JPH09246487A - Semiconductor memory device - Google Patents
Semiconductor memory deviceInfo
- Publication number
- JPH09246487A JPH09246487A JP8051329A JP5132996A JPH09246487A JP H09246487 A JPH09246487 A JP H09246487A JP 8051329 A JP8051329 A JP 8051329A JP 5132996 A JP5132996 A JP 5132996A JP H09246487 A JPH09246487 A JP H09246487A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- data line
- absolute value
- information
- memory device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 10
- 230000014759 maintenance of location Effects 0.000 claims description 18
- 238000003860 storage Methods 0.000 claims description 15
- 230000003247 decreasing effect Effects 0.000 claims description 4
- 239000003990 capacitor Substances 0.000 abstract description 12
- 238000009792 diffusion process Methods 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 description 17
- 230000014509 gene expression Effects 0.000 description 13
- 239000011229 interlayer Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Landscapes
- Semiconductor Memories (AREA)
- Dram (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は半導体装置に係り、
特に、記憶保持動作が必要な随時書き込み読み出し型半
導体記憶装置(DRAM)に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device,
In particular, the present invention relates to an occasional write / read type semiconductor memory device (DRAM) which requires a memory holding operation.
【0002】[0002]
【従来の技術】携帯型情報機器の普及に伴い、電力消費
の少ないDRAMに対する市場ニーズが高まっている。
このような市場ニーズに応えるための従来技術について
以下説明する。2. Description of the Related Art With the spread of portable information devices, market needs for DRAMs with low power consumption are increasing.
Conventional techniques for meeting such market needs will be described below.
【0003】DRAMにおいては1ビットの情報をメモ
リセルと呼ばれる構成要素に記憶する。同メモリセルは
MOSトランジスタ1個とキャパシタ1個とからなり、
同キャパシタはキャパシタ絶縁膜を介して対向する一対
の電極(プレート電極と蓄積電極)で構成されている。
蓄積電極には、記憶する情報に応じて電圧Vccもしく
は0Vが加えられ、それぞれに応じた電荷がキャパシタ
に保存される。また、プレート電極は参照電極として、
書き込み電圧Vccの1/2の電圧に常時保持されてい
る。In DRAM, 1-bit information is stored in a component called a memory cell. The memory cell consists of one MOS transistor and one capacitor,
The capacitor is composed of a pair of electrodes (a plate electrode and a storage electrode) facing each other with a capacitor insulating film interposed therebetween.
A voltage Vcc or 0 V is applied to the storage electrode according to the information to be stored, and the charge corresponding to each is stored in the capacitor. Also, the plate electrode serves as a reference electrode,
It is always held at a voltage half the write voltage Vcc.
【0004】MOSトランジスタは蓄積電極への電圧
(Vccもしくは0V)の付加および蓄積された電荷の
読み出しの制御のいずれをも行う役目を果たしている。The MOS transistor plays a role of both applying a voltage (Vcc or 0V) to the storage electrode and controlling reading of the stored charge.
【0005】蓄積電極はプレート電極とはキャパシタ絶
縁膜で、Si基板(ウェル)とはpn接合によりそれぞ
れ絶縁されているが、同pn接合にはリーク電流の発生
が避けられないので蓄積された電荷はやがて消失してし
まう。これを防ぐために、同蓄積電荷が完全に消失する
前にこれを読み出し、同蓄積電荷に対応する記憶情報を
判定したうえで同記憶情報に対応する電圧を蓄積電極に
再度加えることにより、蓄積電荷を元の量に戻すことが
周期的に行われている。この操作は通常リフレッシュと
呼ばれ、これに要する電力は待機状態にあるDRAMの
消費電力の大部分を占めている。The storage electrode is a capacitor insulating film from the plate electrode and is insulated from the Si substrate (well) by a pn junction. However, since a leak current is unavoidable at the pn junction, the accumulated charge is accumulated. It will disappear soon. In order to prevent this, the stored charge is read before it completely disappears, the stored information corresponding to the stored charge is determined, and the voltage corresponding to the stored information is applied again to the storage electrode. It is periodically performed to restore the original amount. This operation is usually called refresh, and the power required for this operation occupies most of the power consumption of the DRAM in the standby state.
