JPH09246219A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH09246219A
JPH09246219A JP5471896A JP5471896A JPH09246219A JP H09246219 A JPH09246219 A JP H09246219A JP 5471896 A JP5471896 A JP 5471896A JP 5471896 A JP5471896 A JP 5471896A JP H09246219 A JPH09246219 A JP H09246219A
Authority
JP
Japan
Prior art keywords
insulating film
interlayer insulating
film
stopper
cmp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5471896A
Other languages
Japanese (ja)
Inventor
Hisami Otsuka
久美 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5471896A priority Critical patent/JPH09246219A/en
Publication of JPH09246219A publication Critical patent/JPH09246219A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for flattening a film without depending on the pattern of an interlayer insulating film on the face of a substrate which is the object to be flattened by a CMP method. SOLUTION: The face of the interlayer insulating film 13 where a fine area 10 which is formed on the semiconductor substrate 10, has coarse and fine roughness of the face and the area that a projecting part occupies is large in a local range and a coarse area 10b in which the area that a recessing part occupies is small coexist is flattened by a CMP method. A process for forming stopper films 14 whose polishing rate by means of the CMP method is smaller than the interlayer insulating film 13 only on the side wall parts of the desired projecting parts in the coarse area 10b on the face of the interlayer insulating film 13 on the interlayer insulating film and a process for polishing the face of the interlayer insulating film 24 by the CMP method and polishing stopper films 14 at the same time are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に係り、特に半導体基板上の層間絶縁膜の表面を化
学機械研磨(CMP;Chemical Mechanical Polishing
)技術により平坦化する方法に関するもので、例えば
埋め込み素子分離(STI;Shallow TrenchIsolatio
n)の平坦化などに使用されるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a surface of an interlayer insulating film on a semiconductor substrate, which is subjected to chemical mechanical polishing (CMP).
) Technology for planarization, for example, buried element isolation (STI; Shallow Trench Isolation)
n) is used for flattening.

【0002】[0002]

【従来の技術】従来、半導体基板上の層間絶縁膜の表面
を平坦化する方法として、(1)多層エッチバック法、
(2)レジストエッチバック法、(3)リフロープロセ
スなどのほかに、(4)CMP法が知られている。
2. Description of the Related Art Conventionally, as a method for flattening the surface of an interlayer insulating film on a semiconductor substrate, (1) a multilayer etch back method,
Besides (2) resist etch back method, (3) reflow process, etc., (4) CMP method is known.

【0003】前記多層エッチバック法は、層間絶縁膜上
にステップカバレッジのよい絶縁膜を堆積させ、反応性
イオンエッチング(RIE;Reactive Ion Etching)法
によるドライエッチングして平坦化する方法である。
The multilayer etch back method is a method of depositing an insulating film having good step coverage on an interlayer insulating film and flattening it by dry etching by a reactive ion etching (RIE) method.

【0004】前記レジストエッチバック法は、層間絶縁
膜上にフォトレジストを塗布して層間膜とレジストとを
同じ選択比でRIE法によりエッチングして平坦化する
方法である。
The resist etch-back method is a method in which a photoresist is applied on an interlayer insulating film and the interlayer film and the resist are flattened by etching by the RIE method at the same selection ratio.

【0005】前記リフロープロセスは、半導体基板上に
リフロー性を有するボロン・リン・シリケートガラス
(BPSG;Borophosphosilicate Glass )膜を形成し
た後に熱により粘性流動を起こさせて平坦化する方法で
ある。
The reflow process is a method in which a boron-phosphosilicate glass (BPSG) film having a reflow property is formed on a semiconductor substrate and then viscous flow is caused by heat to flatten the film.

【0006】これらの(1)〜(3)の方法では平坦化
に限界があり、これらに代わる方法として(4)のCM
P法が実用化されている。このCMP法は、スラリーと
呼ばれる研磨材を半導体基板上の例えば層間絶縁膜上に
流しながら、化学的かつ機械的に層間膜表面を研磨して
平坦化する方法であり、半導体デバイスの微細化が進む
中で新しい平坦化技術として着目されている。
[0006] These methods (1) to (3) have a limitation in flattening, and as an alternative method, the CM of (4) is used.
The P method has been put to practical use. This CMP method is a method of polishing the surface of an interlayer film chemically and mechanically and flattening it while flowing an abrasive material called a slurry onto, for example, an interlayer insulating film on a semiconductor substrate. As it progresses, it is attracting attention as a new flattening technology.

