JPH0925355A - Heat-resistant foamed container for food - Google Patents

Heat-resistant foamed container for food

Info

Publication number
JPH0925355A
JPH0925355A JP17332495A JP17332495A JPH0925355A JP H0925355 A JPH0925355 A JP H0925355A JP 17332495 A JP17332495 A JP 17332495A JP 17332495 A JP17332495 A JP 17332495A JP H0925355 A JPH0925355 A JP H0925355A
Authority
JP
Japan
Prior art keywords
weight
styrene
methacrylic acid
container
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17332495A
Other languages
Japanese (ja)
Inventor
Takeshi Fujisawa
剛士 藤沢
Takatoshi Kitagawa
孝敏 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP17332495A priority Critical patent/JPH0925355A/en
Publication of JPH0925355A publication Critical patent/JPH0925355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a foamed resin container which has a smooth molded surface and an improved brittleness and sufficiently withstands heating in a microwave oven. SOLUTION: This container has a density of 0.03-0.5g/cc and is obtd. from a styrene-methacrylic acid compolymer which is formed from 90-96wt.% styrene and 10-4wt.% methacrylic acid and has a wt. average mol.wt. (Mr) measured by differential angular refractometric detection by gel permeation chromatography(GPC) of 200,000-400,000 in terms of linear s tandard polystyrene, an absolute wt. average mol.wt. (Mabs) measured by Rayleigh small-angle scattering method of 240,000-800,000, and a ratio of Mabs/Mr of 1.2-2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子レンジで調理しう
るに十分な耐熱性を有する容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a container having sufficient heat resistance so that it can be cooked in a microwave oven.

【0002】[0002]

【従来の技術】即席ラーメンや味噌汁の容器等は、保温
性から発泡体が使用されている。この場合、材料がポリ
スチレンである為、内容物温度が100℃で1分以上継
続すると、容器が軟化し、変形する場合が多い。このよ
うな観点から、電子レンジで水分を含む食品、例えば御
飯や副食物を加熱する場合、ポリスチレン発泡体は適さ
ない。
2. Description of the Related Art Foams are used for instant ramen, miso soup containers, etc. due to their heat retention. In this case, since the material is polystyrene, if the content temperature is continued at 100 ° C. for 1 minute or more, the container is often softened and deformed. From this point of view, the polystyrene foam is not suitable for heating food containing water in a microwave oven, such as rice or side food.

【0003】電子レンジで加熱に耐えうるものとして、
ポリプロピレンや変性PPOの発泡体が検討されている
が、発泡容器の腰強度が弱かったり、臭いの問題があっ
たりして、これらは保温容器に適さない。また、ポリプ
ロピレンに無機物フレークを混合してシーティングし、
成形した耐熱容器が上市されているが、電子レンジで加
熱する場合、容器が加熱されているため、取り扱いが不
便である。
As a microwave oven that can withstand heating,
Foams of polypropylene and modified PPO have been investigated, but they are not suitable for heat insulation containers because the foam container has a low stiffness and has a problem of odor. In addition, polypropylene is mixed with inorganic flakes for sheeting,
Although a molded heat-resistant container is on the market, it is inconvenient to handle when heated in a microwave oven because the container is heated.

【0004】また、スチレンーメタクリル酸共重合体の
発泡シートより成形した容器は、耐熱性に優れるが、通
常のものは、脆性であるため、熱可塑性エラストマーを
添加して改良しているが、熱安定性が十分でなく、また
単価の面で問題がある。
Further, a container molded from a foamed sheet of styrene-methacrylic acid copolymer has excellent heat resistance, but since a usual container is brittle, it is improved by adding a thermoplastic elastomer. Thermal stability is not sufficient and there is a problem in terms of unit price.

【0005】[0005]

【発明が解決しようとする課題】成形品表面が滑らか
で、脆性が改善され且つ電子レンジでの加熱にも十分に
耐えうる樹脂発泡容器および耐熱性に優れた発泡容器の
構造を提供するものである。
To provide a structure of a resin foam container having a smooth molded surface, improved brittleness, and capable of sufficiently withstanding heating in a microwave oven, and a foam container having excellent heat resistance. is there.

【0006】[0006]

【課題を解決するための手段】本発明は、スチレン90
〜96重量%、メタクリル酸10〜4重量%よりなるス
チレンーメタクリル酸系共重合体であって、ゲルパーミ
ューションクロマトグラフ(以下GPCと称す)による
示差角屈折率検出法で測定し、直鎖標準ポリスチレンを
基準とした重量平均分子量(以下Mrと称す)が20万
以上40万以下で、レイリー小角散乱法で測定した絶対
重量平均分子量(以下Mabsと称す)が24万〜80
万であり、かつMabs/Mrが1.2以上2以下で、
その密度が0.03g〜0.5g/ccであることを特
徴とする発泡食品容器である。
The present invention is directed to styrene 90.
A styrene-methacrylic acid-based copolymer composed of ˜96 wt% and methacrylic acid 10-4 wt%, which is directly measured by a differential angle refractive index detection method by gel permeation chromatography (hereinafter referred to as GPC). The weight average molecular weight (hereinafter referred to as Mr) based on the chain standard polystyrene is 200,000 or more and 400,000 or less, and the absolute weight average molecular weight (hereinafter referred to as Mabs) measured by the Rayleigh small angle scattering method is 240,000 to 80.
And Mabs / Mr is 1.2 or more and 2 or less,
A foamed food container having a density of 0.03 g to 0.5 g / cc.

