JPH09247947A - Power converter - Google Patents

Power converter

Info

Publication number
JPH09247947A
JPH09247947A JP8054299A JP5429996A JPH09247947A JP H09247947 A JPH09247947 A JP H09247947A JP 8054299 A JP8054299 A JP 8054299A JP 5429996 A JP5429996 A JP 5429996A JP H09247947 A JPH09247947 A JP H09247947A
Authority
JP
Japan
Prior art keywords
signal
generating means
output
power
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8054299A
Other languages
Japanese (ja)
Inventor
Koichi Kaneko
宏一 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8054299A priority Critical patent/JPH09247947A/en
Publication of JPH09247947A publication Critical patent/JPH09247947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve an output voltage waveform with the minimum switching times by making an output frequency of a chopping wave generating means variable according to a deviation signal when the deviation signal which is the deviation of an instantaneous output voltage detected value of a power converter from an instantaneous output voltage reference value exceeds a predetermined value. SOLUTION: A voltage signal of a load 4 and a voltage standard which is an output voltage of a reference voltage setting device 12 are added by an adder 31 and an output signal of the adder 31 is sent to an error amplifier 33 through an absolute value converter circuit 32 which converts a signal to an absolute value and then a signal which has been error-amplified by the error amplifier 33 is sent to a function generating means 34. According to an output signal of the function generating means 34, an output frequency of a chopping wave generating means 15 can be varied. By this method, when a non-linear load is connected, the number of switchings is increased at a point in one cycle where a rate of change in current is large and an output voltage waveform deforms and thereby the output voltage waveform can be improved with the minimum number of switchings.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体素子をヒー
トシンク等の冷却器に取付けた半導体スタックによって
構成され、パルス幅変調制御手段を備えたコンバータ回
路或いはインバータ回路等で構成される電力変換装置に
係り、特に出力電圧波形を正弦波状に波形改善しつつ電
力変換装置の損失を低減し、冷却器の利用率を向上させ
て、冷却器の小形化を達成できる電力変換装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power converter including a semiconductor stack in which a semiconductor element is attached to a cooler such as a heat sink, and a converter circuit having pulse width modulation control means or an inverter circuit. In particular, the present invention relates to a power conversion device that can reduce the loss of the power conversion device while improving the output voltage waveform into a sinusoidal waveform, improve the utilization rate of the cooler, and achieve downsizing of the cooler.

【0002】[0002]

【従来の技術】近年、電力変換装置においては、電力変
換の高性能化のために高速スイッチング素子を使った高
周波のパルス幅変調制御の採用がコンバータ、インバー
タともに適用されており、各種の負荷に質の高い電力を
供給できることから、無停電電源装置等に数多く利用さ
れている。
2. Description of the Related Art In recent years, in power converters, the adoption of high-frequency pulse width modulation control using high-speed switching elements has been applied to both converters and inverters in order to improve the performance of power conversion. Since it can supply high-quality power, it is widely used in uninterruptible power supplies.

【0003】従来の電力変換装置を図6を用いて説明す
る。同図において、1は直流電源、2は半導体素子を冷
却器に取付けた半導体スタックによって構成されたイン
バータ、3はリアクトル、4は負荷である。
A conventional power converter will be described with reference to FIG. In the figure, 1 is a DC power source, 2 is an inverter formed by a semiconductor stack in which semiconductor elements are attached to a cooler, 3 is a reactor, and 4 is a load.

【0004】電力変換装置の動作を説明すると、直流電
源1から供給される直流電力はトランジスタ等の半導体
素子で構成された自励式インバータ(以下単にインバー
タと記す)で所定の電圧・周波数の質の高い交流電力に
変換し、リアクトル3と図示していないコンデンサでイ
ンバータのパルス状出力の矩形波を正弦波状にするフィ
ルタ回路を介して負荷4に供給する。
Explaining the operation of the power converter, the DC power supplied from the DC power supply 1 is generated by a self-excited inverter (hereinafter simply referred to as "inverter") composed of semiconductor elements such as transistors with a predetermined voltage and frequency. The AC power is converted into high AC power, and is supplied to the load 4 through a filter circuit that makes the rectangular wave of the pulsed output of the inverter sinusoidal by the reactor 3 and a capacitor (not shown).