【0007】しかし、CMP法にもいろいろな問題があ
ることが分かってきた。その一つが平坦化の対象となる
基板表面上の層間絶縁膜のパターンに依存して平坦化の
程度が異なる(パターン依存性を持つ)ことである。
However, it has been found that the CMP method also has various problems. One of them is that the degree of planarization varies (has pattern dependence) depending on the pattern of the interlayer insulating film on the substrate surface to be planarized.

【0008】即ち、図3に示すように、層間絶縁膜30
の表面に大きさの異なる凸部31、32が存在すると、
CMP法により平坦化しようとした場合、面積が小さい
方の凸部31は完全に平坦化されるが、面積が大きい方
の凸部32は段差が残ってしまう。
That is, as shown in FIG. 3, the interlayer insulating film 30 is formed.
If convex portions 31 and 32 having different sizes are present on the surface of
When it is attempted to flatten by the CMP method, the convex portion 31 having a smaller area is completely planarized, but the convex portion 32 having a larger area leaves a step.

【0009】このように、面積が小さい方の凸部31の
ような密なパターンと面積が大きい方の凸部32のよう
な粗なパターンとが混在しているパターンをCMP法に
より平坦化しようとした場合、密なパターンと粗なパタ
ーンとではポリッシングレートが異なる(密なパターン
のポリッシングレートが粗なパターンのポリッシングレ
ートよりも遅くなる)ので、粗なパターンは完全に平坦
化されるが、密なパターンは段差が残ってしまうので、
均一なポリッシングが不可能であった。
As described above, the pattern in which the dense pattern such as the convex portion 31 having the smaller area and the coarse pattern such as the convex portion 32 having the larger area are mixed is flattened by the CMP method. In that case, since the polishing rate is different between the dense pattern and the rough pattern (the polishing rate of the dense pattern becomes slower than the polishing rate of the rough pattern), the rough pattern is completely flattened, Since a dense pattern leaves a step,
Uniform polishing was impossible.

【0010】[0010]

【発明が解決しようとする課題】上記したように従来の
CMP法は、平坦化の対象となる基板表面上の層間絶縁
膜のパターンに依存して平坦化の程度が異なるという問
題があった。本発明は上記の問題点を解決すべくなされ
たもので、CMP法による平坦化の対象となる基板表面
上の層間絶縁膜のパターンに依存せずに平坦化し得る半
導体装置の製造方法を提供することを目的とする。
As described above, the conventional CMP method has a problem that the degree of planarization varies depending on the pattern of the interlayer insulating film on the surface of the substrate to be planarized. The present invention has been made to solve the above problems, and provides a method for manufacturing a semiconductor device that can be planarized without depending on the pattern of the interlayer insulating film on the surface of the substrate to be planarized by the CMP method. The purpose is to

【0011】[0011]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に形成され、その表面に粗密な
凹凸形状を有し、局所的な範囲において凸部の占める面
積が大きい密領域と凸部の占める面積が小さい粗領域と
が混在する層間絶縁膜の表面をCMP法により平坦化す
る際、前記層間絶縁膜の表面の粗領域における所望の凸
部の側壁部にのみCMP法によるポリッシングレートが
前記層間絶縁膜より遅いストッパー膜を前記層間絶縁膜
上に形成する工程と、前記層間絶縁膜の表面をCMP法
によりポリッシングすると同時に前記ストッパー膜もポ
リッシングする工程とを具備することを特徴とする。
A method of manufacturing a semiconductor device according to the present invention is a method for forming a semiconductor device, which is formed on a semiconductor substrate and has a rough and uneven shape on its surface, and in which a convex portion occupies a large area in a local range. When the surface of the interlayer insulating film in which a region and a rough region in which the convex portion occupies a small area are mixed is flattened by the CMP method, the CMP method is applied only to the side wall of the desired convex portion in the rough region of the surface of the interlayer insulating film. Forming a stopper film having a polishing rate slower than that of the interlayer insulating film on the interlayer insulating film, and polishing the surface of the interlayer insulating film by a CMP method and at the same time polishing the stopper film. Characterize.

