopting a cooling pattern that must not exist, the temperature of the surface of the slab is temporarily reduced in the initial stage of secondary cooling, then reheated by the latent heat of solidification of unsolidified molten steel, and then an appropriate cooling rate is set. Then, the microstructure of the cast slab is a ferrite-pearlite structure, and the γ grain boundaries are not clear. Hereinafter, the region in which the γ grain boundaries are unclear shown in FIG. 3 is referred to as the present invention region for convenience.

【0042】実際の連続鋳造では、図4に示すような冷
却パターンを採ればよい。
In actual continuous casting, a cooling pattern as shown in FIG. 4 may be adopted.

【0043】図4は、本発明方法の冷却パターンの例を
説明する図である。は、鋳型通過後の経過時間tが
0.5〜約1.25min の範囲で平均水量密度dが本発明領域
に入り、かつ最大平均水量密度dが比較的低い例、
は、時間tが 0.5から2.5min未満の全範囲で平均水量密
度dが本発明領域に入る例、は、と同様のパターン
であるが、平均水量密度dが比較的高い例、および
は、時間tが 1.5から2.5min未満の後半の範囲で平均水
量密度dが本発明領域に入り、かつ低く略々一定の例で
ある。
FIG. 4 is a diagram for explaining an example of the cooling pattern of the method of the present invention. Is the elapsed time t after passing through the mold
Examples in which the average water density d falls within the range of the present invention in the range of 0.5 to about 1.25 min and the maximum average water density d is relatively low,
Is an example in which the average water density d falls within the range of the present invention in the entire range of the time t from 0.5 to less than 2.5 min. Is a pattern similar to, but the average water density d is relatively high, and This is an example in which the average water amount density d falls within the range of the present invention in the latter half range of t from 1.5 to less than 2.5 min and is low and substantially constant.

【0044】実際の連続鋳造の2次冷却帯ではスプレー
とロールとが交互に配置してあるから、2次冷却は間欠
冷却となる。2次冷却法には、空気と水とを混合したミ
ストスプレーを使用するものと水スプレーを使用するも
のとがあるが、冷却能には水量密度の寄与の方が大きい
ので空気量は考慮に含めなくとも大きな問題はない。
Since sprays and rolls are alternately arranged in the secondary cooling zone of actual continuous casting, secondary cooling is intermittent cooling. Some secondary cooling methods use a mist spray in which air and water are mixed and some use a water spray. However, the amount of air is taken into consideration because the contribution of water amount density is greater to the cooling capacity. There is no big problem if you do not include it.

【0045】また、鋳造条件が異なると、スプレー冷却
とロールが存在することによる非冷却との時間ピッチ、
ならびに1段のスプレーまたはミストノズルから受ける
冷却および復熱の温度履歴が変化するが、鋳片表面の所
定のミクロ組織を形成するための冷却条件は、平均水量
密度dを用いて整理しても差し支えない。
When the casting conditions are different, the time pitch between spray cooling and non-cooling due to the presence of rolls,
In addition, the temperature history of cooling and recuperation received from the one-stage spray or mist nozzle changes, but the cooling conditions for forming a predetermined microstructure on the surface of the slab can be arranged using the average water content density d. It doesn't matter.

【0046】本発明方法を適用する場合の望ましい鋳造
速度の範囲は 0.4〜5.0m/min程度、望ましい鋳片寸法は
幅 700〜2500mm程度、厚さ 100〜350mm 程度である。
When the method of the present invention is applied, the desirable casting speed range is about 0.4 to 5.0 m / min, and the desirable slab size is about 700 to 2500 mm in width and 100 to 350 mm in thickness.

