JPH0924522A - Method and apparatus for manufacturing composite optical element - Google Patents

Method and apparatus for manufacturing composite optical element

Info

Publication number
JPH0924522A
JPH0924522A JP19908095A JP19908095A JPH0924522A JP H0924522 A JPH0924522 A JP H0924522A JP 19908095 A JP19908095 A JP 19908095A JP 19908095 A JP19908095 A JP 19908095A JP H0924522 A JPH0924522 A JP H0924522A
Authority
JP
Japan
Prior art keywords
resin
mold member
base material
glass base
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19908095A
Other languages
Japanese (ja)
Inventor
Masahiro Yoshida
昌弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP19908095A priority Critical patent/JPH0924522A/en
Publication of JPH0924522A publication Critical patent/JPH0924522A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/14Pressing laminated glass articles or glass with metal inserts or enclosures, e.g. wires, bubbles, coloured parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for manufacturing a composite optical element capable of completely preventing the mixture of bubble with a resin part. SOLUTION: In the case of manufacturing a composite optical element of the structure that a resin layer is connected to a glass base material, the steps of pouring resin monomer 8 in a liquid droplet state to the surface of the base material 4 and/or the molding surface of a mold member 1, and then evacuating in vacuum at least the space 7 between the base material and the mold member are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガラス基材表面に樹脂
層を接合形成してなる複合型光学素子の製造方法及び製
造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a composite optical element having a resin layer bonded to a surface of a glass substrate.

【0002】[0002]

【従来の技術】近年、カメラやビデオカメラ等の光学系
に使用されるレンズとして、レンズ枚数を削減し、光学
系をコンパクト化する目的で、非球面レンズが使用され
るようになってきた。非球面レンズは、表面形状が球面
からずれているレンズの総称であり、球面レンズで生じ
る球面収差を取り除くため表面形状を非球面としたもの
である。非球面レンズには、プラスチック非球面レンズ
(プラスチックモールドレンズ)とガラス非球面レンズ
(ガラスモールドレンズ)とがあり、さらに、球面ガラ
スレンズの表面に薄い非球面樹脂層を接合した構造から
なる複合型非球面レンズが開発され、一般にレプリカレ
ンズと呼ばれている。
2. Description of the Related Art In recent years, as lenses used in optical systems such as cameras and video cameras, aspherical lenses have been used for the purpose of reducing the number of lenses and making the optical system compact. The aspherical lens is a general term for lenses whose surface shape is deviated from a spherical surface, and the surface shape is an aspherical surface in order to remove spherical aberration generated in the spherical lens. The aspherical lens includes a plastic aspherical lens (plastic molded lens) and a glass aspherical lens (glass molded lens), and a composite type having a structure in which a thin aspherical resin layer is bonded to the surface of the spherical glass lens. An aspherical lens has been developed and is generally called a replica lens.

【0003】このようなレプリカレンズは、図7〜図1
0に示すように、所望の非球面形状に精密加工された型
部材1と、この非球面形状に近い曲率を有する球面ガラ
スレンズ5を対接して置き、球面ガラスレンズ又は型部
材のうちのどちらか一方の表面の中心部分に、液状の樹
脂モノマー8を注入し(図7)、次に、型部材1と球面
ガラスレンズ5の距離を接近させて、樹脂モノマー8を
球面ガラスレンズ5の表面に接触させて展開した後(図
8、9)、樹脂モノマー8を重合硬化し、最後に型部材
1と硬化した樹脂モノマー8の界面を剥離して製造され
ている(図10)。
Such a replica lens is shown in FIGS.
As shown in 0, the mold member 1 precisely machined into a desired aspherical shape and the spherical glass lens 5 having a curvature close to this aspherical shape are placed in contact with each other, and either the spherical glass lens or the mold member is placed. Liquid resin monomer 8 is injected into the central portion of one of the surfaces (FIG. 7), and then the mold member 1 and the spherical glass lens 5 are brought close to each other so that the resin monomer 8 is brought into contact with the surface of the spherical glass lens 5. The resin monomer 8 is polymerized and cured after being contacted with and developed (FIGS. 8 and 9), and finally the interface between the mold member 1 and the cured resin monomer 8 is peeled off (FIG. 10).