【0012】また、本発明の半導体装置の製造方法は、
シリコン基板上に形成され、その表面に粗密な凹凸形状
を有し、局所的な範囲において凸部の占める面積が大き
い密領域と凸部の占める面積が小さい粗領域とが混在す
る層間絶縁膜の表面をCMP法により平坦化する際、前
記層間絶縁膜の表面の粗領域における所望の凸部の側壁
部にのみCMP法によるポリッシングレートが無限大の
ストッパー膜を前記層間絶縁膜上に形成する工程と、前
記層間絶縁膜の表面をCMP法によりポリッシングする
工程と、前記ストッパー膜を除去した後、残存している
前記層間絶縁膜の表面をCMP法によりポリッシングす
る工程とを具備することを特徴とする。
Further, a method of manufacturing a semiconductor device according to the present invention
An interlayer insulating film formed on a silicon substrate, having a rough and uneven shape on its surface, in which a dense region in which a convex portion occupies a large area in a local range and a rough region in which a convex portion occupies a small area coexist A step of forming a stopper film having an infinite polishing rate by the CMP method on the interlayer insulating film only on the side wall portion of a desired convex portion in a rough region of the surface of the interlayer insulating film when the surface is planarized by the CMP method. And a step of polishing the surface of the interlayer insulating film by the CMP method, and a step of removing the stopper film and polishing the remaining surface of the interlayer insulating film by the CMP method. To do.

【0013】[0013]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。図1(a)乃至(c)は、
本発明の半導体装置の製造方法の第1の実施の形態に係
るシリコン基板上の層間絶縁膜表面に対するCMP法に
よる平坦化工程を示している。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 (a) to 1 (c),
1 shows a planarization step by a CMP method for a surface of an interlayer insulating film on a silicon substrate according to a first embodiment of a method for manufacturing a semiconductor device of the present invention.

【0014】本例では、図1(a)に示すような半導体
基板(例えばシリコン基板)10上に形成された埋め込
み素子分離(STI)領域のように、表面に粗密な凹凸
形状を有し、局所的な範囲において凸部の占める面積が
大きい密な領域(密領域)と凸部の占める面積が小さい
粗な領域(粗領域)とが混在する第1の層間絶縁膜13
の表面をCMP法により平坦化する場合について説明す
る。
In this example, the surface has a rough uneven shape like a buried element isolation (STI) region formed on a semiconductor substrate (for example, a silicon substrate) 10 as shown in FIG. The first interlayer insulating film 13 in which a dense region (a dense region) in which a convex portion occupies a large area and a rough region (a coarse region) in which a convex portion occupies a small area coexist in a local range.
A case will be described in which the surface of is planarized by the CMP method.

【0015】なお、上記埋め込み素子分離領域を形成す
る際には、シリコン基板10上にシリコン酸化膜11と
ポリシュストッパー用の第1の多結晶シリコン膜12と
を順次形成し、フォトレジスト(図示せず)を塗布して
パターニングし、このレジストパターンをマスクとして
RIE法により前記第1の多結晶シリコン膜12とシリ
コン酸化膜11とシリコン基板10とを順次エッチング
加工する。この場合、基板10上の例えばメモリセル形
成領域10aには凹凸形状のパターンが規則的に密に並
び、上記メモリセル形成領域から少し離れた配線領域1
0bには凸形状の孤立配線パターンが存在するように形
成する。
When forming the buried element isolation region, a silicon oxide film 11 and a first polycrystalline silicon film 12 for a polish stopper are sequentially formed on a silicon substrate 10 and a photoresist (not shown) is formed. No.) is applied and patterned, and the first polycrystalline silicon film 12, the silicon oxide film 11, and the silicon substrate 10 are sequentially etched by the RIE method using this resist pattern as a mask. In this case, for example, in the memory cell formation region 10a on the substrate 10, the uneven patterns are regularly arranged densely, and the wiring region 1 slightly apart from the memory cell formation region is formed.
0b is formed so that a convex isolated wiring pattern exists.

【0016】次に、前記レジストパターンを除去し、L
PCVD(減圧気相成長)法により基板上全面に第1の
層間絶縁膜13となるTEOS(Traethylorthosilicat
e 、SiO482 O)膜を隙間なく堆積させる。
Next, the resist pattern is removed and L
TEOS (Traethylorthosilicat) which becomes the first interlayer insulating film 13 is formed on the entire surface of the substrate by PCVD (Low Pressure Vapor Deposition) method.
e, SiO 4 C 8 H 2 O) film is deposited without gaps.

【0017】なお、前記第1の多結晶シリコン膜12は
後工程で行うCMPに対するストッパー材となるが、こ
の第1の多結晶シリコン膜12に限らず、CMPに際し
て前記第1の層間絶縁膜13に対して同程度の選択比を
有する窒化シリコン膜も使用することができる。
Although the first polycrystalline silicon film 12 serves as a stopper material for CMP performed in a later step, the first polycrystalline silicon film 12 is not limited to the first polycrystalline silicon film 12, and the first interlayer insulating film 13 is used for CMP. It is also possible to use a silicon nitride film having a similar selection ratio to.