【0047】<γ粒界が不明瞭となる機構>フェライト
−パーライト組織では、図2(a) に示すようにγ粒界部
分にフィルム状のフェライトが生成するため、γ粒界の
観察が可能となる。一般にγ粒径が粗大で、γ粒界が直
線的となる条件で粒界フェライト同士が合体する場合、
あるいは粒界フェライトが動的析出により生成する場合
に、粒界フェライトがフィルム状になることが知られて
いる。しかし、鋳造ままの鋳片ではγ粒径に大きな差が
存在せず、粒界フェライトの動的析出の原因となる歪も
生じない。鋳片のミクロ組織観察の結果によれば、鋳造
ままの鋳片では粒界フェライトの形状は、2次冷却によ
る過冷効果で決定される。
<Mechanism of Obscuring γ Grain Boundary> In the ferrite-pearlite structure, film-like ferrite is generated in the γ grain boundary portion as shown in FIG. 2 (a), so that the γ grain boundary can be observed. Becomes Generally, when the γ grain size is coarse and the grain boundary ferrites coalesce under the condition that the γ grain boundary is linear,
Alternatively, it is known that the grain boundary ferrite becomes a film when the grain boundary ferrite is generated by dynamic precipitation. However, in the as-cast slab, there is no large difference in the γ grain size, and strain that causes dynamic precipitation of grain boundary ferrite does not occur. According to the results of observation of the microstructure of the slab, the shape of the grain boundary ferrite in the as-cast slab is determined by the supercooling effect of the secondary cooling.

【0048】図5は、粒界フェライトの生成機構を模式
的に示す図である。鋳片を鋳型から引き抜いた後急冷す
る場合には過冷状態となり、隣接するγ粒の結晶方位と
関係なく、図5の左に示すようにγ粒界にフェライトが
生成する。このため、粒界フェライトとγ粒との整合性
が悪く、フェライトが粒状に成長するため、γ粒界が不
明瞭になる。
FIG. 5 is a diagram schematically showing the generation mechanism of grain boundary ferrite. When the slab is pulled out of the mold and then rapidly cooled, it becomes a supercooled state, and ferrite is generated at the γ grain boundary as shown on the left of FIG. 5, regardless of the crystal orientation of the adjacent γ grains. For this reason, the matching between the grain boundary ferrite and the γ grains is poor, and the ferrite grows into grains, so that the γ grain boundary becomes unclear.

【0049】一方、冷却速度を遅くして徐冷した場合に
は連続鋳造の後半で徐冷され、γ粒の結晶方位に見合う
粒界フェライトが析出するため、図4の右に示すとおり
接触する他のγ粒側にはフェライトの成長が進行しな
い。この理由で、もとのγ粒界が残存し、明瞭なγ粒界
になる。したがって、図3からもわかるとおり平均水量
密度dを直線A以下に減少させた場合、または鋳型通過
後2.5min以上かけて冷却した場合、いずれも十分な冷却
速度が得られず、γ粒界が明瞭な組織になる。
On the other hand, when the cooling rate is slowed and the material is gradually cooled, it is gradually cooled in the latter half of continuous casting, and the grain boundary ferrite corresponding to the crystal orientation of the γ grains precipitates. The growth of ferrite does not proceed to the other γ grain side. For this reason, the original γ grain boundary remains and becomes a clear γ grain boundary. Therefore, as can be seen from FIG. 3, when the average water amount density d is reduced to a straight line A or less, or when cooling is performed for 2.5 minutes or more after passing through the mold, a sufficient cooling rate cannot be obtained and the γ grain boundary It becomes a clear organization.

【0050】前述のように、極端に平均水量密度を増加
した場合あるいは比較的高い平均水量密度で長時間冷却
した場合にはベイナイト組織となり、γ粒界は明瞭化す
る。
As described above, when the average water content density is extremely increased or when it is cooled at a relatively high average water content density for a long time, a bainite structure is formed and the γ grain boundary becomes clear.

【0051】これを防止するためには、2次冷却過程に
おいていったん粒界フェライトが析出するまで冷却した
鋳片を復熱させることが必要である。復熱の際にはγ単
晶化するが、フェライト相中の元素の拡散速度はγ相中
に比べて著しく速いために、粒界近傍に初析フェライト
の何らかの痕跡が残るものと考えられる。
In order to prevent this, it is necessary to reheat the slab that has been cooled until the grain boundary ferrite is precipitated in the secondary cooling process. Although γ-single-crystallized during recuperation, the diffusion rate of elements in the ferrite phase is remarkably higher than that in the γ phase, so it is considered that some traces of proeutectoid ferrite remain near the grain boundaries.