【0006】そのため、DRAMの消費電力を低減する
うえでリフレッシュ周期をいかに長くするかが課題とな
っている。また、DRAMの世代交代が進み集積度が向
上するのに伴う消費電力の増大を防止するためにも、リ
フレッシュ周期を世代毎に2倍に長くすることが必要で
ある。Therefore, how to lengthen the refresh cycle is a problem in reducing the power consumption of the DRAM. Further, in order to prevent an increase in power consumption that accompanies the generation change of DRAMs and the improvement in the degree of integration, it is necessary to double the refresh cycle for each generation.
【0007】[0007]
【発明が解決しようとする課題】DRAMのリフレッシ
ュ周期を長くする一つの方法は、接合のリーク電流を低
減することである。そのため、リーク電流の発生源とな
る結晶欠陥を低減するための技術開発が盛んになされ、
現在では電子顕微鏡等を用いても欠陥を検出することが
できないレベルにまで改善されてきている。したがっ
て、今後、接合のリーク電流を低減することにより、リ
フレッシュ周期を長くすることは困難になることが予想
され、デバイス・回路技術による対策が必要となってい
る。One way to lengthen the refresh cycle of a DRAM is to reduce the junction leakage current. Therefore, technological development has been actively conducted to reduce crystal defects that are the source of leakage current,
At present, it has been improved to a level where defects cannot be detected even by using an electron microscope or the like. Therefore, it is expected that it will be difficult to lengthen the refresh cycle by reducing the leak current of the junction in the future, and it is necessary to take measures by device / circuit technology.
【0008】[0008]
【課題を解決するための手段】p型の導電性を有するウ
ェル内に形成されたメモリセルに例をとり、まず、DR
AMの情報読み出し原理について述べる。データ線はデ
ータ読み出し直前に所定の正の電圧(プリチャージ電
圧)Viに保持され、蓄積電荷がデータ線に読み出され
るとその量に応じてその電位が変化する。このとき、読
み出し後のデータ線の電位Vrは数1で与えられる。Taking a memory cell formed in a well having p-type conductivity as an example, first, DR
The principle of reading information from AM will be described. The data line is held at a predetermined positive voltage (precharge voltage) Vi immediately before reading the data, and when the accumulated charge is read to the data line, the potential changes according to the amount. At this time, the potential Vr of the data line after reading is given by Equation 1.
【0009】[0009]
【数1】 Vr=Vi+(Qr−Cs×Vi)/(Cs+Cd) …(数1) ここで、Qrは読み出し時における残留蓄積電荷量(電
圧0Vで書き込みを行った場合の書き込み直後の蓄積電
荷量を0とする)、Csはキャパシタ容量、Cdはデー
タ線に付随した寄生容量である。読み出しに伴うデータ
線電位の変動量ΔVは数2で表され、同変動量が正であ
るか負であるかをセンスアンプで検出することにより記
憶情報が“1”であるか“0”であるかが判定される。## EQU00001 ## Vr = Vi + (Qr-Cs.times.Vi) / (Cs + Cd) (Equation 1) where Qr is the residual accumulated charge amount at the time of reading (the accumulated charge immediately after writing when writing is performed at a voltage of 0V). Cs is a capacitor capacitance, and Cd is a parasitic capacitance associated with the data line. The variation amount ΔV of the data line potential due to the reading is expressed by Equation 2, and whether the stored information is “1” or “0” is detected by detecting whether the variation amount is positive or negative. It is determined whether there is any.
