JPH09249705A - Anionic polymerization catalyst composition and polymerization method using said composition - Google Patents

Anionic polymerization catalyst composition and polymerization method using said composition

Info

Publication number
JPH09249705A
JPH09249705A JP8447596A JP8447596A JPH09249705A JP H09249705 A JPH09249705 A JP H09249705A JP 8447596 A JP8447596 A JP 8447596A JP 8447596 A JP8447596 A JP 8447596A JP H09249705 A JPH09249705 A JP H09249705A
Authority
JP
Japan
Prior art keywords
polymerization
nitrogen
styrene
alkyllithium
anionic polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8447596A
Other languages
Japanese (ja)
Inventor
Tsuyoshi Mizushiro
堅 水城
Takamasa Hirayama
孝昌 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8447596A priority Critical patent/JPH09249705A/en
Publication of JPH09249705A publication Critical patent/JPH09249705A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/46Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals
    • C08F4/48Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from alkali metals selected from lithium, rubidium, caesium or francium

Abstract

PROBLEM TO BE SOLVED: To obtain an anionic polymn. catalyst compsn. which permits the anionic polymn. of a styrene monomer in a high-concn. and high-temp. system to proceed in the manner of living polymerization under controlled polymn. temp. conditions to prepare a highly monodisperse polymer by using a mixture of an alkyllithium compd. with a specified heterocyclic nitrogen-contg. compd. SOLUTION: This compsn. comprises an alkyllithium compd. and at least one nitrogen-contg. heterocyclic org. in an amt. of 0.05 to 30mol per mol of the alkyllithium compd. In this compsn., the amt. of the nitrogen-contg. heterocyclic org. compd. is pref. 0.1 to 10mol per mol of the alkyllithium compd. Pref. examples of the alkyllithium compd. include n-butyllithium, sec-butyllithium, and tert-butyllithium. Pref. examples of the nitrogen-contg. heterocyclic org. compd. include alkylpyridine, pyridine, and pyrimidine.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はスチレン系単量体を
芳香族炭化水素または脂環式炭化水素溶媒中で重合する
に際して、アルキルリチウム化合物と特定の窒素系複素
環式有機化合物を触媒として用いることを特徴とするア
ニオン重合用触媒組成物とその触媒組成物を用いたアニ
オン重合方法に関する。更に詳しくは、従来のアニオン
重合法に比べてモノマー濃度が高濃度かつ高温系におけ
る重合反応にもかかわらず、重合時に移動反応・停止反
応を起こすことなくリビング的に重合が進行し、分子量
分布の狭いスチレン系重合体や末端反応性スチレン系重
合体を容易に製造する事の出来る新規アニオン重合の触
媒組成物、及びその組成物を用いたアニオン重合方法に
関する。
TECHNICAL FIELD The present invention uses an alkyllithium compound and a specific nitrogen-based heterocyclic organic compound as a catalyst when polymerizing a styrene monomer in an aromatic hydrocarbon or alicyclic hydrocarbon solvent. The present invention relates to a catalyst composition for anionic polymerization and a method for anionic polymerization using the catalyst composition. More specifically, compared with the conventional anionic polymerization method, even though the monomer concentration is higher and the polymerization reaction in a high temperature system, the polymerization proceeds in a living manner without causing a transfer reaction or a termination reaction during the polymerization, and thus the molecular weight distribution The present invention relates to a novel anionic polymerization catalyst composition capable of easily producing a narrow styrene polymer or a terminally reactive styrene polymer, and an anionic polymerization method using the composition.

【0002】[0002]

【従来の技術】ポリスチレンに代表されるスチレン系重
合体は、古くからラジカル重合法により工業的に生産さ
れてきたが、スチレンのラジカル重合は、周知の通りス
チレンの生長ラジカルの再結合反応等による停止反応あ
るいは溶媒やモノマーへの移動反応が起こるため、分子
量分布は広いものになってしまうばかりでなくポリマー
末端構造の規制もできず、ラジカル重合法では容易に単
分散なポリマーやブロックポリマー、星形ポリマーを得
ることは困難であった。
2. Description of the Related Art Styrene-based polymers represented by polystyrene have been industrially produced by a radical polymerization method for a long time, but the radical polymerization of styrene is well known in the art by the recombination reaction of growing radicals of styrene. Since the termination reaction or the transfer reaction to the solvent or monomer occurs, not only the molecular weight distribution becomes broad, but also the terminal structure of the polymer cannot be regulated, and the radical polymerization method makes it easy to obtain a monodisperse polymer, block polymer, or star polymer. It was difficult to obtain shaped polymers.

【0003】これを解決する手法としてはスチレンのリ
ビングアニオン重合法があり、例えば、汎用的な開始剤
であるブチルリチウムを使って行うスチレンのアニオン
重合は、移動反応及び停止反応のない重合系いわゆるリ
ビング重合系を形成し、極めて単分散なポリマーが得ら
れると共に、生長末端の反応性を利用することにより多
種多様のポリマーが得られている。
As a method for solving this, there is a living anion polymerization method of styrene. For example, anionic polymerization of styrene using butyllithium which is a general-purpose initiator is a so-called polymerization system without transfer reaction and termination reaction. A wide variety of polymers have been obtained by forming a living polymerization system and obtaining extremely monodisperse polymers, and by utilizing the reactivity of the growing terminal.

【0004】このスチレンのリビングアニオン重合法
は、一般的には、生長末端の対カチオンがアルカリ金属
系であることが多く、またモノマー濃度は数10%と希
薄であり、且つ重合反応温度も室温付近と制限されてい
る場合が多い。これは、リビング重合においては開始剤
濃度がラジカル重合に比べ非常に高くなり(基本的に
は、開始剤濃度=ポリマー鎖濃度となる)、そのため高
濃度または高温で重合反応を行うと重合反応が極めて速
くなり、重合初期に急激な重合熱の発生が伴うからであ
る。急激な重合熱の発生により除熱制御が不可能となっ
た場合は、重合系の温度は急上昇しそれにより重合生長
末端は移動反応や停止反応が起こりやすくなり、理想的
なリビング重合系が得られなくなる。
In this styrene living anionic polymerization method, generally, the counter cation at the growing end is often an alkali metal type, the monomer concentration is as low as several 10%, and the polymerization reaction temperature is room temperature. It is often restricted to the vicinity. This is because the initiator concentration in living polymerization is much higher than that in radical polymerization (basically, the initiator concentration = polymer chain concentration), so if the polymerization reaction is carried out at a high concentration or at a high temperature, the polymerization reaction will This is because it becomes extremely fast and a rapid heat of polymerization is generated in the initial stage of polymerization. When heat removal control becomes impossible due to the sudden generation of heat of polymerization, the temperature of the polymerization system rises rapidly, which facilitates the transfer reaction and termination reaction of the polymer growing terminal, thus obtaining an ideal living polymerization system. I will not be able to.