【0052】復熱後に再びγ→α変態するときの冷却速
度を速くした場合にも、鋳片表面のミクロ組織はベイナ
イト組織となり、γ粒界は明瞭化する。しかし、一般に
連続鋳造過程では、この変態は連続鋳造の末期あるいは
終了後となり、冷却速度は遅く、鋳片表面のミクロ組織
はフェライト−パーライト組織となる。したがって、本
発明方法による2次冷却が終了した後の鋳片の冷却条件
については、特に規定する必要はない。
Even when the cooling rate for the γ → α transformation again after the heat recovery is increased, the microstructure on the surface of the cast slab becomes a bainite structure, and the γ grain boundary becomes clear. However, in the continuous casting process, this transformation is generally at the end or after the end of continuous casting, the cooling rate is slow, and the microstructure on the surface of the cast piece becomes a ferrite-pearlite structure. Therefore, it is not necessary to specify the cooling conditions for the slab after the secondary cooling by the method of the present invention is completed.

【0053】このように、2次冷却条件を制御すること
によりγ粒界を不明瞭化し、表面割れ感受性を低下させ
ることが可能であるが、連続鋳造の曲げ・矯正点におけ
る鋳片表面温度が鋼の高温脆化温度域となるのを回避す
ることにより、高い効果が得られることはいうまでもな
い。本発明方法では、鋳片矯正部を備えた湾曲型または
垂直曲げ型の連続鋳造機を用いるため、曲げ・矯正点に
おける鋳片表面温度を850 ℃以上とすることが好まし
い。
As described above, by controlling the secondary cooling conditions, it is possible to obscure the γ grain boundary and reduce the surface cracking susceptibility, but the slab surface temperature at the bending and straightening points of continuous casting is Needless to say, high effects can be obtained by avoiding the high embrittlement temperature range of steel. In the method of the present invention, since a curved or vertical bending type continuous casting machine having a slab straightening portion is used, it is preferable that the slab surface temperature at the bending / straightening point is 850 ° C. or higher.

【0054】前述のように、鋳片表面近傍部分のγ粒界
を不明瞭にするには、2次冷却の後半に復熱させること
が必要である。そのためには2次冷却時に鋳片内に未凝
固溶鋼が残存している必要があり、本発明方法は鋳片厚
さが100mm 以上の範囲で有効である。100mm 以上の範囲
では、復熱挙動は主に凝固シェルの熱抵抗により支配さ
れるから、鋳片厚さを変化させても前記の関係式を変更
する必要はない。
As described above, in order to obscure the γ grain boundary near the surface of the slab, it is necessary to reheat the second half of the secondary cooling. For that purpose, the unsolidified molten steel needs to remain in the slab during the secondary cooling, and the method of the present invention is effective in the slab thickness of 100 mm or more. In the range of 100 mm or more, the recuperation behavior is mainly governed by the thermal resistance of the solidified shell, so it is not necessary to change the above relational expression even if the thickness of the slab is changed.

【0055】なお、鋳造から2次冷却開始までの高温で
保持される時間が長くなると、鋳片表面近傍部のγ粒径
が著しく肥大化し、上述の組織制御による表面割れの抑
制効果が得られなくなる。しかし、鋳片の鋳型通過所要
時間は通常の連続鋳造では2min 以内であり、この条件
においても鋳型過後直ちに所定の2次冷却を実施すれば
鋳片表面のミクロ組織面での悪影響はない。
It should be noted that when the time of holding at high temperature from casting to the start of secondary cooling becomes long, the γ grain size in the vicinity of the surface of the slab remarkably increases, and the effect of suppressing surface cracking by the above-mentioned structure control can be obtained. Disappear. However, the time required for the slab to pass through the mold is within 2 min in normal continuous casting, and even under this condition, if the predetermined secondary cooling is carried out immediately after the mold has passed, there is no adverse effect on the microstructured surface of the slab.