【0010】[0010]
【数2】 ΔV=Vr−Vi=(Qr−Cs×Vi)/(Cs+Cd) …(数2) センスアンプは一つのDRAM内に多数作成されており
これらの間で検出特性に差異があるので、ΔVが“1”
および“0”の情報に応じて正しく正負の値をとるのみ
ならずその絶対値が所定の値Vtよりも大きいことが誤
検出を防ぐうえで必要である。すなわち、“1”および
“0”状態に対応する残留蓄積電荷量をそれぞれQr
0,Qr1として、数3,数4の条件が成立することが
必要である。[Formula 2] ΔV = Vr−Vi = (Qr−Cs × Vi) / (Cs + Cd) (Formula 2) Since many sense amplifiers are created in one DRAM and there is a difference in detection characteristics between them. , ΔV is “1”
It is necessary not only to correctly take positive and negative values in accordance with the information of "0" and "0" but also to have an absolute value larger than a predetermined value Vt in order to prevent erroneous detection. That is, the residual accumulated charge amounts corresponding to the “1” and “0” states are set to Qr, respectively.
It is necessary for 0 and Qr1 to satisfy the conditions of Equations 3 and 4.
【0011】[0011]
【数3】 (Qr1−Cs×Vi)/(Cs+Cd)≧Vt …(数3)(Qr1-Cs × Vi) / (Cs + Cd) ≧ Vt (Equation 3)
【0012】[0012]
【数4】 (Qr0−Cs×Vi)/(Cs+Cd)≦−Vt …(数4) これら条件式は以下の数5,数6のように表すこともで
きる。## EQU00004 ## (Qr0-Cs.times.Vi) / (Cs + Cd) .ltoreq.-Vt (Expression 4) These conditional expressions can also be expressed as in the following Expressions 5 and 6.
【0013】[0013]
【数5】 Qr1≧Cs×Vi+(Cs+Cd)×Vt …(数5)Qr1 ≧ Cs × Vi + (Cs + Cd) × Vt (Equation 5)
【0014】[0014]
【数6】 Qr0≦Cs×Vi−(Cs+Cd)×Vt …(数6) データ書き込み直後では、蓄積電荷量はそれぞれCs×
Vcc(“1”状態)と0(“0”状態)であるのでチ
ップ間,ウェハ間あるいはロット間でのVt変動に対す
るQr1とQr0のマージンを等しくするためにViを
従来はVcc/2としていた。[Equation 6] Qr0 ≦ Cs × Vi− (Cs + Cd) × Vt (Equation 6) Immediately after data writing, the accumulated charge amount is Cs ×
Since Vcc (“1” state) and 0 (“0” state), Vi is conventionally set to Vcc / 2 in order to equalize the margins of Qr1 and Qr0 with respect to Vt variation between chips, between wafers or between lots. .
【0015】これに対して本発明では、所望の時間デー
タを保持した時点で両者のマージンが等しくなるように
Viを設定する方が効率的であると考え、蓄積電荷量が
時間とともにどのように変化するかについて考察を行っ
た。On the other hand, in the present invention, it is more efficient to set Vi so that both margins become equal when the desired time data is held, and how the accumulated charge amount changes with time. We considered whether it would change.
【0016】上記したように蓄積電荷は主にpn接合を
介したリーク電流によりその値が変動する。ところで、
Si基板の電位は常時負の電位Vbbに保持されている
ので、蓄積電極にCs×Vcc(>0)と0のいずれの
電荷を蓄積しようとも蓄積電極にはSi基板に対して正
の電圧が付加されているので、リーク電流が常に蓄積電
極からSi基板へと流れることになる。これは時間の経
過とともに蓄積電荷量が“1”状態に対してのみなら
ず、“0”状態に対しても減少していくことを意味す
る。したがって、書き込みから読み出しまでの時間(デ
ータ保持時間)が長くなると、Qr1が減少しやがて数
5の条件が満たされなくなりデータの消失が生じる。こ
れに対してQr0も同じく減少するがこれは逆に数6の
条件の成立をより確かなものにすることになる。As described above, the value of the accumulated charge fluctuates mainly due to the leak current through the pn junction. by the way,
Since the potential of the Si substrate is always held at the negative potential Vbb, a positive voltage with respect to the Si substrate is applied to the storage electrode regardless of whether Cs × Vcc (> 0) or 0 is stored in the storage electrode. Since it is added, the leak current always flows from the storage electrode to the Si substrate. This means that the accumulated charge amount decreases not only for the “1” state but also for the “0” state as time passes. Therefore, when the time from writing to reading (data holding time) becomes long, Qr1 decreases, and the condition of the equation 5 is not satisfied, and data disappears. On the other hand, Qr0 also decreases, but on the contrary, this makes the establishment of the condition of Expression 6 more reliable.
