JPH09248486A - Magnetic separation apparatus - Google Patents

Magnetic separation apparatus

Info

Publication number
JPH09248486A
JPH09248486A JP8059321A JP5932196A JPH09248486A JP H09248486 A JPH09248486 A JP H09248486A JP 8059321 A JP8059321 A JP 8059321A JP 5932196 A JP5932196 A JP 5932196A JP H09248486 A JPH09248486 A JP H09248486A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic separation
substance
coil
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8059321A
Other languages
Japanese (ja)
Inventor
Akihisa Kameari
昭久 亀有
Toshiyuki Yamanaka
敏行 山中
Takuya Kimura
卓也 木村
Kingo Azuma
欣吾 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8059321A priority Critical patent/JPH09248486A/en
Publication of JPH09248486A publication Critical patent/JPH09248486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic separation apparatus capable of setting the magnetic field generating capacity of a superconductive coil so as to maximize the magnetic force acting on particles. SOLUTION: In this magnetic separation apparatus wherein a magnetic field gradient is generated in the diameter direction of a magnetic separation bore 1 by a plurality of solenoid coils having different exciting directions and a substance to be separated is passed through the magnetic separation bore arranged within the solenoid coils and a specific substance is separated by the difference between the magnetic forces acting on particles of the substance to be separated within the magnetic field gradient in the magnetic separation bore, the magnetic separation bore 1, a plurality of the solenoid coils 2, a feeder 3, an unseparated substance recovery container 4 and a separated substance recovery container 5 are provided and the relation between the radius (a) of the solenoid coils and the interval L between the solenoid coils is set to 1.8a<=L<=2.6a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、石炭粉末から余分
な灰分や硫黄分等を分離除去するソレノイド・コイル式
磁気分離装置に関する。本発明は、ソレノイド・コイル
式酸素濃縮装置にも利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solenoid coil type magnetic separator for separating and removing excess ash and sulfur from coal powder. The present invention can also be used in a solenoid coil type oxygen concentrator.

【0002】[0002]

【従来の技術】従来のソレノイド・コイル式開勾配型磁
気分離装置では、そのコイル間隔とコイル半径の関係に
関して特に制限はない。ここでコイルとは、超伝導コイ
ルのことをいう。
2. Description of the Related Art In a conventional solenoid coil type open gradient type magnetic separator, there is no particular limitation on the relationship between the coil spacing and the coil radius. Here, the coil means a superconducting coil.

【0003】開発中のものとしては、図6に示すチェコ
スロバキア国チェコスロバキア科学アカデミーにおける
試験装置がある。そのコイルでは、コイル間の間隔L′
(中心間の間隔)は、 110mm、コイル半径a′
(コイル中心までの半径)は、 80mm、L′とa′
の比は、 L′/a′=1.4となって
いる。
One under development is a test device at the Czechoslovakian Academy of Sciences, shown in FIG. In that coil, the spacing L'between the coils is
(Center-to-center spacing) is 110 mm, coil radius a '
(Radius to coil center) is 80mm, L'and a '
The ratio is L '/ a' = 1.4.

【0004】従来の技術を図6に基づいて説明する。磁
気分離ボア1内には、コイル12により、磁場およびそ
の空間分布による磁場勾配が発生している。
A conventional technique will be described with reference to FIG. A coil 12 creates a magnetic field gradient in the magnetic isolation bore 1 due to the magnetic field and its spatial distribution.

【0005】その磁気分離ボア1内に、比較的磁化率が
大きく磁気分離装置により、軌道を大きく変えられ分離
される分離対象物質6と、磁化率が小さいか、負の非分
離物質7が混在した物質、例えば微粉炭を自由落下など
の手段により通過させると、分離対象物質6には半径方
向に移動するのに充分な磁気力が働くが、非分離物質7
にはほとんど磁気力が働かないか、あるいは、磁化率が
負の場合には磁気分離ボアの中心方向に磁気力が働く。
In the magnetic separation bore 1, a separation target substance 6 having a relatively large magnetic susceptibility and whose orbit is largely changed by a magnetic separation device to be separated, and a non-separation substance 7 having a small magnetic susceptibility or a negative magnetization are mixed. When a separated substance, for example, pulverized coal, is passed by means such as free fall, a magnetic force sufficient to move in the radial direction acts on the separation target substance 6, but the non-separated substance 7
Has almost no magnetic force, or when the magnetic susceptibility is negative, the magnetic force acts toward the center of the magnetic separation bore.