【0007】スチレン90〜96重量%、メタクリル酸
10〜4重量%よりなるスチレンーメタクリル酸系共重
合体であって、GPCによる示差角屈折率検出法で測定
し、直鎖標準ポリスチレンを基準とした重量平均分子量
Mrが20万以上40万以下で、動的粘弾性挙動より求
めたtanδより測定したガラス転移温度が100〜1
10℃及び120〜130℃の2点を有し、その密度が
0.03g〜0.5g/ccであることを特徴とする発
泡食品容器が好ましく、更には、レイリー小角散乱法で
測定した分子量Mabsが10万〜200万であり、M
abs/Mrが1.2以上2以下で、かつ動的粘弾性挙
動より求めたtanδより測定したガラス転移温度が1
00〜110℃及び120〜130℃の2点を有し、そ
の密度が0.03g〜0.5g/ccであることを特徴
とする発泡食品容器が好ましい。
A styrene-methacrylic acid type copolymer comprising 90 to 96% by weight of styrene and 10 to 4% by weight of methacrylic acid, which is measured by a differential angle refractive index detection method by GPC, based on a linear standard polystyrene. Having a weight average molecular weight Mr of 200,000 to 400,000, and a glass transition temperature of 100 to 1 measured from tan δ obtained from dynamic viscoelastic behavior.
A foamed food container having two points of 10 ° C. and 120 to 130 ° C. and having a density of 0.03 g to 0.5 g / cc is preferable, and further, a molecular weight measured by the Rayleigh small angle scattering method. Mabs is 100,000 to 2,000,000, M
Abs / Mr is 1.2 or more and 2 or less, and the glass transition temperature measured from tan δ obtained from the dynamic viscoelastic behavior is 1
A foamed food container having two points of 00 to 110 ° C. and 120 to 130 ° C. and having a density of 0.03 g to 0.5 g / cc is preferable.

【0008】更にスチレンーメタクリル酸系共重合体9
0〜99重量%と、少なくとも片末端がスチレン単位で
構成される熱可塑性エラストマーを1〜10重量%から
なる樹脂組成物よりなる、その密度が0.03g〜0.
5g/ccであることを特徴とする発泡食品容器が好ま
しく。また、本発明におけるスチレンーメタクリル酸系
共重合体、あるいはスチレンーメタクリル酸系共重合体
および熱可塑性エラストマー樹脂組成物の発泡食品容器
としては、開口面から底面に向かって平行面の面積が漸
次減少し、かつ開口面に耳取りがある形状であって、最
大開口径/深さの比が0.4〜1.5であり、耳取り幅
/最大開口径の比が0.015〜0.09、耳の厚みが
3〜6mmにすることにより、より耐熱性に優れ、特に
食品の入った本容器を電子レンジで加熱する場合に好都
合である。
Further, styrene-methacrylic acid type copolymer 9
0 to 99% by weight and 1 to 10% by weight of a thermoplastic elastomer having at least one terminal composed of a styrene unit, and its density is 0.03 g to 0.
A foamed food container characterized by having 5 g / cc is preferable. Further, as a foamed food container of the styrene-methacrylic acid-based copolymer or the styrene-methacrylic acid-based copolymer and the thermoplastic elastomer resin composition in the present invention, the area of the parallel surfaces gradually increases from the opening surface to the bottom surface. The shape is reduced and has an edge on the opening surface, the ratio of the maximum opening diameter / depth is 0.4 to 1.5, and the ratio of the edge width / maximum opening diameter is 0.015 to 0. .09, and the ear thickness of 3 to 6 mm is more excellent in heat resistance, which is particularly convenient when the main container containing food is heated in a microwave oven.

【0009】以下に更に詳しく本発明を説明する。本発
明によって、耐熱性に優れ、脆性が改良された、表面の
風合いの良い発泡スチレンーメタクリル酸系共重合体よ
りなる容器を提供するものである。本発明におけるスチ
レンーメタクリル酸系共重合体は、スチレン90〜96
重量%、メタクリル酸10〜4重量%である。10重量
%を越えると重合時、熱に依る脱水反応により、樹脂自
体が架橋してしまい、容器表面外観を著しく悪くする。
また4重量%未満である場合は容器の耐熱性が劣る。
The present invention will be described in more detail below. The present invention provides a container made of a foamed styrene-methacrylic acid copolymer having excellent heat resistance and improved brittleness and having a good surface texture. The styrene-methacrylic acid copolymer in the present invention is styrene 90-96.
% By weight, 10 to 4% by weight of methacrylic acid. If it exceeds 10% by weight, the resin itself is crosslinked due to a dehydration reaction due to heat during polymerization, and the appearance of the surface of the container is significantly deteriorated.
If it is less than 4% by weight, the heat resistance of the container is poor.

【0010】成形品にした時のスチレンーメタクリル酸
系共重合体の重量平均分子量Mrは20万〜40万であ
る事が大切である。20万未満である場合、成形品の脆
性になり、容器を手で持った場合、割れてしまうことが
ある。また40万を越えると、発泡体の製造時、運転の
制御が難しくなる。レイリー小角散乱法で測定した分子
量Mabsが24万〜80万である。
It is important that the styrene-methacrylic acid type copolymer has a weight average molecular weight Mr of 200,000 to 400,000 when formed into a molded product. When it is less than 200,000, the molded product becomes brittle, and when the container is held by hand, it may be broken. If it exceeds 400,000, it becomes difficult to control the operation during the production of the foam. The molecular weight Mabs measured by the Rayleigh small angle scattering method is 240,000 to 800,000.

【0011】レイリー小角散乱法で測定した絶対重量平
均分子量Mabsは、示差角屈折率法から求める分子量
とは異なり、高分子中の構成ユニットの数をカウントす
るものである。よって、高分子が、分岐あるいはシンジ
オタクティック構造により大きくなり、Mabs/Mr
は1以上になる。これは、アニオンリビング重合によっ
て予め分岐されている単分散ポリマーを測定することに
よって確認できる。
The absolute weight average molecular weight Mabs measured by the Rayleigh small angle scattering method is different from the molecular weight obtained by the differential angle refractive index method and counts the number of constituent units in the polymer. Therefore, the polymer becomes larger due to the branched or syndiotactic structure, and Mabs / Mr
Is 1 or more. This can be confirmed by measuring the monodisperse polymer that has been pre-branched by anionic living polymerization.

【0012】動的粘弾性挙動より求めたtanδは、貯
蔵弾性率と損失弾性率の比より求められるものであり、
このtanδより測定したガラス転移温度が100〜1
10℃及び120〜130℃の2点を有することが好ま
しい。明確な2点のガラス転移温度が出現する場合、容
器の耐熱性および表面状態が良好となる。このようにガ
ラス転移温度が2点存在することの原因については、詳
細は不明であるが、おそらく完全な型ではないがスチレ
ンーメタクリル酸系共重合体は部分的にブロックになっ
ていると考えられる。ガラス転移温度の1点は、100
〜110℃にあることが好ましい。容器を構成する樹脂
成分のガラス転移温度が100℃より低いと、容器の耳
部での接着力が強すぎ、剥がす時に容器が破壊するので
好ましくない。また110℃を越えると接着界面強度が
弱い。もう1方のガラス転移温度は、120〜130℃
にあることが好ましい。このガラス転移温度は容器の耐
熱性に関わっている。よって、ガラス転移温度のバラン
スを100〜110℃及び120℃〜130℃に調整す
ることが好ましい。
The tan δ obtained from the dynamic viscoelastic behavior is obtained from the ratio of the storage elastic modulus to the loss elastic modulus,
The glass transition temperature measured from this tan δ is 100 to 1
It is preferable to have 2 points of 10 degreeC and 120-130 degreeC. When two distinct glass transition temperatures appear, the heat resistance and surface condition of the container are good. The reason why there are two glass transition temperatures is unknown, but it is considered that the styrene-methacrylic acid copolymer is partially blocked although it is not a perfect type. To be One point of the glass transition temperature is 100
It is preferably in the range of 110 ° C. When the glass transition temperature of the resin component constituting the container is lower than 100 ° C., the adhesive force at the ear of the container is too strong and the container is broken when peeled off, which is not preferable. On the other hand, if the temperature exceeds 110 ° C, the adhesive interface strength will be weak. The other glass transition temperature is 120 to 130 ° C.
Is preferred. This glass transition temperature is related to the heat resistance of the container. Therefore, it is preferable to adjust the balance of the glass transition temperature to 100 to 110 ° C and 120 ° C to 130 ° C.

【0013】この発泡体容器の性能を十分に引き出す為
には、基材となるスチレン−メタクリル酸共重合体のM
abs/Mrが1.1〜2.0であると、外観が良く、
好ましくは1.2以上2以下であり、より好ましくは
1.5〜2.0である。この値があまり1に近いと発泡
セル径が大ききなり、発泡が不揃いになる。また、Ma
bs/Mrの比が1.1〜2.0のものをブタンガスで
発泡した場合、得られるシート及び二次成形後得られる
成型品の脆性は、熱可塑性エラストマーを入れなくても
十分に改良される。一方、Mabs/Mrが2を越える
と、分子内架橋がおこり、シート、若しくは成形品に光
沢筋やブツブツが発生し、見栄えが悪くなる。また、発
泡体のセル径が不揃いとなり、発泡体の断熱性は低下す
る。
In order to fully bring out the performance of this foam container, M of the styrene-methacrylic acid copolymer as the base material is used.
When abs / Mr is 1.1 to 2.0, the appearance is good,
It is preferably 1.2 or more and 2 or less, and more preferably 1.5 to 2.0. If this value is too close to 1, the foamed cell diameter becomes large and the foaming becomes uneven. Also, Ma
When the bs / Mr ratio of 1.1 to 2.0 is foamed with butane gas, the brittleness of the obtained sheet and the molded product obtained after the secondary molding is sufficiently improved without adding the thermoplastic elastomer. It On the other hand, when Mabs / Mr exceeds 2, intramolecular cross-linking occurs and gloss streaks and lumps are generated on the sheet or the molded product, resulting in poor appearance. In addition, the cell diameters of the foam become uneven, and the heat insulation of the foam decreases.

【0014】より脆性を改良する為に熱可塑性エラスト
マーを混合しても良い。スチレンーメタクリル酸系共重
合体90〜99重量%あたり、熱可塑性エラストマー1
〜10重量%が良い。添加量が1重量%未満の場合、エ
ラストマーの添加効果が十分でなく、10重量%以上で
あると発泡押出時、ガスの注入圧の極度に上昇し、発泡
安定性が悪い。熱可塑性エラストマーとして、具体的に
は旭化成工業(株)製、タフプレン125、126、若
しくはタフテック1081、日本合成ゴム(株)製、T
R2000などが挙げられる。
A thermoplastic elastomer may be mixed in order to improve the brittleness. 90 to 99% by weight of styrene-methacrylic acid-based copolymer, and thermoplastic elastomer 1
10% by weight is good. If the addition amount is less than 1% by weight, the effect of adding the elastomer is not sufficient, and if it is 10% by weight or more, the gas injection pressure is extremely increased during foam extrusion, resulting in poor foam stability. Specific examples of the thermoplastic elastomer include Tahprene 125, 126 or Tuftec 1081, manufactured by Asahi Kasei Kogyo Co., Ltd., manufactured by Nippon Synthetic Rubber Co., Ltd., T
R2000 etc. are mentioned.

【0015】容器を作る前には、樹脂をサーキュラーダ
イスを通して発泡ポリスチレンシートを作る。この時の
発泡剤を含んだ樹脂の発泡粘度は、高すぎても、低すぎ
ても良くない。ガスの注入量は樹脂100重量部に対し
て4〜5.5重量部が良い。タルクを発泡核剤とした場
合では0.8〜1.0重量%が発泡効率が良い。樹脂基
材に直鎖状ポリマー、即ち、Mabs/Mrの値が1.
0〜1.05のものを用いた時には発泡セルの形状が大
きくなり、不揃いになってしまう為に、成形品の外観が
悪くなり、風合いが悪い。また、発泡表面に存在するス
キン層の厚みが余り厚いとシート及び成形品の脆性にな
る。
Before making the container, the resin is passed through a circular die to make an expanded polystyrene sheet. At this time, the foaming viscosity of the resin containing the foaming agent may be too high or too low. The gas injection amount is preferably 4 to 5.5 parts by weight with respect to 100 parts by weight of the resin. When talc is used as the foam nucleating agent, the foaming efficiency is 0.8 to 1.0% by weight. The linear polymer, that is, the value of Mabs / Mr is 1.
When one having a size of 0 to 1.05 is used, the shape of the foamed cells becomes large and becomes uneven, so that the appearance of the molded product is deteriorated and the texture is bad. Further, if the skin layer existing on the foamed surface is too thick, the sheet and the molded product become brittle.

【0016】本発明の発泡容器の密度は0.03〜0.
5g/ccが好ましい。より好ましくは0.08〜0.
3g/ccである。密度が0.5g/ccを越えると、
断熱性が劣る。容器に食品を入れて電子レンジで加熱す
る場合、密度0.5g/ccより大きくなると、素手で
持つことは困難である。また密度が0.03cc/g未
満では成形品の耐熱性が悪く、実用的ではない。
The density of the foam container of the present invention is 0.03 to 0.
5 g / cc is preferred. More preferably 0.08-0.
It is 3 g / cc. If the density exceeds 0.5 g / cc,
Poor heat insulation. When food is put in a container and heated in a microwave oven, if the density is higher than 0.5 g / cc, it is difficult to hold it with bare hands. If the density is less than 0.03 cc / g, the heat resistance of the molded product is poor and it is not practical.

【0017】開口面から底面に向かって平行面の面積が
漸次減少し、かつ開口面に耳取りがある発泡樹脂容器形
状であって、最大開口径/深さの比が0.4〜1.5で
あり、耳取り幅/最大開口径の比が0.015〜0.0
9、耳の厚みが3〜6mmの発泡容器であることが好ま
しい。最大開口径/深さの比は0.4〜1.5が良い。
0.5未満であると容器を片手で持ちにくく、食品容器
としては不適である。1.5を越えると、耐熱性が悪く
なり、特に電子レンジで加熱する容器としては不適であ
る。
The shape of the foamed resin container is such that the area of the parallel surface gradually decreases from the opening surface to the bottom surface, and the opening surface has ears, and the maximum opening diameter / depth ratio is 0.4 to 1. 5, and the ratio of the edge width / maximum opening diameter is 0.015 to 0.0
9. It is preferable that the foam container has the ear thickness of 3 to 6 mm. The maximum opening diameter / depth ratio is preferably 0.4 to 1.5.
If it is less than 0.5, it is difficult to hold the container with one hand and it is not suitable as a food container. If it exceeds 1.5, the heat resistance becomes poor, and it is particularly unsuitable as a container for heating in a microwave oven.

【0018】容器に耳を付けることにより耐熱性が向上
する。耳取り幅/最大開口径の比は、0.015〜0.
09が好ましい。より好ましくは0.015〜0.0
7、更に好ましくは0.02〜0.05である。耳が大
きいと、熱変形は少なくなるが、一方ヒートシール面積
が大きいなり、蓋を引き剥がす力が大きくなり、その力
により容器を破壊しかねない。
By attaching an ear to the container, heat resistance is improved. The ratio of edge width / maximum opening diameter is 0.015 to 0.
09 is preferable. More preferably 0.015 to 0.0
7, more preferably 0.02 to 0.05. Larger ears reduce thermal deformation, but on the other hand, increase the heat-sealing area and increase the force of peeling off the lid, which may destroy the container.

【0019】耳の厚みは3〜6mmが好ましい。耳の厚
みは耐熱性を上げる要因となる。3mm未満では、電子
レンジ加熱時の変形が著しく、6mmを超えると脆くな
る。なほ、最大開口径とは、容器の最大の内径であり、
深さは開口面から最低底面までの距離である。容器の形
状は、開口部から見ると円形、長円、楕円、四角形、多
角形等いずれでもよいが、開口部の面積は、底部面積よ
り大きい。具体的には、即席麺、温湯丼、かつ丼、親子
丼、仕出し弁当等の容器、あるいはおでん様のものを入
れる深絞り容器が挙げられる。
The thickness of the ear is preferably 3 to 6 mm. The thickness of the ear is a factor that increases heat resistance. If it is less than 3 mm, the deformation during heating in a microwave oven is remarkable, and if it exceeds 6 mm, it becomes brittle. Naho, maximum opening diameter is the maximum inner diameter of the container,
The depth is the distance from the opening surface to the lowest bottom surface. The shape of the container may be circular, oval, elliptical, quadrangular, polygonal or the like when viewed from the opening, but the area of the opening is larger than the area of the bottom. Specific examples include containers for instant noodles, hot water bowls, bonito bowls, parent and child bowls, catered lunch boxes, etc., or deep-draw containers for Oden-like items.

【0020】本発明におけるスチレンーメタクリル酸系
共重合体の重合方法としては、特開平6−279612
号公報に示すように、スチレン77重量%〜82.5重
量%、メタクリル酸9〜3.5重量%、エチルベンゼン
14重量%の重合液100重量部に対して、2、2ビス
(4、4−ジターシャリーブチルペルオキシシクロヘキ
シルプロパン0.01〜0.03重量部添加した重合溶
液を積分型反応器に連続的に仕込むことで生成される。
重合反応器の入り口を130℃、中段を140℃、最終
段を155℃にする。この時、モノマーの転換率は70
〜80%に揃え、その後、未反応モノマーを真空脱気し
た。重量平均分子量は、30万であった。
The method for polymerizing the styrene-methacrylic acid copolymer in the present invention is described in JP-A-6-279612.
As shown in Japanese Patent Publication No. 2,87,82.5% by weight of styrene, 9-3.5% by weight of methacrylic acid, and 14% by weight of ethylbenzene, 100 parts by weight of a polymerization solution is used for 2,2 bis (4,4,4). -Ditertiary butylperoxycyclohexyl propane It is produced by continuously charging a polymerization solution added in an amount of 0.01 to 0.03 part by weight into an integral type reactor.
The temperature of the inlet of the polymerization reactor is 130 ° C, the middle stage is 140 ° C, and the last stage is 155 ° C. At this time, the conversion rate of the monomer is 70.
-80%, then unreacted monomer was vacuum degassed. The weight average molecular weight was 300,000.

【0021】本発明におけるスチレンーメタクリル酸系
共重合体99.2〜99重量%に対してし発泡核剤(タ
ルク)0.8〜1重量部を回転式混合機で混合する。熱
可塑性エラストマーを混合する場合は、この時、同時に
行うとよい。更に、炭素数3〜5炭化水素を含浸させ、
ロータリークーラーを155〜160℃、サーキュラー
ダイスを145〜155℃に設定し、押出発泡させ、発
泡密度を0.06〜0.7g/ccになる様にシートの
調整する。
0.8-1 part by weight of a foam nucleating agent (talc) is mixed in a rotary mixer with respect to 99.2-99% by weight of the styrene-methacrylic acid type copolymer in the present invention. When the thermoplastic elastomer is mixed, it is advisable to carry out at the same time at this time. Furthermore, impregnating with a hydrocarbon having 3 to 5 carbon atoms,
The rotary cooler is set to 155 to 160 ° C. and the circular die is set to 145 to 155 ° C., and extrusion foaming is performed, and the sheet is adjusted so that the foaming density is 0.06 to 0.7 g / cc.

【0022】上記シートは、例えば加熱板であるセラミ
ックヒーターを350℃に設定し、4〜10秒加熱後、
マッチモールドで所望の容器に二次成形する。
For the above-mentioned sheet, for example, a ceramic heater which is a heating plate is set at 350 ° C., and after heating for 4 to 10 seconds,
Secondary molding into a desired container with a match mold.

【0023】[0023]

【実施例】実施例で用いた評価方法を記す。容器のヒー
トシール面の接着状況および電子レンジでの耐熱性の評
価は、図1に示したような容器の口をヒートシールし、
これを引き剥がした。その接着面を観察した。次に、容
器に、水80部、醤油18部、サラダオイル2部の溶液
を300cc容器に入れ、乾燥麺を30g入れてた後、
容器口部を旭化成(株)製、商標名サランラップで覆
い、日立製作所(株)製、MRO−GT1電子レンジで
7分間加熱した場合後、容器全体がどの様に変形してい
るかを開口径の変形度h値、加熱後の径D’と加熱前の
径Dとした場合、h値=D’/Dとして評価した。ま
た、容器が実用に耐えられるかどうかを目視で判定して
いる。
EXAMPLES The evaluation methods used in the examples will be described. To evaluate the adhesion state of the heat-sealed surface of the container and the heat resistance in a microwave oven, heat-seal the mouth of the container as shown in FIG.
I peeled it off. The adhesive surface was observed. Next, after putting a solution of 80 parts of water, 18 parts of soy sauce, and 2 parts of salad oil in a 300 cc container and 30 g of dried noodles,
The container mouth is covered with Asahi Kasei Co., Ltd., trade name Saran Wrap, and after heating for 7 minutes with a Hitachi, Ltd., MRO-GT1 microwave oven, how the entire container is deformed depends on the opening diameter. When the degree of deformation h value, the diameter D ′ after heating, and the diameter D before heating were used, h value = D ′ / D was evaluated. In addition, it is visually determined whether the container can withstand practical use.

【0024】容器の印刷性の評価は、容器の内部に木製
の入れ子を入れ、これに酢酸エチルエステルを溶媒とし
たインク(ゼロックス(株)性、トナーカーボン20重
量%、ポリスチレン樹脂20重量%、溶媒60重量%)
をゴムロール表面に均一塗布し、成形品側面に転写さ
せ、そのインクの付き方を目視で判定している。分子量
の測定は、特願平5−278899で示した方法であ
る。すなわち、容器の切片をテトラヒドロフラン溶媒に
溶解し、樹脂濃度10mg/10mlに調整し、遠心分
離でタルクを除いた後、GPCで示差角屈折率法にて分
子量Mrを測定し、同時にレイリー小角散乱法にて絶対
分子量Mabsを測定し、Mabs/Mrを求める。測
定装置本体は東曹(株)製、HLC8020、絶対分子
量測定装置には東曹(株)製、LS8000を用いる。
To evaluate the printability of the container, a wooden insert was put in the container, and an ink containing ethyl acetate as a solvent was added to the container (Xerox Co., Ltd., toner carbon 20% by weight, polystyrene resin 20% by weight, Solvent 60% by weight)
Is evenly applied to the surface of the rubber roll and transferred to the side surface of the molded product, and how the ink is applied is visually determined. The molecular weight is measured by the method described in Japanese Patent Application No. 5-278899. That is, a piece of a container was dissolved in a tetrahydrofuran solvent, a resin concentration was adjusted to 10 mg / 10 ml, talc was removed by centrifugation, and then a molecular weight Mr was measured by a differential angle refractive index method by GPC. At the same time, a Rayleigh small angle scattering method was performed. Absolute molecular weight Mabs is measured at to determine Mabs / Mr. HLC8020 manufactured by Tosoh Co., Ltd. is used as the measuring device body, and LS8000 manufactured by Tosoh Co., Ltd. is used as the absolute molecular weight measuring device.

【0025】ガラス転移温度の測定は、成形品を加熱圧
縮し、試験片とし、これをレオメトリックス社製、RM
S2500でガラス転移温度を測定する。
To measure the glass transition temperature, a molded product is heated and compressed into a test piece, which is manufactured by Rheometrics RM.
The glass transition temperature is measured in S2500.

【0026】[0026]

【実施例1〜4、比較例1〜3】樹脂成分のモノマー構
成はスチレン93重量%及びメタクリル酸7重量を用い
て、表1に示す耳取り幅/最大開口径の比(E値)の容
器を作製した。この容器の樹脂成分の重量平均分子量は
24万、分子量10万〜100万でのMabs/Mrは
1.2〜1.8 またガラス転移温度は100℃ 12
5℃であった。
Examples 1 to 4 and Comparative Examples 1 to 3 The monomer composition of the resin component was 93% by weight of styrene and 7% by weight of methacrylic acid, and the ratio of the edge width / maximum opening diameter (E value) shown in Table 1 was used. A container was made. The weight average molecular weight of the resin component of this container is 240,000, and the Mabs / Mr at a molecular weight of 100,000 to 1,000,000 is 1.2 to 1.8, and the glass transition temperature is 100 ° C.
5 ° C.

【0027】評価結果を表1に示した。The evaluation results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】最大開口径/深さの比が0.4〜1.5で
あり、耳取り幅/最大開口径の比
The ratio of the maximum opening diameter / depth is 0.4 to 1.5, and the ratio of the edge width / maximum opening diameter is

【0030】[0030]

【実施例5〜7、比較例4〜5】樹脂成分のモノマー構
成はスチレン93重量%及びメタクリル酸7重量を用い
て、表2に示す最大開口径/深さの比(R値)およびE
値の容器を作製した。この容器の樹脂成分の重量平均分
子量は24万、分子量10万〜100万でのMabs/
Mrは1.2〜1.8 またガラス転移温度は100℃
125℃であった。
Examples 5 to 7 and Comparative Examples 4 to 5 As the monomer composition of the resin component, 93% by weight of styrene and 7% by weight of methacrylic acid were used, and the maximum opening diameter / depth ratio (R value) and E shown in Table 2 were used.
Value containers were made. The resin component in this container has a weight average molecular weight of 240,000 and a molecular weight of 100,000 to 1,000,000.
Mr is 1.2 to 1.8, and the glass transition temperature is 100 ° C.
It was 125 ° C.

【0031】評価結果を表2に示した。The evaluation results are shown in Table 2.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【実施例8〜10、比較例6、7】樹脂成分のモノマー
構成はスチレン93重量%及びメタクリル酸7重量を用
いて、Mabs/Mrは1.68と表面状態の関係を示
す。評価結果を表3に示した。
Examples 8 to 10 and Comparative Examples 6 and 7 As for the monomer composition of the resin component, 93% by weight of styrene and 7% by weight of methacrylic acid were used, and Mabs / Mr was 1.68, which shows a relationship between the surface states. Table 3 shows the evaluation results.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【実施例11〜13、比較例8、9】樹脂成分のモノマ
ー構成はスチレン93重量%及びメタクリル酸7重量を
用いて、R値0.7及びE値0.04とし、Mabs/
Mrは1.68とし、表面状態および電子レンジでの耐
熱性の関係を示す。評価結果を表4に示した。
Examples 11 to 13 and Comparative Examples 8 and 9 As for the monomer composition of the resin component, 93% by weight of styrene and 7% by weight of methacrylic acid were used, and the R value was 0.7 and the E value was 0.04.
Mr is set to 1.68 and shows the relationship between the surface condition and the heat resistance in a microwave oven. Table 4 shows the evaluation results.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【発明の効果】本発明の容器を用いる事によって、電子
レンジで加熱しても変形の少ない耐熱容器を得る事が出
来る。
EFFECTS OF THE INVENTION By using the container of the present invention, it is possible to obtain a heat-resistant container with little deformation even when heated in a microwave oven.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に用いた容器の斜視図である。FIG. 1 is a perspective view of a container used in an example.

【符号の説明】[Explanation of symbols]

D:最大開口径。 L:成形品の深さである。 O:耳取り幅 D: Maximum opening diameter. L: Depth of the molded product. O: Ear width

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 スチレン90〜96重量%、メタクリル
酸10〜4重量%よりなるスチレンーメタクリル酸系共
重合体であって、ゲルパーミューションクロマトグラフ
(以下GPCと称す)による示差角屈折率検出法で測定
し、直鎖標準ポリスチレンを基準とした重量平均分子量
(以下Mrと称す)が20万以上40万以下で、レイリ
ー小角散乱法で測定した絶対重量平均分子量(以下Ma
bsと称す)が24万〜80万であり、かつMabs/
Mrが1.2以上2以下で、その密度が0.03g〜
0.5g/ccであることを特徴とする発泡食品容器。
1. A styrene-methacrylic acid copolymer comprising 90 to 96% by weight of styrene and 10 to 4% by weight of methacrylic acid, which has a differential angle refractive index measured by gel permeation chromatography (hereinafter referred to as GPC). The weight average molecular weight (hereinafter referred to as Mr) based on the linear standard polystyrene of 200,000 or more and 400,000 or less measured by the detection method, and the absolute weight average molecular weight (hereinafter Ma
bs) is 240,000 to 800,000, and Mabs /
Mr is 1.2 or more and 2 or less, and its density is 0.03 g or more.
A foamed food container, which is 0.5 g / cc.
【請求項2】 スチレン90〜96重量%、メタクリル
酸10〜4重量%よりなるスチレンーメタクリル酸系共
重合体であって、GPCによる示差角屈折率検出法で測
定し、直鎖標準ポリスチレンを基準とした重量平均分子
量Mrが20万以上40万以下で、動的粘弾性挙動より
求めたtanδより測定したガラス転移温度が100〜
110℃及び120〜130℃の2点を有し、その密度
が0.03g〜0.5g/ccであることを特徴とする
発泡食品容器。
2. A styrene-methacrylic acid copolymer comprising 90 to 96% by weight of styrene and 10 to 4% by weight of methacrylic acid, which is a standard linear polystyrene measured by a differential angle refractive index detection method by GPC. The standard weight average molecular weight Mr is 200,000 or more and 400,000 or less, and the glass transition temperature measured from tan δ obtained from the dynamic viscoelastic behavior is 100 to
A foamed food container having two points of 110 ° C. and 120 to 130 ° C. and having a density of 0.03 g to 0.5 g / cc.
【請求項3】 スチレン90〜96重量%、メタクリル
酸10〜4重量%よりなるスチレンーメタクリル酸系共
重合体であって、GPCによる示差角屈折率検出法で測
定し、直鎖標準ポリスチレンを基準とした重量平均分子
量Mrが20万以上40万以下で、レイリー小角散乱法
で測定した絶対重量平均分子量Mabsが24万〜80
万であり、Mabs/Mrが1.2以上2以下で、かつ
動的粘弾性挙動より求めたtanδより測定したガラス
転移温度が100〜110℃及び120〜130℃の2
点を有し、その密度が0.03g〜0.5g/ccであ
ることを特徴とする発泡食品容器。
3. A styrene-methacrylic acid copolymer comprising 90 to 96% by weight of styrene and 10 to 4% by weight of methacrylic acid, which is a linear standard polystyrene measured by a differential angle refractive index detection method by GPC. The standard weight average molecular weight Mr is 200,000 or more and 400,000 or less, and the absolute weight average molecular weight Mabs measured by the Rayleigh small angle scattering method is 240,000 to 80.
And Mabs / Mr is 1.2 or more and 2 or less, and the glass transition temperature measured from tan δ obtained from the dynamic viscoelastic behavior is 100 to 110 ° C. and 120 to 130 ° C.
A foamed food container having points and having a density of 0.03 g to 0.5 g / cc.
【請求項4】 請求項1、2又は3記載のスチレンーメ
タクリル酸系共重合体90〜99重量%と、少なくとも
片末端がスチレン単位で構成される熱可塑性エラストマ
ーを1〜10重量%からなる樹脂組成物よりなる、その
密度が0.03g〜0.5g/ccであることを特徴と
する発泡食品容器。
4. The styrene-methacrylic acid copolymer according to claim 1, 2 or 3 and 90 to 99% by weight, and 1 to 10% by weight of a thermoplastic elastomer having at least one terminal composed of a styrene unit. A foamed food container comprising a resin composition and having a density of 0.03 g to 0.5 g / cc.
【請求項5】 開口面から底面に向かって平行面の面積
が漸次減少し、かつ開口面に耳取りがある発泡樹脂容器
の形状であって、最大開口径/深さの比が0.4〜1.
5であり、耳取り幅/最大開口径の比が0.015〜
0.09、耳の厚みが3〜6mmの発泡容器である請求
項1、2、3又は4記載のスチレンーメタクリル酸系共
重合体あるいは樹脂組成物よりなる、その密度が0.0
3g〜0.5g/ccであることを特徴とする発泡食品
容器。
5. A shape of a foamed resin container having a parallel surface area gradually decreasing from an opening surface to a bottom surface and having an edge on the opening surface, and a maximum opening diameter / depth ratio of 0.4. ~ 1.
5, and the ratio of the edge width / maximum opening diameter is 0.015
A foam container having a thickness of 0.09 and an ear thickness of 3 to 6 mm. The density is 0.0, which is made of the styrene-methacrylic acid copolymer or the resin composition according to claim 1, 2, 3, or 4.
A foamed food container characterized in that it is 3 g to 0.5 g / cc.
JP17332495A 1995-07-10 1995-07-10 Heat-resistant foamed container for food Pending JPH0925355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17332495A JPH0925355A (en) 1995-07-10 1995-07-10 Heat-resistant foamed container for food

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17332495A JPH0925355A (en) 1995-07-10 1995-07-10 Heat-resistant foamed container for food

Publications (1)

Publication Number Publication Date
JPH0925355A true JPH0925355A (en) 1997-01-28

Family

ID=15958328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17332495A Pending JPH0925355A (en) 1995-07-10 1995-07-10 Heat-resistant foamed container for food

Country Status (1)

Country Link
JP (1) JPH0925355A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195770A (en) * 2010-03-23 2011-10-06 Sekisui Plastics Co Ltd Heat resistant foamed sheet made of polystyrene-based resin and container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195770A (en) * 2010-03-23 2011-10-06 Sekisui Plastics Co Ltd Heat resistant foamed sheet made of polystyrene-based resin and container

Similar Documents

Publication Publication Date Title
MXPA05006444A (en) Thermoplastic film for a disposable container made of expandable thermoplastic particles.
JP2018044086A (en) Polystyrenic resin foamed sheet, polystyrenic resin laminated foamed sheet, and polystyrenic resin laminated foamed molded body
CN104114356B (en) Thermoplastic multilayer resin sheet and container molding
EP1394187A1 (en) PROCESS FOR PRODUCING OLEFIN/AROMATIC VINYL COPOLYMER
JPH0925355A (en) Heat-resistant foamed container for food
TW416974B (en) Styrenic polymer, styrene resin composition and molding thereof
JP2018048278A (en) Polystyrenic resin foam sheet, polystyrenic resin laminated foam sheet, and polystyrenic resin laminated foam molded body
JP2022140300A (en) Polystyrene-based resin laminated foamed sheet and method for producing the same, and polystyrene-based resin laminated foamed container and method for producing the same
JP2006307228A (en) Thermoplastic resin foamed sheet and container
JP4526051B2 (en) Polystyrene resin multilayer foam sheet for thermoforming
JPS63264335A (en) Laminated foamed sheet for molding vessel for microwave range cooking
JP6034129B2 (en) Multi-layer sheet for thermoforming and container for heating microwave oven
JPH09226851A (en) Food container and lid
JP2000136251A (en) Resin container
JPH07109315A (en) Styrenic resin for foam
US20180305512A1 (en) Styrenic Copolymers and Articles Therefrom
JPH0417143B2 (en)
JP2001294677A (en) Film for heat-sealing
JP3874555B2 (en) Styrenic resin heat-resistant foam sheet and molded product thereof
JPS6055046A (en) Propylene copolymer composition
JP2002080668A (en) Styrene resin composition
JP4183997B2 (en) Polystyrene-based resin laminated foam sheet molded container with excellent impact resistance, and method for molding the container
JP6936167B2 (en) Extruded foam sheets, moldings, and food containers
WO2023282327A1 (en) Thermoplastic resin composition and use thereof
JP2000085071A (en) Multilayer resin sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301