【0017】したがって、“1”状態の残留蓄積電荷量
Qr1に対してマージンをより多く確保すれば、“0”
状態の誤検出を生じることもなくデータ保持時間をより
長くできることに思い至った。そのためにはViの電位
を従来のVcc/2よりも小さく設定すればよい。Therefore, if a larger margin is secured for the residual accumulated charge amount Qr1 in the "1" state, "0" is obtained.
I realized that the data retention time could be extended without causing erroneous state detection. For that purpose, the potential of Vi may be set smaller than the conventional Vcc / 2.
【0018】次に、Viの値の設計方法について述べ
る。数5から明らかなように、Viが小さければ小さい
ほどデータ保持時間は長くなるが、Viが小さ過ぎる場
合には数6の条件が満たされなくなり“0”状態の誤検
出という問題が生じる。Qr0は時間とともに減少して
いくので、これを防ぐには書き込み直後に数6の条件が
成立すれば良い。この条件から、Viの満たすべき条件
式が数7のように求まる。Next, a method of designing the value of Vi will be described. As is clear from Expression 5, the smaller Vi is, the longer the data holding time is. However, when Vi is too small, the condition of Expression 6 is not satisfied, and a problem of erroneous detection of the “0” state occurs. Since Qr0 decreases with time, this can be prevented by satisfying the condition of Expression 6 immediately after writing. From this condition, the conditional expression that should be satisfied by Vi is obtained as shown in Expression 7.
【0019】[0019]
【数7】 Vi≧(1+Cd/Cs)×Vt …(数7) したがって、DRAMのすべてのメモリセルで数7が成
立する範囲内でViをなるべく小さく設計すると、
“0”状態の誤検出を生じることなく“1”状態のデー
タ保持時間を従来より長くすることが可能となる。[Expression 7] Vi ≧ (1 + Cd / Cs) × Vt (Expression 7) Therefore, if Vi is designed to be as small as possible within the range where Expression 7 holds in all the memory cells of the DRAM,
The data holding time in the "1" state can be made longer than before without causing the false detection of the "0" state.
【0020】なお、使い勝手を良くするために、電圧V
iは外部から供給するのではなく内部的に発生させるこ
とが望ましい。また、上記したようにデータ保持時間を
より長くするために、Viはなるべく小さいことが望ま
しいが、電圧が固定の場合には製造工程におけるチップ
間,ウェハ間、あるいはロット間での形状等の変動によ
り数6の条件を満たさないメモリセルが作成されてしま
う場合もある。In order to improve the usability, the voltage V
It is desirable that i is generated internally instead of being supplied from the outside. Further, as described above, it is desirable that Vi is as small as possible in order to make the data retention time longer. However, when the voltage is fixed, variations in shape or the like between chips, between wafers, or between lots in the manufacturing process. Therefore, a memory cell that does not satisfy the condition of Expression 6 may be created.
