JPH09246044A - Optical control molecular magnetic material - Google Patents

Optical control molecular magnetic material

Info

Publication number
JPH09246044A
JPH09246044A JP5658496A JP5658496A JPH09246044A JP H09246044 A JPH09246044 A JP H09246044A JP 5658496 A JP5658496 A JP 5658496A JP 5658496 A JP5658496 A JP 5658496A JP H09246044 A JPH09246044 A JP H09246044A
Authority
JP
Japan
Prior art keywords
magnetic material
light
molecular
magnetic
light irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5658496A
Other languages
Japanese (ja)
Inventor
Akira Fujishima
昭 藤嶋
Kazuhito Hashimoto
和仁 橋本
Tomokazu Yada
智一 彌田
Osamu Sato
治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP5658496A priority Critical patent/JPH09246044A/en
Publication of JPH09246044A publication Critical patent/JPH09246044A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/40Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials of magnetic semiconductor materials, e.g. CdCr2S4

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain both excellent magnetic characteristics and new functions, by using molecular magnetic material, and controlling the magnetic characteristics by light. SOLUTION: This material is magnetic material capable of designing from molecular level, and the magnetic characteristics are changed by light irradiation. More practically the control of magnetic characteristics by light is as follows change of magnetic characteristics by light irradiation of specified wavelength, the change by light irradiation of different wavelength, the change due to the change of temperature after light irradiation, and reversible change of magnetic characteristics due to light and/or temperature condition. As to the molecular magnetic material, charge mobility in the state of mixed valence changes. Practically, complex system material having a plurality of kinds of metal elements and crystal interstitial ions, e.g. ions of K<+> or the like is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、光制御性分子磁
性材料に関するものである。さらに詳しくは、この発明
は、スイッチ、メモリー、センサー等々の各種の機能性
材料として有用な、光によって磁気特性の制御可能なこ
れまでに全く知られていない新規な分子磁性材料に関す
るものである。
TECHNICAL FIELD The present invention relates to a photocontrollable molecular magnetic material. More specifically, the present invention relates to a novel molecular magnetic material which is useful as various functional materials for switches, memories, sensors and the like, and whose magnetic properties can be controlled by light, which has never been known.

【0002】[0002]

【従来の技術とその課題】従来より、鉄等の金属または
フェライト等の金属酸化物に代表される磁性材料が各種
の分野において用いられており、近年では、これらの磁
性材料に代わって、より高度な機能を発現する可能性の
あるものとして、分子レベルから設計可能な、いわゆる
分子磁性材料が注目されている。
2. Description of the Related Art Magnetic materials typified by metals such as iron and metal oxides such as ferrite have been used in various fields. In recent years, these magnetic materials have been replaced by more and more materials. A so-called molecular magnetic material, which can be designed from the molecular level, has attracted attention as a material that may exhibit advanced functions.

【0003】このことは、分子材料においては、多様な
構造の設計が可能であって、電子機能、あるいは光機能
への着目ともあいまって、分子磁性材料の期待が大きな
ものであることを示している。しかしながら、これまで
の検討では、この分子磁性材料についてまさに端初につ
いたばかりの状況であり、これら材料の特性、構造につ
いてはほとんど未知のままである。
[0003] This indicates that molecular materials can be designed in various structures, and that the expectation of molecular magnetic materials is high in combination with the attention to electronic functions or optical functions. I have. However, according to the investigations so far, this molecular magnetic material has just been started, and the properties and structure of these materials remain almost unknown.

【0004】そこで、この発明は、以上のようなこれま
での技術的限界を克服し、分子磁性材料への大きな期待
に沿ってなされたものであって、優れた磁気特性ととも
に、新しい機能を持つ分子磁性材料を提供することを目
的としている。
Therefore, the present invention has been made in order to overcome the above technical limitations and meet the great expectations for a molecular magnetic material, and to have a new function with excellent magnetic properties. The purpose is to provide a molecular magnetic material.

