JPH09249498A - Oxide superconductor multilayer film - Google Patents

Oxide superconductor multilayer film

Info

Publication number
JPH09249498A
JPH09249498A JP8055221A JP5522196A JPH09249498A JP H09249498 A JPH09249498 A JP H09249498A JP 8055221 A JP8055221 A JP 8055221A JP 5522196 A JP5522196 A JP 5522196A JP H09249498 A JPH09249498 A JP H09249498A
Authority
JP
Japan
Prior art keywords
thin film
oxide superconductor
oxide
multilayer film
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8055221A
Other languages
Japanese (ja)
Inventor
Arubaresu Gusutabo
アルバレス グスタボ
Fukuhito Ou
福仁 王
Takekuni Bun
建国 文
Naoki Koshizuka
直己 腰塚
Yoichi Enomoto
陽一 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER filed Critical KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Priority to JP8055221A priority Critical patent/JPH09249498A/en
Priority to US08/814,172 priority patent/US6011981A/en
Priority to EP97104057A priority patent/EP0795914A1/en
Publication of JPH09249498A publication Critical patent/JPH09249498A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high-quality superconductive multilayer film free from internal stress because of being composed of layers with low lattice inconsistency, and to obtain a superconductive wire capable of injecting large current thereinto. SOLUTION: This oxide superconductor multilayer film, which has laminated structure composed of oxide superconductor thin film layers and non- superconductor thin film layers, consists of a combination of materials so as to result in strain-free interfaces between both kinds of the thin film layers. This oxide superconductor multilayer film is obtained, for example, by alternately laminating oxide superconductor thin film of the compositional chemical formula, M'Ba2 Cu3 O7-δ (M' is a rare earth element such as Nd, Sm or E, or an alloy thereof; δ is oxygen deficit) and oxide thin film of the compositional chemical formula, M*Ba2 Cu3 O7-δ (M* is an element such as Pr or Sc, or an alloy thereof; δ is oxygen deficit). The latter thin film is made by laser deposition or sputtering process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超電導薄膜と非超
電導薄膜との積層構造を有し、前記両薄膜層の界面が無
歪となる材料系の組合せからなる酸化物超電導体薄膜に
関し、特に、通信,情報処理の電子機器における集積回
路に適用して有効な技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconducting thin film having a laminated structure of a superconducting thin film and a non-superconducting thin film, and comprising a combination of material systems in which the interface between the two thin film layers is strain-free. The present invention relates to a technique effectively applied to an integrated circuit in an electronic device for communication, information processing, and information processing.

【0002】[0002]

【従来の技術】超電導体と常伝導金属とから構成される
多層膜は、磁場浸入長が有効に利用できることから大電
流応用あるいは高周波電流応用をはかる上で重要な複合
材料系である。このため低い臨界温度Tcの金属超電導
体系においても広く多層構造作製法が検討されている。
加えて、特に高い臨界温度Tcの酸化物超電導体ではそ
の結晶構造自体が層状であり、超電導機構との関係から
も多層膜は多くの研究がなされている。
2. Description of the Related Art A multilayer film composed of a superconductor and a normal conductive metal is a composite material system important for large current application or high frequency current application because the magnetic field penetration length can be effectively utilized. Therefore, a method for producing a multilayer structure has been widely studied even in a metal superconductor system having a low critical temperature Tc.
In addition, especially in oxide superconductors having a high critical temperature Tc, the crystal structure itself is layered, and many studies have been conducted on multilayer films in view of the relationship with the superconducting mechanism.