【0021】これに対処するためにはViを可変とし、
“0”状態の誤検出が生じる場合にはViを増加させる
と良品に変えることができる。他方、データ保持時間が
所定の規格に未達であり、かつ“0”状態の誤検出も生
じていない場合には、Viを減少させるとデータ保持時
間を長くすることができ規格を満たすものを増やすこと
ができる。In order to deal with this, Vi is made variable,
When the erroneous detection of the "0" state occurs, it can be changed to a good product by increasing Vi. On the other hand, when the data retention time does not reach the predetermined standard and the false detection of the “0” state does not occur, the data retention time can be lengthened by decreasing Vi and the data satisfying the standard must be satisfied. You can increase.
【0022】なお、このようにViの値が適切でないた
めに生じる誤検出はセンスアンプの検出感度やデータ線
寄生容量の変動により生じることが多い。この場合誤動
作はメモリセル単独ではなくデータ線毎に生じることに
なるので、異物や結晶欠陥に起因する誤検出と区別でき
ることが多い。The erroneous detection caused by the inappropriate value of Vi is often caused by the fluctuation of the detection sensitivity of the sense amplifier or the parasitic capacitance of the data line. In this case, since the malfunction occurs not for each memory cell but for each data line, it can often be distinguished from the false detection caused by a foreign substance or a crystal defect.
【0023】以上、p型ウェル内に形成されたDRAM
に即して本発明の手段を説明したが、n型ウェル内に形
成されたDRAMに対しても本発明が有効であることは
いうまでもない。後者の場合にも、Viは0VとVcc
/2との間に設定すれば良いが、“0”状態の誤検出に
対してはViを減少(絶対値を増加)させ、“1”状態
の誤検出に対してはViを増加(絶対値を減少)させれ
ば良い。As described above, the DRAM formed in the p-type well
Although the means of the present invention has been described in accordance with the above, it goes without saying that the present invention is also effective for a DRAM formed in an n-type well. In the latter case, Vi is 0V and Vcc.
/ 2, but Vi is decreased (increases the absolute value) for erroneous detection in the "0" state, and Vi is increased (absolute value for erroneous detection in the "1" state. Decrease the value).
【0024】[0024]
(実施例1)図1に、本発明の第一の実施例であるDR
AMの断面図を示す。本実施例は以下のように作成し
た。(Embodiment 1) FIG. 1 shows a DR which is a first embodiment of the present invention.
A sectional view of AM is shown. This example was created as follows.
【0025】p型ウェル1上にLOCOS(local oxid
ation of silicon)法により素子分離酸化膜9を形成し
た後、ゲート酸化膜2,ゲート電極3を作成する。次い
で接続孔を有する第一の層間絶縁膜4を形成した後、蓄
積電極6,キャパシタ絶縁膜7,プレート電極8を形成
し、キャパシタを完成させる。次いで、接続孔を有する
第二の層間絶縁膜13を形成した後、データ線14を形
成する。なお、第二の層間絶縁膜13の開孔部のパッド
電極12は蓄積電極6と同時に形成した。また、拡散層
5と11はそれぞれ蓄積電極6およびパッド電極12か
らの固相拡散により形成した。その後、層間絶縁膜,配
線および表面保護膜(図示せず)を形成することにより
本実施例のDRAMを完成させた。LOCOS (local oxid
After forming the element isolation oxide film 9 by the ation of silicon) method, the gate oxide film 2 and the gate electrode 3 are formed. Next, after forming the first interlayer insulating film 4 having a connection hole, the storage electrode 6, the capacitor insulating film 7, and the plate electrode 8 are formed to complete the capacitor. Next, after forming the second interlayer insulating film 13 having a connection hole, the data line 14 is formed. The pad electrode 12 in the opening of the second interlayer insulating film 13 was formed at the same time as the storage electrode 6. The diffusion layers 5 and 11 were formed by solid phase diffusion from the storage electrode 6 and the pad electrode 12, respectively. After that, an interlayer insulating film, wiring and a surface protective film (not shown) are formed to complete the DRAM of this embodiment.