【0005】[0005]

【課題を解決するための手段】この発明は、上記のとお
りの課題を解決する分子磁性材料であって、光照射によ
り磁気特性が制御できることを特徴とする光制御性分子
磁性材料を提供する。また、この発明は、波長の異なる
光が照射されて磁気特性が変化する光制御性分子磁性材
料をはじめ、光照射後の磁気特性が温度変化により可変
な光制御性分子磁性材料、磁気特性が可逆的に可変な光
制御性分子磁性材料等を提供する。そして、この発明
は、上記の分子磁性材料として、混合原子価状態におけ
る電荷移動度が変化するもの、金属錯体からなるもの、
複数種の遷移金属を有する金属錯体からなるもの、さら
には、結晶格子間イオンを含む分子磁性材料等をもその
一つの態様として提供する。
SUMMARY OF THE INVENTION The present invention provides a molecular magnetic material which solves the above-mentioned problems and which is characterized in that its magnetic characteristics can be controlled by irradiation with light. In addition, the present invention provides a photo-controllable molecular magnetic material whose magnetic properties after irradiation with light are variable by temperature change, including a photo-controllable molecular magnetic material whose magnetic properties are changed by irradiation with light of different wavelengths. Provided are reversibly variable light controllable molecular magnetic materials and the like. And, the present invention, as the above-mentioned molecular magnetic material, one in which charge mobility in a mixed valence state changes, one composed of a metal complex,
The present invention also provides, as one aspect thereof, a substance composed of a metal complex having a plurality of kinds of transition metals, and a molecular magnetic material containing crystal interstitial ions.

【0006】[0006]

【発明の実施の形態】この発明は、以上のとおり、これ
まで全く知られていない分子磁性材料を提供するもので
あって、その特徴は、本質的には、 1)分子レベルから設計可能な磁性材料であり、 2)光照射により磁気特性が可変である ものとして規定される。
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the present invention provides a molecular magnetic material which has never been known so far. Its features are essentially: 1) designable from the molecular level. It is a magnetic material and is defined as 2) whose magnetic characteristics can be changed by light irradiation.

【0007】そして、この光による磁気特性の制御は、
より具体的には、たとえば a)特定波長の光の照射による磁気特性の変化 b)異なる波長の光の照射による磁気特性の変化 c)光照射後の磁気特性の温度条件の変化による変化 d)光、および/または温度条件による磁気特性の可逆
的変化 として現実化される。
The control of magnetic characteristics by this light is
More specifically, for example, a) changes in magnetic properties due to irradiation with light of a specific wavelength b) changes in magnetic properties due to irradiation with lights of different wavelengths c) changes in magnetic properties due to changes in temperature conditions after light irradiation d) It is realized as a reversible change in magnetic properties due to light and / or temperature conditions.

【0008】以上のような分子磁性材料については、特
にその分子種並びに分子構造として限定されることはな
いが、好ましい態様としては、その構造は、混合原子価
状態において電荷移動度の変化するものが例示される。
具体的には、複数種の金属元素を持つ錯体系材料として
例示されることからなる。そしてまた、この発明では、
結晶格子間イオン、たとえばK+ 等のイオンを有するも
のが例示される。
The molecular magnetic material as described above is not particularly limited as to its molecular species and molecular structure, but in a preferred embodiment, its structure has a change in charge mobility in a mixed valence state. Is exemplified.
Specifically, it is exemplified as a complex material having plural kinds of metal elements. And again, in this invention,
Those having crystal interstitial ions, for example, ions such as K + are exemplified.

【0009】そこで以下、実施例としてさらに詳しく説
明する。
Therefore, a more detailed description will be given below as an example.