【0056】[0056]

【実施例】表1に示す化学組成の鋼および実製造ライン
の湾曲型連続鋳造機を用い、表2に示す条件で鋳片の鋳
型通過後の経過時間tに対する平均水量密度dを変化さ
せて鋳片を製造し、鋳片表面のミクロ組織および割れを
調査した。表1に示す鋼種は割れ感受性の高いものであ
る。鋳造速度は0.7m/min、鋳片の寸法は幅2200mm、厚さ
240mm とした。鋳片表面温度の測定には、鋳型直下部で
鋳片表面に熱電対をかみ込ませる方法を用いた。
Example Using a steel having the chemical composition shown in Table 1 and a curved continuous casting machine of an actual production line, the average water amount density d with respect to the elapsed time t of the slab after passing through the mold was changed under the conditions shown in Table 2. A slab was manufactured and the microstructure and cracks on the surface of the slab were investigated. The steel types shown in Table 1 have high crack susceptibility. Casting speed is 0.7m / min, slab dimensions are width 2200mm, thickness
It was 240 mm. For measuring the surface temperature of the slab, a method of engaging a thermocouple on the surface of the slab just below the mold was used.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】本発明例1〜4の冷却パターンは、前述の
図4に示す〜にそれぞれ相当する。比較例1〜4の
冷却パターンを、便宜上併せて図4に示す。
The cooling patterns of Examples 1 to 4 of the present invention correspond to the items 1 to 4 shown in FIG. The cooling patterns of Comparative Examples 1 to 4 are shown together in FIG. 4 for convenience.

【0060】表2に示す冷却条件の平均水量密度dは、
その代表値として鋳型通過後の経過時間tが1min およ
び2min における値とした。
The average water amount density d under the cooling conditions shown in Table 2 is
As a representative value thereof, the values were obtained when the elapsed time t after passing through the mold was 1 min and 2 min.

【0061】前述のように表面割れを抑制するために
は、曲げ・矯正点における鋳片表面温度が脆化温度域を
回避することが重要である。表2中の本発明例および比
較例ではいずれも脆化温度域を回避させた。すなわち、
2次冷却条件の影響を明確にするために、矯正点におけ
る鋳片表面温度の範囲がほぼ850 ℃から900 ℃程度にな
るように、鋳型通過後の矯正点までの総冷却水量を制御
した。
As described above, in order to suppress surface cracking, it is important that the surface temperature of the cast slab at the bending and straightening points avoids the embrittlement temperature range. In each of the inventive examples and the comparative examples in Table 2, the brittle temperature range was avoided. That is,
In order to clarify the effect of the secondary cooling conditions, the total amount of cooling water after passing through the mold to the straightening point was controlled so that the range of the slab surface temperature at the straightening point was approximately 850 ° C to 900 ° C.

【0062】評価は、得られた鋳片表面のミクロ組織お
よび表面割れ発生の程度により行った。ミクロ組織で
は、γ粒界が不明瞭である場合を○、明瞭である場合を
×とした。割れ発生の観察では、鋳片の表面をスカーフ
ィングして表層の酸化皮膜を取り除いた後、目視により
行い、割れ発生コードを用いて割れが発生しなかった場
合を0、深さ30mm以上の割れが存在した場合を5とした
6段階に指数化した。表2に結果を併せて示す。
The evaluation was carried out based on the microstructure of the obtained slab surface and the degree of surface cracking. In the microstructure, the case where the γ grain boundary was not clear was marked with ◯, and the case where it was clear was marked with x. When observing the occurrence of cracks, the surface of the slab is scarfed to remove the oxide film on the surface and then visually observed. When no cracks occur using the crack generation code, it is 0, and cracks with a depth of 30 mm or more The index was indexed into 6 levels, with 5 being the case. Table 2 also shows the results.

【0063】本発明例1は、鋳型通過後、約1.25min 以
内の平均水量密度が本発明範囲を満たすようにし、以後
の平均水量密度を本発明範囲外に減少した場合である
が、この条件ではγ粒界は不明瞭となり、表面割れも発
生しなかった。
Inventive Example 1 is a case in which the average water content density within about 1.25 min after passing through the mold was made to satisfy the range of the present invention, and the subsequent average water content density was reduced to outside the range of the present invention. In, the γ grain boundary became unclear and surface cracking did not occur.

【0064】本発明例2は、水量密度分布を変化させ、
より長時間にわたり平均水量密度が本発明範囲を満たす
ようにした場合であるが、この条件でもγ粒界は不明瞭
となり、表面割れも発生しなかった。
Inventive Example 2 changes the water amount density distribution,
This is the case where the average water content density is made to satisfy the range of the present invention for a longer time, but even under this condition, the γ grain boundary becomes unclear and surface cracking does not occur.