【0026】なお、ゲート酸化膜10および拡散層11
と5の直下と周辺には空乏層10が形成されている。同
DRAM1個の内部にはメモリセルを64M個形成し
た。キャパシタの容量は平均で25fF,データ線の寄
生容量は平均で200fF(Cd/Cs=8)である。
また、データの書き込み電圧Vccは3.6V、データ
線のプリチャージ電圧Viは1Vに設計してある。Vi
はDRAMに内蔵した回路(図示せず)により発生させ
ている。The gate oxide film 10 and the diffusion layer 11
A depletion layer 10 is formed immediately under and around 5 and 5. 64M memory cells were formed inside one DRAM. The capacitance of the capacitor is 25 fF on average, and the parasitic capacitance of the data line is 200 fF (Cd / Cs = 8) on average.
The data write voltage Vcc is designed to be 3.6V, and the data line precharge voltage Vi is designed to be 1V. Vi
Is generated by a circuit (not shown) built in the DRAM.
【0027】まず、通常の手順に従って64M個の全ビ
ットについてデータ保持特性を測定し、不良メモリセル
を予め予備に形成しておいたメモリセルと置換した。そ
の後、データ保持時間を再度測定したところその最小値
は720ミリ秒であった。本実施例の効果を確認するた
めにプリチャージ電圧を従来通りVccの半分(1.8
V)としてデータ保持特性を測定したところ、データ保
持時間の最小値は450ミリ秒であった。なお、同電圧
(1.8V)は特性評価用に特別に形成した電極を介して
外部的に供給した。この結果から、本実施例ではデータ
保持時間を従来技術の約1.6 倍にする効果のあること
が分かる。First, the data retention characteristics of all 64M bits were measured according to the usual procedure, and the defective memory cell was replaced with the memory cell previously formed in advance. Then, when the data retention time was measured again, the minimum value was 720 milliseconds. In order to confirm the effect of this embodiment, the precharge voltage is half the Vcc (1.8
When the data retention characteristic was measured as V), the minimum value of the data retention time was 450 milliseconds. The same voltage
(1.8 V) was supplied externally through an electrode specially formed for characteristic evaluation. From this result, it can be seen that the present embodiment has the effect of increasing the data retention time by about 1.6 times that of the conventional technique.
【0028】(実施例2)本実施例は図1と同様にして
形成したが、プリチャージ電圧を変化させることのでき
る回路を内蔵していることが上記実施例1と異なる。(Embodiment 2) This embodiment is formed in the same manner as in FIG. 1, but differs from Embodiment 1 in that a circuit capable of changing the precharge voltage is incorporated.
【0029】まず、プリチャージ電圧を1Vにして実施
例1と同様にして不良メモリセルの置換を行った後、デ
ータ保持時間を測定したところ、最小値が440ミリ秒
であり規格の500ミリ秒を下回っていた。First, after replacing the defective memory cell with the precharge voltage of 1 V in the same manner as in Example 1, the data retention time was measured. The minimum value was 440 milliseconds, which was 500 milliseconds of the standard. Was below.
【0030】メモリセル間でデータ保持時間の分布を調
べたところ、データ保持時間が最小であるメモリセルと
同一のデータ線に接続されたメモリセルの中にデータ保
持時間の小さいものが多かった。そこでプリチャージ電
圧を0.6V として再度測定を行ったところ、データ保
持時間の最小値が520ミリ秒にまで改善され規格を満
たすことができた。なお、プリチャージ電圧を0.4V
にまで低下させた際には、“0”状態の読み出しに誤検
出を生じるメモリセルが出現した。When the distribution of the data retention time among the memory cells was examined, it was found that many of the memory cells connected to the same data line as the memory cell having the minimum data retention time had a short data retention time. Therefore, when the precharge voltage was set to 0.6 V and the measurement was performed again, the minimum value of the data retention time was improved to 520 milliseconds and the standard could be satisfied. The precharge voltage is 0.4V
When the voltage was lowered to 0, some memory cells appeared which caused an erroneous detection in reading the "0" state.