【0010】[0010]

【実施例】コバルト−鉄シアノ錯体等を例としてこの発
明の分子磁性材料について説明する。合成と分析 コバルト−鉄シアノ錯体はフェリシアン化カリウムと塩
化コバルトを含む水溶液を混合することにより粉末とし
て合成した。また、この錯体は、次のような方法で電気
化学的にも合成可能で、電極上に薄膜として得られた。
すなわち、フェリシアン化カリウム、硝酸コバルト、硝
酸ナトリウムを含む水溶液中、白金、ネサガラス等の作
用電極、白金対極、飽和カロメル電極を用いて、飽和カ
ロメル電極に対して−0.4Vで電解したところ電極上
に薄膜が得られた。この薄膜被覆電極を塩化ナトリウム
あるいは硝酸ナトリウム水溶液中で酸化処理(飽和カロ
メル電極に対して+0.6V)を行ない、その後、塩化
カリウムあるいは過塩素酸カリウム水溶液に浸漬するこ
とによってカリウムイオンがドープされた薄膜が得られ
る。
EXAMPLES The molecular magnetic material of the present invention will be described by taking a cobalt-iron cyano complex as an example. Synthesis and Analysis The cobalt-iron cyano complex was synthesized as a powder by mixing an aqueous solution containing potassium ferricyanide and cobalt chloride. This complex can also be electrochemically synthesized by the following method and was obtained as a thin film on the electrode.
That is, in an aqueous solution containing potassium ferricyanide, cobalt nitrate, and sodium nitrate, platinum, a working electrode such as NES glass, a platinum counter electrode, and a saturated calomel electrode were used, and electrolysis was performed at -0.4 V with respect to the saturated calomel electrode. A thin film was obtained. The thin film-coated electrode was subjected to an oxidation treatment (+0.6 V with respect to a saturated calomel electrode) in an aqueous solution of sodium chloride or sodium nitrate, and then immersed in an aqueous solution of potassium chloride or potassium perchlorate to be doped with potassium ions. A thin film is obtained.

【0011】得られた材料のキャラクタリゼーションは
元素分析、X線回折(XRD)、赤外吸収(IR)、可
視紫外吸収及び電気化学測定等により行った。磁気特性
の評価はSQUIDを用いて測定した。XRDのパター
ンから、合成されたコバルト−鉄シアノ錯体は、プルシ
アンブルーと同様にfcc構造(図1)をとっているこ
とが示唆された。磁気特性 この錯体物質は、16Kで常磁性からフェリ磁性への磁
気転移を示した。この物質に5Kで光照射(中心波長6
60nm)を試みたところ図2に示したように、磁化の
増大が観測され、照射後の磁気転移温度は19Kを示し
た。この温度は、照射前に比べ3K増加しており、光に
より磁化を誘起できることを示している。また、光照射
前後のヒステリシス曲線を測定したところ照射前は保磁
力が800Gであったのに対し照射後は約1500Gに
増加し、磁気特性を光でコントロールできることが明ら
かとなった。
The material obtained was characterized by elemental analysis, X-ray diffraction (XRD), infrared absorption (IR), visible-ultraviolet absorption and electrochemical measurement. The magnetic properties were evaluated using SQUID. From the XRD pattern, it was suggested that the synthesized cobalt-iron cyano complex had an fcc structure (FIG. 1) like Prussian blue. Magnetic Properties This complex material showed a magnetic transition from paramagnetic to ferrimagnetic at 16K. This material is irradiated with light at 5K (center wavelength 6
60 nm), an increase in magnetization was observed as shown in FIG. 2, and the magnetic transition temperature after irradiation was 19K. This temperature is increased by 3 K as compared with that before irradiation, indicating that the magnetization can be induced by light. Further, the hysteresis curve before and after the light irradiation was measured, and the coercive force was 800 G before the irradiation, but it increased to about 1500 G after the irradiation, and it was revealed that the magnetic characteristics can be controlled by the light.

