JPH09247964A - Power transmission structure of ultrasonic linear motor - Google Patents
Power transmission structure of ultrasonic linear motorInfo
- Publication number
- JPH09247964A JPH09247964A JP8049047A JP4904796A JPH09247964A JP H09247964 A JPH09247964 A JP H09247964A JP 8049047 A JP8049047 A JP 8049047A JP 4904796 A JP4904796 A JP 4904796A JP H09247964 A JPH09247964 A JP H09247964A
- Authority
- JP
- Japan
- Prior art keywords
- linear motor
- ultrasonic linear
- driven body
- power transmission
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、超音波リニアモー
タの駆動力を出力する出力部とその出力部の駆動力を受
けて移動する被駆動体との接触による超音波リニアモー
タの動力伝達構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power transmission structure for an ultrasonic linear motor by contact between an output section for outputting the driving force of the ultrasonic linear motor and a driven body that moves by receiving the driving force of the output section. Regarding
【0002】[0002]
【従来の技術】超音波リニアモータの一例について図1
2〜図16を参照して述べる。超音波リニアモータが図
12に斜視図、図13に断面図、図14に分解斜視図で
示されている。図12及び図13において、超音波リニ
アモータ1は、上下の金属製ブロック2,3の間に、上
から上部の圧電素子4、同電極5、下部の圧電素子6、
同電極7が挟まれてなる。両ブロック2,3は軸心部に
配置されたボルト8で強固に一体化されている。上部の
ブロック2はその上部に出力部9を有しており、その先
端面(上端面)が平坦な駆動面9aとなっている。また
上部の電極5は図14に示されるように周方向に4等分
された分割電極からなり、これらの電極5は図13に示
されるようにボルト8と絶縁されている。なお上部の各
電極5及び下部の電極7は図示しない駆動回路に接続さ
れている。また上下のブロック2,3、ボルト8及び下
部の電極7は等電位となる。2. Description of the Related Art An example of an ultrasonic linear motor is shown in FIG.
2 to 16 will be described. An ultrasonic linear motor is shown in a perspective view in FIG. 12, a sectional view in FIG. 13, and an exploded perspective view in FIG. In FIG. 12 and FIG. 13, the ultrasonic linear motor 1 includes a piezoelectric element 4, an electrode 5, and a piezoelectric element 6, which are located between the upper and lower metal blocks 2 and 3 and which are located between the upper and upper portions.
The electrode 7 is sandwiched. Both blocks 2 and 3 are firmly integrated by a bolt 8 arranged at the axial center. The upper block 2 has an output portion 9 on the upper portion thereof, and its front end surface (upper end surface) is a flat drive surface 9a. Further, the upper electrode 5 is composed of divided electrodes divided into four equal parts in the circumferential direction as shown in FIG. 14, and these electrodes 5 are insulated from the bolt 8 as shown in FIG. The upper electrodes 5 and the lower electrode 7 are connected to a drive circuit (not shown). Further, the upper and lower blocks 2 and 3, the bolt 8 and the lower electrode 7 are equipotential.
【0003】上記の超音波リニアモータ1において、上
部の各電極5に駆動回路により選択的に高周波の電圧を
印加することにより、上下の圧電素子4,6の該当部分
の厚みを増減させ、出力部9の駆動面9aに図15図の
説明図に示されるようにX−Z軸の面内での楕円運動
(矢印R参照)を発生させることができる。この楕円運
動する駆動面9aに接触する被駆動体10(図13参
照)には、超音波リニアモータ1によるX軸方向(図1
3中、矢印参照)への駆動力が出力される。このため被
駆動体10は同方向へと移動させられる。また、上部の
各電極5に対する電圧の印加の選定によって、駆動面9
aを前記と逆方向に楕円運動させれば被駆動体10にマ
イナスX軸方向(図16において左方)の駆動力を出力
でき、また同様に駆動面9aをY−Z軸の面内で楕円運
動させれば前記と同様に被駆動体10にプラスあるいは
マイナスY軸方向(図16においてY軸は図示されない
が、紙面表裏方向に相当する)に駆動力を出力すること
ができる。なお上記したような超音波リニアモータ1
は、例えば実開平5−33691号公報、実開平5−5
0997号公報等に開示されている。In the above ultrasonic linear motor 1, by selectively applying a high frequency voltage to the upper electrodes 5 by a drive circuit, the thickness of the corresponding portions of the upper and lower piezoelectric elements 4 and 6 is increased or decreased to output the output. An elliptical motion (see arrow R) in the plane of the XZ axis can be generated on the drive surface 9a of the portion 9 as shown in the explanatory view of FIG. The driven body 10 (see FIG. 13) that comes into contact with the driving surface 9a that makes an elliptical motion has an X-axis direction (see FIG. 1) generated by the ultrasonic linear motor 1.
3, the driving force is output to (see arrow). Therefore, the driven body 10 is moved in the same direction. In addition, by selecting the voltage application to the upper electrodes 5, the driving surface 9
If a is moved in an elliptic direction in the opposite direction to the above, a driving force in the minus X-axis direction (left in FIG. 16) can be output to the driven body 10, and similarly, the driving surface 9a can be moved in the Y-Z axis plane. If the elliptical motion is performed, the driving force can be output to the driven body 10 in the plus or minus Y-axis direction (the Y-axis is not shown in FIG. 16, but corresponds to the front and back direction of the paper surface) in the same manner as described above. The ultrasonic linear motor 1 as described above
Are, for example, Japanese Utility Model Laid-Open No. 5-33691 and Japanese Utility Model Laid-Open No. 5-5.
It is disclosed in Japanese Patent Publication No. 0997 and the like.
【0004】上記した超音波リニアモータ1の出力部9
と被駆動体10との接触による動力伝達構造は、従来、
図13に示されるように出力部9の駆動面9aと被駆動
体10の被駆動面10aとが平面同志で接触することを
前提とした構造となっている。なお、駆動面9aの楕円
運動の振幅は通常数μm 程度でありかつその駆動周波数
も通常数10kHz と高い。Output unit 9 of the ultrasonic linear motor 1 described above
Conventionally, the power transmission structure by the contact between the driven body 10 and
As shown in FIG. 13, the structure is based on the premise that the driving surface 9a of the output unit 9 and the driven surface 10a of the driven body 10 are in planar contact with each other. The amplitude of the elliptic movement of the driving surface 9a is usually about several μm, and the driving frequency is usually as high as several 10 kHz.
【0005】[0005]
【発明が解決しようとする課題】従来の動力伝達構造に
おいて、例えば出力部9の駆動面9aには平面度のバラ
ツキによって図16の説明図に誇張して表すように微小
な凹凸が存在する。なお図16には表されていないが、
被駆動体10の被駆動面10aにも駆動面9aと同様に
平面度のバラツキによる微小な凹凸が存在している。こ
のような平面度のバラツキにより、被駆動面10aに対
する駆動面9aの当接部位が変化しやすく、安定した接
触状態が得られにくいことから動力伝達効率が損なわれ
ている。更に、駆動面9aと被駆動面10aとの当接に
よって生成される摩耗粉(符号12を記す)がその間に
溜まりやすいことから、駆動面9aと被駆動面10aと
の接触状態の不安定さを増し、動力伝達効率の低下を招
く結果となる。なお、平面度のバラツキによる凹凸は微
小であり摩耗粉12を排除するに足らない。In the conventional power transmission structure, for example, the driving surface 9a of the output portion 9 has minute irregularities as exaggeratedly shown in the explanatory view of FIG. 16 due to variations in flatness. Although not shown in FIG. 16,
Similarly to the drive surface 9a, the drive surface 10a of the driven body 10 also has minute irregularities due to variations in flatness. Due to such variations in flatness, the contact portion of the drive surface 9a with respect to the driven surface 10a is likely to change, and it is difficult to obtain a stable contact state, so that the power transmission efficiency is impaired. Further, since abrasion powder (denoted by reference numeral 12) generated by the contact between the driving surface 9a and the driven surface 10a is likely to be accumulated between them, the contact state between the driving surface 9a and the driven surface 10a is unstable. This results in a decrease in power transmission efficiency. The unevenness due to the unevenness of the flatness is minute and is not sufficient to remove the abrasion powder 12.
【0006】本発明は上記した問題点を解決するために
なされたものであって、本発明が解決しようとする課題
は、超音波リニアモータの出力部と被駆動体との接触状
態を安定化して動力伝達効率を高めるとともに、摩耗粉
の溜まりを防止して高い伝達効率を長期にわたって維持
することのできる超音波リニアモータの動力伝達構造を
提供することにある。The present invention has been made to solve the above-mentioned problems, and the problem to be solved by the present invention is to stabilize the contact state between the output portion of the ultrasonic linear motor and the driven body. Another object of the present invention is to provide a power transmission structure of an ultrasonic linear motor that can improve power transmission efficiency and prevent accumulation of wear powder to maintain high transmission efficiency for a long period of time.
【0007】[0007]
【課題を解決するための手段】前記課題を解決する請求
項1の発明は、超音波リニアモータの駆動力を出力する
出力部とその出力部の駆動力を受けて移動する被駆動体
との接触による超音波リニアモータの動力伝達構造であ
って、前記出力部と被駆動体との少なくとも一方の接触
面に他方の接触面と当接可能な突起部を設けるとともに
その当接によって生成される摩耗粉を排除するための凹
部を設けたことを特徴とする超音波リニアモータの動力
伝達構造である。この請求項1記載の超音波リニアモー
タの動力伝達構造によると、超音波リニアモータの出力
部と被駆動体とが常に突起部を介して当接することによ
ってその当接部位に変化のない安定した接触状態が得ら
れ、これにより動力伝達効率を高めることができる。ま
た、摩耗粉が凹部に排除されることによって、摩耗粉の
溜まりを防止できることにより安定した接触状態が損な
われにくく、高い動力伝達効率を長期にわたって維持す
ることができる。請求項2の発明は、請求項1記載の超
音波リニアモータの動力伝達構造において、超音波振動
子の駆動方向に列状に並ぶ複数の突起部を設けたことを
特徴とする超音波リニアモータの動力伝達構造である。
この請求項2記載の超音波リニアモータの動力伝達構造
によると、超音波リニアモータの駆動方向に複数の突起
部が並んでいるため、被駆動体を方向安定性よく移動さ
せることができる。The invention according to claim 1 for solving the above-mentioned problems comprises an output section for outputting a driving force of an ultrasonic linear motor and a driven body which moves by receiving the driving force of the output section. A power transmission structure of an ultrasonic linear motor by contact, wherein at least one contact surface between the output portion and the driven body is provided with a protrusion capable of contacting the other contact surface and is generated by the contact. The power transmission structure of an ultrasonic linear motor is characterized in that a concave portion for removing abrasion powder is provided. According to the power transmission structure of the ultrasonic linear motor of the present invention, the output portion of the ultrasonic linear motor and the driven body are always brought into contact with each other via the projection, so that the contact portion is stable and stable. A contact state is obtained, which can improve power transmission efficiency. Further, since the abrasion powder is removed to the concave portion, the accumulation of the abrasion powder can be prevented, so that the stable contact state is less likely to be impaired, and the high power transmission efficiency can be maintained for a long period of time. According to a second aspect of the invention, in the power transmission structure for the ultrasonic linear motor according to the first aspect, a plurality of protrusions arranged in a row in the driving direction of the ultrasonic transducer are provided. It is a power transmission structure of.
According to the power transmission structure of the ultrasonic linear motor of the second aspect, since the plurality of projections are arranged in the driving direction of the ultrasonic linear motor, the driven body can be moved with good directional stability.
【0008】[0008]
【発明の実施の形態】本発明の実施の形態1〜8につい
て順に説明する。なお各実施の形態は、前記従来例で述
べた超音波リニアモータ1を用い動力伝達構造に変更を
加えたものであるから、従来例と同一もしくは実質的に
同一構成と考えられる部分には同一符号を付して重複す
る説明は省略する。 〔実施の形態1〕実施の形態1について図1及び図2を
参照して説明する。なお図1は動力伝達構造の説明図、
図2は超音波リニアモータの出力部の斜視図である。本
実施の形態は、超音波リニアモータ1における出力部9
の駆動面9aに断面半円形状をした複数条(図は3条)
の突起部14が形成されている。これらの突起部14
は、超音波リニアモータ1の駆動方向(図中、矢印参
照)に並んで形成されている。この突起部14の形成に
よって駆動面9a上に凹部15が設けられている。これ
らの凹部15は、突起部14と被駆動体10との当接に
よって生成される摩耗粉12を排除する機能を備える。
また被駆動体10の被駆動面10aは従来と同様の平面
とする。なお本実施の形態における出力部9は、従来例
のものと異なり駆動方向に面する二面幅状に形成されて
いる。また本実施の形態における超音波リニアモータ1
の駆動方向は一方向(例えばX軸方向)となっている。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments 1 to 8 of the present invention will be described in order. In each embodiment, since the power transmission structure is modified by using the ultrasonic linear motor 1 described in the conventional example, the same or substantially the same configuration as that of the conventional example is considered to be the same. The same reference numerals are given and duplicate explanations are omitted. Embodiment 1 Embodiment 1 will be described with reference to FIGS. 1 is an explanatory view of the power transmission structure,
FIG. 2 is a perspective view of the output part of the ultrasonic linear motor. In this embodiment, the output unit 9 in the ultrasonic linear motor 1 is used.
Plural lines with a semicircular cross section on the drive surface 9a (3 lines in the figure)
The protrusion 14 is formed. These protrusions 14
Are formed side by side in the driving direction of the ultrasonic linear motor 1 (see the arrow in the figure). Due to the formation of the protrusion 14, the recess 15 is provided on the drive surface 9a. These recesses 15 have a function of removing the abrasion powder 12 generated by the contact between the protrusion 14 and the driven body 10.
The driven surface 10a of the driven body 10 is a flat surface similar to the conventional one. Note that the output portion 9 in the present embodiment is formed in a width across flats facing the driving direction unlike the conventional example. Further, the ultrasonic linear motor 1 according to the present embodiment
The driving direction of is one direction (for example, the X-axis direction).
【0009】上記超音波リニアモータの動力伝達構造に
よると、超音波リニアモータ1の出力部9の駆動面9a
上の突起部14が被駆動体10の被駆動面10aに常に
当接することによってその当接部位に変化のない安定し
た接触状態が得られ、これにより動力伝達効率を高める
ことができる。また、摩耗粉12が凹部15に排除され
更に凹部15外方へと排除されることによって、摩耗粉
12の溜まりを防止できることにより安定した接触状態
が損なわれにくく、高い動力伝達効率を長期にわたって
維持することができる。また、超音波リニアモータ1の
駆動方向に突起部14が並んでいるため、被駆動体10
を方向安定性よく移動させることができる。According to the power transmission structure of the ultrasonic linear motor, the driving surface 9a of the output portion 9 of the ultrasonic linear motor 1 is
Since the upper protrusion 14 is always in contact with the driven surface 10a of the driven body 10, a stable contact state in which the contact portion does not change can be obtained, and thereby power transmission efficiency can be improved. Further, since the wear particles 12 are removed by the recesses 15 and further out of the recesses 15, the wear particles 12 can be prevented from accumulating, so that a stable contact state is less likely to be impaired, and high power transmission efficiency can be maintained for a long period of time. can do. Further, since the projections 14 are arranged in the driving direction of the ultrasonic linear motor 1, the driven body 10
Can be moved with good directional stability.
【0010】〔実施の形態2〕実施の形態2について図
3を参照して説明する。本実施の形態2は、実施の形態
1における突起部14の形状を変更したもので、図3の
超音波リニアモータ1の出力部9の斜視図に示されるよ
うに、出力部9の駆動面9aに半球状をした複数個(図
は5個を示す)の突起部141が形成されている。これ
らの突起部141は、超音波リニアモータ1の駆動方向
(X,Y軸方向)に並んで形成されている。この突起部
141の形成によって駆動面9a上に凹部151が設け
られている。なお本実施の形態における出力部9は従来
例のものと同形状である。また本実施の形態の出力部9
は、多方向を駆動方向とする超音波リニアモータ1にも
適用することができる。[Second Embodiment] A second embodiment will be described with reference to FIG. In the second embodiment, the shape of the protrusion 14 in the first embodiment is changed, and as shown in the perspective view of the output portion 9 of the ultrasonic linear motor 1 in FIG. 3, the drive surface of the output portion 9 is changed. A plurality of hemispherical projections (five in the figure) 141 are formed on 9a. These protrusions 141 are formed side by side in the driving direction (X, Y axis directions) of the ultrasonic linear motor 1. Due to the formation of the protrusion 141, the recess 151 is provided on the drive surface 9a. The output unit 9 in this embodiment has the same shape as that of the conventional example. Also, the output unit 9 of the present embodiment
Can also be applied to the ultrasonic linear motor 1 in which the driving direction is in multiple directions.
【0011】〔実施の形態3〕実施の形態3について図
4の説明図を参照して説明する。本実施の形態は、実施
の形態2における被駆動体10の被駆動面10aを半球
状凹面に形成し、これに対応して超音波リニアモータ1
の出力部9の駆動面9aを半球状凸面に形成したもので
ある。なお被駆動体10は、超音波リニアモータ1の駆
動によって球面方向(図中、矢印参照)へ移動する。[Third Embodiment] A third embodiment will be described with reference to an explanatory view of FIG. In this embodiment, the driven surface 10a of the driven body 10 according to the second embodiment is formed into a hemispherical concave surface, and the ultrasonic linear motor 1 is correspondingly formed.
The drive surface 9a of the output section 9 is formed into a hemispherical convex surface. The driven body 10 is moved in the spherical direction (see the arrow in the figure) by driving the ultrasonic linear motor 1.
【0012】〔実施の形態4〕実施の形態4について図
5の断面図を参照して説明する。本実施の形態は、実施
の形態2における突起部141を、出力部9の駆動面9
aに植え込んだ丸リベット状部品16の半球状の頭部1
6aによって形成したものである。ここで本実施の形態
における寸法を記しておくと、超音波リニアモータ1の
直径D1 がφ35 mm 、出力部9の直径D2 がφ20 m
m 、突起部14の高さHが2 mm 、突起部14の直径D
3 がφ4 mm 、突起部14の相互間の距離Lが7.5 m
m である。なお本実施の形態と同様に、実施の形態1に
おける突起部14も別部品を出力部9の駆動面9aに取
り付けることにより形成してもよい。[Fourth Embodiment] A fourth embodiment will be described with reference to the sectional view of FIG. In the present embodiment, the protrusion 141 of the second embodiment is replaced by the drive surface 9 of the output unit 9.
Hemispherical head 1 of the round rivet-shaped part 16 implanted in a
6a. Here, the dimensions in the present embodiment will be described. The diameter D 1 of the ultrasonic linear motor 1 is φ35 mm, and the diameter D 2 of the output portion 9 is φ20 m.
m, height H of protrusion 14 is 2 mm, diameter D of protrusion 14
3 is φ 4 mm, and the distance L between the protrusions 14 is 7.5 m
m. Note that, similarly to the present embodiment, the protrusion 14 in the first embodiment may be formed by attaching another component to the drive surface 9a of the output unit 9.
【0013】〔実施の形態5〕実施の形態5について図
6及び図7を参照して説明する。なお図6は動力伝達構
造の説明図、図7は被駆動体の斜視図である。本実施の
形態は、実施の形態1〜4と異なり超音波リニアモータ
1の出力部9の駆動面9aは従来と同様に平面とし、被
駆動体10の被駆動面10aに実施の形態1と同様に、
断面半円形状をした複数条(図は3条)の突起部142
を超音波リニアモータ1の駆動方向(図7中、矢印参
照)に並んで形成し、その突起部142の形成によって
被駆動面10a上に凹部152を設けている。[Fifth Embodiment] A fifth embodiment will be described with reference to FIGS. 6 and 7. 6 is an explanatory view of the power transmission structure, and FIG. 7 is a perspective view of the driven body. In the present embodiment, unlike the first to fourth embodiments, the drive surface 9a of the output unit 9 of the ultrasonic linear motor 1 is a flat surface as in the conventional case, and the driven surface 10a of the driven body 10 is the same as in the first embodiment. Similarly,
A plurality of protrusions 142 (three in the figure) having a semicircular cross section
Are formed side by side in the driving direction of the ultrasonic linear motor 1 (see the arrow in FIG. 7), and the concave portions 152 are provided on the driven surface 10a by forming the protrusions 142 thereof.
【0014】〔実施の形態6〕実施の形態6について図
8を参照して説明する。本実施の形態6は、実施の形態
5における突起部142の形状を変更したもので、図8
の被駆動体10の斜視図に示されるように、被駆動体1
0の被駆動面10aに実施の形態2と同様に半球状をし
た複数個(図は17個を示す)の突起部143が形成さ
れ、その突起部143の形成によって被駆動面10a上
に凹部153が設けられている。[Sixth Embodiment] A sixth embodiment will be described with reference to FIG. The sixth embodiment is different from the fifth embodiment in that the shape of the protrusion 142 is changed.
As shown in the perspective view of the driven body 10 of FIG.
No. 0 driven surface 10a is provided with a plurality of hemispherical projections 143 (17 are shown in the figure) as in the second embodiment, and the formation of the projections 143 causes depressions on the driven surface 10a. 153 is provided.
【0015】〔実施の形態7〕実施の形態7について図
9の説明図を参照して説明する。本実施の形態は、実施
の形態3と同様に、実施の形態6における被駆動体10
の被駆動面10aを半球状凹面に形成し、これに対応し
て出力部9の駆動面9aを半球状凸面に形成したもので
ある。なお図9では突起部143を駆動方向に3個並べ
たものを示した。[Seventh Embodiment] A seventh embodiment will be described with reference to an explanatory view of FIG. In the present embodiment, the driven body 10 in the sixth embodiment is similar to the third embodiment.
The driven surface 10a is formed into a hemispherical concave surface, and correspondingly the driving surface 9a of the output unit 9 is formed into a hemispherical convex surface. Note that FIG. 9 shows three protrusions 143 arranged in the driving direction.
【0016】〔実施の形態8〕実施の形態8について図
10の断面図を参照して説明する。本実施の形態は、実
施の形態7の突起部143を、実施の形態4と同様に被
駆動体10の被駆動面10aに植え込んだ丸リベット状
部品16の半球状の頭部16aによって形成したもので
ある。また例えば、突起部143の高さH、突起部14
3の直径D3 、突起部14の相互間の距離Lは、実施の
形態4と同一寸法となっている。なお本実施の形態と同
様に、実施の形態5における突起部14も別部品を被駆
動体10の被駆動面10aに取り付けることにより形成
してもよい。[Embodiment 8] Embodiment 8 will be described with reference to the sectional view of FIG. In the present embodiment, the protrusion 143 of the seventh embodiment is formed by the hemispherical head 16a of the round rivet-shaped component 16 which is embedded in the driven surface 10a of the driven body 10 as in the fourth embodiment. It is a thing. Further, for example, the height H of the protrusion 143, the protrusion 14
The diameter D 3 of No. 3 and the distance L between the protrusions 14 are the same as those in the fourth embodiment. Note that, similarly to the present embodiment, the protrusion 14 in the fifth embodiment may be formed by attaching another component to the driven surface 10a of the driven body 10.
【0017】本発明は前記実施の形態に限定されるもの
ではなく、本発明の要旨を逸脱しない範囲における変更
が可能である。例えば突起部14,141,142,1
43の断面形状は、上記の半円形状の他、図11(a)
に示す三角形状、同(b)あるいは同(c)に示す台形
形状とすることができる。また突起部14,141,1
42,143の材質は、金属、樹脂等、用途によって適
宜選択されるものである。また、出力部9の駆動面9a
及び被駆動体10の被駆動面10aの両方に突起部及び
凹部を設け、それぞれの突起部を互い違いにかみ合わせ
るようにして他方の凹部に接触させることも考えられ
る。この場合、被駆動体10の移動の妨げにならない形
状で突起部を形成する必要がある。The present invention is not limited to the above-mentioned embodiments, and modifications can be made without departing from the gist of the present invention. For example, the protrusions 14, 141, 142, 1
The cross-sectional shape of 43 is shown in FIG.
The triangular shape shown in FIG. 3 and the trapezoidal shape shown in FIG. Also, the protrusions 14, 141, 1
The material of 42 and 143 is appropriately selected depending on the application, such as metal and resin. Also, the drive surface 9a of the output unit 9
It is also conceivable to provide protrusions and recesses on both the driven surface 10a of the driven body 10 and to engage the protrusions with each other in a staggered manner so as to contact the other recess. In this case, it is necessary to form the protrusion in a shape that does not hinder the movement of the driven body 10.
【0018】[0018]
【発明の効果】本発明の超音波リニアモータの動力伝達
構造によれば、超音波リニアモータの出力部と被駆動体
との接触状態を安定にして動力伝達効率を高めることが
できとともに、摩耗粉の溜まりを防止でき高い伝達効率
を長期にわたって維持することができる。According to the power transmission structure of the ultrasonic linear motor of the present invention, the contact state between the output portion of the ultrasonic linear motor and the driven body can be stabilized to enhance the power transmission efficiency, and wear can be reduced. It is possible to prevent accumulation of powder and maintain high transmission efficiency for a long period of time.
【図1】実施の形態1の動力伝達構造を示す説明図であ
る。FIG. 1 is an explanatory diagram showing a power transmission structure according to a first embodiment.
【図2】超音波リニアモータの出力部を示す斜視図であ
る。FIG. 2 is a perspective view showing an output section of an ultrasonic linear motor.
【図3】実施の形態2の超音波リニアモータの出力部を
示す斜視図である。FIG. 3 is a perspective view showing an output unit of the ultrasonic linear motor according to the second embodiment.
【図4】実施の形態3の動力伝達構造を示す説明図であ
る。FIG. 4 is an explanatory diagram showing a power transmission structure according to a third embodiment.
【図5】実施の形態4の超音波リニアモータの出力部を
示す断面図である。FIG. 5 is a sectional view showing an output section of an ultrasonic linear motor according to a fourth embodiment.
【図6】実施の形態5の動力伝達構造を示す説明図であ
る。FIG. 6 is an explanatory diagram showing a power transmission structure according to a fifth embodiment.
【図7】被駆動体を示す斜視図である。FIG. 7 is a perspective view showing a driven body.
【図8】実施の形態6の被駆動体を示す斜視図である。FIG. 8 is a perspective view showing a driven body according to a sixth embodiment.
【図9】実施の形態7の動力伝達構造を示す説明図であ
る。FIG. 9 is an explanatory diagram showing a power transmission structure according to a seventh embodiment.
【図10】実施の形態8の被駆動体を示す断面図であ
る。FIG. 10 is a sectional view showing a driven body according to an eighth embodiment.
【図11】突起部の変形例を示す断面図である。FIG. 11 is a cross-sectional view showing a modified example of the protrusion.
【図12】超音波リニアモータを示す斜視図である。FIG. 12 is a perspective view showing an ultrasonic linear motor.
【図13】同断面図である。FIG. 13 is a sectional view of the same.
【図14】同分解斜視図である。FIG. 14 is an exploded perspective view of the same.
【図15】駆動面の運動軌跡を示す説明図である。FIG. 15 is an explanatory diagram showing a movement trajectory of a drive surface.
【図16】従来の動力伝達構造の説明図である。FIG. 16 is an explanatory diagram of a conventional power transmission structure.
1 超音波リニアモータ 9 出力部 10 被駆動体 12 摩耗粉 14 突起部 15 凹部 1 Ultrasonic linear motor 9 Output part 10 Driven body 12 Wear powder 14 Protrusion 15 Recess
───────────────────────────────────────────────────── フロントページの続き (72)発明者 本多 敬介 愛知県豊橋市大岩町字小山塚20番地 本多 電子株式会社内 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Keisuke Honda 20 Oyamazuka, Oiwa-cho, Toyohashi-shi, Aichi Prefecture Honda Electronics Co., Ltd.
Claims (2)
出力部とその出力部の駆動力を受けて移動する被駆動体
との接触による超音波リニアモータの動力伝達構造であ
って、前記出力部と被駆動体との少なくとも一方の接触
面に他方の接触面と当接可能な突起部を設けるとともに
その当接によって生成される摩耗粉を排除するための凹
部を設けたことを特徴とする超音波リニアモータの動力
伝達構造。1. A power transmission structure for an ultrasonic linear motor, which comprises contact between an output section for outputting the driving force of the ultrasonic linear motor and a driven body which moves by receiving the driving force of the output section, the output section comprising: And a driven body, at least one contact surface of which is provided with a protrusion capable of abutting against the other contact surface, and a concave portion for removing abrasion powder generated by the contact is provided. Power transmission structure of ultrasonic linear motor.
力伝達構造において、超音波振動子の駆動方向に列状に
並ぶ複数の突起部を設けたことを特徴とする超音波リニ
アモータの動力伝達構造。2. The power transmission structure for an ultrasonic linear motor according to claim 1, further comprising a plurality of protrusions arranged in a line in a driving direction of the ultrasonic vibrator. Transmission structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8049047A JPH09247964A (en) | 1996-03-06 | 1996-03-06 | Power transmission structure of ultrasonic linear motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8049047A JPH09247964A (en) | 1996-03-06 | 1996-03-06 | Power transmission structure of ultrasonic linear motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09247964A true JPH09247964A (en) | 1997-09-19 |
Family
ID=12820181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8049047A Pending JPH09247964A (en) | 1996-03-06 | 1996-03-06 | Power transmission structure of ultrasonic linear motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09247964A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006187114A (en) * | 2004-12-27 | 2006-07-13 | Olympus Corp | Ultrasonic motor |
CN106059380A (en) * | 2016-06-06 | 2016-10-26 | 长春工业大学 | Single hook type displacement transfer mechanism piezoelectric stick-slip linear motor and motivation method thereof |
-
1996
- 1996-03-06 JP JP8049047A patent/JPH09247964A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006187114A (en) * | 2004-12-27 | 2006-07-13 | Olympus Corp | Ultrasonic motor |
CN106059380A (en) * | 2016-06-06 | 2016-10-26 | 长春工业大学 | Single hook type displacement transfer mechanism piezoelectric stick-slip linear motor and motivation method thereof |
CN106059380B (en) * | 2016-06-06 | 2017-10-03 | 长春工业大学 | Single hook type displacement converted mechanism piezoelectricity stick-slip linear electric motors and its motivational techniques |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4752711A (en) | Vibration wave motor | |
US7576474B2 (en) | Piezoelectric motor | |
EP0978887A3 (en) | Ultrasonic motor and electronic apparatus having ultrasonic motor | |
JPH03190573A (en) | Oscillation wave motor | |
US5821670A (en) | Vibration acutuator | |
US5274294A (en) | Vibration wave driven motor | |
JPH09247964A (en) | Power transmission structure of ultrasonic linear motor | |
EP1396012B2 (en) | Piezoelectric drive | |
US4893046A (en) | Ultrasonic driving device | |
JP2574577B2 (en) | Linear actuator | |
JPH01177877A (en) | Oscillatory wave motor | |
JPH05252767A (en) | Ultrasonic motor | |
EP0582230B1 (en) | Ultrasonic motor | |
JP3307020B2 (en) | Ultrasonic motor | |
JP4497980B2 (en) | Piezoelectric body and polarization method thereof | |
JPS60174078A (en) | Piezoelectric motor | |
JP3120228B2 (en) | Ultrasonic motor | |
JP3194647B2 (en) | Ultrasonic linear actuator | |
JPH0697863B2 (en) | Piezoelectric drive | |
JP2001258277A (en) | Vibration wave driver | |
JPH01177879A (en) | Oscillatory wave linear motor | |
KR100223165B1 (en) | Ultrasonic motor which is improving stator and rotor shape | |
JPH08163879A (en) | Ultrasonic oscillator and ultrasonic motor | |
KR100215442B1 (en) | Ultrasonic motor | |
JPH07178370A (en) | Vibrator and vibrating actuator |