【0003】さらに、電子応用の基本素子となる積層型
のトンネル接合を実現するためにもこの技術は基盤にな
ると期待されている。ところで、多層薄膜を実現するに
は同種の材料を組み合わせることが結晶成長上有利とな
る。このためYBa2Cu37-δ(δは酸素欠損量)を
代表例とする123構造の超電導体に対しては、ほぼ同
じ結晶構造を持つにもかかわらず超電導性を示さないP
rBa2Cu37-δが選択され、多数の作製結果が報告
されている。ただし、従来ほとんど大部分は超電導体層
として高品質薄膜堆積法の確立したYBa2Cu37-δ
が選択され作製されたものであった。
Furthermore, it is expected that this technique will serve as a basis for realizing a laminated tunnel junction which is a basic element for electronic applications. By the way, in order to realize a multilayer thin film, it is advantageous in terms of crystal growth to combine materials of the same kind. Therefore, a superconductor having a 123 structure, which is represented by YBa 2 Cu 3 O 7-δ (δ is an oxygen deficiency amount), does not exhibit superconductivity even though it has almost the same crystal structure.
rBa 2 Cu 3 O 7-δ was selected and many production results have been reported. However, YBa 2 Cu 3 O 7-δ, which has been established as a high-quality thin film deposition method as a superconductor layer, has been used for the most part in the past.
Was selected and produced.

【0004】前述の従来技術に関する酸化物超電導格子
薄膜のレイヤ−バイ−レイヤ技術は、鯉沼秀臣、吉本
護、応用物理第60巻、第5号(1991)433〜4
42頁に開示されている。
The layer-by-layer technology of the oxide superconducting lattice thin film relating to the above-mentioned prior art is described in Hideomi Koinuma, Mamoru Yoshimoto, Applied Physics Vol. 60, No. 5 (1991) 433-4.
It is disclosed on page 42.

【0005】また、高品質YBa2Cu37-δとPrB
2Cu37-δとの積層化技術は、坂東尚周、寺嶋孝
仁、応用物理第60巻、第5号(1991)474〜4
77頁に開示されている。
Further, high quality YBa 2 Cu 3 O 7-δ and PrB
The layering technique with a 2 Cu 3 O 7-δ is described in Naoto Bando, Takahito Terashima, Applied Physics Volume 60, No. 5 (1991) 474-4.
It is disclosed on page 77.

【0006】また、YBa2Cu37-δ/PrBa2
37-δ/YBa2Cu37-δジョセフソン複合作製
技術は、吉田二郎、橋本龍典、応用物理第61巻、第6
号(1992)494〜497頁に開示されている。
In addition, YBa 2 Cu 3 O 7-δ / PrBa 2 C
u 3 O 7-δ / YBa 2 Cu 3 O 7-δ Josephson composite fabrication technology is described by Jiro Yoshida, Tatsunori Hashimoto, Applied Physics Vol. 61, Vol.
(1992) pages 494-497.

【0007】[0007]

【発明が解決しようとする課題】本発明者は、前記従来
技術を検討した結果、以下の問題点を見いだした。
SUMMARY OF THE INVENTION As a result of studying the above prior art, the present inventor has found the following problems.

【0008】従来のYBa2Cu37-δでは歪による螺
旋転位が多く観測され、多層膜実現の必須条件である表
面平坦性に問題があった。加えてPrBa2Cu37-δ
とは格子整合性はあまりよくない。酸化物超電導体で
は、格子歪により酸素欠損量が増加し超電導特性を劣化
させることが知られている。実際、SrTiO3単結晶
基板上のa軸配向膜のTcは歪の効果により低く抑えら
れている。このようにしてYBa2Cu37-δとPrB
2Cu37-δの多層膜では内部に応力が蓄積され、高
品質の超電導特性を得ることが困難である。
In conventional YBa 2 Cu 3 O 7-δ , many screw dislocations due to strain were observed, and there was a problem in surface flatness, which is an essential condition for realizing a multilayer film. In addition, PrBa 2 Cu 3 O 7-δ
The lattice matching with is not so good. It is known that in an oxide superconductor, the amount of oxygen deficiency increases due to lattice strain and the superconducting characteristics are deteriorated. In fact, the Tc of the a-axis oriented film on the SrTiO 3 single crystal substrate is kept low due to the effect of strain. In this way, YBa 2 Cu 3 O 7-δ and PrB
In the multilayer film of a 2 Cu 3 O 7-δ , stress is accumulated inside and it is difficult to obtain high quality superconducting properties.