【0012】光により生じた変化は、温度を150K以
上に上げることによりもとにもどり、可逆なプロセスで
あることが確認された。さらにまた、図3に示したよう
に、KCo〔Fe(CN)6 〕として推定される錯体物
質について、5Kにおいて光照射前と光照射後並びに1
50Kまで昇温して照射前と同じ状態となった結果とを
見ると、光照射と温度条件とが磁気特性の制御要因とし
てあることがわかる。なお、光照射による磁化の増加
は、照射時間を長くするとさらに大きくなる。たとえ
ば、このように光照射条件そのものの変更により磁気特
性が制御されることにもなる。そして、図4は、光照射
前後における磁気ヒステリシス曲線を示したものであ
り、光照射による顕著な磁気特性の変化が確認される。
It was confirmed that the change caused by light returned to the original level when the temperature was raised to 150 K or higher, and was a reversible process. Furthermore, as shown in FIG. 3, with respect to the complex substance estimated to be KCo [Fe (CN) 6 ], at 5 K, before and after light irradiation and 1
Looking at the result of raising the temperature to 50 K and obtaining the same state as before irradiation, it can be seen that the light irradiation and the temperature condition are factors for controlling the magnetic characteristics. It should be noted that the increase in the magnetization due to the light irradiation is further increased by increasing the irradiation time. For example, the magnetic characteristics can be controlled by changing the light irradiation conditions themselves. FIG. 4 shows the magnetic hysteresis curves before and after the light irradiation, and a remarkable change in the magnetic characteristics due to the light irradiation is confirmed.

【0013】さらに、磁化が増大した後に青色(B)の
光を照射したところ磁化の減少が観測された。この効果
は、図5に示したように青色(B)と赤色(R)との繰
り返し照射において観測されるように可逆であることが
示唆された。光磁気効果 これらの光磁気効果を明らかにするためにIR、可視紫
外吸収等を測定した。IR領域には図6に示したよう
に、2162cm-1、及び、2116cm-1にCNの伸
縮振動に特徴的な鋭いピークが現れた。K+ を格子間位
置に含まない物質はほぼ2162cm-1のみのピークか
らなり、K+ を多く含むほど約2116cm-1付近のピ
ークが大きくなる。可視紫外領域は、550nm付近に
ピークを持つブロードな吸収帯があり、K+ を多く含む
ほどより吸光度が増す。また、それらに対応して単位格
子あたりの磁化が減少する傾向にある。これらはK+
格子とのクローン相互作用及びカチオン−π相互作用に
よりCoIIからFeIII への電荷移動量が増加すること
を示唆している。一般にCoIIはハイスピン状態、Co
III はロースピン状態をとりやすいが、K+ ドープによ
る電荷移動によりCoが3価に近い状態、すなわち、よ
りロースピンのキャラクターを持つ状態になり磁化が小
さくなるものと考えられる。温度を12Kに保ち光照射
を行うと2116cm-1のピークが大きく減少し216
2cm-1のピークが増加する。また、同時に電荷移動吸
収が減少し磁化の増加がみられる。すなわち、光励起を
トリガーとして格子の再配列が起こり電子がよりFeに
局在化した状態(Coがよりハイスピンのキャラクター
を持つ状態)が誘起されたことを示している。また、こ
れによりスピン相互作用が増加し磁気転移温度の上昇が
観測されるものと考えられる。ニッケルニトロプルシド ニッケルニトロプルシドの光誘起金属配位子電荷移動
(MLCT)を利用し、その磁気特性を光で制御した。
Further, when the blue (B) light was irradiated after the magnetization was increased, a decrease in the magnetization was observed. It was suggested that this effect is reversible as observed in repeated irradiation of blue (B) and red (R) as shown in FIG. Magneto- optical effect In order to clarify these magneto-optical effects , IR, visible / ultraviolet absorption, etc. were measured. In the IR region, as shown in FIG. 6, sharp peaks characteristic of the stretching vibration of CN appeared at 2162 cm −1 and 2116 cm −1 . The substance which does not contain K + in the interstitial position has a peak of approximately 2162 cm −1 , and the more K + is contained, the larger the peak around 2116 cm −1 . In the visible ultraviolet region, there is a broad absorption band having a peak near 550 nm, and the more K + contained, the higher the absorbance. In addition, the magnetization per unit lattice tends to decrease correspondingly. These suggest that clonal and cation-π interactions between K + and the lattice increase the amount of charge transfer from Co II to Fe III . Generally, Co II is in a high spin state, Co
III tends to be in a low spin state, but it is considered that Co moves to a state near trivalent, that is, a state having a lower spin character due to the charge transfer due to K + doping, and the magnetization becomes smaller. When the temperature was kept at 12K and light irradiation was performed, the peak at 2116 cm -1 was greatly reduced and 216
The peak at 2 cm -1 increases. At the same time, the charge transfer absorption decreases and the magnetization increases. That is, it is indicated that the lattice rearrangement occurs triggered by photoexcitation and the state in which the electrons are more localized in Fe (the state in which Co has a higher spin character) is induced. In addition, it is considered that the spin interaction is increased by this and the rise of the magnetic transition temperature is observed. Nickel nitroprusside Nickel nitroprusside has been photo-controlled in its magnetic properties by utilizing photoinduced metal ligand charge transfer (MLCT).