【0018】前記第1の層間絶縁膜13の表面に対する
CMPに際しては、予め、図1(b)に示すように、前
記第1の層間絶縁膜13の表面の粗領域において基板の
表面方向に対して例えば60度以上の角度をなす段差を
有する凸部の側壁部にのみ、CMP法によるポリッシン
グレートが第1の層間絶縁膜13より遅いストッパー膜
14を形成する。
Before CMP is performed on the surface of the first interlayer insulating film 13, as shown in FIG. 1B, a rough region of the surface of the first interlayer insulating film 13 is formed in advance in the surface direction of the substrate. As a result, the stopper film 14 having a polishing rate by the CMP method that is slower than that of the first interlayer insulating film 13 is formed only on the side wall portion of the protrusion having a step forming an angle of, for example, 60 degrees or more.

【0019】このストッパー膜14を形成するには、ま
ず、CMP法によるポリッシングレートが第1の層間絶
縁膜13より遅い第2の層間絶縁膜(例えば第2の多結
晶シリコン膜)を第1の層間絶縁膜13上に形成する。
次に、所望の凸部の側壁部上にのみ第2の層間絶縁膜を
残すようにエッチングする。この際、例えば次の
(1)、(2)に述べるような方法がある。
In order to form this stopper film 14, first, a second interlayer insulating film (for example, a second polycrystalline silicon film) whose polishing rate by the CMP method is slower than that of the first interlayer insulating film 13 is first formed. It is formed on the interlayer insulating film 13.
Next, etching is performed so that the second interlayer insulating film remains only on the side wall of the desired convex portion. At this time, for example, there are methods described in (1) and (2) below.

【0020】(1)全ての凸部の側壁部にのみ第2の層
間絶縁膜を残すようにRIE法により第2の層間絶縁膜
をエッチングする。次に、基板上にフォトレジストを塗
布し、ストッパー膜14を形成したい所望の凸部の側壁
部上(メモリセル形成領域10aのエッジ部上および孤
立配線パターンのエッジ部上)にのみレジストを残すよ
うにパターンを形成し、このレジストパターンをエッチ
ングマスクとしてRIE法あるいはCDE法により第2
の層間絶縁膜を選択的に除去した後にレジストパターン
を除去する。
(1) The second interlayer insulating film is etched by the RIE method so that the second interlayer insulating film is left only on the sidewalls of all the convex portions. Next, a photoresist is applied on the substrate, and the resist is left only on the side wall portions of the desired convex portions where the stopper film 14 is to be formed (on the edge portions of the memory cell formation region 10a and the edge portions of the isolated wiring pattern). Pattern is formed as described above, and the resist pattern is used as an etching mask to form a second layer by RIE or CDE.
The resist pattern is removed after selectively removing the interlayer insulating film.

【0021】(2)基板上にフォトレジストを塗布し、
メモリセル形成領域10aのエッジ部上および孤立配線
パターン上にのみレジストを残すようにパターンを形成
し、このレジストパターンをエッチングマスクとしてR
IE法あるいはCDE法により第2の層間絶縁膜を選択
的に除去する。次に、前記レジストパターンを除去した
後、ストッパー膜14を形成したい所望の凸部の側壁部
上(メモリセル形成領域10aのエッジ部上および孤立
配線パターンのエッジ部上)にのみ第2の層間絶縁膜を
残すようにRIE法により第2の層間絶縁膜を選択的に
除去する。
(2) A photoresist is coated on the substrate,
A pattern is formed such that the resist is left only on the edge portion of the memory cell formation region 10a and on the isolated wiring pattern, and the resist pattern is used as an etching mask to form an R pattern.
The second interlayer insulating film is selectively removed by the IE method or the CDE method. Next, after removing the resist pattern, the second interlayer is formed only on the side wall of the desired convex portion where the stopper film 14 is to be formed (on the edge of the memory cell formation region 10a and on the edge of the isolated wiring pattern). The second interlayer insulating film is selectively removed by RIE so that the insulating film remains.

【0022】上記したようにストッパー膜14を形成し
た後、第1の層間絶縁膜13の表面をCMP法によりポ
リッシングすると同時にストッパー膜14もポリッシン
グする。この際、ポリッシングレート比は、第1の層間
絶縁膜13:ストッパー膜14=5:1であるので、ス
トッパー膜14が存在しない従来例に比べて孤立配線パ
ターンのポリッシングレートが遅くなり、第1の層間絶
縁膜13の表面の粗領域のポリッシングレートと密領域
のポリッシングレートとがほぼ等しくなる。
After forming the stopper film 14 as described above, the surface of the first interlayer insulating film 13 is polished by the CMP method, and at the same time, the stopper film 14 is also polished. At this time, since the polishing rate ratio is the first interlayer insulating film 13: stopper film 14 = 5: 1, the polishing rate of the isolated wiring pattern becomes slower than that of the conventional example in which the stopper film 14 does not exist, and The polishing rate of the rough region and the polishing rate of the dense region on the surface of the interlayer insulating film 13 are substantially equal to each other.