【0006】その結果、磁気分離ボアを通過後、分離対
象物質6は磁気分離ボアの内壁に近い外側に偏り、非分
離物質7は中心側に偏る。その後、それぞれの物質を分
離物質回収容器5と、非分離物質回収容器4により個別
に回収する。
As a result, after passing through the magnetic separation bore, the separation target substance 6 is biased to the outside close to the inner wall of the magnetic separation bore, and the non-separated substance 7 is biased to the center side. After that, the respective substances are individually collected by the separated substance collection container 5 and the non-separated substance collection container 4.

【0007】ここで、磁化率が小さいか、負の非分離物
質7とは、磁気分離装置により、ほとんど軌道変わらず
分離されない物質をいう。微粉炭の場合、主に石炭有機
質成分がこれに相当する。分離対象物質6は、パイライ
ト、カオリナイト、シデライトという成分がこれに相当
する。
Here, the non-separated substance 7 having a low magnetic susceptibility or a negative polarity means a substance which is hardly separated by the magnetic separation device without changing its orbit. In the case of pulverized coal, this mainly corresponds to the organic component of coal. The separation target substance 6 corresponds to components such as pyrite, kaolinite, and siderite.

【0008】[0008]

【発明が解決しようとする課題】粒子が磁気分離装置内
で受ける力Fmは、磁場^B(^Bはベクトル量)と磁
場勾配β(β=▽^B)との積 (^B・β)=(^B▽)^B に比例する。
The force Fm that a particle receives in a magnetic separator is the product of the magnetic field ^ B (^ B is a vector quantity) and the magnetic field gradient β (β = ▽ ^ B) (^ B · β). ) = (^ B ▽) ^ B.

【0009】性能の良い磁気分離装置であるためには、
(^B・β)の値が最大になるようなコイルの配置と、
位置関係が望まれるが、従来はその最適コイル配置や、
位置関係については特に言及されていなかった。
In order to have a good magnetic separation device,
Arrangement of coils so that the value of (^ B · β) becomes maximum,
A positional relationship is desired, but in the past, the optimum coil layout and
No particular mention was made of the positional relationship.

【0010】そのため、コイルで発生した磁場や磁場勾
配を、粒子への磁気力として充分に活用できていないと
いう問題があった。本発明は、これらの問題を解決する
ことができる装置を提供することを目的とする。
Therefore, there is a problem that the magnetic field or magnetic field gradient generated in the coil cannot be sufficiently utilized as the magnetic force to the particles. The present invention aims to provide a device capable of solving these problems.

【0011】[0011]

【課題を解決するための手段】[Means for Solving the Problems]