【0065】本発明例3は、本発明例2と同様の条件に
おいてさらに平均水量密度を高くした場合であるが、γ
粒界は不明瞭となったものの、鋳片の略々全長にわたり
コーナー近傍に深さ5mm以下の軽微な表面割れが数個発
生していた。しかし、その程度は許容範囲であった。こ
れは、長時間にわたり平均水量密度を高くしたため復熱
が小さく、鋳片の矯正点におけるコーナー近傍の表面温
度が一段と低下したことによる。
Example 3 of the present invention is a case where the average water density was further increased under the same conditions as Example 2 of the present invention.
Although the grain boundaries became unclear, several minor surface cracks with a depth of 5 mm or less occurred near the corners over almost the entire length of the slab. However, the degree was acceptable. This is because the recuperation was small because the average water density was increased over a long period of time, and the surface temperature near the corner at the straightening point of the slab was further reduced.

【0066】本発明例4は、本発明例1よりもさらに鋳
型通過後の平均水量密度を低下し、約1.5min後に平均水
量密度が直線Aを上回るように本発明範囲とした場合で
あるが、γ粒界は不明瞭となったものの、鋳片のコーナ
ー近傍に深さ5mm以下の軽微な表面割れが数個発生して
いた。この条件では、矯正点におけるコーナー近傍の表
面温度が低下し、本発明例1および2と比較して鋳片の
表面性状が悪化したものと考えられた。
Inventive Example 4 is a case in which the average water amount density after passing through the mold is further lowered as compared with Inventive Example 1 and the average water amount density exceeds the straight line A after about 1.5 minutes, so that the present invention range is satisfied. Although the γ grain boundary was unclear, some minor surface cracks with a depth of 5 mm or less occurred near the corners of the slab. Under these conditions, it was considered that the surface temperature near the corner at the straightening point was lowered, and the surface quality of the slab was deteriorated as compared with Inventive Examples 1 and 2.

【0067】比較例1では、平均水量密度が低く、かつ
全て本発明範囲外の条件であるため、鋳型直下で鋳片の
表面部がγ→α変態していないことから、γ粒界が明瞭
な組織となった。また、深さ10mm程度の表面割れが鋳片
の全面にわたり発生し、割れコードでは4と著しく悪化
した。比較例2では、2.5min以上経過した後に平均水量
密度が直線Aを上回るが、比較例1と同様に全て本発明
範囲外の条件であるため、冷却速度が遅く、γ粒界が明
瞭なミクロ組織となり、割れコードも4となった。比較
例3および4は、平均水量密度を極端に増加させた場合
であるが、通過後の時間帯で前後の差はあっても、いず
れにせよ或る時間帯の平均水量密度が直線Bを超える領
域に入るため、鋳片表面のミクロ組織はベイナイトとな
り、熱応力に起因すると考えられる表面割れが発生し
た。
In Comparative Example 1, since the average water content density is low and all the conditions are outside the range of the present invention, the γ grain boundary is clear because the surface portion of the slab does not undergo γ → α transformation immediately below the mold. It became a different organization. Further, surface cracks having a depth of about 10 mm occurred over the entire surface of the slab, and the crack code was markedly deteriorated to 4. In Comparative Example 2, the average water amount density exceeds the straight line A after 2.5 minutes or more, but like Comparative Example 1, all of the conditions are outside the range of the present invention, so the cooling rate is slow and the γ grain boundaries are microscopic. It became an organization and the crack code became 4. Comparative Examples 3 and 4 are cases in which the average water density is extremely increased, but even if there is a difference before and after in the time zone after passing, the average water density in a certain time zone shows the straight line B in any case. Since it entered the region beyond the limit, the microstructure on the surface of the cast slab became bainite, and surface cracking which is considered to be caused by thermal stress occurred.

【0068】[0068]

【発明の効果】本発明方法によれば、連続鋳造時に鋳片
表面に発生する横ひび割れなどの表面割れを減少または
防止することが可能である。
According to the method of the present invention, it is possible to reduce or prevent surface cracks such as lateral cracks that occur on the surface of a slab during continuous casting.