【0014】すなわち、まず、SQUIDのサンプル室
内にArイオンレーザー(475nm,2mW)の光を
導入し光照射前後でのニッケルニトロプルシドの磁気モ
ーメントを観測した。光照射によるUVスペクトルとI
R吸収の変化はクライオスタットを用いて温度制御下で
測定した。この化合物の磁気モーメントは、図7に示し
たように、200K以下の温度範囲で光照射により増大
して飽和する。この結果は光照射でスピンが生じたこと
を示す。この変化に対応して、光照射後、NOのIR振
動が1949cm-1から1821cm-1に移動し、UV
−VISの吸収が400nm以下で増大した。この変化
はニトロプルシドのFeからNOへのMLCTで説明で
きる。低温で観測された磁気モーメントの変化の著しい
増大はFeのd軌道に生じたスピンが周りのNiのスピ
ンと強磁性的に相互作用しスピンを整列させるためであ
ると考えられる。さらに、この変化は熱処理により元の
状態にもどり、可逆である。
That is, first, the light of an Ar ion laser (475 nm, 2 mW) was introduced into the SQUID sample chamber, and the magnetic moment of nickel nitroprusside before and after the light irradiation was observed. UV spectrum by light irradiation and I
The change in R absorption was measured under temperature control using a cryostat. As shown in FIG. 7, the magnetic moment of this compound increases and becomes saturated by light irradiation in the temperature range of 200 K or less. This result shows that spin was generated by light irradiation. Corresponding to this change, after the light irradiation, the IR vibration of NO moved from 1949 cm -1 to 1821 cm -1 , and UV
-VIS absorption increased below 400 nm. This change can be explained by the MLCT of nitroprusside from Fe to NO. It is considered that the remarkable increase in the change in magnetic moment observed at low temperature is due to the spin generated in the d orbital of Fe ferromagnetically interacting with the spin of Ni around and aligning the spins. Furthermore, this change returns to the original state by heat treatment and is reversible.

【0015】[0015]

【発明の効果】上記実施例に示したコバルト−鉄シアノ
錯体の磁性は電気化学的にも制御できることが分かって
おり、光、電気、磁気機能を併せもつ、これまでにない
全く新しい材料である。以上のように、この発明は実施
例に示したコバルト−鉄シアノ錯体だけでなく、各種分
子において光による磁気特性の制御を可能とした分子磁
性材料を提供する。
The magnetism of the cobalt-iron cyano complex shown in the above examples has been found to be electrochemically controllable, and is a completely new material that has both optical, electrical and magnetic functions. . As described above, the present invention provides not only the cobalt-iron cyano complex shown in the examples but also a molecular magnetic material capable of controlling the magnetic properties of various molecules by light.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例としてのコバルト−鉄シアノ錯体の構造
を例示した図である。
FIG. 1 is a diagram illustrating the structure of a cobalt-iron cyano complex as an example.

【図2】コバルト−鉄シアノ錯体の光照射前後の磁化−
温度曲線図である。
[Fig. 2] Magnetization of cobalt-iron cyano complex before and after light irradiation-
It is a temperature curve figure.