(第1の手段)本発明に係る磁気分離装置は、複数の励
磁方向の異なるソレノイド・コイルにより磁気分離ボア
の径方向に磁場勾配を発生させ、ソレノイド・コイルの
内部に配置された磁気分離ボア内に被分離物質を通し、
磁気分離ボア内の磁場勾配中で被分離物質の粒子に働く
磁気力の違いにより、特定の物質を分離する磁気分離装
置において、(A)磁気分離ボアと、(B)複数のソレ
ノイド・コイルと、(C)フィーダと、(D)非分離物
質回収容器と、(E)分離物質回収容器を有し、(F)
前記ソレノイド・コイルの半径aと、ソレノイド・コイ
ル間の間隔Lの関係を、 1.8a≦L≦2.6a にしたことを特徴とする。 (第2の手段)本発明に係る磁気分離装置は、複数の励
磁方向の異なるソレノイド・コイルにより磁気分離ボア
の径方向に磁場勾配を発生させ、ソレノイド・コイルの
外部に配置された磁気分離ボア内に被分離物質を通し、
磁気分離ボア内の磁場勾配中で被分離物質の粒子に働く
磁気力の違いにより、特定の物質を分離する磁気分離装
置において、(A)磁気分離ボアと、(B)複数のソレ
ノイド・コイルと、(C)フィーダと、(D)非分離物
質回収容器と、(E)分離物質回収容器有し、(F)前
記ソレノイド・コイルの半径aと、ソレノイド・コイル
間の間隔Lの関係を、 1.8a≦L≦2.6a にしたことを特徴とする。 (第3の手段)本発明に係る磁気分離装置は、第1の手
段または第2の手段において,ソレノイド・コイルの半
径aと、ソレノイド・コイル間の間隔Lの関係を、 L=2.2a にしたことを特徴とする。
(First Means) A magnetic separation device according to the present invention generates a magnetic field gradient in the radial direction of a magnetic separation bore by a plurality of solenoid coils having different excitation directions, and the magnetic separation bore arranged inside the solenoid coil. Pass the substance to be separated into
In a magnetic separation device for separating a specific substance due to a difference in magnetic force acting on particles of a substance to be separated in a magnetic field gradient in the magnetic separation bore, (A) a magnetic separation bore and (B) a plurality of solenoid coils , (C) feeder, (D) non-separated substance recovery container, and (E) separated substance recovery container, (F)
The relationship between the radius a of the solenoid coil and the distance L between the solenoid coils is 1.8a ≦ L ≦ 2.6a. (Second Means) In the magnetic separation device according to the present invention, a plurality of solenoid coils having different excitation directions generate a magnetic field gradient in the radial direction of the magnetic separation bore, and the magnetic separation bore arranged outside the solenoid coil. Pass the substance to be separated into
In a magnetic separation device for separating a specific substance due to a difference in magnetic force acting on particles of a substance to be separated in a magnetic field gradient in the magnetic separation bore, (A) a magnetic separation bore and (B) a plurality of solenoid coils , (C) feeder, (D) non-separated substance recovery container, and (E) separated substance recovery container, (F) the relationship between the radius a of the solenoid coil and the distance L between the solenoid coils, It is characterized in that 1.8a ≦ L ≦ 2.6a. (Third Means) In the magnetic separating apparatus according to the present invention, in the first means or the second means, the relationship between the radius a of the solenoid coil and the distance L between the solenoid coils is L = 2.2a. It is characterized by having done.

【0012】以下に磁気分離のメカニズムについて説明
する。複数の励磁方向の異なるソレノイド・コイルにお
いて、ソレノイド・コイルの半径をa、ソレノイド・コ
イル間の間隔をLとするとき、任意のコイル形状の磁場
の空間分布を解析的に解くのは困難なため、コイルの半
径aの位置で、高さ方向に周期2Lでcos(コサイ
ン)分布をして同軸に流れる電流で近似を行う。磁場分
布^B(^Bはベクトル量)は、Maxwellの方程
式から、
The mechanism of magnetic separation will be described below. When the radius of the solenoid coil is a and the space between the solenoid coils is L in a plurality of solenoid coils having different excitation directions, it is difficult to analytically solve the spatial distribution of the magnetic field of any coil shape. , At the position of the radius a of the coil, a cos distribution is performed in the height direction with a period of 2 L, and approximation is performed with a current flowing coaxially. The magnetic field distribution ^ B (^ B is a vector quantity) is calculated from Maxwell's equation

【0013】[0013]

【数1】 を満たす。これを、ベクトル・ポテンシャル^A(^A
はベクトル量)を用いて円筒座標系で解くと、
[Equation 1] Meet. This is the vector potential ^ A (^ A
Is a vector quantity) and is solved in a cylindrical coordinate system,

【0014】[0014]

【数2】 ただし、ベクトル^Aはθ成分のみを持つためAと表示
した。電流分布iは、以上の仮定から、
[Equation 2] However, the vector ^ A is expressed as A because it has only the θ component. From the above assumption, the current distribution i is

【0015】[0015]