【0009】つまり、酸化物超電導体は低キャリア濃度
であるため、その電気特性は正孔キャリアを供給する酸
素の含有量に強く依存する。ところで、この酸素量は格
子歪と強く関係づけられる。したがって、歪が加わった
状態では酸素欠損が生じ超電導特性が劣化する。
That is, since the oxide superconductor has a low carrier concentration, its electrical characteristics strongly depend on the content of oxygen supplying hole carriers. By the way, this amount of oxygen is strongly related to the lattice strain. Therefore, in the state where strain is applied, oxygen deficiency occurs and the superconducting characteristics deteriorate.

【0010】ところで、異なる材料を組み合わせる場
合、一般に格子定数あるいは熱膨張率の差により、接合
界面より内部歪が生じる。これにより機械強度が弱くな
るばかりでなく、酸化物超電導材料では超電導特性が低
下してしまう。したがって、このような積層構造を作る
場合には、この歪をできるだけ小さくすることが高性能
の超電導性を実現する上で重要になることを本発明者が
見いだした。
By the way, when different materials are combined, an internal strain generally occurs from the bonding interface due to the difference in lattice constant or thermal expansion coefficient. As a result, not only the mechanical strength is weakened, but also the superconductivity of the oxide superconducting material is reduced. Therefore, the present inventor has found that, in the case of producing such a laminated structure, it is important to reduce this strain as much as possible in order to realize high-performance superconductivity.

【0011】本発明の目的は、格子不整合性の小さい層
から構成されるため内部応力がなく高品質の超電導性多
層膜を提供することにある。
An object of the present invention is to provide a high-quality superconducting multilayer film which has no internal stress because it is composed of layers having a small lattice mismatch.

【0012】本発明の他の目的は、大電流が流せる超電
導配線を提供することにある。
Another object of the present invention is to provide a superconducting wiring which can carry a large current.

【0013】本発明の前記ならびにその他の目的及び新
規な特徴は、本明細書の記述及び添付図面によって明ら
かにする。
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【0014】[0014]

【課題を解決するための手段】本願によって開示される
発明のうち代表的なものの概要を簡単に説明すれば、以
下のとおりである。
The following is a brief description of an outline of a typical invention among the inventions disclosed by the present application.

【0015】(1)酸化物超電導体薄膜層と非超電導体
薄膜層との積層構造を有し、前記両薄膜層の界面が無歪
もしくはそれに近い歪となる材料系の組合せからなる酸
化物超電導体多層膜である。
(1) An oxide superconductor having a laminated structure of an oxide superconducting thin film layer and a non-superconducting thin film layer, and a combination of material systems in which the interface between the two thin film layers is strain-free or strain close thereto. It is a body multilayer film.

【0016】(2)組成化学式M’Ba2Cu3
7-δ(ここでM’はNd,Sm,Eu等の希土類元素あ
るいはそれらの合金、δは酸素欠損量)で表わされる酸
化物超電導体薄膜と、組成化学式M*Ba2Cu37-δ
(ここでM*はPr,Sc等の元素あるいはそれらの合
金、δは酸素欠損量)で表わされる酸化物薄膜とを交互
に堆積した積層構造からなる酸化物超電導体多層膜であ
る。
(2) Compositional chemical formula M'Ba 2 Cu 3 O
An oxide superconductor thin film represented by 7-δ (where M ′ is a rare earth element such as Nd, Sm, Eu or alloys thereof, and δ is an oxygen deficiency amount), and a chemical composition formula M * Ba 2 Cu 3 O 7- δ
(Where M * is an element such as Pr or Sc or an alloy thereof, and δ is an oxygen deficiency amount) is an oxide superconductor multilayer film having a laminated structure in which oxide thin films are alternately deposited.