【図3】K+ を多く含むコバルト−鉄シアノ錯体の光照
射前後の磁化−温度曲線図である。
FIG. 3 is a magnetization-temperature curve diagram of a cobalt-iron cyano complex containing a large amount of K + before and after light irradiation.

【図4】図3の物質についての光照射前後の磁気ヒステ
リシス曲線図である。
FIG. 4 is a magnetic hysteresis curve diagram of the substance of FIG. 3 before and after light irradiation.

【図5】青色と赤色の光照射を繰り返す場合の磁化変化
を示した図である。
FIG. 5 is a diagram showing a change in magnetization when blue and red light irradiation is repeated.

【図6】IRスペクトル図である。FIG. 6 is an IR spectrum diagram.

【図7】ニッケルニトロプルシド錯体の光照射前の磁化
−温度曲線と、光照射による磁化変化の温度依存性図で
ある。
FIG. 7 is a magnetization-temperature curve of a nickel nitroprusside complex before light irradiation and a temperature dependence diagram of a magnetization change due to light irradiation.

フロントページの続き (72)発明者 佐藤 治 神奈川県厚木市水引1−13−14 水引シテ ィハウス B−5号Continued Front Page (72) Inventor Osamu Sato 1-13-14 Mizuhiki City House Atsugi, Kanagawa Prefecture Mizuhiki City House B-5

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 分子磁性材料であって、光照射により磁
気特性が可変なことを特徴とする光制御性分子磁性材
料。
1. A photo-controllable molecular magnetic material which is a molecular magnetic material and whose magnetic properties can be changed by irradiation with light.
【請求項2】 波長の異なる光が照射されて磁気特性が
変更される請求項1の光制御性分子磁性材料。
2. The light controllable molecular magnetic material according to claim 1, wherein the magnetic properties are changed by irradiating light having different wavelengths.
【請求項3】 光照射後の磁気特性が温度変化により可
変な請求項1または2の光制御性分子磁性材料。
3. The light controllable molecular magnetic material according to claim 1 or 2, wherein the magnetic properties after light irradiation are variable by temperature change.
【請求項4】 磁気特性が可逆的に可変な請求項1ない
し3のいずれかの光制御性分子磁性材料。
4. The light controllable molecular magnetic material according to claim 1, wherein magnetic properties are reversibly variable.
【請求項5】 混合原子価状態における電荷移動度が変
化する請求項1ないし4のいずれかの光制御性分子磁性
材料。
5. The photocontrollable molecular magnetic material according to claim 1, wherein the charge mobility in a mixed valence state changes.
【請求項6】 金属錯体からなる請求項1ないし5のい
ずれかの光制御性分子磁性材料。
6. The photocontrollable molecular magnetic material according to claim 1, comprising a metal complex.
【請求項7】 複数種の遷移金属を有する金属錯体から
なる請求項6の光制御性分子磁性材料。
7. The photocontrollable molecular magnetic material according to claim 6, comprising a metal complex having a plurality of kinds of transition metals.
【請求項8】 結晶格子間イオンを含む請求項6または
7の光制御性分子磁性材料。
8. The photocontrollable molecular magnetic material according to claim 6, which contains crystal interstitial ions.
JP5658496A 1996-03-13 1996-03-13 Optical control molecular magnetic material Withdrawn JPH09246044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5658496A JPH09246044A (en) 1996-03-13 1996-03-13 Optical control molecular magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5658496A JPH09246044A (en) 1996-03-13 1996-03-13 Optical control molecular magnetic material

Publications (1)

Publication Number Publication Date
JPH09246044A true JPH09246044A (en) 1997-09-19

Family

ID=13031234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5658496A Withdrawn JPH09246044A (en) 1996-03-13 1996-03-13 Optical control molecular magnetic material

Country Status (1)