【数3】 で表され、Aはix とほぼ同じ分布を持つので、(Equation 3) , And A has almost the same distribution as i x ,

【0016】[0016]

【数4】 という分布を持つと仮定し、式(3)、(4)を用いて
式(2)を解き、r=aの位置において、コイルの内外
で、
(Equation 4) Equation (2) is solved using Equations (3) and (4), and at the position of r = a, inside and outside the coil,

【0017】[0017]

【数5】 という境界条件を適用すると、(Equation 5) Applying the boundary condition

【0018】[0018]

【数6】 と解くことが出来る。ここで、K1 、I0 、I1 はベ
ッセル関数を表す。これから、(^B・▽)^B の特
性はB2 に比例するため、B2 を解くと、
(Equation 6) Can be solved. Here, K 1 , I 0 , and I 1 represent Bessel functions. Now, the characteristics of the (^ B · ▽) ^ B is proportional to B 2, and solving the B 2,

【0019】[0019]

【数7】 となる。粒子に働く磁気力の強さFmは、一般に下式で
表される。
(Equation 7) Becomes The strength Fm of the magnetic force acting on the particles is generally expressed by the following equation.

【0020】[0020]

【数8】 (Equation 8)

【0021】 ここで、 Fm;粒子に働く磁気力 [N ] χ ;粒子の比磁化率 μ0 ;真空の透磁率 [H/m] V ;粒子の体積 [m3 ] ^B ;磁場ベクトル [A/m] Fmは(^B・▽)Bに比例し、(^B・▽)^BはB
2 に比例するため、式(9)で示されるB2 の値を最大
にする条件を求めると、コイル間隔Lとコイル半径aを
使って、 L=2.2a となる。
Here, Fm; magnetic force acting on particles [N] χ; specific magnetic susceptibility of particles μ 0 ; magnetic permeability of vacuum [H / m] V; volume of particles [m 3 ] ^ B; magnetic field vector [ A / m] Fm is proportional to (^ B ・ ▽) B, and (^ B ・ ▽) ^ B is B
Since it is proportional to 2 , the condition for maximizing the value of B 2 expressed by the equation (9) is obtained, and L = 2.2a is obtained using the coil interval L and the coil radius a.

【0022】これらの関係を満たす場合、磁気分離装置
のコイルの配置は最適化されており、コイルに発生する
磁場は粒子に働く磁気力として、また磁気分離装置とし
て、最大限に活用することが可能になる。
When these relationships are satisfied, the coil arrangement of the magnetic separation device is optimized, and the magnetic field generated in the coil can be utilized to the maximum as a magnetic force acting on particles and as a magnetic separation device. It will be possible.

【0023】そのため、同じコイルの仕様では、最大の
磁気分離能力を得ることができる。従って、コイル間隔
Lとコイル半径aの関係を、 L=2.2a とする必要がある。
Therefore, with the same coil specifications, the maximum magnetic separation capability can be obtained. Therefore, it is necessary to set the relationship between the coil interval L and the coil radius a as L = 2.2a.

【0024】なお、最適値からの誤差を±20%以内に
することを考えると、 1.8a≦L≦2.6a とすることが望ましい。
Considering that the error from the optimum value is within ± 20%, it is desirable that 1.8a ≦ L ≦ 2.6a.

【0025】[0025]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(第1の実施の形態)本発明の第1の実施の形態を図1
に示す。第1の実施の形態に係る装置においては、コイ
ルの内部で分離を行ない、コイル間の間隔Lとコイルの
半径aの関係は、 L=2.2a になるようにする。
(First Embodiment) FIG. 1 shows a first embodiment of the present invention.
Shown in In the device according to the first embodiment, separation is performed inside the coils, and the relationship between the distance L between the coils and the radius a of the coil is L = 2.2a.

【0026】または、少なくとも、 1.8a≦L≦2.6a になるようにする。 (第2の実施の形態)本発明の第2の実施の形態を図2
に示す。
Alternatively, at least 1.8a ≦ L ≦ 2.6a. (Second Embodiment) FIG. 2 shows a second embodiment of the present invention.
Shown in

【0027】第2の実施の形態に係る装置においては、
コイルの外部で分離を行ない、コイル間の間隔Lとコイ
ルの半径aの関係は、 L=2.2a になるようにする。
In the device according to the second embodiment,
Separation is performed outside the coils, and the relationship between the distance L between the coils and the radius a of the coil is set to L = 2.2a.

【0028】または、少なくとも、 1.8a≦L≦2.6a になるようにする。 (第3の実施の形態)本発明の第3の実施の形態を図3
に示す。
Alternatively, at least 1.8a ≦ L ≦ 2.6a. (Third Embodiment) FIG. 3 shows a third embodiment of the present invention.
Shown in

【0029】第3の実施の形態に係る装置においては、
コイルの内部と、コイルの外部の両方を使用して分離を
行ない、コイル間の間隔Lとコイルの半径aの関係は、 L=2.2a になるようにする。
In the device according to the third embodiment,
Separation is performed using both the inside of the coil and the outside of the coil so that the relationship between the distance L between the coils and the radius a of the coil is L = 2.2a.

【0030】または、少なくとも、 1.8a≦L≦2.6a になるようにする。 (第4の実施の形態)本発明の第1〜第3の実施の形態
では、コイルの個数を2個しか表示していないが、第4
の実施の形態では、複数個のコイルを積み重ねる。
Alternatively, at least 1.8a ≦ L ≦ 2.6a. (Fourth Embodiment) In the first to third embodiments of the present invention, only two coils are displayed.
In the embodiment, a plurality of coils are stacked.

【0031】そして、コイル間の間隔Lとコイルの半径
aの関係は、 L=2.2a になるようにする。
The relationship between the distance L between the coils and the radius a of the coil is L = 2.2a.

【0032】または、少なくとも、 1.8a≦L≦2.6a になるようにする。Alternatively, at least 1.8a.ltoreq.L.ltoreq.2.6a.

【0033】[0033]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。 (1)本発明装置により、超伝導コイルの磁場発生能力
を、粒子に働く磁気力が最大になるようにすることがで
きる。すなわち、磁気分離装置として、最大限に活用す
ることが可能になる。
Since the present invention is constructed as described above, it has the following effects. (1) With the device of the present invention, the magnetic field generation capability of the superconducting coil can be made to maximize the magnetic force acting on the particles. That is, it is possible to make maximum use as a magnetic separation device.

【0034】そのため、同じコイルの仕様では、最大の
磁気分離能力を得ることができる。 (2)本発明装置により、粒子に働く磁気力 Fm=(χ/μ0 )V(^B▽)^B を最大にすることができる。その場合、図4に示すよう
に、粒子に働く磁気力は最大になる。従って、図5に示
すように、最大の磁気分離能力を得ることができる。
Therefore, the maximum magnetic separation capability can be obtained with the same coil specifications. (2) With the device of the present invention, the magnetic force Fm = (χ / μ 0 ) V (^ B ▽) ^ B acting on the particles can be maximized. In that case, as shown in FIG. 4, the magnetic force acting on the particle is maximized. Therefore, as shown in FIG. 5, the maximum magnetic separation capability can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施の形態に係る磁気分離装置
の概念図。
FIG. 1 is a conceptual diagram of a magnetic separation device according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態に係る磁気分離装置
の概念図。
FIG. 2 is a conceptual diagram of a magnetic separation device according to a second embodiment of the present invention.

【図3】本発明の第3の実施の形態に係る磁気分離装置
の概念図。
FIG. 3 is a conceptual diagram of a magnetic separation device according to a third embodiment of the present invention.

【図4】粒子に働く磁気力を示す図。FIG. 4 is a diagram showing magnetic force acting on particles.

【図5】最大の分離能力を得ることができる範囲を示す
図。
FIG. 5 is a diagram showing a range in which the maximum separation capacity can be obtained.

【図6】従来の磁気分離装置の概念図。FIG. 6 is a conceptual diagram of a conventional magnetic separation device.

【符号の説明】[Explanation of symbols]

1…コイルの内部で分離する場合の磁気分離ボア、 2…本発明装置に用いる超伝導コイル(コイルの半径
a、コイル間の間隔L)、 3…フィーダ、 4…コイルの内部で分離する場合の非分離物質回収容
器、 5…コイルの内部で分離する場合の分離物質回収容器、 6…分離対象物質、 7…非分離物質、 8…被分離物質(分離対象物質+非分離物質)、 11…コイルの外部で分離する場合の磁気分離ボア、 12…従来装置に用いる超伝導コイル(コイルの半径
a′、コイル間の間隔L′)、 13…フィーダ、 14…コイルの外部で分離する場合の非分離物質回収容
器、 15…コイルの外部で分離する場合の分離物質回収容器
1 ... Magnetic separation bore for separation inside coil, 2 ... Superconducting coil (radius a of coil, distance L between coils) used in the device of the present invention, 3 ... Feeder, 4 ... Separation inside coil Non-separated substance recovery container, 5 ... Separation substance recovery container for separation inside the coil, 6 ... Separation target substance, 7 ... Non-separated substance, 8 ... Separation target substance (separation target substance + non-separation substance), 11 ... Magnetic separation bore for separation outside coil, 12 ... Superconducting coil used in conventional device (radius a'of coil, distance L'between coils), 13 ... Feeder, 14 ... Separation outside coil Non-separated substance recovery container of 15 ... Separation substance recovery container for separation outside the coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 東 欣吾 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kingo Higashi 1-1-1 Niihama, Arai-cho, Takasago-shi, Hyogo Mitsubishi Heavy Industries Ltd. Takasago Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 複数の励磁方向の異なるソレノイド・コ
イルにより磁気分離ボアの径方向に磁場勾配を発生さ
せ、ソレノイド・コイルの内部に配置された磁気分離ボ
ア内に被分離物質(8)を通し、磁気分離ボア内の磁場
勾配中で被分離物質(8)の粒子に働く磁気力の違いに
より、特定の物質を分離する磁気分離装置において、
(A)磁気分離ボア(1)と、(B)複数のソレノイド
・コイル(2)と、(C)フィーダ(3)と、(D)非
分離物質回収容器(4)と、(E)分離物質回収容器
(5)を有し、(F)前記ソレノイド・コイル(2)の
半径aと、ソレノイド・コイル(2)間の間隔Lの関係
を、 1.8a≦L≦2.6a にしたことを特徴とする磁気分離装置。
1. A magnetic field gradient is generated in a radial direction of a magnetic separation bore by a plurality of solenoid coils having different excitation directions, and a substance to be separated (8) is passed through the magnetic separation bore arranged inside the solenoid coil. In a magnetic separation device for separating a specific substance by the difference in magnetic force acting on particles of the substance (8) to be separated in a magnetic field gradient in the magnetic separation bore,
(A) Magnetic separation bore (1), (B) multiple solenoid coils (2), (C) feeder (3), (D) non-separable substance recovery container (4), (E) separation (F) The relationship between the radius a of the solenoid coil (2) and the distance L between the solenoid coils (2) is 1.8a ≦ L ≦ 2.6a. A magnetic separation device characterized by the above.
【請求項2】 複数の励磁方向の異なるソレノイド・
コイルにより磁気分離ボアの径方向に磁場勾配を発生さ
せ、ソレノイド・コイルの外部に配置された磁気分離ボ
ア内に被分離物質(8)を通し、磁気分離ボア内の磁場
勾配中で被分離物質(8)の粒子に働く磁気力の違いに
より、特定の物質を分離する磁気分離装置において、
(A)磁気分離ボア(11)と、(B)複数のソレノイ
ド・コイル(2)と、(C)フィーダ(13)と、
(D)非分離物質回収容器(14)と、(E)分離物質
回収容器(15)を有し、(F)前記ソレノイド・コイ
ル(2)の半径aと、ソレノイド・コイル(2)間の間
隔Lの関係を、 1.8a≦L≦2.6a にしたことを特徴とする磁気分離装置。
2. A plurality of solenoids having different excitation directions
A magnetic field gradient is generated in the radial direction of the magnetic separation bore by the coil, the substance to be separated (8) is passed through the magnetic separation bore arranged outside the solenoid coil, and the substance to be separated is generated in the magnetic field gradient inside the magnetic separation bore. In the magnetic separation device for separating a specific substance due to the difference in magnetic force acting on the particles of (8),
(A) magnetic isolation bore (11), (B) multiple solenoid coils (2), (C) feeder (13),
(D) has a non-separated substance recovery container (14) and (E) a separated substance recovery container (15), and (F) between the radius a of the solenoid coil (2) and the solenoid coil (2). A magnetic separation device characterized in that the relationship of the distance L is 1.8a ≦ L ≦ 2.6a.
【請求項3】ソレノイド・コイル(2)の半径aと、ソ
レノイド・コイル(2)間の間隔Lの関係を、 L=2.2a にしたことを特徴とする請求項1または請求項2記載の
磁気分離装置。
3. The relation between the radius a of the solenoid coil (2) and the distance L between the solenoid coils (2) is set to L = 2.2a. Magnetic separation device.
JP8059321A 1996-03-15 1996-03-15 Magnetic separation apparatus Pending JPH09248486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8059321A JPH09248486A (en) 1996-03-15 1996-03-15 Magnetic separation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8059321A JPH09248486A (en) 1996-03-15 1996-03-15 Magnetic separation apparatus

Publications (1)

Publication Number Publication Date
JPH09248486A true JPH09248486A (en) 1997-09-22

Family

ID=13109988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8059321A Pending JPH09248486A (en) 1996-03-15 1996-03-15 Magnetic separation apparatus

Country Status (1)

Country Link
JP (1) JPH09248486A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100321069B1 (en) * 1997-10-09 2004-01-31 포항종합제철 주식회사 Fluid bed magnetic separator with double-cylindrical structure
JP2004138464A (en) * 2002-10-17 2004-05-13 Univ Osaka Magnetophoretic analysis method for particulate and magnetophoretic analysis device for particulate
JP2009106854A (en) * 2007-10-30 2009-05-21 Niki Glass Co Ltd Superconducting magnetic separation fluid treatment apparatus
KR101063921B1 (en) * 2009-11-23 2011-09-14 한국전기연구원 Apparatus of superconducting magnetic separation for refinement of dry powder materials
CN105562201A (en) * 2016-03-24 2016-05-11 陈勇 Waterwheel track type ore sand scraping and magnetite concentrating combined device
CN105562203A (en) * 2016-03-24 2016-05-11 陈勇 Superhigh magnetic field iron ore dressing device
CN105597924A (en) * 2016-03-24 2016-05-25 陈勇 Watercart-type crawler belt-based ore sand scraping and magnetite screening device
CN105597923A (en) * 2016-03-24 2016-05-25 陈勇 Belt type magnetite separating device with small lattices
CN105618263A (en) * 2016-03-24 2016-06-01 陈勇 Repeated ultra-high-magnetic field ironstone beneficiation device
CN105618260A (en) * 2016-03-24 2016-06-01 陈勇 Device for magnetite separation by blowing ore sand through strong breeze
CN105689120A (en) * 2016-03-24 2016-06-22 陈勇 Device used for pulling magnetite out of magnetic field
CN105689123A (en) * 2016-03-24 2016-06-22 陈勇 Multi-time ultrahigh magnetic field iron ore separation device
CN105689118A (en) * 2016-03-24 2016-06-22 陈勇 Belt magnetite separation combination device with small partition grids
CN106807543A (en) * 2016-03-24 2017-06-09 四川语文通科技有限责任公司 Super-high magnetic field iron ore device
CN106824527A (en) * 2016-03-24 2017-06-13 四川语文通科技有限责任公司 Multiple super-high magnetic field iron ore device
CN108745634A (en) * 2018-05-24 2018-11-06 贺州学院 A kind of electromagnetic separation

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100321069B1 (en) * 1997-10-09 2004-01-31 포항종합제철 주식회사 Fluid bed magnetic separator with double-cylindrical structure
JP2004138464A (en) * 2002-10-17 2004-05-13 Univ Osaka Magnetophoretic analysis method for particulate and magnetophoretic analysis device for particulate
JP2009106854A (en) * 2007-10-30 2009-05-21 Niki Glass Co Ltd Superconducting magnetic separation fluid treatment apparatus
KR101063921B1 (en) * 2009-11-23 2011-09-14 한국전기연구원 Apparatus of superconducting magnetic separation for refinement of dry powder materials
CN105562201A (en) * 2016-03-24 2016-05-11 陈勇 Waterwheel track type ore sand scraping and magnetite concentrating combined device
CN105562203A (en) * 2016-03-24 2016-05-11 陈勇 Superhigh magnetic field iron ore dressing device
CN105597924A (en) * 2016-03-24 2016-05-25 陈勇 Watercart-type crawler belt-based ore sand scraping and magnetite screening device
CN105597923A (en) * 2016-03-24 2016-05-25 陈勇 Belt type magnetite separating device with small lattices
CN105618263A (en) * 2016-03-24 2016-06-01 陈勇 Repeated ultra-high-magnetic field ironstone beneficiation device
CN105618260A (en) * 2016-03-24 2016-06-01 陈勇 Device for magnetite separation by blowing ore sand through strong breeze
CN105689120A (en) * 2016-03-24 2016-06-22 陈勇 Device used for pulling magnetite out of magnetic field
CN105689123A (en) * 2016-03-24 2016-06-22 陈勇 Multi-time ultrahigh magnetic field iron ore separation device
CN105689118A (en) * 2016-03-24 2016-06-22 陈勇 Belt magnetite separation combination device with small partition grids
CN106807543A (en) * 2016-03-24 2017-06-09 四川语文通科技有限责任公司 Super-high magnetic field iron ore device
CN106824527A (en) * 2016-03-24 2017-06-13 四川语文通科技有限责任公司 Multiple super-high magnetic field iron ore device
CN108745634A (en) * 2018-05-24 2018-11-06 贺州学院 A kind of electromagnetic separation

Similar Documents

Publication Publication Date Title
JPH09248486A (en) Magnetic separation apparatus
Zborowski et al. Continuous cell separation using novel magnetic quadrupole flow sorter
Zborowski et al. Separations based on magnetophoretic mobility
Hirschbein et al. Magnetic separations in chemistry and biochemistry
EP0108808B1 (en) Apparatus and method employing magnetic fluid for separating particles
US20050208464A1 (en) Apparatus for retaining magnetic particles within a flow-through cell
WO2012115100A1 (en) Method and apparatus for separation of mixture
Zborowski Physics of magnetic cell sorting
US8844730B2 (en) Device and method for magnetic separation of a fluid
Zborowski et al. Magnetic cell manipulation and sorting
Jin et al. Differences in magnetically induced motion of diamagnetic, paramagnetic, and superparamagnetic microparticles detected by cell tracking velocimetry
US20190126288A1 (en) Magnetic separation system and devices
Zborowski et al. Cylindrical SPLITT and quadrupole magnetic field in application to continuous-flow magnetic cell sorting
Evans et al. Isolation of biological materials by use of erbium (III)—induced magnetic susceptibilities
Tsouris et al. Particle flocculation and filtration by high-gradient magnetic fields
Jarosz et al. Manipulation of superparamagnetic beads on patterned Au/Co/Au multilayers with perpendicular magnetic anisotropy
US4819808A (en) Apparatus and method employing magnetic fluids for separating particles
Walker et al. Mineral separations using rotating magnetic fluids
Eyssa et al. Magnetic and coagulation forces on a suspension of magnetic particles
WO2019099429A1 (en) Magnetic separation system and devices
Jinnouchi et al. New development of compact magnetic separator for on-site material screening in various geological survey
Smolkin et al. New process for placer gold recovery by means of magnetic separation
Oder Beneficiation of lunar soils: Case studies in magnetics
JPH09253524A (en) Magnetic separator
Adachi et al. Sampling of regolith from asteroids utilizing magnetic force

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060606