【0017】(3)前記(2)の酸化物薄膜は、レーザ
堆積法あるいはスパッタ法で作製した薄膜である。
(3) The oxide thin film of (2) above is a thin film produced by a laser deposition method or a sputtering method.

【0018】前述の手段によれば、酸化物超電導体薄膜
層と非超電導体薄膜層との積層構造を有し、前記両薄膜
層の界面が無歪となる材料系の組合せからなることによ
り、前記両薄膜層の界面の歪を無歪もしくはその近くま
で小さくするので、高性能の超電導性を実現することが
できる。
According to the above-mentioned means, the oxide superconductor thin film layer and the non-superconductor thin film layer have a laminated structure, and the interface of the two thin film layers is made of a combination of material systems in which the interface is strain-free, Since the strain at the interface between the two thin film layers is reduced to or close to no strain, high-performance superconductivity can be realized.

【0019】例えば、非超電導体のPrBa2Cu3
7-δ層を中心にそれと近い格子定数を持つ超電導体、例
えばNdBa2Cu37-δを選択し、内部応力の小さい
高い臨界温度Tcの酸化物超電導体多層膜を実現するこ
とができる。
For example, non-superconductor PrBa 2 Cu 3 O
A superconductor having a lattice constant close to that of the 7-δ layer, for example NdBa 2 Cu 3 O 7-δ, can be selected to realize an oxide superconductor multilayer film having a small internal stress and a high critical temperature Tc. .

【0020】[0020]

【発明の実施の形態】以下、本発明についてその実施形
態(実施例)とともに詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below along with its embodiments (examples).

【0021】(実施形態1)図1は本発明の実施形態1
の酸化物超電導体多層膜の構成を示す断面図であり、1
はNdBa2Cu37-δ(NBCO)、2はPrBa2
Cu37-δ(PBCO)である。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
2 is a cross-sectional view showing the configuration of the oxide superconductor multilayer film of FIG.
Is NdBa 2 Cu 3 O 7-δ (NBCO), 2 is PrBa 2
Cu 3 O 7-δ (PBCO).

【0022】本発明の実施形態1の酸化物超電導体多層
膜は、図1に示すように、組成化学式NdBa2Cu3
7-δ(δは酸素欠損量)で表わされる酸化物超電導体薄
膜と、組成化学式PrBa2Cu37-δ(δは酸素欠損
量)で表わされる酸化物薄膜とを交互に堆積した積層構
造からなる。
As shown in FIG. 1, the oxide superconductor multilayer film of Embodiment 1 of the present invention has a chemical composition formula of NdBa 2 Cu 3 O.
7-δ (where δ is an oxygen deficiency) an oxide superconductor thin film and an oxide thin film represented by a chemical composition formula PrBa 2 Cu 3 O 7-δ (δ is an oxygen deficiency) are alternately deposited. Composed of structure.

【0023】以下、本実施形態1の酸化物超電導体多層
膜の作製方法について説明する。
The method for producing the oxide superconductor multilayer film according to the first embodiment will be described below.

【0024】SrTiO3単結晶基板上全面にレーザア
ブレーション法によりNdBa2Cu37-δ薄膜を作製
する。薄膜作製条件は、ターゲットとしてNdBa2
37- δ多結晶体を用い、基板温度は750℃、酸素
分圧200mTorr、成長時間0.5分で薄膜は8n
mである。用いたレーザーはKrFのエキシマレーザー
で波長248nm、エネルギー密度5J/cm2であ
る。
A NdBa 2 Cu 3 O 7-δ thin film is formed on the entire surface of the SrTiO 3 single crystal substrate by the laser ablation method. The thin film production conditions are NdBa 2 C as a target.
u 3 O 7- δ polycrystal was used, the substrate temperature was 750 ° C., the oxygen partial pressure was 200 mTorr, the growth time was 0.5 minutes, and the thin film was 8 n.
m. The laser used was a KrF excimer laser having a wavelength of 248 nm and an energy density of 5 J / cm 2 .

【0025】その後、PrBa2Cu37-δ薄膜を作製
する。ターゲットとして同一チャンバー内にあるPrB
2Cu37-δ多結晶体を用いる。薄膜作製条件は、N
dBa2Cu37-δとほぼ同じ、基板温度は750℃、
酸素分圧200mTorr、成長時間0.5分で膜厚は
8nm(図1参照)である。これを交互に繰り返すこと
により多層膜を作製した。実施形態1の場合には6回繰
り返した。
After that, a PrBa 2 Cu 3 O 7-δ thin film is prepared. PrB in the same chamber as the target
An a 2 Cu 3 O 7-δ polycrystal is used. Thin film manufacturing conditions are N
Almost the same as dBa 2 Cu 3 O 7-δ , the substrate temperature is 750 ° C,
The oxygen partial pressure is 200 mTorr, the growth time is 0.5 minutes, and the film thickness is 8 nm (see FIG. 1). A multilayer film was produced by repeating this alternately. In the case of Embodiment 1, this was repeated 6 times.

【0026】図2は多層膜のX線回折のθ-2θ特性を
示す。比較のためNdBa2Cu37 単体膜の結果も
合わせて示す。c軸配向が得られており、また、回折ピ
ーク間の強度比もNdBa2Cu37-δ単体膜と変わら
ず、その格子整合性が良いことがわかる。また、多層膜
にもかかわらず回折ピークの分離あるいは衛星反射のピ
ークは観測されていない。これは結晶学的に界面歪をも
たない整合性の良い多層膜ができていることを示す。
FIG. 2 shows the θ-2θ characteristic of the X-ray diffraction of the multilayer film. For comparison, the results of the NdBa 2 Cu 3 O 7 simple substance film are also shown. It can be seen that the c-axis orientation is obtained, the intensity ratio between the diffraction peaks is the same as that of the NdBa 2 Cu 3 O 7-δ simple film, and the lattice matching is good. In addition, no separation of diffraction peaks or peaks of satellite reflection was observed despite the multilayer film. This shows that a multi-layer film having good crystallinity and having no interface strain is formed.

【0027】ラザフォード後方散乱(RBS)の結果
(図3)からも、結晶性の乱れを示すΧminが2.2
%と良質膜なみに低いことからもわかる。
From the results of Rutherford backscattering (RBS) (FIG. 3), the Χmin indicating the disorder of crystallinity is 2.2.
It can be seen from the fact that it is as low as a high-quality film.

【0028】図4は得られた試料の電気抵抗の温度依存
性を示す。比較のためNdBa2Cu37-δ単体膜の結
果も合わせて示す。いずれも80K以下で超電導となっ
ており、良質の薄膜が作製できていることがわかる。も
し、NdとPrとで固相反応が起き薄膜が形成したとす
ると、臨界温度Tcは低下してしまう。従ってこの高い
臨界温度Tcは層間の組成分離を示す。
FIG. 4 shows the temperature dependence of the electric resistance of the obtained sample. For comparison, the results of the NdBa 2 Cu 3 O 7-δ simple substance film are also shown. It can be seen that all of them are superconducting at 80 K or less, and that good quality thin films can be produced. If a solid phase reaction occurs between Nd and Pr to form a thin film, the critical temperature Tc will decrease. Therefore, this high critical temperature Tc indicates compositional separation between layers.

【0029】(実施形態2)以下、本発明の実施形態2
の酸化物超電導体多層膜の作製方法について説明する。
(Embodiment 2) Hereinafter, Embodiment 2 of the present invention
A method for producing the oxide superconductor multilayer film of 1 will be described.

【0030】基本的に前記実施形態1と同様の工程によ
り素子が形成される。SrTiO3単結晶基板上全面に
スパッタ法によりSmBa2Cu37-δ薄膜を作製す
る。薄膜作製条件は、ターゲットとしてSmBa2Cu3
7-δ多結晶体を用い、基板温度は740℃、雰囲気圧
84mTorr、酸素ガス流量0.5sccmでアルゴ
ンガス流量10sccm、成長時間1分で薄膜は8nm
である。用いたRFパワーは80Wである。
Basically, an element is formed by the same steps as those in the first embodiment. A SmBa 2 Cu 3 O 7-δ thin film is formed on the entire surface of the SrTiO 3 single crystal substrate by the sputtering method. The thin film manufacturing conditions are SmBa 2 Cu 3 as a target.
O 7-δ polycrystal is used, the substrate temperature is 740 ° C., the atmospheric pressure is 84 mTorr, the oxygen gas flow rate is 0.5 sccm, the argon gas flow rate is 10 sccm, and the growth time is 1 minute.
It is. The RF power used is 80W.

【0031】その後、基板上全面にスパッタ法によりS
cBa2Cu37-δ薄膜を作製する。ターゲットとして
ScBa2Cu37-δ多結晶体を用い、基板温度は74
0℃、雰囲気圧84mTorr、酸素ガス流量0.5s
ccmでアルゴンガス流量10sccm、成長時間1分
で薄膜は8nmである。これを交互に繰り返すことによ
り多層膜を作製した。
After that, S is sputtered on the entire surface of the substrate.
A cBa 2 Cu 3 O 7-δ thin film is prepared. ScBa 2 Cu 3 O 7-δ polycrystal was used as a target, and the substrate temperature was 74.
0 ° C., atmosphere pressure 84 mTorr, oxygen gas flow rate 0.5 s
In ccm, the flow rate of argon gas is 10 sccm, and the growth time is 1 minute. A multilayer film was produced by repeating this alternately.

【0032】本実施形態2の場合には15回繰り返し
た。図5は(005)X線回折ピークのロッキングカー
ブを示す。半値幅は0.07°であり、欠陥の少ない高
品質膜が形成されていることがわかる。
In the case of the second embodiment, the process was repeated 15 times. FIG. 5 shows the rocking curve of the (005) X-ray diffraction peak. The full width at half maximum is 0.07 °, which shows that a high quality film with few defects is formed.

【0033】以上の説明から、前記実施形態1及び2に
おいては、組成化学式M’Ba2Cu37-δ(ここで
M’はNd,Sm,Euあるいはそれらの合金)で表わ
される酸化物超電導体薄膜と、組成化学式M*Ba2
37-δ(ここでM*はPr,Scあるいはそれらの
合金)で表わされる酸化物薄膜とを交互に堆積した酸化
物超電導体多層膜で説明したが、本発明においては、前
記組成化学式におけるM’の元素は、Nd,Sm,Eu
等の希土類元素あるいはそれらの合金であってもよいこ
とは前述の説明から容易に推測できるであろう。
From the above description, in the first and second embodiments, the oxide represented by the chemical composition formula M'Ba 2 Cu 3 O 7-δ (where M'is Nd, Sm, Eu or alloys thereof). Superconductor thin film and chemical composition formula M * Ba 2 C
An oxide superconductor multilayer film in which an oxide thin film represented by u 3 O 7-δ (where M * is Pr, Sc, or an alloy thereof) is alternately deposited has been described. The elements of M'in the chemical formula are Nd, Sm, Eu
It may be easily inferred from the above description that it may be a rare earth element or the like or an alloy thereof.

【0034】以上、本発明によってなされた発明を、実
施形態(実施例)に基づき具体的に説明したが、本発明
は、前記実施形態(実施例)に限定されるものではな
く、その要旨を逸脱しない範囲において種々変更し得る
ことはいうまでもない。
Although the invention made by the present invention has been specifically described based on the embodiments (examples), the present invention is not limited to the above-mentioned embodiments (examples), and the gist thereof is not limited. It goes without saying that various changes can be made without departing from the scope.

【0035】[0035]

【発明の効果】本願によって開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、以
下のとおりである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.

【0036】本発明によれば、格子不整合性の小さい層
から構成されるため内部応力がなく高品質の超電導性多
層膜が得られる。このため、大電流が流せる超電導配線
を得ることができ、超電導回路を実現する上での基礎技
術となる。
According to the present invention, a high-quality superconducting multilayer film having no internal stress can be obtained because it is composed of layers having a small lattice mismatch. Therefore, it is possible to obtain superconducting wiring through which a large current can flow, which is a basic technique for realizing a superconducting circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態1の酸化物超電導体多層膜の
構成を示す断面図である。
FIG. 1 is a cross-sectional view showing the structure of an oxide superconductor multilayer film according to a first embodiment of the present invention.

【図2】本発明の実施形態1の酸化物超電導体多層膜の
X線回折のθ-2θ特性を示す図である。
FIG. 2 is a diagram showing a θ-2θ characteristic of an X-ray diffraction of an oxide superconductor multilayer film of Embodiment 1 of the present invention.

【図3】本実施形態1の酸化物超電導体多層膜のラザフ
ォード後方散乱(RBS)の結果を示す図である。
FIG. 3 is a diagram showing results of Rutherford backscattering (RBS) of the oxide superconductor multilayer film according to the first embodiment.

【図4】本実施形態1の酸化物超電導体多層膜の電気抵
抗の温度依存性を示す図である。
FIG. 4 is a diagram showing temperature dependence of electric resistance of the oxide superconductor multilayer film according to the first embodiment.

【図5】本発明の実施形態1の酸化物超電導体多層膜の
(005)X線回折ピークのロッキングカーブを示す図
である。
FIG. 5 is a diagram showing a rocking curve of a (005) X-ray diffraction peak of the oxide superconductor multilayer film of Embodiment 1 of the present invention.

【符号の説明】[Explanation of symbols]

1…NdBa2Cu37-δ(NBCO)、2…PrBa
2Cu37-δ(PBCO)。
1 ... NdBa 2 Cu 3 O 7-δ (NBCO), 2 ... PrBa
2 Cu 3 O 7-δ (PBCO).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 39/24 ZAA H01L 39/24 ZAAZ (72)発明者 文 建国 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 腰塚 直己 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 榎本 陽一 東京都江東区東雲一丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication location H01L 39/24 ZAA H01L 39/24 ZAAZ (72) Inventor's statement Founding 1-14 Shinonome, Koto-ku, Tokyo No. 3 International Superconducting Industrial Technology Research Center, Superconducting Engineering Laboratory (72) Inventor Naoki Koshizuka 1-14-3 Shinonome, Koto-ku, Tokyo International Superconducting Industrial Technology Center, Superconducting Engineering Laboratory (72) Inventor Yoichi Enomoto 1-14-3 Shinonome, Koto-ku, Tokyo International Superconductivity Technology Center Research Institute of Superconductivity Engineering

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化物超電導体薄膜層と非超電導体薄膜
層との積層構造を有し、前記両薄膜層の界面が無歪もし
くはそれに近い歪となる材料系の組合せからなることを
特徴とする酸化物超電導体多層膜。
1. A laminate structure comprising an oxide superconductor thin film layer and a non-superconductor thin film layer, wherein the interface between the two thin film layers is made of a combination of material systems with no strain or strain close to it. Oxide superconductor multilayer film.
【請求項2】 組成化学式M’Ba2Cu37-δ(ここ
でM’はNd,Sm,Eu等の希土類元素あるいはそれ
らの合金、δは酸素欠損量)で表わされる酸化物超電導
体薄膜と、組成化学式M*Ba2Cu37-δ(ここでM
*はPr,Sc等の元素あるいはそれらの合金、δは酸
素欠損量)で表わされる酸化物薄膜とを交互に堆積した
積層構造からなることを特徴とする酸化物超電導体多層
膜。
2. An oxide superconductor represented by a chemical composition formula M'Ba 2 Cu 3 O 7-δ (where M'is a rare earth element such as Nd, Sm, Eu or their alloys, and δ is an oxygen deficiency amount). The thin film and the chemical composition formula M * Ba 2 Cu 3 O 7-δ (where M
* Is an oxide superconductor multilayer film having a laminated structure in which elements such as Pr and Sc or alloys thereof, and δ are oxide thin films represented by oxygen deficiency) are alternately deposited.
【請求項3】 請求項2に記載される酸化物薄膜は、レ
ーザ堆積法あるいはスパッタ法で作製した薄膜であるこ
とを特徴とする酸化物超電導体多層膜。
3. The oxide superconductor multi-layer film according to claim 2, wherein the oxide thin film is a thin film produced by a laser deposition method or a sputtering method.
JP8055221A 1996-03-12 1996-03-12 Oxide superconductor multilayer film Pending JPH09249498A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8055221A JPH09249498A (en) 1996-03-12 1996-03-12 Oxide superconductor multilayer film
US08/814,172 US6011981A (en) 1996-03-12 1997-03-10 Oxide superconductor multilayered film and oxide superconductor josephson device
EP97104057A EP0795914A1 (en) 1996-03-12 1997-03-11 Oxide superconductor multilayered film and oxide superconductor Josephson device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8055221A JPH09249498A (en) 1996-03-12 1996-03-12 Oxide superconductor multilayer film

Publications (1)

Publication Number Publication Date
JPH09249498A true JPH09249498A (en) 1997-09-22

Family

ID=12992565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8055221A Pending JPH09249498A (en) 1996-03-12 1996-03-12 Oxide superconductor multilayer film

Country Status (1)

Country Link
JP (1) JPH09249498A (en)

Similar Documents

Publication Publication Date Title
US5280013A (en) Method of preparing high temperature superconductor films on opposite sides of a substrate
AU713892B2 (en) Structures having enhanced biaxial texture and method of fabricating same
EP0345441B1 (en) High-tc superconductor-gallate crystal structures
US6156376A (en) Buffer layers on metal surfaces having biaxial texture as superconductor substrates
JP3854551B2 (en) Oxide superconducting wire
JPH113620A (en) Oxide superconducting wire and manufacture thereof
US20090197770A1 (en) Bismuth based oxide superconductor thin films and method of manufacturing the same
US5179070A (en) Semiconductor substrate having a superconducting thin film with a buffer layer in between
US5428005A (en) Superconducting thin film of compound oxide and a process of preparing the same
JPH02177381A (en) Tunnel junction element of superconductor
US7445808B2 (en) Method of forming a superconducting article
EP0341148B1 (en) A semiconductor substrate having a superconducting thin film
JP3289134B2 (en) Low anisotropy high temperature superconductor based on uncertainty principle and its manufacturing method
JP3189403B2 (en) Element having superconducting junction and method of manufacturing the same
US5422338A (en) Layer-by-layer vapor deposition method for forming a high Tc superconductor thin film device
JPH09249498A (en) Oxide superconductor multilayer film
US20040142824A1 (en) Method for the manufacture of a high temperature superconducting layer
KR100721901B1 (en) Superconducting article and its manufacturing method
EP0459906A2 (en) Process for preparing superconducting junction of oxide superconductor
US5420103A (en) A-axis superconductor on a yttrium oxide film
JP2883493B2 (en) Superconducting element
US5362709A (en) Superconducting device
JP2959290B2 (en) Superconducting laminated thin film and manufacturing method thereof
JP2821885B2 (en) Superconducting thin film forming method
Tonouchi et al. Multiple heteroepitaxy and superlattice formation of LnBaCuO/YBaCuO system