【0023】これにより、図1(c)に示すように、均
一なポリッシングが可能になり、CMP法による平坦化
の対象となる基板表面上の層間絶縁膜13のパターンに
依存せずに平坦化することが可能になる。
As a result, as shown in FIG. 1C, uniform polishing is possible, and the planarization is performed without depending on the pattern of the interlayer insulating film 13 on the surface of the substrate which is the object of planarization by the CMP method. It becomes possible to do.

【0024】上記したようなCMP法による平坦化工程
によれば、まず、層間絶縁膜13の表面の粗領域におけ
る所望の凸部の側壁部にのみ、CMP法によるポリッシ
ングレートが層間絶縁膜13より遅いストッパー膜14
を形成し、この後にCMP法によるポリッシングを行
う。
According to the flattening step by the CMP method as described above, first, the polishing rate by the CMP method is higher than that by the interlayer insulating film 13 only on the side wall portion of the desired convex portion in the rough region of the surface of the interlayer insulating film 13. Slow stopper film 14
Are formed, and thereafter, polishing is performed by the CMP method.

【0025】この際、層間絶縁膜13の表面の粗領域の
ポリッシングレートと密領域のポリッシングレートとが
ほぼ等しくなるので、図1(c)に示したように均一な
ポリッシングが可能になる。つまり、CMP法による平
坦化の対象となる基板表面上の層間絶縁膜13のパター
ンに依存せずに平坦化することが可能になる。
At this time, since the polishing rate of the rough area and the polishing rate of the dense area on the surface of the interlayer insulating film 13 are substantially equal to each other, uniform polishing can be performed as shown in FIG. 1C. That is, the planarization can be performed without depending on the pattern of the interlayer insulating film 13 on the surface of the substrate which is the target of the planarization by the CMP method.

【0026】なお、前記ストッパー膜14は、多結晶シ
リコン膜に限らず、CMP法におけるポリッシングレー
トが前記多結晶シリコン膜とほぼ同じ窒化シリコン膜を
使用しても、図1(c)に示したように均一なポリッシ
ングが可能になる。
The stopper film 14 is not limited to the polycrystalline silicon film, and a silicon nitride film having a polishing rate in the CMP method which is almost the same as that of the polycrystalline silicon film is used as shown in FIG. 1C. As a result, uniform polishing becomes possible.

【0027】図2(a)および(b)は、本発明の第2
の実施の形態に係るシリコン基板上の層間絶縁膜表面に
対するCMP法による平坦化工程を示している。この第
2の実施の形態は、前記した第1の実施の形態と比べ
て、ストッパー膜24としてCMP法におけるポリッシ
ングレートが無限大のC(カーボン)膜を用いた点が異
なる。
2 (a) and 2 (b) show a second embodiment of the present invention.
7 shows a planarization step for the surface of the interlayer insulating film on the silicon substrate according to the embodiment by the CMP method. The second embodiment is different from the above-described first embodiment in that a C (carbon) film having an infinite polishing rate in the CMP method is used as the stopper film 24.

【0028】即ち、第1の層間絶縁膜13の表面に対す
るCMPに際しては、予め、図2(a)に示すように、
第1の層間絶縁膜13の表面の粗領域において基板の表
面方向に対して例えば60度以上の角度をなす段差を有
する凸部の側壁部にのみストッパー膜としてカーボン膜
24を形成する。このストッパー膜24を形成するに
は、カーボン膜を前記第1の層間絶縁膜13上に形成し
た後に、所望の凸部の側壁部上(メモリセル形成領域1
0aのエッジ部上および孤立配線パターンのエッジ部
上)にのみカーボン膜24を残すようにエッチングす
る。
That is, when CMP is performed on the surface of the first interlayer insulating film 13, as shown in FIG.
The carbon film 24 is formed as a stopper film only on the side wall portion of the convex portion having a step forming an angle of, for example, 60 degrees or more with respect to the surface direction of the substrate in the rough region of the surface of the first interlayer insulating film 13. In order to form the stopper film 24, a carbon film is formed on the first interlayer insulating film 13 and then on the side wall portion of a desired convex portion (memory cell forming region 1
Etching is performed so that the carbon film 24 is left only on the edge portion of 0a and the edge portion of the isolated wiring pattern.