Country Link
JP (1) JPH09246044A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055871A1 (en) * 1999-03-12 2000-09-21 Shinichi Okoshi Thin film of molecular magnetic material
US6355820B1 (en) 2000-02-21 2002-03-12 Okazaki National Research Institutes Chiral molecular magnet and manufacturing method of the same
WO2010103982A1 (en) * 2009-03-11 2010-09-16 昭和電工株式会社 Information storage medium and information storage device
JP2013095609A (en) * 2011-10-28 2013-05-20 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using nitroprusside compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055871A1 (en) * 1999-03-12 2000-09-21 Shinichi Okoshi Thin film of molecular magnetic material
US6355820B1 (en) 2000-02-21 2002-03-12 Okazaki National Research Institutes Chiral molecular magnet and manufacturing method of the same
WO2010103982A1 (en) * 2009-03-11 2010-09-16 昭和電工株式会社 Information storage medium and information storage device
JP2013095609A (en) * 2011-10-28 2013-05-20 National Institute Of Advanced Industrial Science & Technology Electrode material for lithium ion secondary battery using nitroprusside compound

Similar Documents

Publication Publication Date Title
Bénard et al. A photochromic molecule-based magnet
Verdaguer et al. Magnetic Prussian blue analogs
Decurtins et al. Light-induced excited-spin-state trapping in iron (II) spin-crossover systems. Optical spectroscopic and magnetic susceptibility study
Garde et al. Molecule-based room-temperature magnets: catalytic role of V (III) in the synthesis of vanadium− chromium Prussian blue analogues
de Moura et al. Structural, optical, and magnetic properties of NiMoO4 nanorods prepared by microwave sintering
Sharma et al. Boosting the catalytic performance of pristine CoFe2O4 with yttrium (Y3+) inclusion in the spinel structure
Trinh et al. Photoswitchable 11 nm CsCoFe Prussian blue analogue nanocrystals with high relaxation temperature
Taguchi et al. Photoswitchable magnetic nanoparticles of Prussian blue with amphiphilic azobenzene
Zheng et al. Evidence of a ZnCr2Se4 spinel inclusion at the core of a Cr-doped ZnSe quantum dot
Vos et al. Linear trinuclear coordination compounds with 4-ethyl-1, 2, 4-triazole. Structure and magnetic properties
Rogacz et al. Low-coordinate erbium (III) single-molecule magnets with photochromic behavior
Babu et al. Structural, optical and magnetic properties of Cr 3+ doped ZnO nanopowder
Feng et al. Sonochemical preparation of photochromic nanocomposite thin film based on polyoxometalates well dispersed in polyacrylamide
Ohkoshi et al. Visible light-induced reversible photomagnetism in copper (II) octacyanomolybdate (IV)
Jeon et al. Design and synthesis of concentration gradient Prussian blue analogues
JPH09246044A (en) Optical control molecular magnetic material
Heiba et al. Exploring the effect of Fe/Cr doping on structural and optical characteristics of nano ZnMn2O4
CN109439313B (en) Photochromic room-temperature magnetic semiconductor material and preparation method thereof
Pajerowski et al. Tuning the Sign of Photoinduced Changes in Magnetization: Spin Transitions in the Ternary Metal Prussian Blue Analogue NaαNi1− x Co x [Fe (CN) 6] β· n H2O
Kumagai et al. Hydrothermal syntheses, structures and magnetic properties of coordination frameworks of divalent transition metals
Khan et al. Structural, electrical, and photocatalytic properties of Y-type hexaferrite/carbon dot composite
Abu-Elsaad et al. Effect of Cu substitution on magnetic and photocatalytic properties of Mn–ZnFe2O4 nanoparticles
Kumari et al. Effect of PVP Assisted Growth of α-Mn2O3 Nanoparticles on the Structural, Microstructural, Magnetic and Optical Properties
Gharehlar et al. Synergistic potential in spinel ferrite MFe2O4 (M= Co, Ni) nanoparticles-mediated graphene oxide: Structural aspects, photocatalytic, and kinetic studies
Lee et al. Electron paramagnetic resonance investigation of the photochromic effect in near-stoichiometric LiNbO 3 with applications to holographic storage

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040517

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A761 Written withdrawal of application

Effective date: 20040607

Free format text: JAPANESE INTERMEDIATE CODE: A761