【図面の簡単な説明】[Brief description of drawings]

【図1】凝固の機構を模式的に示す図である。(a) はFe
−C系の状態図、(b) は炭素当量がA、B、CおよびD
の場合の凝固を示す模式図である。
FIG. 1 is a diagram schematically showing a solidification mechanism. (a) is Fe
-C phase diagram, (b) shows carbon equivalents of A, B, C and D
It is a schematic diagram which shows the coagulation in the case of.

【図2】鋳片表面の割れ発生部および非発生部の典型的
なミクロ組織を示す写真の模写図である。(a) が割れが
発生する場合、(b) が割れが発生しない場合である。
FIG. 2 is a copy of a photograph showing a typical microstructure of a cracked part and a non-cracked part on the surface of a cast slab. (a) shows the case where cracks occur, and (b) shows the case where cracks do not occur.

【図3】鋳片のミクロ組織に及ぼす、鋳片が鋳型を通過
した後の経過時間と2次冷却の平均水量密度との影響を
示す図である。
FIG. 3 is a diagram showing the influence of the elapsed time after the slab has passed through the mold and the average water density of the secondary cooling on the microstructure of the slab.

【図4】本発明方法の冷却パターンの例を説明する図で
ある。
FIG. 4 is a diagram illustrating an example of a cooling pattern of the method of the present invention.

【図5】粒界フェライトの生成機構を模式的に示す図で
ある。
FIG. 5 is a diagram schematically showing a generation mechanism of grain boundary ferrite.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】C、Mn、Ni、CuおよびNの各含有量と炭素
当量Cp とが下記式(1) および(2)の関係を満たす鋼の
鋳片を湾曲型または垂直曲げ型の連続鋳造機を用いて製
造する際に、鋳片を鋳型から引き抜いた後直ちに2次冷
却を行い、この2次冷却のパターンにおいて、下記式
(3) で定める鋳片の鋳型通過後の経過時間t(min) の範
囲内の任意の時間帯における冷却水の平均水量密度d
(リットル /(cm2・min))が、下記式 (4)および(5) で
表される領域を満たし、かつ下記式(3) で定める経過時
間tの範囲内では平均水量密度dが、下記式 (6)および
(7) で表される領域を満たすように冷却することを特徴
とする鋳片表面割れの抑制方法。 Cp =C(%) +Mn(%)/33+Ni(%)/25 +Cu(%)/44+N(%)/1.7 ・・・(1) Cp <0.18 ・・・・・・・・・・・(2) 0.5 ≦t<2.5 ・・・・・・・・・・(3) A<d ・・・・・・・・・・・・・(4) A=−0.009 t+0.043 ・・・・・・(5) d<B ・・・・・・・・・・・・・(6) B=−0.02t+0.11 ・・・・・・・(7) ただし、X(%) は、X成分の質量%を表す。
1. A steel slab in which the contents of C, Mn, Ni, Cu and N and the carbon equivalent Cp satisfy the relations of the following formulas (1) and (2) are continuously bent or bent. When manufacturing using a casting machine, secondary cooling is performed immediately after pulling out the slab from the mold, and in this secondary cooling pattern, the following formula
Average water volume density d of cooling water in an arbitrary time zone within the elapsed time t (min) after passing through the mold of the slab specified in (3)
(Liter / (cm 2 · min)) satisfies the regions represented by the following formulas (4) and (5), and within the range of the elapsed time t defined by the following formula (3), the average water volume density d is Equation (6) and
A method for suppressing slab surface cracking, which comprises cooling so as to fill a region represented by (7). Cp = C (%) + Mn (%) / 33 + Ni (%) / 25 + Cu (%) / 44 + N (%) / 1.7 ・ ・ ・ (1) Cp <0.18 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (2 ) 0.5 ≦ t <2.5 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (3) A <d ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (4) A = −0.009 t + 0.043 ・ ・ ・ ・ ・・ (5) d <B ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ (6) B = -0.02t + 0.11 ・ ・ ・ ・ ・ ・ (7) However, X (%) is the X component Represents the mass% of
JP8072265A 1996-03-27 1996-03-27 How to control slab surface cracks Expired - Fee Related JP3042398B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8072265A JP3042398B2 (en) 1996-03-27 1996-03-27 How to control slab surface cracks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8072265A JP3042398B2 (en) 1996-03-27 1996-03-27 How to control slab surface cracks