【0029】上記したようにカーボン膜24を形成した
後、第1の層間絶縁膜13の表面をCMP法によりポリ
ッシングする。この時、カーボン膜24は殆んど削られ
ないので、第1の層間絶縁膜13に対して選択比が殆ん
ど無限大のストッパー膜として作用するので、CMP後
の状態は、図2(a)に示すように、メモリセル形成領
域10aのエッジ部上および孤立配線パターン部上の第
1の層間絶縁膜13が凸状に残る。
After forming the carbon film 24 as described above, the surface of the first interlayer insulating film 13 is polished by the CMP method. At this time, since the carbon film 24 is hardly etched, it acts as a stopper film having an almost infinite selection ratio with respect to the first interlayer insulating film 13. Therefore, the state after CMP is as shown in FIG. As shown in a), the first interlayer insulating film 13 remains on the edge portion of the memory cell formation region 10a and on the isolated wiring pattern portion in a convex shape.

【0030】次に、アッシング法によりカーボン膜24
を除去した後、凸状に残存している第1の層間絶縁膜1
3の表面を再びCMP法によりポリッシングすると、メ
モリセル形成領域10aのエッジ部上および孤立配線パ
ターン部上の残存している第1の層間絶縁膜13が他の
部分に対して選択的に削られる。
Next, the carbon film 24 is formed by the ashing method.
Of the first interlayer insulating film 1 remaining in a convex shape after removing the
When the surface of No. 3 is again polished by the CMP method, the remaining first interlayer insulating film 13 on the edge portion of the memory cell formation region 10a and the isolated wiring pattern portion is selectively shaved with respect to other portions. .

【0031】これにより、図2(b)に示すように、均
一なポリッシングが可能になり、CMP法による平坦化
の対象となる基板表面上の層間絶縁膜のパターンに依存
せずに平坦化することが可能になる。
As a result, as shown in FIG. 2B, uniform polishing is possible, and the planarization is performed without depending on the pattern of the interlayer insulating film on the surface of the substrate to be planarized by the CMP method. It will be possible.

【0032】なお、上記各実施の形態では、埋め込み素
子分離領域上の層間絶縁膜を平坦化する例を示したが、
本発明はそれに限らず、多層配線上の層間絶縁膜を平坦
化する場合にも適用可能である。
In each of the above-mentioned embodiments, an example in which the interlayer insulating film on the buried element isolation region is flattened has been described.
The present invention is not limited to this, and can be applied to the case of planarizing the interlayer insulating film on the multilayer wiring.

【0033】[0033]

【発明の効果】上述したように本発明によれば、CMP
法による平坦化の対象となる基板表面上の層間絶縁膜の
パターンに依存せずに平坦化し得る半導体装置の製造方
法を実現することができる。
As described above, according to the present invention, CMP
It is possible to realize a method of manufacturing a semiconductor device that can be planarized without depending on the pattern of the interlayer insulating film on the surface of the substrate that is the object of planarization by the method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の製造方法の第1の実施の
形態に係るシリコン基板上の層間絶縁膜表面に対するC
MP法による平坦化工程における基板構造を示す断面
図。
FIG. 1 is a diagram showing a C for an interlayer insulating film surface on a silicon substrate according to a first embodiment of a method for manufacturing a semiconductor device of the present invention.
Sectional drawing which shows the board | substrate structure in the planarization process by MP method.

【図2】本発明の第2の実施の形態に係るシリコン基板
上の層間絶縁膜表面に対するCMP法による平坦化工程
における基板構造を示す断面図。
FIG. 2 is a cross-sectional view showing a substrate structure in a planarizing step by a CMP method for a surface of an interlayer insulating film on a silicon substrate according to a second embodiment of the present invention.

【図3】従来のCMP法による半導体基板上の層間絶縁
膜表面に対するCMP法による平坦化工程における基板
構造を示す断面図。
FIG. 3 is a cross-sectional view showing a substrate structure in a planarizing process by a CMP method for a surface of an interlayer insulating film on a semiconductor substrate by a conventional CMP method.