【0005】次に電力変換装置の制御回路について説明
する。11は電力変換装置の交流出力電圧を絶縁し、制
御レベルに変換する交流電圧検出手段、12は電圧基準
を設定する基準電圧設定器、13は交流電圧検出手段1
1の出力信号と基準電圧設定器12の出力を加算する加
算器、14は加算器13で基準量と帰還量の比較から生
ずる誤差分を比例・積分する誤差増幅器、15はパルス
幅変調制御(以下、PWM制御と記す)手段を構成する
三角波発生手段で半導体素子のスイッチング周波数を決
めるキャリア波であり、比較器16の一つの入力とな
り、誤差増幅器14の出力である制御信号がもう一つの
入力となる。比較器16によりインバータ2に使用され
るトランジスタ群に対して所定のパルス列のベース信号
波形が得られ、ゲートドライブ回路17により絶縁・増
幅してトランジスタ群のベースに供給される。
Next, the control circuit of the power converter will be described. Reference numeral 11 is an AC voltage detecting means for insulating the AC output voltage of the power converter and converting it into a control level, 12 is a reference voltage setting device for setting a voltage reference, and 13 is an AC voltage detecting means 1
An adder for adding the output signal of 1 and the output of the reference voltage setting unit 12, 14 is an error amplifier for proportional / integrating the error amount generated by the comparison of the reference amount and the feedback amount by the adder 13, and 15 is a pulse width modulation control ( (Hereinafter, referred to as PWM control) is a carrier wave that determines the switching frequency of the semiconductor element by the triangular wave generating means that constitutes the means, becomes one input of the comparator 16, and the control signal that is the output of the error amplifier 14 is the other input. Becomes A base signal waveform of a predetermined pulse train is obtained for the transistor group used in the inverter 2 by the comparator 16, insulated and amplified by the gate drive circuit 17, and supplied to the base of the transistor group.

【0006】ここで高周波PWM制御を使用することの
利点を簡単に説明すれば、 (1) 出力電圧波形の制御が可能。 (2) 負荷変動に対して高速応答が可能。 (3) 波形成形のためのフィルタ回路(図示せず)の小
形化可能。 (4) 変圧器の低騒音化が可能。 等の点があり、近年高周波PWM制御の適用が大容量の
領域まで進んでいる。
The advantages of using the high frequency PWM control will be briefly described below. (1) The output voltage waveform can be controlled. (2) High-speed response to load fluctuations is possible. (3) A filter circuit (not shown) for waveform shaping can be miniaturized. (4) Noise reduction of transformer is possible. In recent years, application of high frequency PWM control has advanced to a large capacity area.

【0007】しかし、半導体素子の損失を考えると全損
失をPT 、定常オン状態損失をPsターンオン時スイッ
チング損失をPon、ターンオフ時スイッチング損失をP
offとしてスイッチング周波数をfとすると次式のよう
になる。
However, considering the loss of the semiconductor element, the total loss is P T, the steady on-state loss is Ps, the switching loss at turn-on is Pon, and the switching loss at turn-off is P.
When the switching frequency is f and the switching frequency is f, the following equation is obtained.

【0008】[0008]

【数1】 PT =Ps +(Pon+Poff )・f (1) (1)式において、高周波スイッチング化すると言うこ
とは、スイッチング周波数fが大きくなることを意味し
ており、通電電流が同等であっても、第2項がスイッチ
ング周波数fに比例して大きくなることから、損失が増
大する欠点がある。従って、現状は、制御性能と損失を
加味して両方のトレードオフのポイントでスイッチング
周波数fを決めて高周波化している。
## EQU1 ## PT = Ps + (Pon + Poff) f (1) In the equation (1), high-frequency switching means that the switching frequency f increases, and that the energizing current is the same. However, since the second term increases in proportion to the switching frequency f, there is a drawback that the loss increases. Therefore, under the present circumstances, the switching frequency f is determined at a trade-off point of both in consideration of control performance and loss to increase the frequency.

【0009】[0009]

【発明が解決しようとする課題】さて、このように構成
された電力変換装置のスイッチング周波数について考え
る。自励式インバータでは一般的に出力電圧波形は正弦
波状が電力の質が良いとされていて、電力変換装置の出
力に線形負荷、非線形負荷のどのような負荷が接続され
負荷電流の波形が正弦波状でない場合においても出力電
圧波形は正弦波状に制御しなければならない。
Now, let us consider the switching frequency of the power converter configured as described above. In a self-excited inverter, it is generally said that the output voltage waveform has a sinusoidal waveform for good power quality.Therefore, if a linear load or a non-linear load is connected to the output of the power converter, the waveform of the load current is sinusoidal. If not, the output voltage waveform must be controlled in a sinusoidal manner.

【0010】負荷電流波形が正弦波状でない場合、即ち
コンデンサインプット形整流器負荷が接続され波高率が
高い電流が流れると、インバータ内に存在するインピー
ダンスによって出力電圧波形が潰れて歪むことになる。
これを補正するために出力電圧1サイクルの間に半導体
素子のスイッチングを複数回繰り返し必要な電圧波形を
得ることができる。しかし必要以上にスイッチング回数
を増やせば半導体素子のスイッチング損失が増え、冷却
器の小形化を妨げる要因になる。
When the load current waveform is not sinusoidal, that is, when a capacitor input type rectifier load is connected and a current having a high crest factor flows, the output voltage waveform is crushed and distorted by the impedance existing in the inverter.
In order to correct this, switching of the semiconductor element is repeated a plurality of times during one cycle of the output voltage to obtain a required voltage waveform. However, if the number of times of switching is increased more than necessary, the switching loss of the semiconductor element increases, which becomes a factor that hinders the downsizing of the cooler.

【0011】従って、本発明の目的は、前述の点に鑑み
なされたもので、半導体素子を組込み交流電力を直流電
力に変換するコンバータ回路或いは直流電力を交流電力
に変換するインバータ回路等の電力変換装置において、
非線形負荷が接続される場合1サイクル中で電流の変化
率が厳しく出力電圧波形が歪むポイントでは、スイッチ
ング回数を増やし出力電圧波形の改善を最小のスイッチ
ング回数で達成することができる電力変換装置を提供す
ることにある。
Therefore, the object of the present invention is made in view of the above-mentioned points, and a power conversion such as a converter circuit incorporating a semiconductor element for converting AC power into DC power or an inverter circuit for converting DC power into AC power. In the device,
Provided is a power conversion device capable of increasing the number of times of switching and improving the output voltage waveform with a minimum number of times of switching at the point where the rate of change of current is severe and the output voltage waveform is distorted in one cycle when a non-linear load is connected. To do.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するため
に請求項1に記載の発明は、1個以上の半導体素子を冷
却器に取付けた半導体スタックによって構成され、少く
とも三角波発生手段を有し、前記半導体素子を制御する
パルス幅変調制御手段を備え、交流電力を直流電力に変
換するコンバータ回路或いは直流電力を交流電力に変換
するインバータ回路等で構成される電力変換装置におい
て、前記電力変換装置の瞬時出力電圧検出値と、瞬時出
力電圧基準値との偏差信号が印加され、該偏差信号が所
定値を越えたことで、該偏差信号に応じて前記三角波発
生手段の出力周波数を可変する関数発生手段を具備した
ことを特徴とする。
To achieve the above object, the invention according to claim 1 is constituted by a semiconductor stack in which one or more semiconductor elements are attached to a cooler, and has at least triangular wave generating means. And a pulse width modulation control means for controlling the semiconductor element, the power converter comprising a converter circuit for converting AC power into DC power or an inverter circuit for converting DC power into AC power. A deviation signal between the instantaneous output voltage detection value of the device and the instantaneous output voltage reference value is applied, and when the deviation signal exceeds a predetermined value, the output frequency of the triangular wave generating means is changed according to the deviation signal. It is characterized by comprising a function generating means.

【0013】又、請求項2に記載の発明は、請求項1に
記載の電力変換装置において、半導体素子の温度を検出
し温度に応じた信号を出力する温度検出手段と、該温度
検出手段の出力信号が印加される第2の関数発生手段を
設け、該第2の関数発生手段の出力に応じて前記三角波
発生手段の出力周波数を可変する量を調整することを特
徴としたものである。
According to a second aspect of the present invention, in the power converter according to the first aspect, temperature detecting means for detecting the temperature of the semiconductor element and outputting a signal according to the temperature, and the temperature detecting means A second function generating means to which an output signal is applied is provided, and the variable amount of the output frequency of the triangular wave generating means is adjusted according to the output of the second function generating means.

【0014】更に、請求項3に記載の発明は、請求項2
に記載の電力変換装置において、半導体素子の温度を設
定する温度設定手段と、該温度設定手段の出力信号と前
記温度検出手段の出力信号との偏差信号が印加され、該
偏差信号に応じて前記三角波発生手段の出力信号の上限
値と下限値を規制する制限手段を設けたことを特徴とす
る。
Further, the invention described in claim 3 is the same as claim 2
In the power conversion device described in (1), temperature setting means for setting the temperature of the semiconductor element, and a deviation signal between the output signal of the temperature setting means and the output signal of the temperature detecting means is applied, and the deviation signal is applied according to the deviation signal. It is characterized in that limiting means for limiting the upper limit value and the lower limit value of the output signal of the triangular wave generating means is provided.

【0015】[0015]

【発明の実施の形態】以下、請求項1に記載の発明の一
実施例を図1のブロック図、及び図2の電力変換装置の
パルス幅変調制御手段を構成する三角波発生手段の出力
周波数との関係を示す特性図を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, one embodiment of the invention described in claim 1 will be described with reference to the block diagram of FIG. This will be described with reference to a characteristic diagram showing the relationship of

【0016】尚、図1において、図6と同一符号を付し
たものは、同一機能を有するものであるためその説明は
省略する。図1において、図6に示す従来の電力変換装
置と異なる点は、負荷電圧信号と、電圧基準12の出力
信号を加算器31で加え合せ、加算器31の出力信号を
絶対値変換する絶対値変換回路32を介して誤差増幅器
33で誤差を増幅した信号が印加される関数発生手段3
4を設け、この関数発生手段34の出力信号に応じて三
角波発生手段15の出力周波数を可変に調節することが
できるようにした点である。
It is to be noted that, in FIG. 1, the components denoted by the same reference numerals as those in FIG. 6 have the same functions, and therefore the description thereof will be omitted. 1 is different from the conventional power converter shown in FIG. 6 in that the load voltage signal and the output signal of the voltage reference 12 are added by the adder 31 and the output signal of the adder 31 is converted into an absolute value. Function generating means 3 to which a signal obtained by amplifying the error by the error amplifier 33 is applied via the conversion circuit 32.
4 is provided so that the output frequency of the triangular wave generating means 15 can be variably adjusted according to the output signal of the function generating means 34.

【0017】関数発生手段34は、例えば、図2(a)
に示すように出力電圧偏差分を誤差増幅した値が印加さ
れるが、この値が所定のA0 までは三角波発生手段15
の出力周波数が一定値f0 となるように作用し、誤差増
幅した値がA0 を越えた場合f1 に上げるように作用す
る。
The function generating means 34 is, for example, as shown in FIG.
A value obtained by error-amplifying the output voltage deviation is applied as shown in, and the triangular wave generating means 15 is used until this value reaches a predetermined value A0.
The output frequency of 1 becomes a constant value f0, and when the error amplified value exceeds A0, it increases to f1.

【0018】これにより、非線形負荷が接続され、電流
の変化率が厳しくなると半導体素子のスイッチング周波
数を上げ、波形改善を達成できる。従って、1サイクル
中で波形改善か必要な時のみスイッチング回数を増や
し、電流の変化率が厳しくない時は、半導体素子の損失
の(1)式で示される第2項のスイッチング周波数fが
小さくなりスイッチング損失を軽減でき、波形改善を最
小のスイッチングで達成し抑えることが可能となり、冷
却器の小形な電力変換装置を提供することができる。
As a result, when a non-linear load is connected and the rate of change in current becomes severe, the switching frequency of the semiconductor element can be increased and waveform improvement can be achieved. Therefore, the switching frequency is increased only when the waveform needs to be improved in one cycle, and when the rate of change of the current is not severe, the switching frequency f of the second term represented by the equation (1) of the loss of the semiconductor element becomes small. The switching loss can be reduced, the improvement of the waveform can be achieved and suppressed with the minimum switching, and a small-sized power conversion device for the cooler can be provided.

【0019】関数発生手段は、前述の特性に限定するも
のではなく、例えば、図2(b)に示すように、出力電
圧偏差分を誤差増幅した値が大きくなるにしたがって三
角波発生手段15の出力周波数f0 が徐々に上昇するよ
うに作用するものであっても良い。
The function generating means is not limited to the above-mentioned characteristics. For example, as shown in FIG. 2B, the output of the triangular wave generating means 15 increases as the value obtained by error amplification of the output voltage deviation increases. The frequency f0 may act so as to gradually increase.

【0020】次に、図1と同一部に同一符号を付して示
す図3を参照して請求項2に記載の発明の一実施例を説
明する。同図において、図1と異る点は、温度検出手段
41と温度検出手段41の出力を所定の信号レベルに変
換するレベル変換器42と関数発生器43により出力電
圧偏差分を乗算器51により可変させるようにした点で
ある。
Next, an embodiment of the invention described in claim 2 will be described with reference to FIG. 3 in which the same parts as those in FIG. 1 is different from FIG. 1 in that a temperature detecting means 41, a level converter 42 for converting an output of the temperature detecting means 41 into a predetermined signal level, and a function generator 43, an output voltage deviation amount by a multiplier 51. The point is that it is variable.

【0021】これにより、例えば図4の特性に加えて、
半導体素子の温度が高い場合は、三角波周波数fの特性
をB方向へ逆に温度が低い場合の時はC方向へ可変する
ことにより素子の温度をモニターした上で最適なスイッ
チング回数を選定できることになり、特に、負荷電流の
実効値とピーク値が大きく異った場合の時に有効であ
る。
Thus, for example, in addition to the characteristics shown in FIG.
When the temperature of the semiconductor element is high, the characteristic of the triangular wave frequency f is reversed in the B direction, and when the temperature is low, it is changed in the C direction so that the optimum switching frequency can be selected after monitoring the element temperature. This is especially effective when the effective value and the peak value of the load current differ greatly.

【0022】更に、図3と同一部に同一符号を付して示
す図5を参照して請求項3に記載の発明の一実施例を説
明する。図5において、41、42は図3のものと同様
に、スイッチング素子の温度を検出する温度検出手段
と、該温度検出手段41の出力を所定の信号レベルに変
換するレベル変換器42である。44はレベル変換器4
2の出力信号と温度設定手段45の出力信号との偏差信
号を出力する加算器で、この加算器44から出力される
偏差信号は誤差増幅器46を介して制限手段47に与え
られる。
Further, an embodiment of the invention described in claim 3 will be described with reference to FIG. 5 in which the same parts as those in FIG. 5, as in FIG. 3, reference numerals 41 and 42 denote a temperature detecting means for detecting the temperature of the switching element and a level converter 42 for converting the output of the temperature detecting means 41 into a predetermined signal level. 44 is a level converter 4
It is an adder that outputs a deviation signal between the output signal of No. 2 and the output signal of the temperature setting means 45. The deviation signal output from the adder 44 is given to the limiting means 47 via the error amplifier 46.

【0023】制限手段47は、前記偏差信号が正の所定
値を越えた場合に三角波発生手段15の上限周波数を規
制し、前記偏差信号が負の所定値を越えた場合に三角波
発生手段15の下限周波数を規制する。
The limiting means 47 regulates the upper limit frequency of the triangular wave generating means 15 when the deviation signal exceeds a positive predetermined value, and limits the upper limit frequency of the triangular wave generating means 15 when the deviation signal exceeds a negative predetermined value. Regulate the lower limit frequency.

【0024】このように構成することによって、電力変
換装置の起動時には半導体素子の温度はほぼ外気温度に
等しく、又温度設定手段45で設定される温度基準T*
は例えば、負荷電流が大きい時の温度に相当しているた
め偏差信号は正の大きい値であるため、制限手段47は
図4に示すように三角波発生手段15の出力周波数fc
なる上限値に規制する。従って、電力変換装置の起動後
はPWM制御のキャリア波の周波数はfc になってい
る。
With this structure, the temperature of the semiconductor element is substantially equal to the outside air temperature when the power converter is activated, and the temperature reference T * set by the temperature setting means 45 is set .
For example, since the deviation signal has a large positive value because it corresponds to the temperature when the load current is large, the limiting means 47 outputs the output frequency fc of the triangular wave generating means 15 as shown in FIG.
To the upper limit. Therefore, the frequency of the carrier wave in PWM control is fc after the power converter is started.

【0025】その後、負荷電流が大きくなり、温度検出
手段からの検出信号が温度基準T*より高くなるため偏
差信号は負側に増大するため、三角波発生手段15の出
力周波数はfc から低減始めるが、三角波発生手段15
の出力周波数が下限値fB 以下に低減しないように今度
は制限手段52は図4に示すように三角波発生手段15
の出力周波数をfB なる下限値に規制する。これにより
半導体素子の温度に応じて半導体素子のスイッチング回
数を低減させ、効率の良い冷却器の運用が可能となる。
After that, since the load current increases and the detection signal from the temperature detecting means becomes higher than the temperature reference T * , the deviation signal increases to the negative side, so that the output frequency of the triangular wave generating means 15 starts to decrease from fc. , Triangular wave generating means 15
In order to prevent the output frequency of the triangular wave generator 15 from decreasing below the lower limit value fB, the limiting means 52, as shown in FIG.
Output frequency is regulated to the lower limit of fB. As a result, the number of times the semiconductor element is switched can be reduced according to the temperature of the semiconductor element, and the cooler can be operated efficiently.

【0026】[0026]

【発明の効果】以上説明のように請求項1乃至請求項3
に記載の発明によれば、電力変換装置の負荷電圧の偏差
を検出してPWM制御のキャリア波の周波数を増減する
ことができように構成したので、出力電圧波形改善を最
適なスイッチング回数で設定でき、半導体素子の冷却器
を効率良く使用でき、電力変換装置の小形化、省スペー
ス化を図ることができる。
As described above, the first to third aspects of the invention are described.
According to the invention described in (1), since the deviation of the load voltage of the power converter is detected and the frequency of the carrier wave of PWM control can be increased or decreased, the improvement of the output voltage waveform is set at the optimum number of switching times. Therefore, the cooler of the semiconductor element can be efficiently used, and the power converter can be downsized and the space can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】請求項1に記載の発明の一実施例を示すブロッ
ク構成図。
FIG. 1 is a block diagram showing an embodiment of the invention described in claim 1.

【図2】図1の三角波発生手段の特性を示した図。FIG. 2 is a diagram showing characteristics of the triangular wave generating means of FIG.

【図3】請求項2に記載の発明の一実施例を示すブロッ
ク構成図。
FIG. 3 is a block diagram showing an embodiment of the invention described in claim 2.

【図4】請求項2、請求項3を説明するための関連特性
図。
FIG. 4 is a related characteristic diagram for explaining claims 2 and 3.

【図5】請求項3に記載の発明の一実施例を示すブロッ
ク構成図。
FIG. 5 is a block diagram showing an embodiment of the invention described in claim 3.

【図6】従来の電力変換装置のブロック構成図。FIG. 6 is a block configuration diagram of a conventional power conversion device.

【符号の説明】[Explanation of symbols]

1 …直流電源 2 …イ
ンバータ 3 …リアクトル 4 …負
荷 11 …交流電流検出手段 12 …基
準電圧設定器 13 …加算器 14 …誤
差増幅器 15 …三角波発生手段 16 …比
較器 17 …ゲートドライブ回路 31 …加
算器 32 …絶対値変換回路 33 …誤
差増幅器 34 …関数発生手段 41 …温
度検出手段 42 …レベル変換器 43 …関
数発生手段 44 …加算器 45 …温
度設定手段 46 …誤差増幅器 47 …制
限手段 51 …乗算器 52 …制
限手段
1 ... DC power supply 2 ... Inverter 3 ... Reactor 4 ... Load 11 ... AC current detecting means 12 ... Reference voltage setting device 13 ... Adder 14 ... Error amplifier 15 ... Triangular wave generating means 16 ... Comparator 17 ... Gate drive circuit 31 ... Addition Unit 32 ... Absolute value conversion circuit 33 ... Error amplifier 34 ... Function generating means 41 ... Temperature detecting means 42 ... Level converter 43 ... Function generating means 44 ... Adder 45 ... Temperature setting means 46 ... Error amplifier 47 ... Limiting means 51 ... Multiplier 52 ... Limiting means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1個以上の半導体素子を冷却器に
取付けた半導体スタックによって構成され、少くとも三
角波発生手段を有し、前記半導体素子を制御するパルス
幅変調制御手段を備え、交流電力を直流電力に変換する
コンバータ回路或いは直流電力を交流電力に変換するイ
ンバータ回路で構成される電力変換装置において、前記
電力変換装置の瞬時出力電圧検出値と、瞬時出力電圧基
準値との偏差信号が印加され、該偏差信号が所定値を越
えたことで、該偏差信号に応じて前記三角波発生手段の
出力周波数を可変する関数発生手段を具備したことを特
徴とする電力変換装置。
1. A semiconductor stack comprising one or more semiconductor elements attached to a cooler, at least triangular wave generating means, pulse width modulation control means for controlling the semiconductor elements, and alternating current power to direct current. In a power converter including a converter circuit for converting to electric power or an inverter circuit for converting DC power to AC power, a deviation signal between an instantaneous output voltage detection value of the power converter and an instantaneous output voltage reference value is applied. A power conversion device comprising: a function generating means for varying the output frequency of the triangular wave generating means according to the deviation signal when the deviation signal exceeds a predetermined value.
【請求項2】 請求項1に記載の電力変換装置に
おいて、前記半導体素子の温度を検出し温度に応じた信
号を出力する温度検出手段と、該温度検出手段の出力信
号が印加される第2の関数発生手段を設け、該第2の関
数発生手段の出力に応じて前記三角波発生手段の出力周
波数を可変する量を調整することを特徴とした電力変換
装置。
2. The power conversion device according to claim 1, wherein the temperature detecting means for detecting the temperature of the semiconductor element and outputting a signal according to the temperature, and the output signal of the temperature detecting means are applied. The power conversion device is characterized in that the function generating means is provided and the amount by which the output frequency of the triangular wave generating means is varied is adjusted according to the output of the second function generating means.
【請求項3】 請求項2に記載の電力変換装置に
おいて、前記半導体素子の温度を設定する温度設定手段
と、該温度設定手段の出力信号と前記温度検出手段の出
力信号との偏差信号が印加され、該偏差信号に応じて前
記三角波発生手段の出力信号の上限値と下限値を規制す
る制限手段を設けたことを特徴とする電力変換装置。
3. The power converter according to claim 2, wherein temperature setting means for setting the temperature of the semiconductor element, and a deviation signal between an output signal of the temperature setting means and an output signal of the temperature detecting means are applied. The power conversion device is provided with a limiting unit that regulates an upper limit value and a lower limit value of the output signal of the triangular wave generating unit according to the deviation signal.
JP8054299A 1996-03-12 1996-03-12 Power converter Pending JPH09247947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8054299A JPH09247947A (en) 1996-03-12 1996-03-12 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8054299A JPH09247947A (en) 1996-03-12 1996-03-12 Power converter

Publications (1)

Publication Number Publication Date
JPH09247947A true JPH09247947A (en) 1997-09-19

Family

ID=12966699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8054299A Pending JPH09247947A (en) 1996-03-12 1996-03-12 Power converter

Country Status (1)

Country Link
JP (1) JPH09247947A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090755A1 (en) * 2008-01-18 2009-07-23 Mitsubishi Electric Corporation Controller of power converter
JP2014155434A (en) * 2013-02-07 2014-08-25 Shun-Fu Technology Corp Inverter control module with harmonic suppression capability
WO2018220778A1 (en) * 2017-06-01 2018-12-06 東芝三菱電機産業システム株式会社 Power supply device and power supply system which uses same
JPWO2018220777A1 (en) * 2017-06-01 2020-01-23 東芝三菱電機産業システム株式会社 Power supply device and power supply system using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090755A1 (en) * 2008-01-18 2009-07-23 Mitsubishi Electric Corporation Controller of power converter
US8537580B2 (en) 2008-01-18 2013-09-17 Mitsubishi Electric Corporation Controller of power converter
JP2014155434A (en) * 2013-02-07 2014-08-25 Shun-Fu Technology Corp Inverter control module with harmonic suppression capability
WO2018220778A1 (en) * 2017-06-01 2018-12-06 東芝三菱電機産業システム株式会社 Power supply device and power supply system which uses same
JPWO2018220778A1 (en) * 2017-06-01 2019-11-07 東芝三菱電機産業システム株式会社 Power supply device and power supply system using the same
JPWO2018220777A1 (en) * 2017-06-01 2020-01-23 東芝三菱電機産業システム株式会社 Power supply device and power supply system using the same

Similar Documents

Publication Publication Date Title
US9281753B2 (en) LLC converter with dynamic gain transformation for wide input and output range
US5510974A (en) High frequency push-pull converter with input power factor correction
CN102138277B (en) Switched-mode power supply having self-optimizing efficiency
KR100201704B1 (en) Zero current switching circuit and converting apparatus using the same
US11368109B2 (en) Power conversion system with PWM carrier transition smoothing and autotuning
JP2003510001A (en) LLC converter and method of controlling LLC converter
US20020171374A1 (en) Magnetron drive power supply
Iqbal et al. A dual-mode input voltage modulation control scheme for voltage multiplier based X-ray power supply
JPS5931245B2 (en) Power supply voltage controlled amplifier
JPH0773426B2 (en) Power converter control device
JP3215302B2 (en) Air conditioner
JPH10341572A (en) Switching power supply
JP3374918B2 (en) Inverter device
JPH09247947A (en) Power converter
JPH01194871A (en) Pulse width modulation type inverter device
KR0179096B1 (en) Resonance type hige frequency and voltage generator consisting of dropping type chopper and inverter
JP2007020262A (en) Power converter
JPH0731152A (en) Constant power factor control method for pwm converter
JPH08294284A (en) Power converting apparatus
JPH07231666A (en) Pwm control voltage inverter
JPH066978A (en) Power converter
JP7527254B2 (en) Power Conversion Systems
US20220368244A1 (en) Intelligent rectifier current regulation of dc bus voltage droop
JP7057188B2 (en) Power supply device, control circuit of power supply device, control method of power supply device
JPH05244775A (en) Pulse width modulation inverter