【0031】(実施例3)本実施例のDRAMの構造は
実施例2と同じである。(Embodiment 3) The structure of the DRAM of this embodiment is the same as that of the second embodiment.
【0032】まず、プリチャージ電圧を0.8V にして
上記実施例1と同様にして不良メモリセルの置換を行っ
た後、データ保持時間を測定したところ、“1”状態の
検出に関してはデータ保持時間が680ミリ秒になるま
で誤検出が生じず規格の500ミリ秒を上回っていた。し
かし、“0”状態の読み出しに誤検出を生じるメモリセ
ルが存在した。そこでプリチャージ電圧を1Vとして再
度測定を行ったところ、“0”状態の読み出しの誤検出
が解消した。この時、データ保持時間の最小値が610
ミリ秒に低下したが規格の500ミリ秒は満たしてい
た。First, after replacing the defective memory cell with the precharge voltage of 0.8 V in the same manner as in the first embodiment, the data retention time was measured. As for the detection of the "1" state, the data retention was carried out. False detections did not occur until the time reached 680 ms, which exceeded the standard of 500 ms. However, there was a memory cell that caused an erroneous detection when reading the "0" state. Then, when the precharge voltage was set to 1 V and the measurement was performed again, the erroneous detection of the reading in the “0” state was resolved. At this time, the minimum value of the data retention time is 610.
Although it decreased to milliseconds, it satisfied the standard of 500 milliseconds.
【0033】[0033]
【発明の効果】本発明によれば、データの保持時間を長
くすることができるのでDRAMの消費電力を低減する
ことができる。特に、データ保持不良の発生状況に応じ
てデータ保持時間を長くする手段を提供することができ
るので、従来技術では対応できなかった不良を救済する
効果がある。According to the present invention, since the data holding time can be lengthened, the power consumption of the DRAM can be reduced. In particular, since it is possible to provide a means for lengthening the data holding time depending on the occurrence status of the data holding failure, there is an effect of relieving the failure which cannot be dealt with by the conventional technique.
【図1】本発明の第一の実施例を示す断面図。FIG. 1 is a sectional view showing a first embodiment of the present invention.
1…p型ウェル、2…ゲート酸化膜、3…ゲート電極、
4…第一の層間絶縁膜、5,11…拡散層、6…蓄積電
極、7…キャパシタ絶縁膜、8…プレート電極、9…素
子分離酸化膜、10…空乏層、12…パッド電極、13
…第二の層間絶縁膜、14…データ線。1 ... P-type well, 2 ... Gate oxide film, 3 ... Gate electrode,
4 ... First interlayer insulating film, 5, 11 ... Diffusion layer, 6 ... Storage electrode, 7 ... Capacitor insulating film, 8 ... Plate electrode, 9 ... Element isolation oxide film, 10 ... Depletion layer, 12 ... Pad electrode, 13
... second interlayer insulating film, 14 ... data line.
Claims (7)
して事前に与える電圧の絶対値が、情報書き込み時の電
圧の絶対値の半分よりも小さいことを特徴とする半導体
記憶装置。1. A semiconductor memory device, wherein an absolute value of a voltage applied to a data line in advance when reading stored information is smaller than half an absolute value of a voltage when writing information.
の間の電圧を発生させる回路を内蔵している随時書き込
み読み出し型半導体記憶装置。2. An occasional write / read type semiconductor memory device having a built-in circuit for generating a voltage between half the voltage used for writing information and 0V.
とが可能である請求項1または2に記載の半導体記憶装
置。3. The semiconductor memory device according to claim 1, wherein the voltage applied to the data line can be changed.
える上記電圧を変化させる請求項3に記載の半導体記憶
装置。4. The semiconductor memory device according to claim 3, wherein the voltage applied to the data line is changed in accordance with a retention characteristic of stored information.