Publications (2)

Publication Number Publication Date
JPH09253814A true JPH09253814A (en) 1997-09-30
JP3042398B2 JP3042398B2 (en) 2000-05-15

Family

ID=13484294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8072265A Expired - Fee Related JP3042398B2 (en) 1996-03-27 1996-03-27 How to control slab surface cracks

Country Status (1)

Country Link
JP (1) JP3042398B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156645A (en) * 2007-12-25 2009-07-16 Daido Steel Co Ltd Crystal grain boundary developing method of cr-mo-v containing type hot die steel
JP2010137256A (en) * 2008-12-11 2010-06-24 Jfe Steel Corp Continuous casting method and machine therefor
US20120073778A1 (en) * 2009-06-26 2012-03-29 Hyundai Steel Company Method for predicting surface quality of thin slab hot rolled coil and method for producing thin slab hot rolled coil using the same
JP2016022498A (en) * 2014-07-18 2016-02-08 新日鐵住金株式会社 Production method of low carbon aluminum-killed steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009156645A (en) * 2007-12-25 2009-07-16 Daido Steel Co Ltd Crystal grain boundary developing method of cr-mo-v containing type hot die steel
JP2010137256A (en) * 2008-12-11 2010-06-24 Jfe Steel Corp Continuous casting method and machine therefor
US20120073778A1 (en) * 2009-06-26 2012-03-29 Hyundai Steel Company Method for predicting surface quality of thin slab hot rolled coil and method for producing thin slab hot rolled coil using the same
CN102458717A (en) * 2009-06-26 2012-05-16 现代制铁株式会社 Method for predicting surface quality of thin slab hot rolled coil and method for producing thin slab hot rolled coil using same
US8220525B2 (en) * 2009-06-26 2012-07-17 Hyundai Steel Company Method for predicting surface quality of thin slab hot rolled coil and method for producing thin slab hot rolled coil using the same
JP2016022498A (en) * 2014-07-18 2016-02-08 新日鐵住金株式会社 Production method of low carbon aluminum-killed steel

Also Published As

Publication number Publication date
JP3042398B2 (en) 2000-05-15

Similar Documents

Publication Publication Date Title
US4883544A (en) Process for preparation of austenitic stainless steel having excellent seawater resistance
JP2019527774A (en) High-strength hot-rolled steel sheet having excellent surface quality with little material variation and manufacturing method thereof
JP3008825B2 (en) Slab surface crack suppression method
JP2002086252A (en) Continous casting method
JP2001138019A (en) Continuous casting method
JPH09253814A (en) Method for restraining surface crack on cast slab
JPS63112058A (en) Continuous casting method
JP2002307149A (en) Continuous casting method
JP2007245232A (en) Method for preventing surface crack of continuously cast slab
WO2016013186A1 (en) Method for continuous casting of steel
JPS63123556A (en) Production of cr-ni stainless steel being hard to crack at casting and hot rolling process
CN115697587A (en) Continuous casting method
JP3412418B2 (en) Slab secondary cooling device
JP3039369B2 (en) Method for producing Ni-containing steel
JP3406459B2 (en) Cooling method for continuous casting bloom
JP7477052B2 (en) Continuously cast slab and its manufacturing method
JP2728999B2 (en) Continuous casting method
JPS58224054A (en) Method for preventing surface cracking of continuous casting ingot
JPS58224055A (en) Method for preventing surface cracking of continuous casting ingot
KR20090066838A (en) A method of manufacturing a ferrite stainless steel
KR100515604B1 (en) The method for improving surface quality of hot rolled chrome-based stainless steel
JPH06246414A (en) Continuous casting of high carbon steel
KR100934089B1 (en) Manufacturing method of composite tissue hot rolled steel
JPH11197797A (en) Method for continuously casting steel
JP2022175638A (en) Continuous casting method for slab

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080310

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees