JPH09253505A - Photocatalyst fiber and device to remove harmful material - Google Patents

Photocatalyst fiber and device to remove harmful material

Info

Publication number
JPH09253505A
JPH09253505A JP8094669A JP9466996A JPH09253505A JP H09253505 A JPH09253505 A JP H09253505A JP 8094669 A JP8094669 A JP 8094669A JP 9466996 A JP9466996 A JP 9466996A JP H09253505 A JPH09253505 A JP H09253505A
Authority
JP
Japan
Prior art keywords
photocatalyst
fiber
optical fiber
fine particles
spheres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8094669A
Other languages
Japanese (ja)
Inventor
Michiharu Uenishi
理玄 上西
Toru Takemura
徹 武村
Jun Kamo
純 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP8094669A priority Critical patent/JPH09253505A/en
Publication of JPH09253505A publication Critical patent/JPH09253505A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase the area contributing to the photocatalytic reaction and to prevent photocatalyst fine particles from dropping by fixing photocatalyst particles to the surface of vitreous spheres and depositing the vitreous sphered on at least a part of an optical fiber having a light-leaking part. SOLUTION: Photocatalyst fine particles 3 which consists of a semiconductor crystal are irradiated with light of long wavelength corresponding to the energy over the band gap of the semiconductor so as to oxidize and decompose harmful matters in a liquid or gas by using the photocatalytic reaction of the light emitted from the fine particles 3. In this system, the photocatalyst fine particles 3 are fixed to the surface of vitreous spheres 2 and these spheres 2 are deposited with an optically transparent adhesive on at least a part of the surface of a photocatalyst fiber having a light-leaking part 1. In this case, anatase type titanium dioxide in a crystal state especially having high oxidation power is used for the photocatalyst fine particles 3. The primary particle size of the photocatalyst particles 3 is preferably controlled to 10 to 1000Å.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒反応を誘起
する光触媒繊維及びこの光触媒繊維を用いた有害物質除
去装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst fiber for inducing a photocatalytic reaction and a harmful substance removing device using the photocatalyst fiber.

【0002】[0002]

【従来の技術】近年、水中に含まれるバクテリア、トリ
ハロメタン、空気中に含まれるタバコ煙、或いはトイレ
の悪臭物質等の液体中や気体中の有害物質を半導体結晶
である光触媒微粒子を用い、この光触媒微粒子に半導体
のバンドギャップ以上のエネルギーに対応する波長の光
を照射し、当該微粒子から発せられる光の光触媒反応を
利用して、有害物質を酸化分解する技術が注目されてい
る。そして、光が届きにくい部所でもこの光触媒反応を
利用する方法として光学繊維に光触媒微粒子を担持させ
たものを用いる方法が提案されており、さらに特公平4
−43841号公報、特開平6−134476号公報に
は、光学繊維の表面に漏光部を形成し、この漏光部に光
触媒微粒子を直接薄膜状に積み重ねて担持させることが
開示されている。
2. Description of the Related Art In recent years, photocatalyst fine particles, which are semiconductor crystals, have been used to remove harmful substances in liquids and gases such as bacteria contained in water, trihalomethane, tobacco smoke contained in the air, and malodorous substances in toilets. Attention has been focused on a technique of irradiating fine particles with light having a wavelength corresponding to energy larger than the band gap of a semiconductor and utilizing photocatalytic reaction of light emitted from the fine particles to oxidize and decompose harmful substances. As a method of utilizing this photocatalytic reaction even in a place where light cannot reach easily, a method using an optical fiber carrying photocatalyst fine particles has been proposed.
JP-A-43841 and JP-A-6-134476 disclose that a light leak portion is formed on the surface of an optical fiber, and photocatalyst fine particles are directly stacked and supported on the light leak portion in a thin film form.

【0003】一般に光触媒の反応は、光触媒反応に係わ
る面積が大きいほど有害物質の酸化分解速度が大きくな
るが、前記公報で開示の方法では、有害物質が接触する
のは薄膜状の表層部の光触媒微粒子のみであり、反応に
係わる面積が少ないため酸化分解速度が小さく、実用上
有害物質の除去には不十分である。また、用いる光学繊
維の漏光度を高めるため光学繊維を大きな曲率で屈曲さ
せて用いる場合、担持させた光触媒微粒子の薄膜に応力
が加わりクラックが生じ、光触媒微粒子の脱落が起こり
易いという難点がある。
In general, in the photocatalytic reaction, the larger the area involved in the photocatalytic reaction, the higher the oxidative decomposition rate of the harmful substance. In the method disclosed in the above publication, however, the harmful substance comes into contact with the photocatalyst of the thin film surface layer portion. Since it is only fine particles and the area involved in the reaction is small, the oxidative decomposition rate is low, and it is not sufficient for the practical removal of harmful substances. Further, when the optical fiber is bent with a large curvature in order to increase the degree of light leakage, a stress is applied to the carried thin film of the photocatalyst fine particles to cause cracks, and the photocatalyst fine particles are likely to fall off.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、光触
媒反応に携わる面積が大きく、かつ光触媒微粒子の脱落
が起こり難い光触媒繊維を提供することにあり、また光
触媒繊維を用いた有害物質の酸化分解速度の大きい有害
物質除去装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a photocatalyst fiber having a large area involved in a photocatalytic reaction and in which photocatalyst fine particles are less likely to fall off, and oxidation of harmful substances using the photocatalyst fiber is carried out. An object of the present invention is to provide a device for removing harmful substances having a high decomposition rate.

【0005】[0005]

【課題を解決するための手段】本発明は、光触媒微粒子
を表面に固定したガラス質球が、光学的に透明な接着剤
を介して或いは介することなく、漏光部を有する光学繊
維の表面の少なくとも一部に担持されたことを特徴とす
る光触媒繊維、
According to the present invention, at least the surface of an optical fiber having a light leakage portion is formed by vitreous spheres having photocatalyst fine particles fixed on the surface thereof, with or without an optically transparent adhesive. A photocatalyst fiber characterized by being partially supported,

【0006】及び、前記の光触媒繊維を有害物質の光触
媒反応槽に内蔵させたことを特徴とする有害物質除去装
置、にある。
Also, there is provided a harmful substance removing device characterized in that the photocatalytic fiber is contained in a photocatalytic reaction tank for harmful substances.

【0007】[0007]

【発明の実施の形態】本発明の光触媒繊維に用いられる
光触媒微粒子としては、二酸化チタン、酸化亜鉛、三酸
化タングステン、三酸化ニオブ等の金属酸化物結晶微粒
子、硫化カドミウム等の硫黄化合物結晶微粒子等が挙げ
られ、特に酸化力の強い結晶形態のアナターゼ型の二酸
化チタンが好ましく、例えば市販品として入手しうる二
酸化チタン光触媒微粒子としては、石原産業(株)製タ
イペークST−01、多木化学(株)製酸化チタンゾル
が用いられる。また、光触媒微粒子として、チタンアル
コキシド化合物、亜鉛アルコキシド化合物等の金属アル
コキシド化合物の部分加水分解物を縮合したものを用い
ることもできる。
BEST MODE FOR CARRYING OUT THE INVENTION The photocatalyst particles used in the photocatalyst fiber of the present invention include metal oxide crystal particles such as titanium dioxide, zinc oxide, tungsten trioxide, niobium trioxide, etc., and sulfur compound crystal particles such as cadmium sulfide. In particular, anatase-type titanium dioxide having a crystal form with strong oxidizing power is preferable. For example, titanium dioxide photocatalyst fine particles that can be obtained as a commercially available product include Taipaque ST-01 manufactured by Ishihara Sangyo Co., Ltd. and Taki Chemical Co., Ltd. ) Titanium oxide sol manufactured by the present invention is used. Further, as the photocatalyst fine particles, those obtained by condensing a partial hydrolyzate of a metal alkoxide compound such as a titanium alkoxide compound and a zinc alkoxide compound can be used.

【0008】光触媒微粒子の好ましい一次粒子径は、1
0〜1000オングストロングであり、粒子径が10オ
ングストロング未満では、粒子の量子サイズ効果が顕著
に現れ、半導体の価電子帯の上端と伝導電子帯の下端間
のエネルギー(バンドギャップ)が高エネルギー側にシ
フトし、励起波長域での光学繊維の光吸収のため励起光
の導光が困難となり、粒子径が1000オングストロン
グを超えると、光触媒反応の活性が低くなる。本発明の
光触媒繊維に光触媒反応を起こさせるには、バンドギャ
ップ以上のエネルギーに対応する410nm以下の紫外
線を照射することにより光学繊維の導光部より導光して
漏光部より漏光させ光触媒微粒子を励起させて光触媒反
応を誘起することができる。
The preferable primary particle size of the photocatalyst fine particles is 1
When the particle size is 0 to 1000 angstroms and the particle size is less than 10 angstroms, the quantum size effect of the particles appears remarkably, and the energy (band gap) between the upper end of the valence band and the lower end of the conduction electron band of the semiconductor is high energy. When the particle size exceeds 1000 Å strong, the activity of the photocatalytic reaction becomes low. In order to cause a photocatalytic reaction in the photocatalyst fiber of the present invention, the photocatalyst fine particles are made to radiate from the light guide part of the optical fiber by irradiating with ultraviolet rays of 410 nm or less corresponding to the energy of the band gap or more to cause light leakage from the light leak part. It can be excited to induce a photocatalytic reaction.

【0009】光触媒微粒子を固定するガラス質球として
は、SiO2、Al23を主成分とする光学的に透明な
中空状球(ガラスバルーン)或いは中実状球(ガラスビ
ーズ)が用いられ、特に中空状球は軽く、水に浮く光触
媒繊維が得られるという利点を有する。なお、本発明に
おいて、光学的に透明とは、波長410nmにおける全
光線透過率が20%以上であることを意味し、ガラス質
球の全光線透過率が20%未満では、ガラス質球を透過
する光量が少なく光触媒を十分励起できない。
Optically transparent hollow spheres (glass balloons) or solid spheres (glass beads) containing SiO 2 or Al 2 O 3 as a main component are used as glassy spheres for fixing the photocatalyst fine particles. In particular, hollow spheres are light and have the advantage that photocatalytic fibers that float in water can be obtained. In the present invention, optically transparent means that the total light transmittance at a wavelength of 410 nm is 20% or more, and if the total light transmittance of the glassy sphere is less than 20%, the glassy sphere is transmitted. The amount of light emitted is too small to excite the photocatalyst sufficiently.

【0010】ガラス質球の直径は、用いる光学繊維の直
径、光触媒微粒子の粒子径にもよるが、1μm〜10m
mの範囲で適宜選択される。ガラス質球の直径が1μm
未満では、ガラス質球に固定される光触媒微粒子の数が
少なく十分な光触媒反応を生じ難く、10mmを超える
と、ガラス質球を光学繊維に担持させることが困難であ
る。また、ガラス質球が中空状球である場合は、実用上
の強度を保持するうえで、殻の厚みが0.1μm以上で
あることが好ましい。
The diameter of the glassy sphere depends on the diameter of the optical fiber used and the particle diameter of the photocatalyst fine particles, but it is 1 μm to 10 m.
It is appropriately selected within the range of m. Vitreous sphere diameter is 1 μm
If it is less than 10 mm, the number of photocatalyst fine particles fixed to the glassy spheres is small and it is difficult for a sufficient photocatalytic reaction to occur. If it exceeds 10 mm, it is difficult to support the glassy spheres on the optical fiber. Further, when the glassy spheres are hollow spheres, the shell thickness is preferably 0.1 μm or more in order to maintain practical strength.

【0011】本発明の光触媒繊維に用いられる光学繊維
としては、微粒子の光触媒を励起する波長域が導光可能
であれば特に制限はなく、例えばポリメチルメタクリレ
ート樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、
ポリ−4−メチルペンテン−1等の非晶性ポリオレフィ
ン樹脂等を素材とするプラスチック系光学繊維及び石英
ガラスを素材とする石英系光学繊維が挙げられる。
The optical fiber used in the photocatalyst fiber of the present invention is not particularly limited as long as it can guide light in the wavelength range that excites the photocatalyst of the fine particles. For example, polymethylmethacrylate resin, polycarbonate resin, polystyrene resin,
Examples thereof include plastic optical fibers made of an amorphous polyolefin resin such as poly-4-methylpentene-1 and quartz optical fibers made of quartz glass.

【0012】また、光学繊維は、コア/クラッド構造の
ステップインデックス型光学繊維、コア部構造のみより
なる裸の光学繊維或いはグレイデッドインデックス型光
学繊維のいずれであってもよい。本発明において光学繊
維は、漏光部を有しない光学繊維であってもガラス質球
を光学繊維表面に接合することにより、その接合部より
漏光するが、さらに光学繊維の漏光率を高めるには光学
繊維の表面に漏光部を形成させたものであることが好ま
しい。
The optical fiber may be either a step index type optical fiber having a core / clad structure, a bare optical fiber having only a core structure or a graded index type optical fiber. In the present invention, even if the optical fiber is an optical fiber having no light leakage part, light is leaked from the bonding part by bonding the glassy sphere to the surface of the optical fiber. It is preferable that the light leakage part is formed on the surface of the fiber.

【0013】本発明の光触媒繊維は、光触媒微粒子を表
面に固定したガラス質球が漏光部を有する光学繊維の表
面、好ましくは光学繊維表面の漏光部の全部または一部
に担持されてなるが、光学繊維の漏光部は、光学繊維
の表面に粗面を形成する、光学繊維を漏光が生じる曲
率に屈曲する等の方法により形成し、漏光部形成の部位
は、使用用途、使用形態に応じて適宜設定することがで
きる。
The photocatalyst fiber of the present invention comprises glassy spheres having photocatalyst fine particles fixed on the surface thereof, which is carried on the surface of the optical fiber having a light leak part, preferably on all or part of the light leak part of the surface of the optical fiber. The light leakage part of the optical fiber is formed by a method such as forming a rough surface on the surface of the optical fiber, bending the optical fiber to a curvature that causes light leakage, etc. It can be set appropriately.

【0014】ガラス質球表面への光触媒微粒子の固定及
び光触媒微粒子固定ガラス質球の光学繊維漏光部への担
持においては、予めガラス質球表面及び光学繊維漏光部
表面に表面処理を施し官能基を形成しておくことが好ま
しい。
In fixing the photocatalyst fine particles on the glassy sphere surface and supporting the photocatalyst fine particle-fixed glassy spheres on the optical fiber leaking portion, surface treatment is performed in advance on the surface of the glassy sphere and the optical fiber leaking portion to functionalize the functional groups. It is preferably formed.

【0015】表面処理としては、例えば、水酸化ナト
リウム水溶液、水酸化カリウム水溶液等のアルカリ性水
溶液で加水分解し水酸基を形成させる、無水コハク
酸、無水酢酸、無水フタル酸等の酸無水物の加水分解物
と被処理物表面の水酸基と脱水反応させカルボキシル基
を形成させる、分子末端にエポキシ基、アミノ基、ア
ルコキシ基を有する加水分解性ケイ素化合物の加水分解
物で処理しその縮合物で被覆する等の方法が用いられ
る。
The surface treatment includes, for example, hydrolysis of acid anhydrides such as succinic anhydride, acetic anhydride, and phthalic anhydride, which are hydrolyzed with an alkaline aqueous solution such as sodium hydroxide aqueous solution and potassium hydroxide aqueous solution to form hydroxyl groups. Substance to form a carboxyl group by dehydration reaction with the hydroxyl group on the surface of the object to be treated, treatment with a hydrolyzate of a hydrolyzable silicon compound having an epoxy group, an amino group or an alkoxy group at the molecular end, and coating with a condensate thereof, etc. Method is used.

【0016】における加水分解性ケイ素化合物として
は、γ−グリシドキシプロピルトリメトキシシラン、γ
−グリシドキシプロピルメチルジメトキシシラン、γ−
クロロプロピルトリメトキシシラン、γ−クロロプロピ
ルメチルジメトキシシラン、γ−アミノプロピルトリエ
トキシシラン、テトラメトキシシラン、テトラエトキシ
シラン等が挙げられる。
As the hydrolyzable silicon compound in the above, γ-glycidoxypropyltrimethoxysilane, γ
-Glycidoxypropylmethyldimethoxysilane, γ-
Examples thereof include chloropropyltrimethoxysilane, γ-chloropropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, tetramethoxysilane and tetraethoxysilane.

【0017】ガラス質球表面への光触媒微粒子の固定
は、ガラス質球表面自体に存在する水酸基と光触媒微
粒子表面に存在する水酸基を化学的に反応させ、化学的
結合を形成させる、表面処理したガラス質球の官能基
と光触媒微粒子表面に存在する水酸基を化学的に反応さ
せ、化学的結合を形成させる等の方法により行われる。
The fixing of the photocatalyst fine particles on the surface of the glassy sphere is carried out by chemically reacting the hydroxyl groups present on the surface of the glassy sphere with the hydroxyl groups present on the surface of the photocatalyst fine particle to form a chemical bond. It is carried out by a method of chemically reacting the functional group of the sphere with the hydroxyl group existing on the surface of the photocatalyst fine particles to form a chemical bond.

【0018】これら化学的反応は、エーテル結合、エス
テル結合、アミド結合等を形成する脱水縮合反応、エポ
キシ基の開環重合に基づく反応であり、光触媒微粒子の
固定方法としては、ガラス質球に光触媒微粒子をコーテ
ィングし、室温〜600℃の温度範囲で加熱することに
より化学的反応を生じさせる方法が挙げられる。加熱温
度が室温以下では、反応が遅く、600℃を超えると、
光触媒の結晶形態が変わり易く光触媒活性が低下し易く
なる。
These chemical reactions are based on a dehydration condensation reaction for forming an ether bond, an ester bond, an amide bond, etc., and a ring-opening polymerization of an epoxy group. As a method for fixing photocatalyst fine particles, a photocatalyst on a glassy sphere is used. Examples thereof include a method of coating fine particles and causing a chemical reaction by heating in a temperature range of room temperature to 600 ° C. If the heating temperature is below room temperature, the reaction is slow, and if it exceeds 600 ° C,
The crystal morphology of the photocatalyst is apt to change and the photocatalytic activity is apt to decrease.

【0019】光触媒微粒子固定ガラス質球の光学繊維漏
光部への担持は、光触媒微粒子固定ガラス質球を一層の
み光学繊維漏光部へ担持させる場合は、光触媒微粒子固
定ガラス質球の官能基と光学繊維漏光部の官能基との化
学的結合をさせることにより行われ、また、光学的に透
明な接着剤を用い、この接着剤を介して光学繊維の漏光
部に担持させてもよい。光触媒微粒子固定ガラス質球の
光学繊維漏光部への担持における化学的結合は、脱水縮
合反応に基づくエーテル結合、エステル結合、アミド結
合、エポキシ基の開環重合に基づく結合である。
When the photocatalyst fine particle-fixed glassy spheres are supported on the optical fiber leaking part, when the photocatalyst finer particle-fixed glassy spheres are supported on the optical fiber leaking part only, the functional groups of the photocatalyst fine particle-fixed glassy spheres and the optical fibers are supported. It may be carried out by chemically bonding to the functional group of the light leaking part, and an optically transparent adhesive may be used, and the light leaking part of the optical fiber may be supported through this adhesive. The chemical bond for supporting the glass spheres fixed with photocatalyst fine particles on the optical fiber light leakage part is an ether bond, an ester bond, an amide bond based on a dehydration condensation reaction, and a bond based on ring-opening polymerization of an epoxy group.

【0020】光触媒微粒子固定ガラス質球を一層のみ光
学繊維漏光部へ担持する方法としては、例えば光触媒微
粒子固定ガラス質球を液面に浮かべた液に光学繊維の少
なくとも漏光部を浸した後、漏光部にのみ光触媒微粒子
固定ガラス質球が付着している状態で引き上げ、20〜
600℃の温度で、かつ光学繊維が損傷しない温度範囲
で加熱する。加熱温度が20℃以下では、反応が遅く、
600℃を超えると、化学的結合が壊れ易くなる。
As a method for supporting only one layer of the glass spheres fixed with photocatalyst fine particles on the optical fiber leaking part, for example, after dipping at least the leaking part of the optical fiber in a liquid in which the glassy spheres fixed with photocatalyst fine particles are floated on the liquid surface, 20 to 20
The heating is performed at a temperature of 600 ° C. and in a temperature range in which the optical fiber is not damaged. If the heating temperature is 20 ° C or lower, the reaction is slow,
If it exceeds 600 ° C, the chemical bond is easily broken.

【0021】図1に、光学繊維漏光部の全部に光触媒微
粒子固定ガラス質球を一層のみ担持させた光触媒繊維の
模式側面図、図2に、光学繊維漏光部の一部に光触媒微
粒子固定ガラス質球を一層のみ担持させた光触媒繊維の
模式側面図をそれぞれ示す。
FIG. 1 is a schematic side view of a photocatalyst fiber in which only one layer of glass fiber spheres fixed with photocatalyst fine particles is carried on the entire optical fiber light leak portion, and FIG. The schematic side view of the photocatalyst fiber which carried only one layer of sphere is shown, respectively.

【0022】光触媒微粒子固定ガラス質球を積み重ねて
光学繊維漏光部へ担持させる場合は、それぞれの官能基
同士の化学的結合だけでは、光学繊維漏光部と光触媒微
粒子固定ガラス質球或いは隣接する光触媒微粒子固定ガ
ラス質球と光触媒微粒子固定ガラス質球の間の十分な結
合強度が得られないので、光学的に透明な接着剤を用い
て光学繊維漏光部と光触媒微粒子固定ガラス質球間或い
は隣接する光触媒微粒子固定ガラス質球間を接着する。
従って、接着剤を用いてなる本発明の光触媒繊維は、光
触媒微粒子を表面に固定したガラス質球が光学的に透明
な接着剤を介して光学繊維の漏光部の少なくとも一部に
担持されている。
When the glass spheres fixed with the photocatalyst fine particles are stacked and supported on the optical fiber leaking part, only the chemical bond between the functional groups is sufficient to allow the optical fiber leaking part and the glassy spheres fixed with the photocatalyst fine particles or the adjacent photocatalyst fine particles. Since a sufficient bonding strength cannot be obtained between the fixed glassy spheres and the photocatalyst fine particles fixed glassy spheres, an optically transparent adhesive is used to provide a photocatalyst between the optical fiber leaking part and the photocatalyst fine particle fixed glassy spheres or adjacent photocatalysts. The particles are fixed and the glassy spheres are bonded together.
Therefore, in the photocatalyst fiber of the present invention using an adhesive, glassy spheres having photocatalyst fine particles fixed to the surface thereof are carried on at least a part of the light leakage part of the optical fiber via an optically transparent adhesive. .

【0023】用いられる光学的に透明な接着剤は、前記
と同様、波長410nmにおける全光線透過率が20%
以上である接着剤で、全光線透過率が20%未満では、
微粒子の光触媒に励起光が十分到達しない。また、用い
られる接着剤は、その屈折率が光学繊維及びガラス質球
の屈折率と同程度か小さいことが好ましく、光学繊維、
ガラス質球より屈折率が大きいと界面で反射する光の分
だけ光触媒に励起光が到達し難くなる。さらに接着剤
は、当然ながら光触媒の酸化分解作用に耐えうるもので
あることが必要である。。
The optically transparent adhesive used has a total light transmittance of 20% at a wavelength of 410 nm as described above.
When the total light transmittance of the adhesive is less than 20%,
Sufficient excitation light does not reach the photocatalyst of fine particles. Further, the adhesive used, the refractive index is preferably the same as or smaller than the refractive index of the optical fiber and the glassy sphere, the optical fiber,
When the refractive index is larger than that of the glassy sphere, it becomes difficult for the excitation light to reach the photocatalyst by the amount of the light reflected at the interface. Furthermore, the adhesive must naturally be able to withstand the oxidative decomposition action of the photocatalyst. .

【0024】好ましく用いられる接着剤としては、
(イ)加水分解性ケイ素化合物の縮合物、(ロ)フッ素
系樹脂が挙げられる。(イ)における加水分解性ケイ素
化合物としては、γ−グリシドキシプロピルトリメトキ
シシラン、γ−グリシドキシプロピルメチルジメトキシ
シラン、γ−クロロプロピルトリメトキシシラン、γ−
クロロプロピルメチルジメトキシシラン、γ−アミノプ
ロピルトリエトキシシラン、テトラメトキシシラン、テ
トラエトキシシラン等が挙げられる。
The adhesive used preferably is
(A) Condensates of hydrolyzable silicon compounds, and (b) fluororesins. As the hydrolyzable silicon compound in (a), γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, γ-chloropropyltrimethoxysilane, γ-
Examples thereof include chloropropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, tetramethoxysilane and tetraethoxysilane.

【0025】(イ)の加水分解性ケイ素化合物の縮合物
は、加水分解性ケイ素化合物を水/アルコール溶液に溶
かし、塩酸、酢酸等の存在下で加水分解させ、次いで部
分的に縮合させた溶液で、この溶液を接着剤として用い
る。
The condensate of the hydrolyzable silicon compound of (a) is a solution obtained by dissolving the hydrolyzable silicon compound in a water / alcohol solution, hydrolyzing it in the presence of hydrochloric acid, acetic acid, etc., and then partially condensing it. Then, this solution is used as an adhesive.

【0026】加水分解性ケイ素化合物の縮合物を接着剤
として用いて光触媒微粒子固定ガラス質球を光学繊維漏
光部へ担持する方法としては、例えばa.光触媒微粒子
固定ガラス質球を部分的縮合溶液上に浮かべ、光学繊維
の少なくとも漏光部を浸した後、漏光部に光触媒微粒子
固定ガラス質球が付着した状態で引き上げ、20〜60
0℃の温度で、かつ光学繊維が損傷しない温度範囲で加
熱し、部分的縮合物を硬化させる方法、b.光触媒微粒
子固定ガラス質球の入った容器に部分的縮合溶液を塗布
した光学繊維を挿入し、漏光部に光触媒微粒子固定ガラ
ス質球を付着させた状態で引き上げ、20〜600℃の
温度で、かつ光学繊維が損傷しない温度範囲で加熱し、
部分的縮合物を硬化させる方法が用いられる。
Examples of the method for supporting the vitreous spheres fixed with photocatalyst fine particles on the optical fiber leaking part by using a condensate of a hydrolyzable silicon compound as an adhesive include, for example, a. The photocatalyst fine particle-fixed glassy spheres are floated on the partial condensation solution, at least the light leakage part of the optical fiber is immersed, and then pulled up with the photocatalyst fine particle fixed glassy spheres attached to the light leakage part, 20 to 60.
A method of curing the partial condensate by heating at a temperature of 0 ° C. and in a temperature range where the optical fiber is not damaged, b. Insert the optical fiber coated with the partial condensation solution into the container containing the photocatalyst fine particle-fixed glassy spheres, pull up with the photocatalyst fine particle-fixed glassy spheres attached to the light leak portion, and at a temperature of 20 to 600 ° C., and Heating in a temperature range that does not damage the optical fiber,
A method of curing the partial condensate is used.

【0027】また、(ロ)のフッ素系樹脂としては、例
えば旭硝子(株)製サイトップ或いはルミフロンとして
市販のフッ素系樹脂が挙げられ、これらフッ素系樹脂を
フッ素系溶媒、例えば3M社製フロリナートに溶解させ
たフッ素樹脂溶液を接着剤として用いる。
Examples of the (b) fluorine-based resin include Cytop manufactured by Asahi Glass Co., Ltd. or a fluorine-based resin commercially available as Lumiflon. These fluorine-based resins can be used in a fluorine-based solvent such as 3M Fluorinert. The dissolved fluororesin solution is used as an adhesive.

【0028】フッ素系樹脂を接着剤として用いて光触媒
微粒子固定ガラス質球を光学繊維漏光部へ担持する方法
としては、例えばフッ素樹脂溶液に光学繊維の少なくと
も漏光部を浸し、引き上げ漏光部にフッ素樹脂溶液を塗
布した後、光触媒微粒子固定ガラス質球の入った容器に
挿入し、漏光部に光触媒微粒子固定ガラス質球を付着さ
せた状態で引き上げ、20〜300℃の温度で、かつ光
学繊維が損傷しない温度範囲で加熱し、フッ素樹脂溶液
の溶媒を蒸発させる方法が用いられる。
As a method of supporting the photocatalyst fine particle-fixed glassy spheres on the optical fiber leaking part by using a fluororesin as an adhesive, for example, at least the leaking part of the optical fiber is soaked in a fluororesin solution, and the pulling leaking part is filled with the fluororesin. After applying the solution, insert it into a container containing photocatalyst fine particles-fixed glassy spheres, pull up with the photocatalyst fine particles-fixed glassy spheres attached to the light leaking part, and raise the temperature at 20 to 300 ° C. and damage the optical fiber. A method is used in which the solvent of the fluororesin solution is evaporated by heating in a temperature range that does not exist.

【0029】図3に、光学繊維漏光部の全部に光触媒微
粒子固定ガラス質球を接着剤を介して積層担持させた光
触媒繊維の模式側面図、図4に、光学繊維漏光部の一部
に光触媒微粒子固定ガラス質球を接着剤を介して積層担
持させた光触媒繊維の模式側面図をそれぞれ示す。
FIG. 3 is a schematic side view of a photocatalyst fiber in which glass spheres fixed with photocatalyst fine particles are laminated and supported on the entire optical fiber light leak portion through an adhesive. FIG. 4 shows a photocatalyst on a part of the optical fiber light leak portion. FIG. 2 is a schematic side view of a photocatalytic fiber in which microparticle-immobilized glassy spheres are laminated and supported with an adhesive interposed therebetween.

【0030】また、本発明の光触媒繊維は、接着剤の介
する光触媒微粒子固定ガラス質球担持部において担持部
と漏光部との間或いは担持部内に空洞部分が形成されて
いてもよく、空洞部分が形成されるときは、空洞部分に
露出する光触媒微粒子固定ガラス質球の分だけ光触媒微
粒子の接触面積が増加する。
Further, in the photocatalyst fiber of the present invention, a hollow part may be formed between the carrying part and the light leak part or in the carrying part in the photocatalyst fine particle fixed glassy sphere carrying part via the adhesive. When formed, the contact area of the photocatalyst particles increases by the amount of the photocatalyst particle-fixed glass spheres exposed in the cavity.

【0031】かかる光触媒微粒子固定ガラス質球担持部
における空洞部分の形成には、例えば光学繊維漏光部に
接着剤を用いて光触媒微粒子固定ガラス質球及び溶剤可
溶性微粒子を積層担持させ、接着剤を加熱硬化後、溶剤
に浸して溶剤可溶性微粒子を溶出させる方法が用いられ
る。溶剤可溶性微粒子としては、例えばポリビニルアル
コール樹脂、エチレン−酢酸ビニル樹脂等からなる微粒
子が、また溶剤として水、水/アルコール混合液等が挙
げられる。
In order to form the cavity portion in the glassy sphere supporting portion on which the photocatalyst fine particles are fixed, for example, an adhesive is used in the optical fiber light leaking portion to carry the glassy spheres on which the photocatalyst fine particles are fixed and the solvent-soluble fine particles are laminated and supported, and the adhesive is heated. After curing, a method of immersing in solvent and eluting the solvent-soluble fine particles is used. Examples of the solvent-soluble fine particles include fine particles made of polyvinyl alcohol resin, ethylene-vinyl acetate resin and the like, and examples of the solvent include water and water / alcohol mixed liquid.

【0032】図5に、光学繊維漏光部の全部に光触媒微
粒子固定ガラス質球を接着剤を介して積層担持させ、担
持部に空洞部分を形成させた光触媒繊維の模式側面図、
図6に、光学繊維漏光部の一部に光触媒微粒子固定ガラ
ス質球を接着剤を介して積層担持させ、担持部に空洞部
分を形成させた光触媒繊維の模式側面図をそれぞれ示
す。
FIG. 5 is a schematic side view of a photocatalyst fiber in which glass spheres fixed with photocatalyst fine particles are laminated and carried on all of the optical fiber light leak parts through an adhesive, and a hollow portion is formed in the carrying part.
FIG. 6 is a schematic side view of the photocatalyst fiber in which the photocatalyst fine particle-fixed glassy spheres are laminated and supported on a part of the optical fiber light leaking portion with an adhesive, and a hollow portion is formed in the supporting portion.

【0033】また、本発明の光触媒繊維は、前記の方法
以外に光学繊維漏光部にガラス質球を接着剤を用いて担
持させた後、担持されたガラス質球に光触媒微粒子を固
定させる方法によって得ることもでき、この際の光学繊
維漏光部へのガラス質球の担持、ガラス質球への光触媒
微粒子を固定化は、前記と同様の方法で行うことができ
る。
The photocatalyst fiber of the present invention may be prepared by a method other than the above method, in which vitreous spheres are supported on the optical fiber light-exhausting part with an adhesive and then the photocatalyst fine particles are fixed to the carried vitreous spheres. It can also be obtained, and in this case, the supporting of the glassy spheres on the optical fiber leaking part and the immobilization of the photocatalyst fine particles on the glassy spheres can be carried out by the same method as described above.

【0034】本発明の光触媒繊維においては、光学繊維
に導光された励起光は、光学繊維内部を全反射しながら
進行し、漏光部にて散乱され、漏光部に接しているガラ
ス質球表面の光触媒微粒子に到達し、或いはまた、光学
的に透明な接着剤及び積層のガラス質球を透過しガラス
質球表面の光触媒微粒子に到達する。また、本発明の光
触媒繊維においては、漏光部にて散乱された励起光は、
ガラス質球にてさらに散乱されるためガラス質球表面の
光触媒微粒子全体に励起光が届き易くなっている。
In the photocatalyst fiber of the present invention, the excitation light guided to the optical fiber travels while totally reflecting inside the optical fiber, is scattered by the light leak portion, and is the surface of the glassy sphere in contact with the light leak portion. Of the photocatalyst fine particles, or the photocatalyst fine particles on the glassy sphere surface through the optically transparent adhesive and the laminated glassy spheres. Further, in the photocatalyst fiber of the present invention, the excitation light scattered in the light leak portion,
Since the light is further scattered by the glassy sphere, the excitation light easily reaches the entire photocatalyst fine particles on the surface of the glassy sphere.

【0035】本発明の光触媒繊維は、励起光によって十
分な光触媒反応を生じさせることから、有害物質の除去
装置に極めて好適に用いられるものであり、本発明の有
害物質除去装置は、前記の光触媒繊維を有害物質の光触
媒反応槽に内蔵させた有害物質除去装置にある。
Since the photocatalyst fiber of the present invention causes a sufficient photocatalytic reaction by excitation light, it is very suitable for use in a harmful substance removing device. The harmful substance removing device of the present invention is the photocatalyst described above. This is a harmful substance removing device that incorporates fibers into a photocatalytic reaction tank for harmful substances.

【0036】図7〜図9に、本発明の有害物質除去装置
の例の模式概略図を示す。本発明の装置は、光源6、光
触媒繊維9及び反応槽10を主たる要素として構成され
る。図7は、光触媒繊維9を束ねずに反応槽10に内蔵
させた装置、図8は、光触媒繊維9を多数本束ねて反応
槽10に内蔵させた装置、図9は、ラセン状にカールさ
せた光触媒繊維9を反応槽10に内蔵させた装置の各模
式概略図である。
7 to 9 are schematic diagrams showing examples of the harmful substance removing apparatus of the present invention. The apparatus of the present invention comprises a light source 6, a photocatalyst fiber 9 and a reaction tank 10 as main components. FIG. 7 shows an apparatus in which the photocatalyst fibers 9 are not bundled and incorporated in the reaction tank 10, FIG. 8 is an apparatus in which a large number of photocatalyst fibers 9 are bundled and incorporated in the reaction tank 10, and FIG. 9 is a curl in a spiral shape. FIG. 3 is a schematic view of each of the devices in which the photocatalyst fiber 9 is incorporated in the reaction tank 10.

【0037】図7〜図9において、被処理物入口12よ
り有害物質を含む気体或いは液体を反応槽10に導き入
れ、光源6から照射の励起光7が繊維端部から導光され
る光触媒繊維9と接触させ、光触媒反応により被処理物
の気体或いは液体に含まれる有害物質を酸化分解し、無
害物として処理物出口16より排出する。
7 to 9, a gas or a liquid containing a harmful substance is introduced into the reaction vessel 10 through the inlet 12 of the object to be processed, and the excitation light 7 emitted from the light source 6 is guided from the fiber end portion. The harmful substance contained in the gas or liquid of the object to be treated is oxidatively decomposed by being brought into contact with the substance 9 and is discharged from the treated substance outlet 16 as a harmless substance.

【0038】装置に用いる光触媒繊維の本数、漏光部の
大きさ、光触媒反応面積の設定は、被処理物の有害物質
濃度、流動速度等に応じて適宜選定することができる。
光源としては、白色蛍光灯、ブラックライト蛍光灯、高
圧水銀灯、低圧水銀灯、太陽光等が用いられる。光源か
らの光は、光触媒繊維の繊維端部に直接照射してもよい
し、一旦集光レンズで集光した後、光触媒繊維の繊維端
部に照射してもよい
The number of photocatalyst fibers used in the apparatus, the size of the light leak portion, and the setting of the photocatalytic reaction area can be appropriately selected according to the concentration of harmful substances in the object to be treated, the flow rate, and the like.
As the light source, a white fluorescent lamp, a black light fluorescent lamp, a high pressure mercury lamp, a low pressure mercury lamp, sunlight or the like is used. The light from the light source may be directly irradiated onto the fiber end portion of the photocatalytic fiber, or may be once condensed by a condenser lens and then irradiated onto the fiber end portion of the photocatalytic fiber.

【0039】本発明の有害物質除去装置は、有害物質を
含む気体或いは有害物質を含む液体の浄化に適用され、
この装置の前段または後段に、公知の分離膜装置を組み
合わせて浄化の強化または気体或いは液体中のゴミの除
去、特定成分の分離を行うことができる。また、光触媒
繊維と分離膜とを併存させて浄化機能、分離機能を併せ
持つ有害物質除去装置とすることもできる。
The harmful substance removing device of the present invention is applied to the purification of a gas containing a harmful substance or a liquid containing a harmful substance,
A publicly known separation membrane device can be combined with the pre-stage or the post-stage of this device to enhance purification, remove dust in gas or liquid, and separate specific components. In addition, a photocatalyst fiber and a separation membrane can coexist to form a harmful substance removing device having both a purifying function and a separating function.

【0040】[0040]

【実施例】以下、本発明を実施例により具体的に説明す
る。
The present invention will be described below in more detail with reference to examples.

【0041】(実施例1) 〈光触媒微粒子固定ガラス質球の作製〉中空状ガラス質
球(3M社製グラスバブルズS−60、平均粒子直径3
5μm、殻の平均厚み0.8μm)と二酸化チタンゾル
(多木化学(株)製酸化チタンゾル)をガラスシャーレ
に入れ、ガラス質球表面を二酸化チタンゾルで濡らした
後、このガラス質球を取り出し、熱風乾燥機中で100
℃で2時間加熱し、ガラス質球表面の二酸化チタンゾル
溶媒を蒸発させた。次いでこのガラス質球を電気炉中で
500℃で10時間加熱し、二酸化チタン微粒子をガラ
ス質球に固定した光触媒微粒子固定ガラス質球を作製し
た。
(Example 1) <Preparation of photocatalyst fine particle fixed glassy spheres> Hollow glassy spheres (Glass Bubbles S-60 manufactured by 3M, average particle diameter 3)
5 μm, average shell thickness 0.8 μm) and titanium dioxide sol (titanium oxide sol manufactured by Taki Kagaku Co., Ltd.) were put into a glass petri dish, the surface of the glassy sphere was wetted with titanium dioxide sol, and the glassy sphere was taken out and hot air was blown. 100 in the dryer
The mixture was heated at 0 ° C. for 2 hours to evaporate the titanium dioxide sol solvent on the surface of the glassy spheres. Then, the glassy spheres were heated in an electric furnace at 500 ° C. for 10 hours to prepare photocatalyst fine particle fixed glassy spheres in which titanium dioxide fine particles were fixed to the glassy spheres.

【0042】〈光学繊維の準備〉直径100μm、長さ
50cmのグレイデッドインデックス型の石英光学繊維
の先端から15cmまでの表面全体に#2000のサン
ドペーパーを用いて擦過して傷つけ漏光部を形成した。
この光学繊維を、テトラエトキシシラン10重量%を1
/1000規定塩酸とエタノールの混合液中で加水分
解、部分縮合させて作製した溶液に、浸漬した後、引き
上げて100℃で24時間加熱し、光学繊維漏光部をテ
トラエトキシシラン縮合物で被覆した。この表面処理に
より光学繊維漏光部表面に水酸基とエポキシ基が形成さ
れた。
<Preparation of Optical Fiber> A graded index type quartz optical fiber having a diameter of 100 μm and a length of 50 cm was scratched with a # 2000 sandpaper on the entire surface from the tip to 15 cm to form a light leaking part. .
10% by weight of tetraethoxysilane was added to this optical fiber
/ 1000 normal hydrochloric acid and ethanol in a mixed solution prepared by hydrolysis and partial condensation, and then immersed in a solution, then pulled up and heated at 100 ° C. for 24 hours to coat the optical fiber leak part with a tetraethoxysilane condensate. . By this surface treatment, hydroxyl groups and epoxy groups were formed on the surface of the optical fiber light leak part.

【0043】〈光触媒繊維の作製〉前記作製の光触媒微
粒子固定ガラス質球を前記と同じようにして得たテトラ
エトキシシラン部分縮合物溶液上に浮かべ、前記の表面
処理した石英光学繊維をこの溶液に浸漬し、光学繊維漏
光部に光触媒微粒子固定ガラス質球を付着させた状態で
引き上げ、100℃で1時間乾燥する浸漬、乾燥操作を
5回繰り返した。その後、200℃で2時間加熱して接
着剤であるテトラエトキシシラン部分縮合物を縮合硬化
させて光触媒微粒子固定ガラス質球を石英光学繊維の漏
光部に積層担持させた光触媒繊維を作製した。
<Production of Photocatalyst Fiber> The photocatalyst fine particle-fixed glassy spheres produced above were floated on the tetraethoxysilane partial condensate solution obtained in the same manner as above, and the surface-treated quartz optical fiber was placed in this solution. Immersion was performed with the photocatalyst fine particle-fixed glassy spheres attached to the optical fiber leaking part, and the glass fiber was pulled up and dried at 100 ° C. for 1 hour. Then, the mixture was heated at 200 ° C. for 2 hours to condense and cure the tetraethoxysilane partial condensate, which was an adhesive, to prepare a photocatalyst fiber in which the photocatalyst fine particle-fixed glassy spheres were laminated and supported on the light leakage part of the quartz optical fiber.

【0044】作製した光触媒繊維500本を束ねてトリ
クロロメタン1000ppmを含む水中に入れ、光触媒
繊維束の繊維端部より超高圧水銀灯を照射して導光し、
水をスターラーで攪拌しながら光触媒反応をさせたとこ
ろ、6時間後、水中のトリクロロメタンの濃度は3pp
mとなった。
The prepared 500 photocatalyst fibers were bundled and placed in water containing 1000 ppm of trichloromethane, and an ultrahigh pressure mercury lamp was irradiated from the fiber end portion of the photocatalyst fiber bundle to guide light.
When the photocatalytic reaction was carried out while stirring the water with a stirrer, the concentration of trichloromethane in the water was 3 pp after 6 hours.
m.

【0045】(実施例2) 〈光触媒微粒子固定ガラス質球の作製〉実施例1におい
て中空状ガラス質球を粒子直径0.1mmの中実状ガラ
ス質球に代えた以外は、実施例1と同様にして二酸化チ
タン微粒子をガラス質球に固定した光触媒微粒子固定ガ
ラス質球を作製した。
(Example 2) <Preparation of photocatalyst fine particle-fixed glassy spheres> The same as Example 1 except that the hollow glassy spheres in Example 1 were replaced by solid glassy spheres having a particle diameter of 0.1 mm. Then, the photocatalyst fine particle fixed glassy spheres in which the titanium dioxide fine particles were fixed to the glassy spheres were produced.

【0046】〈光学繊維の準備〉直径200μm、長さ
60cmのスッテプインデックス型のポリメチルメタク
リレート樹脂光学繊維の先端から15cmまでの表面全
体に#1000のサンドペーパーを用いて擦過して傷つ
け漏光部を形成した。この光学繊維を、γ−グリシドキ
シプロピルトリメトキシシラン10重量%を1/100
0規定塩酸とエタノールの混合液中で加水分解、部分縮
合させて作製した溶液に、浸漬した後、引き上げて60
℃で5分間加熱し、光学繊維漏光部をγ−グリシドキシ
プロピルトリメトキシシラン部分縮合物で被覆した。こ
の表面処理により光学繊維漏光部表面に水酸基とエポキ
シ基が形成された。
<Preparation of optical fiber> Step index polymethylmethacrylate resin having a diameter of 200 μm and a length of 60 cm The entire surface of the optical fiber up to 15 cm from the tip is rubbed with # 1000 sandpaper to scratch and leak light. Formed. 10% by weight of γ-glycidoxypropyltrimethoxysilane was added to 1/100 of this optical fiber.
After dipping in a solution prepared by hydrolysis and partial condensation in a mixture of 0N hydrochloric acid and ethanol, pulling it up to 60
After heating at 0 ° C. for 5 minutes, the optical fiber light leak portion was coated with γ-glycidoxypropyltrimethoxysilane partial condensate. By this surface treatment, hydroxyl groups and epoxy groups were formed on the surface of the optical fiber light leak part.

【0047】〈光触媒繊維の作製〉前記作製の光触媒微
粒子固定ガラス質球の入った250ミリリットル容量の
ビーカーに前記の表面処理した光学繊維を挿入し、光学
繊維漏光部全体に光触媒微粒子固定ガラス質球を積層付
着させた状態で引き上げ、80℃で24時間加熱して接
着剤であるγ−グリシドキシプロピルトリメトキシシラ
ン部分縮合物を縮合硬化させて二酸化チタン微粒子固定
ガラス質球をポリメチルメタクリレート樹脂光学繊維の
漏光部に積層担持させた光触媒繊維を作製した。
<Preparation of Photocatalyst Fiber> The surface-treated optical fiber was inserted into a beaker of 250 ml capacity containing the above-prepared photocatalyst fine particle-fixed glassy sphere, and the photocatalyst fine particle-fixed glassy sphere was inserted into the entire optical fiber light-exposed portion. Is pulled up in a state of being laminated and adhered, and heated at 80 ° C. for 24 hours to condense and cure the partial condensate of γ-glycidoxypropyltrimethoxysilane, which is an adhesive, so that the titanium dioxide fine particles-fixed glassy spheres are made into a polymethylmethacrylate resin. A photocatalyst fiber laminated and supported on the light leakage portion of the optical fiber was produced.

【0048】作製した光触媒繊維500本を束ねてクロ
ロホルム1500ppmを含む水中に入れ、光触媒繊維
束の繊維端部より超高圧水銀灯を照射して導光し、水を
攪拌しながら光触媒反応させたところ、9時間後、水中
のクロロホルムの濃度は11ppmとなった。
When 500 photocatalyst fibers prepared were bundled and put in water containing 1500 ppm of chloroform, an ultrahigh pressure mercury lamp was irradiated from the fiber end of the photocatalyst fiber bundle to guide the light, and the photocatalytic reaction was carried out while stirring the water. After 9 hours, the concentration of chloroform in water became 11 ppm.

【0049】(実施例3) 〈光触媒繊維の作製〉中空状ガラス質球(3M社製グラ
スバブルズS−60、平均粒子直径35μm、殻の平均
厚み0.8μm)をテトラエトキシシラン10重量%を
1/1000規定塩酸とエタノールの混合液中で加水分
解、部分縮合させて作製した溶液上に浮かべ、実施例1
と同様にして表面処理した石英光学繊維を、この溶液に
浸漬し、光学繊維漏光部にガラス質球を付着させた状態
で引き上げ、100℃で1時間乾燥する浸漬、乾燥操作
を5回繰り返してガラス質球を石英光学繊維の漏光部に
部分的に積層担持させた。
(Example 3) <Preparation of photocatalyst fiber> Hollow glassy spheres (Glass Bubbles S-60 manufactured by 3M, average particle diameter 35 µm, average shell thickness 0.8 µm) were added with 10% by weight of tetraethoxysilane. Was floated on a solution prepared by hydrolysis and partial condensation in a mixed solution of 1 / 1000N hydrochloric acid and ethanol.
The quartz optical fiber surface-treated in the same manner as above was dipped in this solution, pulled up with the vitreous spheres attached to the optical fiber leaking part, and dried at 100 ° C. for 1 hour. The glassy sphere was partially laminated and supported on the light leakage part of the quartz optical fiber.

【0050】次いで、石英光学繊維漏光部に積層担持の
ガラス質球に前記と同じテトラエトキシシラン部分縮合
物溶液を10cm3滴下しガラス質球間に浸透させた
後、200℃で加熱して接着剤であるテトラエトキシシ
ラン部分縮合物を縮合硬化させた後、このガラス質球担
持光学繊維を二酸化チタンゾル(多木化学(株)製酸化
チタンゾル)に浸漬し、引き上げて500℃で加熱して
二酸化チタン微粒子をガラス質球に固定して光触媒繊維
を作製した。
Next, 10 cm 3 of the same tetraethoxysilane partial condensate solution as described above was dripped onto the glassy spheres laminated and supported on the quartz optical fiber light leaking part, and allowed to penetrate between the glassy spheres, and then heated at 200 ° C. for adhesion. After the tetraethoxysilane partial condensate, which is an agent, is condensation-cured, the glassy sphere-supporting optical fiber is dipped in titanium dioxide sol (titanium oxide sol manufactured by Taki Chemical Co., Ltd.), pulled up and heated at 500 ° C. Photocatalytic fibers were prepared by fixing titanium fine particles to glass spheres.

【0051】作製した光触媒繊維500本を束ねてタバ
コのニコチン0.7mmg、タール9mmgを含む茶褐
色の水1リットル中に入れ、光触媒繊維束の繊維端部よ
り高圧水銀灯を照射して導光し、水をスターラーで攪拌
しながら光触媒反応させたところ、24時間後、水は無
色透明となり、タバコ臭もなかった。
The prepared 500 photocatalyst fibers were bundled and placed in 1 liter of brown water containing 0.7 mmg of tobacco nicotine and 9 mmg of tar, and a high pressure mercury lamp was irradiated from the fiber end of the photocatalyst fiber bundle to guide light. When water was subjected to a photocatalytic reaction while stirring with a stirrer, after 24 hours, the water became colorless and transparent and had no cigarette odor.

【0052】(実施例4) 〈光触媒微粒子固定ガラス質球の作製〉実施例1におい
て中空状ガラス質球を中空状ガラス質球(東芝バロティ
ーニ(株)製HSC−110B、平均粒子直径10μ
m、γ−グリシドキシプロピルトリメトキシシランによ
る表面処理品)に代えた以外は、実施例1と同様にして
二酸化チタン微粒子をガラス質球に固定した光触媒微粒
子固定ガラス質球を作製した。
(Example 4) <Preparation of photocatalyst fine particle fixed glassy spheres> In Example 1, hollow glassy spheres were replaced with hollow glassy spheres (HSC-110B manufactured by Toshiba Ballotini Co., Ltd., average particle diameter 10 μm).
m, γ-glycidoxypropyltrimethoxysilane) was used, and photocatalyst particles-fixed glass spheres were prepared by fixing titanium dioxide particles to glass spheres in the same manner as in Example 1.

【0053】〈光学繊維の準備〉直径80μm、長さ5
0cmのグレイデッドインデックス型の石英光学繊維の
先端から15cmまでの表面全体に#3000のサンド
ペーパーを用いて擦過して傷つけ漏光部を形成した。こ
の光学繊維を、テトラエトキシシラン15重量%及びγ
−グリシドキシプロピルトリメトキシシラン15重量%
の混合物を1/1000規定塩酸とエタノールの混合液
中で加水分解、部分縮合させて作製した溶液に、浸漬し
た後、引き上げて60℃で5分間乾燥し、光学繊維漏光
部をテトラエトキシシランとγ−グリシドキシプロピル
トリメトキシシランの混合物の部分縮合物で被覆した。
この表面処理により光学繊維漏光部表面に水酸基とエポ
キシ基が形成された。
<Preparation of optical fiber> Diameter 80 μm, length 5
The entire surface of the 0 cm graded index type quartz optical fiber from the tip to 15 cm was rubbed with # 3000 sandpaper to form a scratched light leak part. This optical fiber is mixed with 15% by weight of tetraethoxysilane and γ
-Glycidoxypropyltrimethoxysilane 15% by weight
The mixture was immersed in a solution prepared by hydrolyzing and partially condensing a mixture of 1 / 1000N hydrochloric acid and ethanol, then pulled up and dried at 60 ° C. for 5 minutes, and the optical fiber light leak part was converted to tetraethoxysilane. Coated with a partial condensate of a mixture of γ-glycidoxypropyltrimethoxysilane.
By this surface treatment, hydroxyl groups and epoxy groups were formed on the surface of the optical fiber light leak part.

【0054】〈光触媒繊維の作製〉前記作製の光触媒微
粒子固定ガラス質球と重量平均分子量2000の平均粒
子直径10μmのポリビニルアルコール樹脂微粒子を重
量比1:1に混合し、水を加えてそれぞれ粒子を濡らし
た。次いで、前記の表面処理した石英光学繊維をこの粒
子混合物中に挿入し、二酸化チタン微粒子固定ガラス質
球とポリビニルアルコール樹脂微粒子を光学繊維漏光部
全体に付着させた状態で引き上げ、80℃で24時間加
熱し、光学繊維漏光部の表面処理に用いた部分縮合物を
縮合硬化させた。得られた光触媒繊維を80℃の温水中
に2日間浸漬し、ポリビニルアルコール樹脂微粒子を溶
出させ、二酸化チタン微粒子固定ガラス質球の積層担持
部に空洞部分が形成された光触媒繊維を作製した。
<Production of Photocatalyst Fiber> The photocatalyst fine particle-fixed glassy spheres prepared above and polyvinyl alcohol resin fine particles having a weight average molecular weight of 2000 and an average particle diameter of 10 μm are mixed at a weight ratio of 1: 1, and water is added to each particle. I got wet. Then, the surface-treated quartz optical fiber was inserted into this particle mixture, and the titanium dioxide fine particles-fixed glassy spheres and the polyvinyl alcohol resin fine particles were pulled up while being adhered to the entire optical fiber light-exposed portion, and the temperature was raised at 80 ° C. for 24 hours. By heating, the partial condensate used for the surface treatment of the optical fiber leaking part was condensation-cured. The obtained photocatalyst fiber was immersed in warm water at 80 ° C. for 2 days to elute the polyvinyl alcohol resin fine particles to prepare a photocatalyst fiber in which a hollow portion was formed in the laminated supporting portion of the titanium dioxide fine particle fixed glassy spheres.

【0055】作製した光触媒繊維500本を束ねてタバ
コ10本分のタバコ煙が充満する箱の中に挿入し、箱内
の空気をファンで1時間攪拌しながら光触媒繊維の光触
媒微粒子固定ガラス質球担持部にタバコ煙を吸着させ
た。その後、光触媒繊維束の繊維端部より高圧水銀灯を
照射して導光し、光触媒反応させたところ、5時間後担
持部に吸着されていたタバコの褐色のヤニ及び箱内のタ
バコ臭が完全になくなっていた。
The prepared 500 photocatalyst fibers were bundled and inserted into a box filled with cigarette smoke for 10 cigarettes, and the air in the box was agitated by a fan for 1 hour while the photocatalyst fine particles-fixed glass spheres of the photocatalyst fibers were stirred. Cigarette smoke was adsorbed on the carrying part. After that, a high-pressure mercury lamp was irradiated from the fiber end of the photocatalyst fiber bundle to guide the light, and a photocatalytic reaction was carried out. After 5 hours, the brown crocodile of the tobacco adsorbed on the carrying part and the tobacco odor in the box were completely removed. It was gone.

【0056】(実施例5) 〈光学繊維の準備〉直径1mm、長さ60cmのグレイ
デッドインデックス型の石英光学繊維の先端から10c
mまでの表面全体に#3000のサンドペーパーを用い
擦過して傷つけ漏光部を形成した。この光学繊維を、γ
−アミノプロピルトリエトキシシラン20重量%を水と
エタノールの重量比1:1の混合液中で加水分解、部分
縮合させて作製した溶液に、浸漬した後、引き上げて6
0℃で5分間乾燥し、光学繊維漏光部をγ−アミノプロ
ピルトリエトキシシランの部分縮合物で被覆した。この
表面処理により光学繊維漏光部表面に水酸基とアミノ基
が形成された。
(Example 5) <Preparation of optical fiber> 10c from the tip of a graded index type quartz optical fiber having a diameter of 1 mm and a length of 60 cm.
The entire surface up to m was scratched with a # 3000 sandpaper to form a light leakage portion. This optical fiber is
-Aminopropyltriethoxysilane 20% by weight was dipped in a solution prepared by hydrolysis and partial condensation in a mixed solution of water and ethanol in a weight ratio of 1: 1 and then pulled up to 6
After drying at 0 ° C. for 5 minutes, the optical fiber light leak part was coated with a partial condensate of γ-aminopropyltriethoxysilane. By this surface treatment, hydroxyl groups and amino groups were formed on the surface of the optical fiber light leak part.

【0057】〈光触媒繊維の作製〉実施例4において作
製したと光触媒微粒子固定ガラス質球を水面に浮かべ、
前記の表面処理した石英光学繊維を、この水に浸漬した
後、光学繊維漏光部の一部に光触媒微粒子固定ガラス質
球を一層に付着させた状態で引き上げ、80℃で2時間
加熱して水を蒸発させた後、250℃で15時間加熱し
て二酸化チタン微粒子固定ガラス質球を石英光学繊維の
漏光部に単層担持させた光触媒繊維を作製した。
<Preparation of photocatalyst fiber> The glass spheres fixed with photocatalyst particles prepared in Example 4 were floated on the water surface,
After immersing the surface-treated quartz optical fiber in this water, the glass fiber spheres fixed with photocatalyst fine particles are pulled up to a part of the optical fiber light leak part, and heated up at 80 ° C. for 2 hours. Was evaporated and then heated at 250 ° C. for 15 hours to prepare a photocatalytic fiber in which titanium dioxide fine particle-fixed glassy spheres were supported in a single layer on the light leakage part of the quartz optical fiber.

【0058】作製した光触媒繊維500本を束ねてタバ
コのニコチン0.7mmg、タール9mmgを含む茶褐
色の水1リットル中に入れ、光触媒繊維束の繊維端部よ
り高圧水銀灯を照射して導光し、水をスターラーで攪拌
しながら光触媒反応させたところ、17時間後、水は無
色透明となり、タバコ臭もなかった。
The prepared 500 photocatalyst fibers were bundled and placed in 1 liter of brown water containing 0.7 mmg of cigarette nicotine and 9 mmg of tar, and the high-pressure mercury lamp was irradiated from the fiber end of the photocatalyst fiber bundle to guide the light. When a photocatalytic reaction was carried out while stirring the water with a stirrer, the water became colorless and transparent after 17 hours and had no cigarette odor.

【0059】(実施例6) 〈光触媒微粒子固定ガラス質球の作製〉実施例1におい
て中空状ガラス質球を中空状ガラス質球(旭硝子(株)
製セルスターZ−45、平均粒子直径52μm、殻の平
均厚み0.7μm)に代えた以外は、実施例1と同様に
して二酸化チタン微粒子をガラス質球に固定した光触媒
微粒子固定ガラス質球を作製した。
(Example 6) <Preparation of photocatalyst fine particle-fixed glassy spheres> In Example 1, hollow glassy spheres were replaced with hollow glassy spheres (Asahi Glass Co., Ltd.).
Cellulase Z-45 manufactured by Manufacturing Co., average particle diameter 52 μm, average shell thickness 0.7 μm) were used, and photocatalyst fine particle fixed glass spheres in which titanium dioxide fine particles were fixed to glassy spheres were prepared in the same manner as in Example 1. did.

【0060】〈光学繊維の準備〉直径250μm、長さ
70cmのステップインデックス型のポリメチルメタク
リレート樹脂光学繊維の先端から10cmまでの表面全
体に#1500のサンドペーパーを用いて擦過して傷つ
け漏光部を形成した。この光学繊維を、γ−グリシドキ
シプロピルメチルジメトキシシラン10重量%を1/1
000規定塩酸とエタノールの混合液中で加水分解、部
分縮合させて作製した溶液に、浸漬した後、引き上げて
60℃で10分間加熱し、光学繊維漏光部をγ−グリシ
ドキシプロピルメチルジメトキシシランの部分縮合物で
被覆した。この表面処理によりポリメチルメタクリレー
ト樹脂光学繊維漏光部表面に水酸基とエポキシ基が形成
された。
<Preparation of Optical Fibers> Step index type polymethylmethacrylate resin having a diameter of 250 μm and a length of 70 cm The entire surface of the optical fibers up to 10 cm from the tip is rubbed with # 1500 sandpaper to scratch and leak light. Formed. This optical fiber was mixed with 10% by weight of γ-glycidoxypropylmethyldimethoxysilane to 1/1.
After dipping in a solution prepared by hydrolysis and partial condensation in a mixed solution of 000N hydrochloric acid and ethanol, and then pulling it up and heating at 60 ° C. for 10 minutes, the optical fiber light leak part is γ-glycidoxypropylmethyldimethoxysilane. Was coated with the partial condensate. By this surface treatment, a hydroxyl group and an epoxy group were formed on the surface of the polymethylmethacrylate resin optical fiber light leak part.

【0061】〈光触媒繊維の作製〉前記作製の光触媒微
粒子固定ガラス質球を前記と同じようにして得たγ−グ
リシドキシプロピルメチルジメトキシシランの部分縮合
物溶液上に浮かべ、前記の表面処理した石英光学繊維を
この溶液に浸漬した後、光学繊維漏光部全体に光触媒微
粒子固定ガラス質球を一層に付着させた状態で引き上
げ、80℃で12時間加熱して光触媒微粒子固定ガラス
質球をポリメチルメタクリレート樹脂光学繊維の漏光部
全体に単層担持させた光触媒繊維を作製した。
<Production of Photocatalyst Fiber> The above-prepared photocatalyst fine particle-fixed glassy spheres were floated on the partial condensate solution of γ-glycidoxypropylmethyldimethoxysilane obtained in the same manner as above, and the surface treatment was carried out as described above. After immersing the quartz optical fiber in this solution, the glass fiber spheres fixed with photocatalyst fine particles were pulled up in a state in which one layer was adhered to the entire optical fiber light leakage part, and the glass spheres fixed with photocatalyst fine particles were heated for 12 hours at 80 ° C. A photocatalyst fiber in which a single layer was carried on the entire light leakage portion of the methacrylate resin optical fiber was produced.

【0062】作製した光触媒繊維500本を束ねてトリ
クロロメタン850ppmを含む水中に入れ、光触媒繊
維束の繊維端部より超高圧水銀灯を照射して導光し、水
をスターラーで攪拌しながら光触媒反応をさせたとこ
ろ、10時間後、水中のトリクロロメタンの濃度は19
ppmとなった。
The prepared 500 photocatalyst fibers were bundled and put in water containing 850 ppm of trichloromethane, and an ultrahigh pressure mercury lamp was irradiated from the fiber end of the photocatalyst fiber bundle to guide the light, and the photocatalytic reaction was performed while stirring the water with a stirrer. After 10 hours, the concentration of trichloromethane in water was 19
ppm.

【0063】(実施例7) 〈光触媒微粒子固定ガラス質球の作製〉実施例2におい
て中空状ガラス質球を粒子直径5mmの中実状ガラス質
球に代えた以外は、実施例2と同様にして二酸化チタン
微粒子をガラス質球に固定した光触媒微粒子固定ガラス
質球を作製した。
(Example 7) <Preparation of photocatalyst fine particle-fixed glassy spheres> In the same manner as in Example 2 except that the hollow glassy spheres in Example 2 were replaced by solid glassy spheres having a particle diameter of 5 mm. Photocatalyst fine particle fixed glassy spheres were prepared by fixing titanium dioxide fine particles to glassy spheres.

【0064】〈光学繊維の準備〉直径10mm、長さ6
0cmのスッテプインデックス型のポリメチルメタクリ
レート樹脂光学繊維の先端から10cmまでの繊維表面
全体に#1500のサンドペーパーを用いて擦過して傷
つけ漏光部を形成した。この光学繊維を、フッ素樹脂塗
料(旭硝子(株)製ルミフロン)に浸漬した後、引き上
げて80℃で30分間加熱し、光学繊維漏光部全体をフ
ッ素樹脂で被覆した。この光学繊維漏光部に被覆のフッ
素樹脂は完全には乾いていない状態にあった。
<Preparation of optical fiber> Diameter 10 mm, length 6
A 0 cm step-index type polymethylmethacrylate resin optical fiber was rubbed by rubbing with # 1500 sandpaper over the entire fiber surface up to 10 cm from the tip to form a light leakage part. This optical fiber was immersed in a fluororesin coating material (Lumiflon manufactured by Asahi Glass Co., Ltd.), then pulled up and heated at 80 ° C. for 30 minutes to coat the entire optical fiber light-exposed portion with the fluororesin. The fluororesin coating on the optical fiber leaking part was not completely dried.

【0065】〈光触媒繊維の作製〉前記作製の光触媒微
粒子固定ガラス質球をガラスシャーレに入れ、前記の表
面処理した光学繊維をこの光触媒微粒子固定ガラス質球
と接触させて漏光部の一部に一層に光触媒微粒子固定ガ
ラス質球を付着させた。次いで80℃で30時間加熱
し、フッ素樹脂の溶媒を蒸発させポリメチルメタクリレ
ート樹脂光学繊維の漏光部に光触媒微粒子固定ガラス質
球を単層に担持させた光触媒繊維を作製した。
<Preparation of Photocatalyst Fiber> The above-prepared photocatalyst fine particle-fixed glassy spheres were placed in a glass dish, and the surface-treated optical fiber was brought into contact with the photocatalyst fine particle-fixed glassy spheres to form a layer on a part of the light leak portion. A glassy sphere fixed with photocatalyst fine particles was attached to the surface. Then, the mixture was heated at 80 ° C. for 30 hours to evaporate the solvent of the fluororesin and to prepare a photocatalyst fiber in which the glassy spheres fixed with photocatalyst fine particles were supported in a single layer on the light leakage part of the polymethylmethacrylate resin optical fiber.

【0066】作製した光触媒繊維500本を束ねてトリ
クロロメタン1120ppmを含む水中に入れ、光触媒
繊維束の繊維端部より超高圧水銀灯を照射して導光し、
水を攪拌しながら光触媒反応させたところ、10時間
後、水中のクロロホルムの濃度は35ppmとなった。
The prepared 500 photocatalyst fibers were bundled and put in water containing 1120 ppm of trichloromethane, and an ultrahigh pressure mercury lamp was irradiated from the fiber end of the photocatalyst fiber bundle to guide light.
When a photocatalytic reaction was carried out while stirring the water, the concentration of chloroform in the water became 35 ppm after 10 hours.

【0067】(実施例8) 〈光触媒微粒子固定ガラス質球の作製〉実施例1におい
て中空状ガラス質球として水酸化ナトリウム10重量%
水溶液により80℃で8時間加水分解し、表面に水酸基
を形成させたガラス質球を用いた以外は、実施例1と同
様にして二酸化チタン微粒子をガラス質球に固定した光
触媒微粒子固定ガラス質球を作製した。
(Example 8) <Preparation of photocatalyst fine particle fixed glassy spheres> In Example 1, the hollow glassy spheres were 10% by weight of sodium hydroxide.
Photocatalyst fine particle fixed glassy spheres in which titanium dioxide fine particles were fixed to the glassy spheres in the same manner as in Example 1 except that the glassy spheres were hydrolyzed with an aqueous solution at 80 ° C. for 8 hours to form hydroxyl groups on the surface. Was produced.

【0068】〈光学繊維の準備、光触媒繊維の作製〉前
記作製の光触媒微粒子固定ガラス質球を用いた以外は、
実施例1と同様にして光触媒微粒子固定ガラス質球を石
英光学繊維の漏光部に積層担持させた光触媒繊維を作製
した。
<Preparation of optical fiber, preparation of photocatalyst fiber> Except that the above-prepared photocatalyst fine particle fixed glassy spheres were used,
In the same manner as in Example 1, a photocatalyst fiber was produced in which glass spheres fixed with photocatalyst fine particles were laminated and supported on the light leakage part of the quartz optical fiber.

【0069】(実施例9)実施例1において、光学繊維
の準備の際、石英光学繊維漏光部の表面処理を、無水酢
酸に浸漬し、引き上げて100℃で加熱し、光学繊維漏
光部表面にカルボキシル基を形成させる表面処理に代え
た以外は、実施例1と同様にして光触媒微粒子固定ガラ
ス質球を石英光学繊維の漏光部に積層担持させた光触媒
繊維を作製した。
(Example 9) In Example 1, in the preparation of the optical fiber, the surface treatment of the quartz optical fiber light leaking part was performed by immersing it in acetic anhydride, pulling it up, and heating it at 100 ° C to form the surface of the optical fiber light leaking part. A photocatalyst fiber was prepared in the same manner as in Example 1 except that the surface treatment for forming a carboxyl group was replaced with the photocatalyst fine particle-fixed vitreous spheres laminated and supported on the light leakage part of the quartz optical fiber.

【0070】作製した光触媒繊維500本を束ねてジブ
ロモクロロメタン1200ppmを含む水中に入れ、光
触媒繊維束の繊維端部より超高圧水銀灯を照射して導光
し、水をスターラーで攪拌しながら光触媒反応させたと
ころ、8時間後、水中のジブロモクロロメタンの濃度は
8ppmとなった。
The 500 photocatalyst fibers thus prepared were bundled and put in water containing 1200 ppm of dibromochloromethane, and an ultrahigh pressure mercury lamp was irradiated from the fiber end of the photocatalyst fiber bundle to guide light, and the photocatalytic reaction was performed while stirring the water with a stirrer. After 8 hours, the concentration of dibromochloromethane in water was 8 ppm.

【0071】(比較例1)実施例1において、表面処理
した石英光学繊維を二酸化チタンゾルに浸漬し、引き上
げ500℃で加熱する浸漬、加熱操作を5回繰り返して
光学繊維漏光部に二酸化チタン微粒子を直接固定して光
触媒繊維を作製した。 作製した光触媒繊維500本を
束ねてトリクロロメタン1000ppmを含む水中に入
れ、実施例1と同じ条件で、光触媒繊維束の繊維端部よ
り超高圧水銀灯を照射して導光し、水をスターラーで攪
拌しながら光触媒反応させたところ、6時間後、水中の
トリクロロメタンの濃度は500ppmとしかならなか
った。
(Comparative Example 1) In Example 1, the surface-treated quartz optical fiber was dipped in a titanium dioxide sol, pulled up and heated at 500 ° C. A photocatalytic fiber was prepared by directly fixing it. The prepared 500 photocatalyst fibers were bundled and put in water containing 1000 ppm of trichloromethane, and under the same conditions as in Example 1, an ultrahigh pressure mercury lamp was irradiated from the fiber end of the photocatalyst fiber bundle to guide light, and the water was stirred with a stirrer. However, when a photocatalytic reaction was carried out, the concentration of trichloromethane in water was only 500 ppm after 6 hours.

【0072】(比較例2)実施例2において、表面処理
したポリメチルメタクリレート樹脂光学繊維を二酸化チ
タンゾルに浸漬し、引き上げ80℃で加熱する浸漬、加
熱操作を5回繰り返して光学繊維漏光部に二酸化チタン
微粒子を直接固定して光触媒繊維を作製した。 作製し
た光触媒繊維500本を束ねてクロロホルム1500p
pmを含む水中に入れ、実施例1と同じ条件で、光触媒
繊維束の繊維端部より超高圧水銀灯を照射して導光し、
水をスターラーで攪拌しながら光触媒反応させたとこ
ろ、9時間後、水中のクロロホルムの濃度は780pp
mとしかならなかった。
(Comparative Example 2) In Example 2, the surface-treated polymethylmethacrylate resin optical fiber was dipped in a titanium dioxide sol, pulled up and heated at 80 ° C. Photocatalytic fibers were prepared by directly fixing titanium fine particles. Chloroform 1500p by bundling 500 prepared photocatalyst fibers
It was placed in water containing pm, and under the same conditions as in Example 1, an ultrahigh pressure mercury lamp was irradiated from the fiber end of the photocatalyst fiber bundle to guide light.
When photocatalytic reaction was carried out while stirring the water with a stirrer, after 9 hours, the concentration of chloroform in the water was 780 pp.
It was only m.

【0073】(実施例10)図10に示すように、有害
物質除去装置を、反応槽21、光源17、被処理水貯蔵
タンク25、被処理水循環用ポンプ27で構成し、反応
槽21は、上蓋22を備え、直径18cm、高さ40c
mの円筒形をなし、被処理水貯蔵タンク25は、フッ素
樹脂よりなる容量30リットルのタンクであり、被処理
水貯蔵タンク25と反応槽21、反応槽21と被処理水
貯蔵タンク25とはガラス製の配管23でそれぞれ結ば
れ、また、循環用ポンプ27は、被処理水を反応槽21
と被処理水貯蔵タンク25の間で循環させるもので、フ
ロン工業(株)製テフロンベローズポンプ型式BP−6
0(吐出量30cm3/分)を用いた。
(Embodiment 10) As shown in FIG. 10, the harmful substance removing device comprises a reaction tank 21, a light source 17, a treated water storage tank 25, and a treated water circulating pump 27. Equipped with a top lid 22, diameter 18 cm, height 40 c
The treated water storage tank 25 has a cylindrical shape of m and is a tank made of fluororesin having a capacity of 30 liters. The treated water storage tank 25 and the reaction tank 21, and the reaction tank 21 and the treated water storage tank 25 are They are connected by glass pipes 23, respectively, and the circulation pump 27 feeds the water to be treated into the reaction tank 21.
And Teflon bellows pump model BP-6 manufactured by Freon Industry Co., Ltd.
0 (discharge amount 30 cm 3 / min) was used.

【0074】反応槽21の上蓋22に、実施例1で作製
した光触媒繊維20を100本固定し、反応槽21内に
光触媒繊維20を配置した。なお、上蓋22上に露出す
る繊維端面は光学研磨した。被処理水貯蔵タンク25
に、トリクロロエタン500ppmを含む水を被処理水
24として投入し、循環用ポンプ27で被処理水24を
循環させた。同時に、光源17としたウシオ電機(株)
製超高圧水銀灯UI−501Cからの励起光18を反射
鏡19で反射させて光触媒繊維20の端部から入射さ
せ、光触媒繊維20の基体光学繊維28の漏光部29か
ら出射させ、ガラス質球30を介し光触媒微粒子31に
照射して光触媒反応を誘起させた。光触媒反応中は、反
応槽21を攪拌子の回転で攪拌しながら行った。光照射
下に9時間装置を運転したところ、処理水の水中トリク
ロロエタン濃度は8ppmとなった。
100 photocatalyst fibers 20 produced in Example 1 were fixed to the upper lid 22 of the reaction tank 21, and the photocatalyst fibers 20 were arranged in the reaction tank 21. The fiber end surface exposed on the upper lid 22 was optically polished. Treated water storage tank 25
Water containing 500 ppm of trichloroethane was charged as the treated water 24, and the treated water 24 was circulated by the circulation pump 27. At the same time, Ushio Electric Co., Ltd. was used as the light source 17.
The excitation light 18 from the ultra-high pressure mercury lamp UI-501C manufactured by the manufacturer is reflected by the reflecting mirror 19 to enter from the end of the photocatalyst fiber 20, is emitted from the light leaking part 29 of the base optical fiber 28 of the photocatalyst fiber 20, and is vitreous sphere 30. The photocatalyst fine particles 31 were irradiated with the light to induce a photocatalytic reaction. During the photocatalytic reaction, the reaction vessel 21 was stirred while being rotated by a stirrer. When the device was operated for 9 hours under light irradiation, the trichloroethane concentration in the treated water in water was 8 ppm.

【0075】(実施例11)図11に示すように、実施
例10で用いたと同様の有害物質除去装置を用いた。反
応槽21の上蓋22には、実施例3で作製した光触媒繊
維20を500本ガラス管に挿入した状態で固定し、反
応槽21内に光触媒繊維20を配置した。被処理水24
としてトリクロロエタン500ppmを含む水を用い、
実施例10と同様にして装置を運転し、光触媒反応をさ
せた。光照射下に10時間装置を運転したところ、処理
水の水中トリクロロエタン濃度は1.6ppmとなっ
た。
(Embodiment 11) As shown in FIG. 11, the same harmful substance removing apparatus as that used in Embodiment 10 was used. On the upper lid 22 of the reaction tank 21, 500 photocatalyst fibers 20 produced in Example 3 were fixed in a state of being inserted in a glass tube, and the photocatalyst fibers 20 were arranged in the reaction tank 21. Water to be treated 24
Water containing 500 ppm of trichloroethane is used as
The apparatus was operated in the same manner as in Example 10 to cause a photocatalytic reaction. When the device was operated for 10 hours under light irradiation, the trichloroethane concentration in the treated water in water was 1.6 ppm.

【0076】(実施例12)図12に示すように、有害
物質除去装置を、反応槽21、光源17、汚染空気槽3
6、循環用ポンプ27で構成し、反応槽21は、上蓋2
2を備え、直径18cm、高さ40cmの円筒形をな
し、汚染空気槽36は、タテ60cm、ヨコ50cm、
高さ60cmの箱であり、汚染空気槽36と反応槽2
1、反応槽21と汚染空気槽35とはガラス製の配管2
3でそれぞれ結ばれ、また、循環用ポンプ27は、汚染
空気を反応槽21と汚染空気槽36の間で循環させるも
ので、排気量5リットル/分の排気ポンプを用いた。
(Embodiment 12) As shown in FIG. 12, the harmful substance removing device is provided with a reaction tank 21, a light source 17, and a contaminated air tank 3.
6 and a circulation pump 27, and the reaction tank 21 has an upper lid 2
2 has a cylindrical shape with a diameter of 18 cm and a height of 40 cm, and the contaminated air tank 36 has a vertical length of 60 cm, a horizontal length of 50 cm,
It is a box with a height of 60 cm and contains a contaminated air tank 36 and a reaction tank 2.
1. The reaction tank 21 and the contaminated air tank 35 are made of glass pipe 2
The circulation pump 27 circulates the contaminated air between the reaction tank 21 and the contaminated air tank 36, and an exhaust pump having an exhaust volume of 5 liters / minute was used.

【0077】反応槽21の上蓋22には、実施例4で作
製した光触媒繊維20を350本束ねて固定し、反応槽
21内に光触媒繊維20を配置した。汚染空気槽36に
は、タバコ10本分のタバコ煙33を充満させ、循環用
ポンプ27でタバコ煙汚染空気を循環させた。タバコ煙
汚染空気の循環中に、タバコ煙33は光触媒繊維20に
吸着され、吸着箇所は褐色となった。次いで、光源17
としたオーク製作所製高圧水銀灯(型式HHM−300
0)からの励起光18を反射鏡19で反射させて光触媒
繊維20の端部から入射させ、光触媒繊維20の基体光
学繊維漏光部から出射させ、ガラス質球を介し光触媒微
粒子に照射して光触媒反応を誘起させた。光触媒反応中
は、タバコ煙汚染空気を循環させながら行った。光照射
下に8時間装置を運転したところ、処理空気からタバコ
臭が消え、光触媒繊維20のタバコ煙吸着箇所は無色と
なった。
On the upper lid 22 of the reaction vessel 21, 350 photocatalyst fibers 20 produced in Example 4 were bundled and fixed, and the photocatalyst fibers 20 were arranged in the reaction vessel 21. The contaminated air tank 36 was filled with tobacco smoke 33 for 10 cigarettes, and the circulating air 27 was circulated by the circulation pump 27. During the circulation of the cigarette smoke-contaminated air, the cigarette smoke 33 was adsorbed by the photocatalyst fiber 20, and the adsorption site became brown. Then, the light source 17
High pressure mercury lamp manufactured by Oak Manufacturing Co., Ltd. (Model HHM-300
The excitation light 18 from 0) is reflected by the reflecting mirror 19 and is incident from the end of the photocatalyst fiber 20, is emitted from the base optical fiber leaking part of the photocatalyst fiber 20, and is irradiated onto the photocatalyst fine particles through the glassy spheres to irradiate the photocatalyst. The reaction was triggered. During the photocatalytic reaction, cigarette smoke-contaminated air was circulated. When the device was operated for 8 hours under light irradiation, tobacco odor disappeared from the treated air, and the portion where the photocatalyst fiber 20 adsorbed tobacco smoke became colorless.

【0078】(実施例13)図13に示すように、有害
物質除去装置を、反応槽21、光源17で構成し、有害
物質除去装置の前段に膜濾過装置38を設けた。膜濾過
装置38は、ステンレススチール製のハウジングにポリ
エチレン中空糸膜39が収納された三菱レイヨン(株)
製中空糸膜モジュール(型式EHF−270TS、膜面
積15m2)から構成され、反応槽21とは配管23で
結ばれる。反応槽21は、容量250リットルのステン
レススチール製の容器で、上蓋22を備え、上蓋22
に、実施例6で作製した光触媒繊維20を固定し、反応
槽21内に光触媒繊維20を配置した。
(Embodiment 13) As shown in FIG. 13, the harmful substance removing device is composed of a reaction tank 21 and a light source 17, and a membrane filtration device 38 is provided in front of the harmful substance removing device. The membrane filtration device 38 is a Mitsubishi Rayon Co., Ltd. in which a polyethylene hollow fiber membrane 39 is housed in a stainless steel housing.
It is composed of a hollow fiber membrane module (model EHF-270TS, membrane area 15 m 2 ) and is connected to the reaction tank 21 by a pipe 23. The reaction tank 21 is a stainless steel container having a capacity of 250 liters, and is provided with an upper lid 22.
Then, the photocatalytic fiber 20 produced in Example 6 was fixed, and the photocatalytic fiber 20 was placed in the reaction tank 21.

【0079】水道蛇口37より総トリハロメタン400
0ppb、鉄サビ混入の水道水を送液し、膜濾過装置3
8で濾過して鉄サビを除き、濾過水を反応槽21に通し
た。また、光源17としたオーク製作所製高圧水銀灯
(型式HHM−3000)からの励起光18を反射鏡1
9で反射させて光触媒繊維20の端部から入射させ、光
触媒繊維20の基体光学繊維漏光部から出射させ、ガラ
ス質球を介し光触媒微粒子に照射して光触媒反応を誘起
させた。反応槽出口40より取り出された水は、その総
トリハロメタン濃度が40ppbであった。
From the tap 37, total trihalomethane 400
0 ppb, tap water mixed with iron rust is sent, and the membrane filtration device 3
The iron rust was removed by filtration at 8, and filtered water was passed through the reaction tank 21. In addition, the excitation light 18 from the high pressure mercury lamp (model HHM-3000) manufactured by Oak Manufacturing Co., Ltd. used as the light source 17 is reflected by the reflecting mirror 1.
The photocatalytic fiber 20 was reflected by 9 to enter the photocatalytic fiber 20 from the end portion thereof, emitted from the base optical fiber leaking portion of the photocatalytic fiber 20, and irradiated to the photocatalyst fine particles through the glassy sphere to induce the photocatalytic reaction. The water taken out from the reactor outlet 40 had a total trihalomethane concentration of 40 ppb.

【0080】(実施例14)図14に示すように、実施
例10と同様に、有害物質除去装置を、反応槽21、光
源17で構成し、有害物質除去装置の前段に水中溶存ガ
ス脱気装置42を設けた。水中溶存ガス脱気装置42
は、ハウジングに脱気用のセグメント化ポリウレタン中
空糸膜43が収納された三菱レイヨン(株)製中空糸膜
モジュール(型式MHF−5104C、膜面積15
2)から構成され、反応槽21とは配管23で結ばれ
る。反応槽21は、上蓋22を備え、上蓋22に、実施
例1で作製した光触媒繊維20を固定し、反応槽21内
に光触媒繊維20を配置した。
(Embodiment 14) As shown in FIG. 14, as in Embodiment 10, the harmful substance removing device is composed of the reaction tank 21 and the light source 17, and the dissolved gas in water is degassed in front of the harmful substance removing device. A device 42 was provided. Underwater dissolved gas deaerator 42
Is a hollow fiber membrane module manufactured by Mitsubishi Rayon Co., Ltd. (model MHF-5104C, membrane area 15) in which the segmented polyurethane hollow fiber membrane 43 for degassing is housed in the housing.
m 2 ) and is connected to the reaction tank 21 by a pipe 23. The reaction tank 21 was provided with an upper lid 22, the photocatalyst fiber 20 produced in Example 1 was fixed to the upper lid 22, and the photocatalyst fiber 20 was placed in the reaction tank 21.

【0081】工業用水41を送液し、水中溶存ガス脱気
装置42で脱気した後、脱気工業用水46として排出
し、また減圧側の膜透過ガスを排気ポンプ47を介して
反応槽21に通した。この膜透過ガスには、水蒸気、二
酸化炭素、酸素、トリハロメタン5ppmが検出され
た。また、光源17としたウシオ電機(株)製超高圧水
銀灯UI−501Cからの励起光18を反射鏡19で反
射させて光触媒繊維20の端部から入射させ、光触媒繊
維20の基体光学繊維漏光部から出射させ、ガラス質球
を介し光触媒微粒子に照射して光触媒反応を誘起させ
た。反応槽出口40より取り出された浄化ガス45は、
その総トリハロメタン濃度が0.05ppmであった。
The industrial water 41 is fed, degassed by the underwater dissolved gas deaerator 42, and then discharged as degassed industrial water 46, and the membrane permeation gas on the reduced pressure side is passed through the exhaust pump 47 to the reaction tank 21. Passed through. Water vapor, carbon dioxide, oxygen, and 5 ppm of trihalomethane were detected in this membrane permeation gas. Further, the excitation light 18 from the Ushio Electric Co., Ltd. ultra-high pressure mercury lamp UI-501C used as the light source 17 is reflected by the reflecting mirror 19 and is incident from the end portion of the photocatalyst fiber 20, and the base optical fiber light leak part of the photocatalyst fiber 20. And emitted to the photocatalyst fine particles through the glassy sphere to induce the photocatalytic reaction. The purified gas 45 extracted from the reaction tank outlet 40 is
The total trihalomethane concentration was 0.05 ppm.

【0082】[0082]

【発明の効果】本発明の光触媒繊維は、有害物質を吸着
する吸着表面積が大きく、吸着面全体に励起光が照射さ
れ、光触媒反応が速やかに進行し、光触媒反応により水
中のトリハロメタン、バクテリア、カニ等の有害物質、
空気中のタバコ煙、アセトアルデヒド、メチルメルカプ
タン等の悪臭物質を酸化分解することができる。また、
本発明の光触媒繊維を内蔵する有害物質除去装置は、前
記のような有害物質を含む液体或いは気体を、それらの
流動速度が大きい場合や有害物質濃度が高い場合でも除
去処理することが可能であり、浄水装置、空気清浄装
置、汚泥処理装置、下水処理装置、プール水濾過装置等
として有用なるものである。
INDUSTRIAL APPLICABILITY The photocatalyst fiber of the present invention has a large adsorption surface area for adsorbing harmful substances, the entire adsorption surface is irradiated with excitation light, and the photocatalytic reaction rapidly progresses. Due to the photocatalytic reaction, trihalomethane in water, bacteria, crabs, etc. Harmful substances such as
It can oxidize and decompose malodorous substances such as tobacco smoke, acetaldehyde and methyl mercaptan in the air. Also,
The harmful substance removing device incorporating the photocatalyst fiber of the present invention can remove the liquid or gas containing the harmful substance as described above even when the flow velocity thereof is high or the concentration of the harmful substance is high. , Water purifier, air purifier, sludge treatment device, sewage treatment device, pool water filtration device, etc.

【図面の簡単な説明】[Brief description of drawings]

【図1】光学繊維漏光部の全部に光触媒微粒子固定ガラ
ス質球を一層のみ担持させた光触媒繊維の模式側面図で
ある。
FIG. 1 is a schematic side view of a photocatalyst fiber having only one layer of glass spheres fixed with photocatalyst fine particles supported on all of the optical fiber light leak parts.

【図2】光学繊維漏光部の一部に光触媒微粒子固定ガラ
ス質球を一層のみ担持させた光触媒繊維の模式側面図で
ある。
FIG. 2 is a schematic side view of a photocatalyst fiber in which only one layer of the glass fiber spheres fixed with photocatalyst particles is carried on a part of the optical fiber light leak part.

【図3】光学繊維漏光部の全部に光触媒微粒子固定ガラ
ス質球を接着剤を介して積層担持させた光触媒繊維の模
式側面図である。
FIG. 3 is a schematic side view of a photocatalyst fiber in which photocatalyst fine particle-fixed glassy spheres are laminated and supported on all of the optical fiber light leak parts via an adhesive.

【図4】光学繊維漏光部の一部に光触媒微粒子固定ガラ
ス質球を接着剤を介して積層担持させた光触媒繊維の模
式側面図である。
FIG. 4 is a schematic side view of a photocatalyst fiber in which photocatalyst fine particle-fixed glassy spheres are laminated and supported on a part of an optical fiber light leaking portion via an adhesive.

【図5】光学繊維漏光部の全部に光触媒微粒子固定ガラ
ス質球を接着剤を介して積層担持させ、担持部に空洞部
分を形成させた光触媒繊維の模式側面図である。
FIG. 5 is a schematic side view of a photocatalyst fiber in which photocatalyst fine particle-fixed glass spheres are laminated and supported on all of the optical fiber light leaking portions with an adhesive, and a hollow portion is formed in the supporting portion.

【図6】光学繊維漏光部の一部に光触媒微粒子固定ガラ
ス質球を接着剤を介して積層担持させ、担持部に空洞部
分を形成させた光触媒繊維の模式側面図である。
FIG. 6 is a schematic side view of a photocatalyst fiber in which photocatalyst fine particle-fixed glassy spheres are laminated and supported on a part of an optical fiber light leaking portion with an adhesive, and a hollow portion is formed in the supporting portion.

【図7】本発明の有害物質除去装置の例の模式概略図で
ある。
FIG. 7 is a schematic diagram of an example of a harmful substance removing device of the present invention.

【図8】本発明の有害物質除去装置の他の例の模式概略
図である。
FIG. 8 is a schematic diagram of another example of the harmful substance removing apparatus of the present invention.

【図9】本発明の有害物質除去装置の他の例の模式概略
図である。
FIG. 9 is a schematic diagram of another example of the harmful substance removing apparatus of the present invention.

【図10】実施例10で用いた有害物質除去装置の模式
概略図である。
FIG. 10 is a schematic diagram of a harmful substance removing device used in Example 10.

【図11】実施例11で用いた有害物質除去装置の模式
概略図である。
FIG. 11 is a schematic diagram of a harmful substance removing apparatus used in Example 11.

【図12】実施例12で用いた有害物質除去装置の模式
概略図である。
FIG. 12 is a schematic diagram of a harmful substance removing apparatus used in Example 12.

【図13】実施例13で用いた有害物質除去装置の模式
概略図である。
FIG. 13 is a schematic diagram of a harmful substance removing device used in Example 13.

【図14】実施例14で用いた有害物質除去装置の模式
概略図である。
FIG. 14 is a schematic diagram of a harmful substance removing apparatus used in Example 14.

【符号の説明】[Explanation of symbols]

1 光学繊維漏光部 2 ガラス質球 3 光触媒微粒子 4 光学的に透明な接着剤 5 空洞部分 6 光源 7 励起光 8 反射鏡 9 光触媒繊維 10 反応槽 11 上蓋 12 被処理物入口 13 漏光部 14 ガラス質球 15 光触媒微粒子 16 処理物出口 17 光源 18 励起光 19 反射鏡 20 光触媒繊維 21 反応槽 22 上蓋 23 配管 24 被処理水 25 被処理水貯蔵タンク 26 一部処理の被処理水 27 循環用ポンプ 28 光学繊維 29 漏光部 30 ガラス質球 31 光触媒微粒子 32 光学的に透明な接着剤 33 タバコ煙 34 タバコ 35 灰皿 36 汚染空気槽 37 水道蛇口 38 膜濾過装置 39 中空糸膜 40 反応槽出口 41 工業用水 42 脱気装置 43 脱気用中空糸膜 44 膜透過ガス 45 浄化ガス 46 脱気工業用水 47 排気ポンプ 1 Optical Fiber Leakage Part 2 Vitreous Sphere 3 Photocatalyst Fine Particles 4 Optically Transparent Adhesive 5 Cavity Part 6 Light Source 7 Excitation Light 8 Reflecting Mirror 9 Photocatalytic Fiber 10 Reaction Tank 11 Top Lid 12 Treated Material Inlet 13 Light Leakage 14 Vitreous Sphere 15 Photocatalyst fine particle 16 Treated product outlet 17 Light source 18 Excitation light 19 Reflector 20 Photocatalyst fiber 21 Reaction tank 22 Upper lid 23 Piping 24 Treated water 25 Treated water storage tank 26 Treated water for partial treatment 27 Circulation pump 28 Optical Fiber 29 Light-leaking part 30 Vitreous sphere 31 Photocatalyst fine particle 32 Optically transparent adhesive 33 Cigarette smoke 34 Tobacco 35 Ashtray 36 Contaminated air tank 37 Water faucet 38 Membrane filter 39 Hollow fiber membrane 40 Reaction tank outlet 41 Industrial water 42 Desorption Air device 43 Degassing hollow fiber membrane 44 Membrane permeation gas 45 Purification gas 46 Degassing industrial water 47 Exhaust pump

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/72 101 B01D 53/36 ZABG ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C02F 1/72 101 B01D 53/36 ZABG

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光触媒微粒子を表面に固定したガラス質
球が漏光部を有する光学繊維の表面の少なくとも一部に
担持されたことを特徴とする光触媒繊維。
1. A photocatalyst fiber, characterized in that glassy spheres having photocatalyst fine particles fixed to the surface thereof are carried on at least a part of the surface of an optical fiber having a light leak portion.
【請求項2】 光触媒微粒子を表面に固定したガラス質
球が光学的に透明な接着剤を介して漏光部を有する光学
繊維の表面の少なくとも一部に担持されたことを特徴と
する光触媒繊維。
2. A photocatalyst fiber, characterized in that glassy spheres having photocatalyst fine particles fixed to the surface thereof are carried on at least a part of the surface of an optical fiber having a light leak part through an optically transparent adhesive.
【請求項3】 ガラス質球が光学繊維の表面の少なくと
も漏光部に担持された請求項1または請求項2記載の光
触媒繊維。
3. The photocatalyst fiber according to claim 1 or 2, wherein the glassy spheres are supported on at least the light leakage part on the surface of the optical fiber.
【請求項4】 ガラス質球が中空状球である請求項1、
請求項2または請求項3記載の光触媒繊維。
4. The glassy sphere is a hollow sphere,
The photocatalyst fiber according to claim 2 or 3.
【請求項5】 接着剤の介する担持部に空洞部分が形成
されている請求項1、請求項2、請求項3または請求項
4記載の光触媒繊維。
5. The photocatalyst fiber according to claim 1, claim 2, claim 3, or claim 4, wherein a hollow portion is formed in a supporting portion through which the adhesive is interposed.
【請求項6】 請求項1、請求項2、請求項3、請求項
4または請求項5記載の光触媒繊維を有害物質の光触媒
反応槽に内蔵させたことを特徴とする有害物質除去装
置。
6. A harmful substance removing device, wherein the photocatalytic fiber according to claim 1, claim 2, claim 3, claim 4, or claim 5 is incorporated in a photocatalytic reaction tank for harmful substances.
JP8094669A 1996-03-26 1996-03-26 Photocatalyst fiber and device to remove harmful material Pending JPH09253505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8094669A JPH09253505A (en) 1996-03-26 1996-03-26 Photocatalyst fiber and device to remove harmful material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8094669A JPH09253505A (en) 1996-03-26 1996-03-26 Photocatalyst fiber and device to remove harmful material

Publications (1)

Publication Number Publication Date
JPH09253505A true JPH09253505A (en) 1997-09-30

Family

ID=14116655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8094669A Pending JPH09253505A (en) 1996-03-26 1996-03-26 Photocatalyst fiber and device to remove harmful material

Country Status (1)

Country Link
JP (1) JPH09253505A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285643A (en) * 1998-04-03 1999-10-19 Matsushita Seiko Co Ltd Photocatalytic deodorization body and photocatalytic deodorization unit
JP2001292902A (en) * 2000-04-14 2001-10-23 Takuro Ishibashi Water purifying vacuum bottle using titanium dioxide photocatalyst
EP1302234A1 (en) * 2001-09-27 2003-04-16 Hoya- Schott Corporation Light-transmittable linear photocatalytic filter material, filter to which the material is applied, and process for production thereof
JP2003144848A (en) * 2001-11-09 2003-05-20 Takuma Co Ltd Waste gas treating method and device therefor
JP2005193118A (en) * 2004-01-06 2005-07-21 Daiken Kagaku Kogyo Kk Photocatalytic particle, photocatalytic solution, atomizer, air cleaner and photocatalytic base material
JP2007209841A (en) * 2006-02-07 2007-08-23 National Institute For Materials Science Environmental purification system using light energy
JP2010029867A (en) * 2009-11-12 2010-02-12 Ohbayashi Corp Carrier for photocatalyst

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285643A (en) * 1998-04-03 1999-10-19 Matsushita Seiko Co Ltd Photocatalytic deodorization body and photocatalytic deodorization unit
JP2001292902A (en) * 2000-04-14 2001-10-23 Takuro Ishibashi Water purifying vacuum bottle using titanium dioxide photocatalyst
EP1302234A1 (en) * 2001-09-27 2003-04-16 Hoya- Schott Corporation Light-transmittable linear photocatalytic filter material, filter to which the material is applied, and process for production thereof
JP2003144848A (en) * 2001-11-09 2003-05-20 Takuma Co Ltd Waste gas treating method and device therefor
JP2005193118A (en) * 2004-01-06 2005-07-21 Daiken Kagaku Kogyo Kk Photocatalytic particle, photocatalytic solution, atomizer, air cleaner and photocatalytic base material
JP2007209841A (en) * 2006-02-07 2007-08-23 National Institute For Materials Science Environmental purification system using light energy
JP2010029867A (en) * 2009-11-12 2010-02-12 Ohbayashi Corp Carrier for photocatalyst

Similar Documents

Publication Publication Date Title
Wu et al. Photocatalytic optical fibers for degradation of organic pollutants in wastewater: a review
US6051194A (en) TI02-coated fiber optic cable reactor
US5564065A (en) Carbon monoxide air filter
US5862449A (en) Photocatalytic reactor
WO2006054954A1 (en) Fabrication of a densely packed nano-structured photocatalyst for environmental applications
WO1997031703A1 (en) Glass material for carrying a photocatalyst, filter device using the same and light irradiating method
JPH09253505A (en) Photocatalyst fiber and device to remove harmful material
JPH09225295A (en) Photocatalyst-containing device and photocatalyst utilizing reactor
JP5566801B2 (en) Wastewater treatment equipment
JP4635185B2 (en) Photocatalytic coating method for polyester fiber
US20030211022A1 (en) Method and apparatus for decontaminating water or air by a photolytic and photocatalytic reaction
WO2013111199A1 (en) Method for decomposing organic compound contained in aqueous solution
JP2003024748A (en) Photocatalytic reaction apparatus
JP2006061580A (en) Method and apparatus for cleaning air
JPH11290701A (en) Photocatalyst carrying member and photocatalyst filter
JP2004358459A (en) Optical fiber, filter member, air cleaning system and air cleaning method
CN213388188U (en) Novel building drainage device
EP1132133A1 (en) Photocatalytic water and air treatment reactors based on silica supported titanium dioxide
JP5111690B1 (en) Method for decomposing organic compounds contained in an aqueous solution
JPH057394U (en) Photocatalyst water purifier
JPH10180044A (en) Fluid purifier utilizing photocatalyst
JPH0824666A (en) Immobilized photocatalyst
JPH0796202A (en) Photocatalyst for treating harmful substance contained in liquid, and treating device therefor
JPH0443841B2 (en)
JP2000300957A (en) Photocatalytic device for vapor-phase and hazardous material-treating method