【0005】例えば30℃程度の室温近傍でシクロヘキ
サン溶媒中20%程度のモノマー濃度でスチレンをアニ
オン重合する場合、最も汎用的なn−BuLiを触媒に
用いて重量平均分子量10〜30万程度のポリスチレン
を合成する場合、重合反応速度はきわめて速く重合時間
は数秒〜数分でほぼ100%に近いコンバージョンが得
られる。重合反応はほとんど断熱的に進行し、暴走反応
となるために重合熱の除去が難しい。ポリスチレンの製
造をアニオン重合により工業的に実施しようとすると、
上記重合条件下ではラジカル重合のポリスチレンの塊状
重合プロセスで製造する場合に比較し、多量の溶媒を用
いるためにリアクターボリュームが大きくなり、また多
量の溶媒中からのポリマーを回収する工程が必要となり
生産性が悪く現実にはほとんど実施されていない。
For example, when anionically polymerizing styrene at a monomer concentration of about 20% in a cyclohexane solvent near room temperature of about 30 ° C., polystyrene having a weight average molecular weight of about 100,000 to 300,000 is prepared by using n-BuLi, which is the most general-purpose, as a catalyst. In the case of synthesizing, the polymerization reaction rate is extremely fast, and the conversion time is several seconds to several minutes, and a conversion close to 100% can be obtained. It is difficult to remove the heat of polymerization because the polymerization reaction proceeds almost adiabatically and becomes a runaway reaction. When attempting to industrially carry out the production of polystyrene by anionic polymerization,
Under the above-mentioned polymerization conditions, as compared with the case of producing by bulk polymerization process of radical polymerization polystyrene, the reactor volume becomes large due to the use of a large amount of solvent, and a step of recovering the polymer from a large amount of solvent is required, which is required for production. It's terrible and it's rarely practiced.

【0006】スチレンのリビングアニオン重合法は、本
来ラジカル重合法では得られない様々な構造制御された
ポリマーを得ることが可能であり、非常に魅力的な樹脂
材料が得られるにもかかわらず、特殊な例を除いてこれ
まで工業的に生産されなかったのは、上記説明の様に重
合系が溶液系となるため、ポリマーの生産性や経済性を
考慮すると充分満足できるポリマーにはなり得なかった
からである。
[0006] The living anionic polymerization method of styrene is capable of obtaining various polymers having a controlled structure which cannot be obtained by the radical polymerization method. Except for the above examples, it has not been industrially produced so far.Because the polymerization system is a solution system as described above, it cannot be a sufficiently satisfactory polymer considering the productivity and economic efficiency of the polymer. This is because the.

【0007】スチレン系単量体を高濃度でリビングアニ
オン重合する場合の急激な反応を抑制する方法の一つと
して、温度を下げて重合を行うことが挙げられる。しか
し、スチレン系樹脂のほとんどが100℃以上のガラス
転移点を有しているため、高濃度、低温で重合すると重
合は進行するが、重合過程中に重合系が硬化し反応器か
らの回収が困難となる。更に大規模な冷凍設備が必要に
なり経済性が問題となる。従って、高濃度且つ高温系で
リビング重合を進行させることが必要条件となるが、従
来の技術においてはその条件を充分満足できる重合系は
なかった。
One of the methods for suppressing a rapid reaction in the case of performing living anion polymerization of a styrene-based monomer at a high concentration is to carry out the polymerization at a lowered temperature. However, since most styrene resins have a glass transition temperature of 100 ° C. or higher, polymerization proceeds at high concentration and low temperature, but the polymerization system is cured during the polymerization process and recovery from the reactor is difficult. It will be difficult. Further, a large-scale refrigerating equipment is required, and the economical efficiency becomes a problem. Therefore, it is a necessary condition to allow living polymerization to proceed in a high-concentration and high-temperature system, but in the prior art, no polymerization system was able to sufficiently satisfy the condition.

【0008】アニオン重合を遅延させる先行技術として
はテトラヒドロフラン(以下THFと略記)中でα−メ
チルスチレンテトラマーのジNa錯体触媒によるスチレ
ン重合時のピリジン添加効果が知られている(J.Po
lym.Sci(Polymerchemistry
Edition)vol14,1097〜1105(1
976)YAGI,TSUYAMA)が、該重合法は2
0℃前後の室温近傍において、モノマー濃度も10%〜
高々30%止まりの条件下でTHFという極性溶媒中で
しかも触媒金属種としてNa金属触媒のみを用いて実施
されたものである。
As a prior art for delaying anionic polymerization, the effect of adding pyridine during the polymerization of styrene by means of a di-Na complex catalyst of α-methylstyrene tetramer in tetrahydrofuran (hereinafter abbreviated as THF) is known (J. Po.
lym. Sci (Polymerchemistry
Edition) vol14, 1097 to 1105 (1
976) YAGI, TSUYAMA), but the polymerization method is 2
In the vicinity of room temperature around 0 ° C, the monomer concentration is 10% ~
It was carried out in a polar solvent of THF under the condition of 30% at most and using only Na metal catalyst as a catalyst metal species.

【0009】従って上記の先行技術ではNa金属化合物
がアニオン重合触媒種であり、アルキルナトリウムが炭
化水素溶媒中に溶解しがたいために炭化水素溶媒中でス
チレン系単量体のアニオン重合を実施できず、この技術
を工業化する上で重大な欠点となっている。またモノマ
ー濃度も低濃度であるために重合ポリマーを回収するた
めに多量の溶媒を除去しなければならずそのためにコス
トがかかり経済的にも不利である。
Therefore, in the above prior art, since the Na metal compound is the anionic polymerization catalyst species and the sodium alkyl is difficult to dissolve in the hydrocarbon solvent, the anionic polymerization of the styrenic monomer can be carried out in the hydrocarbon solvent. First, it is a serious drawback in industrializing this technology. Also, since the monomer concentration is low, a large amount of solvent must be removed in order to recover the polymerized polymer, which is costly and economically disadvantageous.

【0010】[0010]

【発明が解決しようとする課題】本発明は、従来の技術
では達し得なかった高濃度、高温系におけるスチレン系
単量体のアニオン重合を重合温度制御のもと、リビング
的に進行させ、極めて単分散なポリマーを製造する触媒
組成物及び該触媒組成物を用いたスチレン系重合体の新
規な工業的製造方法を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention makes anionic polymerization of a styrene monomer in a high concentration, high temperature system, which cannot be achieved by conventional techniques, proceed in a living manner under the control of polymerization temperature, and is extremely effective. An object of the present invention is to provide a catalyst composition for producing a monodisperse polymer and a novel industrial production method of a styrene-based polymer using the catalyst composition.

【0011】[0011]

【課題を解決するための手段】本発明者らは、かかる技
術課題について鋭意検討を重ねた結果、スチレンに代表
されるスチレン系単量体のアニオン重合をアルキルリチ
ウム化合物と特定の複素環窒素系化合物の混合物を触媒
として用い、THFに比べるとほとんど無極性溶媒とい
える芳香族炭化水素又は脂環式炭化水素中で重合する
と、驚くべきことに従来のアニオン重合ではほとんど考
えられないような高モノマー濃度、高温系で重合するに
もかかわらず重合反応は暴走反応を起こすことなく、極
端に重合速度が遅くなることもなく除熱制御が十分可能
な反応速度で重合が進行し、しかもリビング的に重合が
進行することを見いだし、この知見に基ずき本発明を完
成させた。
Means for Solving the Problems As a result of intensive studies on the technical problems, the present inventors have found that anionic polymerization of a styrene-based monomer represented by styrene is carried out with an alkyllithium compound and a specific heterocyclic nitrogen-based compound. When using a mixture of compounds as a catalyst and polymerizing in an aromatic hydrocarbon or alicyclic hydrocarbon, which is almost apolar solvent compared to THF, it is surprisingly high monomer which is hardly considered in conventional anionic polymerization. Despite the concentration and high temperature polymerization, the polymerization reaction does not cause a runaway reaction, the polymerization rate does not extremely slow down, and the polymerization proceeds at a reaction rate that allows sufficient heat removal control, and in a living manner. It was found that the polymerization proceeds, and the present invention was completed based on this finding.

【0012】すなわち本発明は(1):アルキルリチウ
ム化合物と該アルキルリチウム化合物1モルに対し0.
05〜30倍モルの窒素系複素環式有機化合物1種又は
2種以上を用いることを特徴とするアニオン重合用触媒
組成物、(2):アルキルリチウム化合物1モルに対し
て、窒素系複素環式有機化合物が0.1〜10倍モルで
あることを特徴とする(1)記載のアニオン重合用触媒
組成物、(3):アルキルリチウム化合物がn−ブチル
リチウム、sec−ブチルリチウム、tert−ブチル
リチウム、iso−プロピルリチウム、n−プロピルリ
チウム、ベンジルリチウム、フェニルリチウム、ヘキシ
ルリチウムの1種又は2種以上である(1)又は(2)
記載のアニオン重合用触媒組成物、
That is, the present invention comprises (1): an alkyllithium compound and 0.
A catalyst composition for anionic polymerization, characterized by using one or two or more nitrogen-based heterocyclic organic compounds in an amount of 05 to 30 times, (2): a nitrogen-based heterocycle per 1 mol of the alkyllithium compound. The anionic polymerization catalyst composition according to (1), wherein the formula organic compound is 0.1 to 10 moles, and (3): the alkyllithium compound is n-butyllithium, sec-butyllithium, tert-. One or more of butyllithium, iso-propyllithium, n-propyllithium, benzyllithium, phenyllithium, and hexyllithium (1) or (2).
Anionic polymerization catalyst composition described,

【0013】(4):窒素系複素環式有機化合物がアル
キルピリジン、ピリジン、ピリミジン、キノリン、ピリ
ダリン、ベンズイミダゾールである(1)又は(2)記
載のアニオン重合用触媒組成物、(5):(1)記載の
アニオン重合用触媒組成物を用いてスチレン系単量体を
重合することを特徴とするアニオン重合方法、(6):
スチレン系単量体を重合するに際して重合溶媒として芳
香族炭化水素化合物または脂環式炭化水素化合物を用い
ることを特徴とする(5)記載のアニオン重合方法、
(7):スチレン系単量体を重合するに際して重合温度
30〜150℃、スチレン系単量体濃度が40〜100
wt%であることを特徴とする(5)記載のアニオン重
合方法である。
(4) The catalyst composition for anionic polymerization according to (1) or (2), wherein the nitrogen-based heterocyclic organic compound is alkylpyridine, pyridine, pyrimidine, quinoline, pyridaline, benzimidazole, (5): (1) A method for anionic polymerization, characterized by polymerizing a styrenic monomer using the catalyst composition for anionic polymerization described in (6):
An anionic polymerization method according to (5), characterized in that an aromatic hydrocarbon compound or an alicyclic hydrocarbon compound is used as a polymerization solvent in polymerizing the styrene-based monomer.
(7): When polymerizing the styrene-based monomer, the polymerization temperature is 30 to 150 ° C., and the styrene-based monomer concentration is 40 to 100.
The anionic polymerization method according to (5) is characterized in that the content is wt%.

【0014】以下に本発明を詳細に説明する。本発明で
用いられるスチレン系単量体としては、その重合原理か
ら考えて一般的に公知のリビングアニオン重合が可能な
スチレン系単量体であれば何でもよく特に制限はない。
中でも好ましい単量体としては最も代表的なスチレン以
外に、α−アルキル置換スチレンや核アルキル置換スチ
レン等が挙げられる。具体例としては、α−メチルスチ
レン、α−メチル−p−メチルスチレン、p−メチルス
チレン、m−メチルスチレン、o−メチルスチレン、p
−エチルスチレン、2,4−ジメチルスチレン、2,5
−ジメチルスチレン、p−イソプロピルスチレン、2,
4,6−トリメチルスチレン等が挙げられる。これらの
スチレン系単量体は1種類又は共重合体を得る目的で2
種類以上の組み合わせで使用しても良い。
The present invention will be described in detail below. The styrene-based monomer used in the present invention is not particularly limited as long as it is a styrene-based monomer that is generally known and capable of living anionic polymerization in view of its polymerization principle.
Among them, α-alkyl-substituted styrene, nuclear alkyl-substituted styrene, and the like are listed as the preferable monomers in addition to the most typical styrene. Specific examples include α-methylstyrene, α-methyl-p-methylstyrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, p.
-Ethylstyrene, 2,4-dimethylstyrene, 2,5
-Dimethyl styrene, p-isopropyl styrene, 2,
4,6-trimethyl styrene etc. are mentioned. These styrenic monomers may be used alone or for the purpose of obtaining a copolymer.
You may use it in combination more than a kind.

【0015】重合温度は30℃以上、好ましくは50℃
以上がよい。重合温度の下限温度とは、少なくとも目標
とする重合時間内に重合が完結する速度をある程度有し
ていなければならない。30℃以下でも重合は進行する
が、本発明の重合系においてはその重合が極めて遅く進
行するため、工業生産的見知から好ましくないと判断さ
れる。重合温度の上限としては特に制限はないが、重合
系が長時間高温状態にあると移動反応や停止反応等の副
反応が起こり単分散なポリマーが得られにくくなる。ま
た未反応の単量体が熱によるラジカル重合を起こし、多
分散のポリマーとの混合物になってしまう。これらの異
常反応は、すべて重合温度と重合時間に係わって一概に
重合温度を特定できないが、本発明の重合系において好
ましくは150℃以下である。
The polymerization temperature is 30 ° C. or higher, preferably 50 ° C.
The above is good. The lower limit temperature of the polymerization temperature must have a rate at which the polymerization is completed at least within a target polymerization time. The polymerization proceeds even at 30 ° C. or lower, but in the polymerization system of the present invention, the polymerization proceeds extremely slowly, and therefore it is judged to be unfavorable from the viewpoint of industrial production. The upper limit of the polymerization temperature is not particularly limited, but if the polymerization system is in a high temperature state for a long time, side reactions such as transfer reaction and termination reaction occur and it becomes difficult to obtain a monodisperse polymer. Further, unreacted monomers undergo radical polymerization due to heat, resulting in a mixture with a polydisperse polymer. In all of these abnormal reactions, the polymerization temperature cannot be unconditionally specified in relation to the polymerization temperature and the polymerization time, but it is preferably 150 ° C. or lower in the polymerization system of the present invention.

【0016】スチレン系単量体の濃度は、40wt%以
上100wt%以下である。好ましくは50wt%以上
100wt%以下である。溶媒の回収を考えれば、高濃
度ほど好ましいが、重合系の粘度の上昇を考慮すると、
ある程度の溶媒量は必要である。しかし、必要以上に濃
度が希薄になると、重合反応が遅くなるばかりでなく高
温時に溶媒への移動反応が起こり易くなるため、リビン
グ重合性から考慮して濃度は少なくとも40wt%以上
がよい。本発明では重合溶媒を使用しないスチレン系単
量体100%で行う重合の場合も発明の範囲に含まれ
る。この場合重合反応時スチレン系単量体のコンバージ
ョンをコントロールすることにより重合系が固化するこ
とを防止出来る。
The concentration of the styrenic monomer is 40 wt% or more and 100 wt% or less. It is preferably 50 wt% or more and 100 wt% or less. Considering the recovery of the solvent, the higher the concentration, the better, but considering the increase in the viscosity of the polymerization system,
Some amount of solvent is required. However, if the concentration becomes too low, the polymerization reaction will not only be slowed down, but also the transfer reaction to the solvent will easily occur at high temperature. Therefore, considering the living polymerizability, the concentration is preferably at least 40 wt%. In the present invention, the case where the polymerization is carried out with 100% styrene-based monomer without using the polymerization solvent is also included in the scope of the invention. In this case, it is possible to prevent the polymerization system from solidifying by controlling the conversion of the styrene monomer during the polymerization reaction.

【0017】再度本発明の技術的ブレイクスルーポイン
トを述べると、本発明はスチレン系単量体を高濃度、高
温系でプロセス的に除熱可能な重合速度に抑制し、しか
も工業生産的見知から適度な重合速度を有し且つ高温に
も係わらずリビング的に重合が進行する触媒組成物を見
出したことにある。その触媒組成物とはアルキルリチウ
ム化合物と特定の窒素系複素環式有機化合物をアニオン
重合触媒として用いる点にある。
To describe the technical breakthrough point of the present invention again, the present invention suppresses the polymerization rate of the styrene-based monomer at a high concentration and at a high temperature so that it can be heat-removed in a process-wise manner, and it is known for industrial production. It has been found from the above that a catalyst composition having an appropriate polymerization rate and in which the polymerization proceeds in a living manner regardless of a high temperature. The catalyst composition is that an alkyllithium compound and a specific nitrogen-based heterocyclic organic compound are used as an anionic polymerization catalyst.

【0018】アルキルリチウム化合物の具体的な例とし
てはメチルリチウム、n−ブチルリチウム、secーブ
チルリチウム、tーブチルリチウム、tーブチルリチウ
ム、isoープロピルリチウム、n−プロピルリチウ
ム、ベンジルリチウム、フェニルリチウム、ヘキシルリ
チウム等があり更に好ましくは、n−ブチルリチウム、
secーブチルリチウム、t−ブチルリチウム、iso
−プロピルリチウム、n−プロピルリチウム、、フェニ
ルリチウムがよい。これらの化合物は1種類もしくは2
種類以上の併用でも良い。
Specific examples of the alkyl lithium compound include methyl lithium, n-butyl lithium, sec-butyl lithium, t-butyl lithium, t-butyl lithium, iso-propyl lithium, n-propyl lithium, benzyl lithium, phenyl lithium, hexyl lithium and the like. And more preferably n-butyllithium,
sec-butyl lithium, t-butyl lithium, iso
-Propyl lithium, n-propyl lithium, and phenyl lithium are preferable. One or two of these compounds
Combinations of more than one type may be used.

【0019】添加するアルキルリチウム化合物の量は目
標とするポリマーの分子量により任意に設定できる。す
なわち、Mn(数平均分子量)=[M]o /[I]×
{単量体の分子量}([M]o は単量体の仕込み濃度、
[I]はアルキルリチウム化合物の濃度)で計算される
濃度のアルキルリチウム化合物を重合系に添加すればよ
い。
The amount of the alkyllithium compound to be added can be arbitrarily set according to the target molecular weight of the polymer. That is, Mn (number average molecular weight) = [M] o / [I] ×
{Molecular weight of monomer} ([M] o is the charged concentration of the monomer,
[I] may be added to the polymerization system at a concentration of an alkyllithium compound calculated by (concentration of alkyllithium compound).

【0020】重合時に使われる溶媒としては芳香族炭化
水素または脂環式炭化水素である。本発明の場合にはス
チレン単量体100%で溶媒を用いない場合も含んでい
る。好ましい溶媒としては移動反応、停止反応の起こり
にくい比較的極性の低い芳香族系炭化水素化合物または
脂環式炭化水素化合物がよく、具体的にはエチルベンゼ
ン、トルエン、キシレン、イソプロピルベンゼン、ベン
ゼン、シクロヘキサン等がある。
The solvent used during the polymerization is an aromatic hydrocarbon or an alicyclic hydrocarbon. The case of the present invention includes the case where the styrene monomer is 100% and no solvent is used. As a preferable solvent, an aromatic hydrocarbon compound or an alicyclic hydrocarbon compound having a relatively low polarity which is less likely to cause a transfer reaction or a termination reaction is preferable, and specifically, ethylbenzene, toluene, xylene, isopropylbenzene, benzene, cyclohexane and the like. There is.

【0021】アルキルリチウム化合物に添加する特定の
窒素系複素環式有機化合物とはピリジンの誘導体化合物
群であり、アルキルピリジン類やピリジン環を分子内に
有する芳香族有機化合物群である。具体的な例としては
ピリジン、アルキルピリジン(ピリジン芳香環の水素を
1個又は2個メチル基、エチル基、プロピル基などのア
ルキル基で置換した化合物)、ピリミジン、キノリン、
ピリダリン、ベンゾイミダゾールなどである。
The specific nitrogen-based heterocyclic organic compound added to the alkyllithium compound is a derivative compound group of pyridine, which is an aromatic organic compound group having an alkylpyridine compound or a pyridine ring in the molecule. Specific examples include pyridine, alkyl pyridine (a compound in which one or two hydrogen atoms in a pyridine aromatic ring are substituted with an alkyl group such as a methyl group, an ethyl group or a propyl group), pyrimidine, quinoline,
Examples include pyridalin and benzimidazole.

【0022】窒素系複素環式有機化合物の添加量はアル
キルリチウム化合物1モルに対して0.05〜30倍モ
ル更に好ましくは0.1〜10倍モルの範囲である。添
加する窒素系複素環式有機化合物の量がリチウム化合物
1モルに対して0.05倍モル以下では重合速度遅延効
果が十分でなく、また30倍以上では遅延効果が飽和し
てしまうからである。
The amount of the nitrogen-based heterocyclic organic compound added is in the range of 0.05 to 30 times by mole, preferably 0.1 to 10 times by mole, relative to 1 mole of the alkyllithium compound. This is because if the amount of the nitrogen-based heterocyclic organic compound to be added is 0.05 times mol or less with respect to 1 mol of the lithium compound, the polymerization rate retarding effect is not sufficient, and if it is 30 times or more, the retarding effect is saturated. .

【0023】アルキルリチウム化合物に添加する窒素系
複素環式有機化合物の量が多いほどスチレン系単量体の
重合速度は遅くなる。望みの分子量になるようにアルキ
ルリチウム化合物の添加量を決め、更に該アルキルリチ
ウム化合物添加量に対して望みの重合速度になるように
窒素系複素環式有機化合物の添加量を決める。アルキル
リチウム化合物と窒素系複素環式有機化合物の混合物は
上記芳香族炭化水素または脂環式炭化水素に良好な溶解
度を有する。上記混合物の溶解性が十分でない時には加
温すれば容易に溶解する。
The larger the amount of nitrogen-based heterocyclic organic compound added to the alkyllithium compound, the slower the polymerization rate of the styrene-based monomer. The addition amount of the alkyllithium compound is determined so that the desired molecular weight is obtained, and further the addition amount of the nitrogen-based heterocyclic organic compound is determined so that the desired polymerization rate is obtained with respect to the addition amount of the alkyllithium compound. The mixture of the alkyllithium compound and the nitrogen-based heterocyclic organic compound has good solubility in the aromatic hydrocarbon or alicyclic hydrocarbon. When the solubility of the above mixture is not sufficient, it is easily dissolved by heating.

【0024】[0024]

【発明の実施の形態】本発明の実施の形態を実施例及び
比較例により詳細に説明する。実施例及び比較例で用い
た単量体、溶媒、触媒は次の方法で精製して使用した。 (1)スチレン(SM):旭化成工業(株)社製、Ca
2 下でスチレンを1回減圧蒸留し脱気処理後乾燥窒素
下に封入した。 (2)エチルベンゼン(EB):和光純薬工業社製、特
級試薬をCaH2 下で1回減圧蒸留し脱気処理後モレキ
ュラーシーブを入れ乾燥窒素下に封入した。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail with reference to Examples and Comparative Examples. The monomers, solvents and catalysts used in Examples and Comparative Examples were purified by the following method before use. (1) Styrene (SM): Asahi Chemical Industry Co., Ltd., Ca
Styrene was distilled under reduced pressure once under H 2 , degassed, and then filled in dry nitrogen. (2) Ethylbenzene (EB): manufactured by Wako Pure Chemical Industries, Ltd., a special grade reagent was distilled under reduced pressure once under CaH 2 and after degassing, a molecular sieve was put and sealed under dry nitrogen.

【0025】(3)n−ブチルリチウム(BuLi):
関東化学社製、1.6Mのn−ヘキサン溶液。 (4)ピリジン及びアルキルピリジン:関東化学(株)
試薬特級 CaH2 下で蒸留、脱水処理後モレキュラー
シーブを入れ乾燥窒素下に封入した。 (5)その他複素環窒素系化合物:和光純薬工業社製、
特級試和薬の結晶を直接使用した。常温液体化合物はC
aH2 で脱水処理した。
(3) n-Butyl lithium (BuLi):
Kanto Chemical Co., Ltd., 1.6M n-hexane solution. (4) Pyridine and alkyl pyridine: Kanto Chemical Co., Inc.
Reagent grade CaH 2 distilled under and sealed under dry nitrogen was placed dehydrated after the molecular sieve. (5) Other heterocyclic nitrogen compounds: manufactured by Wako Pure Chemical Industries,
Crystals of special grade remedy were used directly. Room temperature liquid compound is C
It was dehydrated with aH 2 .

【0026】重合速度及びリビング性の評価方法は次の
様に行った。 (6)重合率の測定:未反応のスチレンをガスクロマト
グラフィー(GC)により測定し、次式により重合率
(Conv.)を求めた。 Conv.(%)=([仕込みSM濃度]−[未反応S
M濃度])/[仕込みSM濃度]×100 GCの測定条件 測定器:島津製作所 GC14B カラム:PEG20M(φ3mm×3m) キャリアーガス:窒素、流量50ml/min 検出器:FID カラム温度:120℃から220℃まで10℃/min
で昇温
The method of evaluating the polymerization rate and the living property was as follows. (6) Measurement of polymerization rate: Unreacted styrene was measured by gas chromatography (GC), and the polymerization rate (Conv.) Was determined by the following formula. Conv. (%) = ([Charged SM concentration]-[unreacted S
M concentration]) / [charged SM concentration] × 100 GC measurement conditions Measuring instrument: Shimadzu GC14B column: PEG20M (φ3 mm × 3 m) carrier gas: nitrogen, flow rate 50 ml / min Detector: FID column temperature: 120 ° C. to 220 10 ℃ / min up to ℃
Temperature rise at

【0027】(7)数平均分子量(Mn)、重量平均分
子量(Mw)及びMw/Mnの測定:ゲルパーミエーシ
ョンクロマトグラフィー(GPC)を用いて測定した。 GPCの測定条件 測定器:東ソー HLCー8020(示差屈折率検出器
内蔵) カラム:東ソー TSKgelーGMHXLを2本使用 温度:38℃ 溶媒:テトラハイドロフラン(THF) サンプル濃度:0.1wt/v% サンプリングピッチ:1/0.4(回/秒) 分子量計算:東ソーTSK標準ポリスチレンの分子量と
溶出時間の関係を3次回帰曲線として検量線を作成し、
算出した。
(7) Measurement of number average molecular weight (Mn), weight average molecular weight (Mw) and Mw / Mn: Measured using gel permeation chromatography (GPC). GPC measurement conditions Measuring instrument: Tosoh HLC-8020 (built-in differential refractive index detector) Column: Using two Tosoh TSKgel-GMH XL Temperature: 38 ° C Solvent: Tetrahydrofuran (THF) Sample concentration: 0.1 wt / v % Sampling pitch: 1 / 0.4 (times / second) Molecular weight calculation: A calibration curve was created by using the relationship between the molecular weight of Tosoh TSK standard polystyrene and the elution time as a cubic regression curve,
Calculated.

【0028】[0028]

【実施例】以下の実施例及び比較例の記載において特に
断りのない限りすべて操作は、充分乾燥したガラス容器
内で乾燥窒素下で行い、試薬類も乾燥した注射器で採
取、添加した。なお本発明はこれら実施例に限定される
ものではない。
EXAMPLES Unless otherwise specified, all operations in the following Examples and Comparative Examples were carried out under dry nitrogen in a sufficiently dry glass container, and reagents were also collected and added with a dry syringe. The present invention is not limited to these examples.

【0029】実施例1 スターラー用回転撹拌子を備えた十分に加熱乾燥した5
0mlの耐圧ビンに、脱水し、かつ重合禁止剤を除去し
たスチレン、同様に脱水したエチルベンゼン及びCaH
2 処理し脱水後の試薬特級のピリジンを、精密蒸留しガ
スクロマトグラフにより純度を確認したのち、チッソボ
ックス中で表1の組成で仕込みニトリルゴム栓付き王冠
で密栓した。耐圧ビンをチッソボックス中から取り出
し、反応液温を測定する熱電対をセットし、1.6mm
ol/lのn−ブチルリチウムをエチルベンゼンで10
倍希釈したものを触媒として表1の組成で注射器を用い
て打ち込み、60℃のオイルバス中で仕込スターラーで
撹拌し重合を開始した。重合反応熱に伴う暴走反応は起
こらず重合系内の温度はほぼ均一に60℃であった。
Example 1 Sufficiently heated and dried 5 equipped with a stirrer for a stirrer
Styrene dewatered and freed of polymerization inhibitors, similarly dehydrated ethylbenzene and CaH in a 0 ml pressure bottle.
2) The reagent grade pyridine after the treatment and dehydration was subjected to precision distillation and the purity was confirmed by gas chromatography, and then charged in a composition of Table 1 in a Chisso box and sealed with a crown with a nitrile rubber stopper. Remove the pressure bottle from the Chisso box and set a thermocouple to measure the reaction solution temperature, 1.6 mm
ol / l n-butyllithium 10 with ethylbenzene
The double-diluted product was used as a catalyst and was injected with the composition shown in Table 1 by using a syringe, and the mixture was stirred by a charging stirrer in an oil bath at 60 ° C. to start polymerization. The runaway reaction due to the heat of the polymerization reaction did not occur, and the temperature in the polymerization system was almost uniformly 60 ° C.

【0030】触媒を添加してから60分経過した時点で
メタノールを10%含有したテトラハイドロフラン(T
HF)溶液を2ml添加し重合を停止させた。重合停止
した溶液から少量取り出し、GC分析を行った。また、
重合ポリマーの分子量は、メタノール中に溶液を添加し
てポリマーを再沈精製後乾燥してからGPCで測定し
た。重合のConv.と分子量の測定結果は次の通りで
あった。 Conv.=26%、Mn=29000、Mw=312
00、Mw/Mn=1.08
60 minutes after the catalyst was added, tetrahydrofuran (T) containing 10% of methanol (T
2 ml of the HF) solution was added to terminate the polymerization. A small amount was taken out from the solution in which the polymerization was stopped and subjected to GC analysis. Also,
The molecular weight of the polymerized polymer was measured by GPC after adding a solution to methanol, reprecipitating and purifying the polymer, and then drying. Polymerization Conv. The results of measurement of the molecular weight were as follows. Conv. = 26%, Mn = 29000, Mw = 312
00, Mw / Mn = 1.08

【0031】実施例2 実施例1とまったく同様にして重合時間2hrで反応を
停止させた。以下の実施例及び比較例の結果を表1に記
す。 比較例1 ピリジンを用いない他は実施例1と同様に重合した。重
合はきわめて速く断熱的に進行し、触媒打ち込み後約3
分で重合液温は110℃以上となった。重合は急激に進
み、系の粘度が上昇し固化の状態になった。ピリジンを
用いないとモノマー濃度50%では重合速度が制御出来
ず、高温による失活のために分子量分布が広がってい
る。
Example 2 In exactly the same manner as in Example 1, the reaction was stopped after a polymerization time of 2 hr. The results of the following examples and comparative examples are shown in Table 1. Comparative Example 1 Polymerization was carried out in the same manner as in Example 1 except that pyridine was not used. Polymerization proceeds extremely rapidly and adiabatically, approximately 3 after catalyst implantation.
The polymerization liquid temperature reached 110 ° C. or higher in minutes. The polymerization proceeded rapidly, the viscosity of the system increased, and the system became solidified. Unless pyridine is used, the polymerization rate cannot be controlled at a monomer concentration of 50%, and the molecular weight distribution is widened due to deactivation at high temperatures.

【0032】実施例3 添加するピリジン量を実施例1の2倍にし、重合時間を
4hrにして実施した。実施例1,2と比較するとピリ
ジンの添加量を増加させることにより重合速度が遅れる
ことがわかる。 実施例4 モノマー濃度を上げ更に重合初期温度も80℃に上げて
重合した。この様な高モノマー濃度、高温反応であって
も重合コントロールが可能であり、反応はリビング的で
分子量分布もせまい。
Example 3 The amount of pyridine added was twice that of Example 1, and the polymerization time was 4 hours. As compared with Examples 1 and 2, it can be seen that the polymerization rate is delayed by increasing the addition amount of pyridine. Example 4 Polymerization was carried out by raising the monomer concentration and further raising the initial polymerization temperature to 80 ° C. Polymerization can be controlled even with such a high monomer concentration and high temperature reaction, the reaction is living and the molecular weight distribution is narrow.

【0033】実施例5 実施例4の触媒量を下げて重合した。実施例4に比べて
分子量がほぼ2倍になり反応がリビング的であるのがわ
かる。 実施例6 重合溶媒にシクロヘキサンを用いて実施した。 実施例7 溶媒を用いず完全なバルク重合の条件で実施した。若干
分子量分布が広がったがリビグ的に重合しほぼ狙いの分
子量のポリマーが得られている。
Example 5 Polymerization was carried out by lowering the amount of catalyst used in Example 4. It can be seen that the molecular weight is almost doubled as compared with Example 4, and the reaction is living. Example 6 Cyclohexane was used as a polymerization solvent. Example 7 It was carried out under the conditions of complete bulk polymerization without using a solvent. Although the molecular weight distribution was slightly widened, it was polymerized in a livig-like manner to obtain a polymer having a target molecular weight.

【0034】実施例8 ピリジン添加量を増やして重合した。重合がコントロー
ル下に進んでいるのが判る。 実施例9〜11 ピリジンに代えて、4−メチルピリジンを用いて重合し
た。ピリジン同様の遅延効果が認められた。
Example 8 Polymerization was carried out by increasing the amount of pyridine added. It can be seen that the polymerization is under control. Examples 9 to 11 Polymerization was carried out using 4-methylpyridine instead of pyridine. A delay effect similar to that of pyridine was observed.

【0035】比較例2 通常のアニオン重合の条件で溶媒にシクロヘキサンを用
いてモノマー濃度20%近傍で重合した。シクロヘキサ
ン80%以上でも重合液温は20℃近く上昇し反応がほ
とんど断熱的に進行しているのが判る。モノマー濃度が
20%と低いために重合系の最高温度は58℃であった
ため分子量分布は1.08となったが、これ以上モノマ
ー濃度を高めると分子量分布は広がってしまう。モノマ
ー濃度20%では溶媒除去にコストがかかり工業化する
上で経済性に問題がある。 比較例3 モノマー濃度80%で重合した。重合液温が短時間に急
上昇し、高温となり触媒が失活し、完全な暴走反応にな
った。
Comparative Example 2 Polymerization was carried out at a monomer concentration of about 20% using cyclohexane as a solvent under the usual anionic polymerization conditions. It can be seen that the polymerization liquid temperature rises near 20 ° C. even when cyclohexane is 80% or more, and the reaction proceeds almost adiabatically. Since the maximum temperature of the polymerization system was 58 ° C. because the monomer concentration was as low as 20%, the molecular weight distribution was 1.08, but if the monomer concentration is further increased, the molecular weight distribution will broaden. If the monomer concentration is 20%, it will be costly to remove the solvent and there will be a problem in economic efficiency in industrialization. Comparative Example 3 Polymerization was carried out at a monomer concentration of 80%. The temperature of the polymerization solution rose sharply in a short time and became high, the catalyst was deactivated, and a complete runaway reaction occurred.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【発明の効果】本発明のアルキルリチウム化合物と特定
の窒素系複素環式有機化合物の混合物をスチレン単量体
のアニオン重合触媒として用いることにより、従来のア
ニオン重合では考えられない高モノマー濃度、高温の重
合条件下、重合温度を制御しながらリビングな単分散ポ
リマーを得ることが出来る。スチレン系重合体を得るた
めのアニオン重合を工業プロセス化する上で本発明はき
わめて重要である。
By using a mixture of the alkyllithium compound of the present invention and a specific nitrogen-based heterocyclic organic compound as an anionic polymerization catalyst for styrene monomer, it is possible to obtain a high monomer concentration and a high temperature which cannot be considered by conventional anionic polymerization. It is possible to obtain a living monodisperse polymer while controlling the polymerization temperature under the above polymerization conditions. The present invention is extremely important in converting anionic polymerization for obtaining a styrenic polymer into an industrial process.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 アルキルリチウム化合物と該アルキルリ
チウム化合物1モルに対し0.05〜30倍モルの窒素
系複素環式有機化合物1種又は2種以上を用いることを
特徴とするアニオン重合用触媒組成物。
1. A catalyst composition for anionic polymerization, which comprises using an alkyllithium compound and one or two or more moles of a nitrogen-based heterocyclic organic compound in an amount of 0.05 to 30 moles per mole of the alkyllithium compound. Stuff.
【請求項2】 アルキルリチウム化合物1モルに対して
窒素系複素環式有機化合物が0.1〜10倍モルである
ことを特徴とする請求項1記載のアニオン重合用触媒組
成物。
2. The catalyst composition for anionic polymerization according to claim 1, wherein the amount of the nitrogen-based heterocyclic organic compound is 0.1 to 10 times the mole of the alkyllithium compound.
【請求項3】 アルキルリチウム化合物がn−ブチルリ
チウム、sec−ブチルリチウム、tert−ブチルリ
チウム、iso−プロピルリチウム、n−プロピルリチ
ウム、ベンジルリチウム、フェニルリチウム、ヘキシル
リチウムの1種又は2種以上である請求項1又は2記載
のアニオン重合用触媒組成物。
3. The alkyllithium compound is one or more of n-butyllithium, sec-butyllithium, tert-butyllithium, iso-propyllithium, n-propyllithium, benzyllithium, phenyllithium and hexyllithium. The catalyst composition for anionic polymerization according to claim 1 or 2.
【請求項4】 窒素系複素環式有機化合物がアルキルピ
リジン、ピリジン、ピリミジン、キノリン、ピリダリ
ン、ベンズイミダゾールである請求項1又は2記載のア
ニオン重合用触媒組成物。
4. The catalyst composition for anionic polymerization according to claim 1, wherein the nitrogen-based heterocyclic organic compound is an alkylpyridine, pyridine, pyrimidine, quinoline, pyridaline, or benzimidazole.
【請求項5】 請求項1記載のアニオン重合用触媒組成
物を用いてスチレン系単量体を重合することを特徴とす
るアニオン重合方法。
5. An anionic polymerization method comprising polymerizing a styrene-based monomer using the catalyst composition for anionic polymerization according to claim 1.
【請求項6】 スチレン系単量体を重合するに際して重
合溶媒として芳香族炭化水素化合物または脂環式炭化水
素化合物を用いることを特徴とする請求項5記載のアニ
オン重合方法。
6. The anionic polymerization method according to claim 5, wherein an aromatic hydrocarbon compound or an alicyclic hydrocarbon compound is used as a polymerization solvent when polymerizing the styrene-based monomer.
【請求項7】 スチレン系単量体を重合するに際して重
合温度30〜150℃、スチレン系単量体濃度が40〜
100wt%であることを特徴とする請求項5記載のア
ニオン重合方法。
7. When polymerizing a styrenic monomer, the polymerization temperature is 30 to 150 ° C., and the concentration of the styrenic monomer is 40 to 40.
It is 100 wt%, The anionic polymerization method of Claim 5 characterized by the above-mentioned.
JP8447596A 1996-03-14 1996-03-14 Anionic polymerization catalyst composition and polymerization method using said composition Withdrawn JPH09249705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8447596A JPH09249705A (en) 1996-03-14 1996-03-14 Anionic polymerization catalyst composition and polymerization method using said composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8447596A JPH09249705A (en) 1996-03-14 1996-03-14 Anionic polymerization catalyst composition and polymerization method using said composition

Publications (1)

Publication Number Publication Date
JPH09249705A true JPH09249705A (en) 1997-09-22

Family

ID=13831678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8447596A Withdrawn JPH09249705A (en) 1996-03-14 1996-03-14 Anionic polymerization catalyst composition and polymerization method using said composition

Country Status (1)

Country Link
JP (1) JPH09249705A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979717B2 (en) 2001-08-13 2005-12-27 Moore Eugene R Anionic process design for rapid polymerization of polystyrene without gel formation and product produced there from
US8933159B2 (en) 2008-12-02 2015-01-13 Albemarle Corporation Brominated flame retardants and precursors therefor
US8993684B2 (en) 2008-06-06 2015-03-31 Albemarle Corporation Low molecular weight brominated polymers, processes for their manufacture and their use in thermoplastic formulations

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6979717B2 (en) 2001-08-13 2005-12-27 Moore Eugene R Anionic process design for rapid polymerization of polystyrene without gel formation and product produced there from
US8993684B2 (en) 2008-06-06 2015-03-31 Albemarle Corporation Low molecular weight brominated polymers, processes for their manufacture and their use in thermoplastic formulations
US9914830B2 (en) 2008-06-23 2018-03-13 Albemarle Corporation Low molecular weight brominated polymers, processes for their manufacture and their use in thermoplastic formulations
US8933159B2 (en) 2008-12-02 2015-01-13 Albemarle Corporation Brominated flame retardants and precursors therefor

Similar Documents

Publication Publication Date Title
Matyjaszewski et al. Controlled radical polymerizations: the use of alkyl iodides in degenerative transfer
JP3145716B2 (en) Method for producing vinyl polymer and initiator for polymerizing vinyl monomer
JP6357549B2 (en) Novel anionic polymerization initiator and method for producing conjugated diene copolymer using the same
BR112019000021B1 (en) POLAR MODIFIER SYSTEMS FOR BLOCK COPOLYMERIZATION WITH HIGH VINYL CONTENT, BLOCK COPOLYMER, AND THEIR PRODUCTION PROCESS
US4461874A (en) Block copolymers of conjugated dienes or vinyl substituted aromatic hydrocarbons and acrylic esters and process for their manufacture
JP4101853B2 (en) Method for producing anionic polymer
Sweat et al. Synthesis of poly (4‐hydroxystyrene)‐based block copolymers containing acid‐sensitive blocks by living anionic polymerization
JPH09249705A (en) Anionic polymerization catalyst composition and polymerization method using said composition
JPH09249706A (en) Catalyst composition for regulating polymerization rate and polymerization method using said composition
CN106632928B (en) Star-like butadiene-styrene block copolymer and its preparation method and application
JP2005281688A (en) Method for producing anion polymer
JP2850432B2 (en) Copolymer and method for producing the same
EP2511309A1 (en) Styrene polymer and manufacturing method therefor
JPS5837321B2 (en) Anionic polymerization method
JP4433318B2 (en) Process for producing poly (α-methylstyrene)
JP3887004B2 (en) Method for producing polymer
JP2002206003A (en) Method for producing anionic polymer
JPH1180220A (en) Production of conjugated diene polymer
Cho et al. Anionic polymerization of 2-(N-carbazolyl) ethyl methacrylate
CN100482698C (en) Method for preparing isotactic polyphenylacetylene by anionic polymerization
JP5775770B2 (en) Polymerization initiator and polymerization method of vinyl monomer
JPH11116613A (en) Polymerization initiator for vinyl monomer and production of vinyl polymer
JPH0258505A (en) Method for anionic polymerization
JPH0235767B2 (en)
JP5550519B6 (en) Method for producing anionic polymer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030603