積電極に書き込んだ後、再度読み出しを行った際に、絶
対値の小さい方の電圧に対して再度読み出した情報に誤
りの生じる場合にデータ線に加える電圧の絶対値を増加
させる請求項4に記載の半導体記憶装置。5. When the information to be stored is converted into the magnitude of the voltage and written in the storage electrode and then read again, an error occurs in the information read again for the voltage having the smaller absolute value. The semiconductor memory device according to claim 4, wherein the absolute value of the voltage applied to the data line is increased.
積電極に書き込んだ後、再度読み出しを行った際に、絶
対値の大きい方の電圧に対して再度読み出した情報に誤
りの生じる場合にデータ線に加える上記電圧の絶対値を
減少させる請求項4に記載の半導体記憶装置。6. When the information to be stored is converted into the magnitude of the voltage and written in the storage electrode and then read again, an error occurs in the information read again for the voltage having the larger absolute value. The semiconductor memory device according to claim 4, wherein the absolute value of the voltage applied to the data line is reduced in some cases.
セルで再度読み出した情報に誤りの生じる場合にデータ
線に加える電圧の絶対値を増加もしくは減少させる請求
項5または6に記載の半導体記憶装置。7. The semiconductor according to claim 5, wherein the absolute value of the voltage applied to the data line is increased or decreased when an error occurs in the information read again in a plurality of memory cells connected to the same data line. Storage device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8051329A JPH09246487A (en) | 1996-03-08 | 1996-03-08 | Semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8051329A JPH09246487A (en) | 1996-03-08 | 1996-03-08 | Semiconductor memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09246487A true JPH09246487A (en) | 1997-09-19 |
Family
ID=12883890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8051329A Pending JPH09246487A (en) | 1996-03-08 | 1996-03-08 | Semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09246487A (en) |
-
1996
- 1996-03-08 JP JP8051329A patent/JPH09246487A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5490116A (en) | Semiconductor memory device including a component having improved breakdown voltage characteristics | |
JP2929430B2 (en) | DRAM without capacitor and method of manufacturing the same | |
JP3120276B2 (en) | Memory cell, memory device and manufacturing method thereof | |
US5604707A (en) | Semiconductor memory device responsive to hierarchical internal potentials | |
US8199559B2 (en) | Semiconductor device, semiconductor memory device and data processing system comprising semiconductor system | |
US7265412B2 (en) | Semiconductor memory device having memory cells requiring no refresh operation | |
JPH08250673A (en) | Semiconductor device | |
JPH04188869A (en) | Semiconductor memory device comprising junction type fet and capacitor and manufacture thereof | |
US5148392A (en) | Semiconductor memory device | |
US6201730B1 (en) | Sensing of memory cell via a plateline | |
US5771189A (en) | DRAM cell and method of reading data from DRAM cell | |
US9437280B2 (en) | DRAM sense amplifier that supports low memory-cell capacitance | |
JP3193581B2 (en) | 1-transistor 1-capacitor dynamic random access memory | |
US6661700B2 (en) | Semiconductor memory device | |
KR20020057356A (en) | Arrangement of a bit line boosting capacitor in a semiconductor memory device | |
US5175707A (en) | Semiconductor memory device having a driving circuit provided in association with a high speed sense amplifier circuit | |
JPH09246487A (en) | Semiconductor memory device | |
JP3488070B2 (en) | Dynamic semiconductor memory device and pause time test method for dynamic semiconductor memory device | |
US6781866B2 (en) | Semiconductor memory and writing method and reading method for the same | |
KR20040017208A (en) | Semiconductor memory device | |
JPH05225777A (en) | Semiconductor memory device | |
JPH0896597A (en) | Semiconductor memory circuit and its leakage current measuring method and evaluation method for semiconductor substrate | |
JPH01132156A (en) | Semiconductor storage device | |
CN116936538A (en) | Plasma damage detection structure and detection method | |
GB2068639A (en) | Semiconductor memory device |