【符号の説明】[Explanation of symbols]

10…シリコン基板、 10a…メモリセル形成領域、 10b…配線領域、 13…第1の層間絶縁膜、 14、24…ストッパー膜。 10 ... Silicon substrate, 10a ... Memory cell forming region, 10b ... Wiring region, 13 ... First interlayer insulating film, 14, 24 ... Stopper film.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に形成され、その表面に粗
密な凹凸形状を有し、局所的な範囲において凸部の占め
る面積が大きい密領域と凸部の占める面積が小さい粗領
域とが混在する層間絶縁膜の表面をCMP法により平坦
化する際、前記層間絶縁膜の表面の粗領域における所望
の凸部の側壁部にのみCMP法によるポリッシングレー
トが前記層間絶縁膜より遅いストッパー膜を形成する工
程と、 前記層間絶縁膜の表面をCMP法によりポリッシングす
ると同時に前記ストッパー膜もポリッシングする工程と
を具備することを特徴とする半導体装置の製造方法。
1. A dense region, which is formed on a semiconductor substrate and has a rough and uneven shape on its surface, and in which a convex region occupies a large area and a convex region occupies a small area are mixed in a local range. When the surface of the interlayer insulating film is flattened by the CMP method, a stopper film having a polishing rate slower than that of the interlayer insulating film by the CMP method is formed only on the side wall portion of a desired convex portion in the rough region of the surface of the interlayer insulating film. And a step of polishing the surface of the interlayer insulating film by a CMP method and polishing the stopper film at the same time.
【請求項2】 前記ストッパー膜を形成する工程は、 CMP法によるポリッシングレートが前記層間絶縁膜よ
り遅い絶縁膜を前記層間絶縁膜上に形成する工程と、 全ての前記凸部の側壁部にのみ前記絶縁膜を残すように
RIE法により前記絶縁膜をエッチングする工程と、 前記半導体基板上にフォトレジストを塗布し、前記スト
ッパー膜を形成したい所望の凸部の側壁部上にのみレジ
ストを残すようにパターンを形成し、このレジストパタ
ーンをエッチングマスクとしてRIE法あるいはCDE
法により前記絶縁膜を選択的に除去する工程とを具備す
ることを特徴とする請求項1記載の半導体装置の製造方
法。
2. The step of forming the stopper film includes the step of forming an insulating film on the interlayer insulating film, the polishing rate of which is slower than that of the interlayer insulating film by CMP, and only on the sidewalls of all the convex portions. Etching the insulating film by RIE so as to leave the insulating film, and applying a photoresist on the semiconductor substrate to leave the resist only on the side wall of the desired convex portion where the stopper film is desired to be formed. A pattern is formed on the RIE method, and the resist pattern is used as an etching mask for RIE or CDE.
The method of manufacturing a semiconductor device according to claim 1, further comprising the step of selectively removing the insulating film by a method.
【請求項3】 前記ストッパー膜を形成する工程は、 CMP法によるポリッシングレートが前記層間絶縁膜よ
り遅い絶縁膜を前記層間絶縁膜上に形成する工程と、 前記半導体基板上にフォトレジストを塗布し、前記密領
域のエッジ部上および前記粗領域の凸部上にのみレジス
トを残すようにパターンを形成し、このレジストパター
ンをエッチングマスクとしてRIE法あるいはCDE法
により前記絶縁膜を選択的に除去する工程と、 前記レジストパターンを除去した後、ストッパー膜を形
成したい所望の凸部の側壁部上にのみ前記絶縁膜を残す
ようにRIE法により絶縁膜を選択的に除去する工程と
を具備することを特徴とする請求項1記載の半導体装置
の製造方法。
3. The step of forming the stopper film comprises the steps of forming an insulating film on the interlayer insulating film, the insulating film having a polishing rate slower than that of the interlayer insulating film by CMP, and applying a photoresist on the semiconductor substrate. A pattern is formed so that the resist is left only on the edges of the dense region and on the protrusions of the rough region, and the insulating film is selectively removed by RIE or CDE using this resist pattern as an etching mask. And a step of selectively removing the insulating film by the RIE method after removing the resist pattern so that the insulating film is left only on the side wall of a desired convex portion where a stopper film is desired to be formed. The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項4】 前記層間絶縁膜はTEOS膜であり、前
記ストッパー膜は多結晶シリコン膜であることを特徴と
する請求項1記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the interlayer insulating film is a TEOS film, and the stopper film is a polycrystalline silicon film.
【請求項5】 前記層間絶縁膜はTEOS膜であり、前
記ストッパー膜は窒化シリコン膜であることを特徴とす
る請求項1記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 1, wherein the interlayer insulating film is a TEOS film, and the stopper film is a silicon nitride film.
【請求項6】 シリコン基板上に形成され、その表面に
粗密な凹凸形状を有し、局所的な範囲において凸部の占
める面積が大きい密領域と凸部の占める面積が小さい粗
領域とが混在する層間絶縁膜の表面をCMP法により平
坦化する際、前記層間絶縁膜の表面の粗領域における所
望の凸部の側壁部にのみCMP法によるポリッシングレ
ートが無限大のストッパー膜を前記層間絶縁膜上に形成
する工程と、 前記層間絶縁膜の表面をCMP法によりポリッシングす
る工程と、 前記ストッパー膜を除去した後、残存している前記層間
絶縁膜の表面をCMP法によりポリッシングする工程と
を具備することを特徴とする請求項1記載の半導体装置
の製造方法。
6. A dense region, which is formed on a silicon substrate and has a rough and uneven shape on its surface, and in which a convex region occupies a large area and a convex region occupies a small area are mixed in a local range. When the surface of the interlayer insulating film is flattened by the CMP method, a stopper film having an infinite polishing rate by the CMP method is formed only on the side wall portion of the desired convex portion in the rough area of the surface of the interlayer insulating film. A step of forming the upper surface, a step of polishing the surface of the interlayer insulating film by a CMP method, and a step of removing the stopper film and polishing the remaining surface of the interlayer insulating film by a CMP method. The method for manufacturing a semiconductor device according to claim 1, wherein
【請求項7】 前記ストッパー膜はカーボン膜であり、
前記ストッパー膜を除去する際にアッシング法を用いる
ことを特徴とする請求項6記載の半導体装置の製造方
法。
7. The stopper film is a carbon film,
7. The method of manufacturing a semiconductor device according to claim 6, wherein an ashing method is used when removing the stopper film.
JP5471896A 1996-03-12 1996-03-12 Manufacture of semiconductor device Pending JPH09246219A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5471896A JPH09246219A (en) 1996-03-12 1996-03-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5471896A JPH09246219A (en) 1996-03-12 1996-03-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH09246219A true JPH09246219A (en) 1997-09-19

Family

ID=12978592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5471896A Pending JPH09246219A (en) 1996-03-12 1996-03-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH09246219A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444627B1 (en) * 2001-02-22 2004-08-21 샤프 가부시키가이샤 Process of manufacturing semiconductor device
US7316786B2 (en) 2004-12-10 2008-01-08 Tdk Corporation Method of polishing film to be polished
US7682923B2 (en) 2007-12-31 2010-03-23 Tdk Corporation Method of forming metal trench pattern in thin-film device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100444627B1 (en) * 2001-02-22 2004-08-21 샤프 가부시키가이샤 Process of manufacturing semiconductor device
US7316786B2 (en) 2004-12-10 2008-01-08 Tdk Corporation Method of polishing film to be polished
US7682923B2 (en) 2007-12-31 2010-03-23 Tdk Corporation Method of forming metal trench pattern in thin-film device

Similar Documents

Publication Publication Date Title
EP0545263B1 (en) Method of forming trench isolation having polishing step and method of manufacturing semiconductor device
US5494857A (en) Chemical mechanical planarization of shallow trenches in semiconductor substrates
US5728621A (en) Method for shallow trench isolation
US5923993A (en) Method for fabricating dishing free shallow isolation trenches
US5302233A (en) Method for shaping features of a semiconductor structure using chemical mechanical planarization (CMP)
KR100621255B1 (en) Gap Filling and Flattening Methods for Shallow Trench Separation
US6048775A (en) Method to make shallow trench isolation structure by HDP-CVD and chemical mechanical polish processes
JP2622059B2 (en) Method for manufacturing semiconductor integrated circuit
JPH10261705A (en) Manufacture of semiconductor device
JPH0217637A (en) Method for forming highly levelled integrated circuit structure
JPH0799237A (en) Manufacture of integrated circuit
US5792707A (en) Global planarization method for inter level dielectric layers of integrated circuits
US6057207A (en) Shallow trench isolation process using chemical-mechanical polish with self-aligned nitride mask on HDP-oxide
JPH05275527A (en) Method of forming trench isolation by polishing step and manufacturing method of semiconductor device
US6261923B1 (en) Method to solve the dishing issue in CMP planarization by using a nitride hard mask for local inverse etchback and CMP
JPH0758090A (en) Manufacture of semiconductor layer structure having flat surface
KR20010081956A (en) A method of planarizing a semiconductor device using a high density plasma system
US6025270A (en) Planarization process using tailored etchback and CMP
EP0954022B1 (en) Method for providing shallow trench isolation of transistors
KR100225550B1 (en) Method for polishing of electronic device
US6503848B1 (en) Method of forming a smooth polysilicon surface using a soft etch to enlarge the photo lithography window
KR100361102B1 (en) Method of forming trench isolation
JPH09246219A (en) Manufacture of semiconductor device
US6214735B1 (en) Method for planarizing a semiconductor substrate
US5840623A (en) Efficient and economical method of planarization of multilevel metallization structures in integrated circuits using CMP