【0004】型部材1と球面ガラスレンズ5の位置関係
はレンズ形状によって異なり、例えば、凹レンズの場合
には、レンズ上に型を配置した方が樹脂液滴の位置が安
定する。また、凸レンズの場合には、型上にレンズを配
置した方が樹脂液滴の位置が安定する。ただし、樹脂液
滴の位置安定性が充分であれば、型とレンズの上下関係
はどちらでもよい。
The positional relationship between the mold member 1 and the spherical glass lens 5 differs depending on the lens shape. For example, in the case of a concave lens, the position of the resin droplet is more stable when the mold is arranged on the lens. Further, in the case of a convex lens, the position of the resin droplet is more stable when the lens is arranged on the mold. However, as long as the positional stability of the resin droplets is sufficient, the vertical relationship between the mold and the lens may be either.

【0005】上述したレプリカレンズの一般的製造方法
においては、樹脂材料中に気泡が混入しやすいという基
本的な問題がある。気泡混入はレプリカレンズの製品歩
留まりを大きく低下させ、製造コスト上昇の原因となる
ため大きな問題である。
In the general method of manufacturing the above-mentioned replica lens, there is a basic problem that bubbles are easily mixed in the resin material. The inclusion of bubbles is a serious problem because it significantly reduces the product yield of replica lenses and causes an increase in manufacturing cost.

【0006】樹脂層への気泡混入は、型部材又はガラス
基材中央に樹脂モノマーを注入する際と、ガラス基材表
面に樹脂を接触させ展開する際に起こる。
The inclusion of air bubbles in the resin layer occurs when the resin monomer is injected into the center of the mold member or the glass base material and when the resin is brought into contact with the surface of the glass base material and expanded.

【0007】樹脂モノマーを注入する際の気泡混入を低
減する方法としては、樹脂注入ノズルを注入面にできる
だけ接近させてゆっくり注入し、樹脂が注入面に接触し
た後に注入ノズルを注入面から遠ざけつつ樹脂を注入し
ていく方法が提案されている(特開平4−78505号
公報、特開平5−8231号公報)。
As a method for reducing air bubbles when injecting a resin monomer, the resin injection nozzle is brought as close as possible to the injection surface to slowly inject, and the injection nozzle is kept away from the injection surface after the resin comes into contact with the injection surface. A method of injecting a resin has been proposed (JP-A-4-78505 and JP-A-5-8231).

【0008】また、樹脂をガラス面等に接触展開する際
の気泡混入を低減する方法として、型と基材の接近速度
を遅くして、樹脂の展開速度を充分に遅くする方法が提
案されている(特開平5−8231号公報、特開平4−
78505号公報)。
Further, as a method of reducing air bubbles when the resin is contact-developed on a glass surface or the like, a method has been proposed in which the approach speed between the mold and the base material is slowed to sufficiently slow the resin development speed. (JP-A-5-8231 and JP-A-4-231)
78505).

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上述し
た気泡混入を低減する方法は、いずれも気泡混入を確率
的に低減することはできても完全になくすことはできな
い。したがって、歩留まりが悪く、気泡混入を全数検査
で調べる必要がありコスト高になるという問題がある。
However, any of the above-mentioned methods for reducing air bubble inclusion can reduce air bubble inclusion stochastically, but cannot completely eliminate it. Therefore, there is a problem in that the yield is low and it is necessary to check for air bubble inclusion by 100% inspection, resulting in high cost.

【0010】また、均一な樹脂展開を行い樹脂展開時の
気泡混入を防ぐには、樹脂モノマーとの濡れ性の悪くな
い型材を使用する必要がある。しかし、濡れ性が良い型
材を使用すると、樹脂モノマーの接触角が大きくなり樹
脂液滴が平坦化する。その結果、樹脂との接触時に複数
箇所から最初の接触が起こるため気泡が混入しやすい。
このように、平坦化した樹脂液滴では、接触速度をいく
ら遅くしても、樹脂接触時の気泡混入を防止することは
できない。レンズが大口径になると、樹脂量が多くなり
樹脂液滴が平坦化するため、さらに気泡が混入しやすく
なる。
Further, in order to uniformly spread the resin and prevent air bubbles from being mixed in at the time of developing the resin, it is necessary to use a mold material which does not have a bad wettability with the resin monomer. However, when a mold material having good wettability is used, the contact angle of the resin monomer becomes large and the resin droplets are flattened. As a result, when the resin comes into contact with the resin, the first contact occurs from a plurality of points, so that air bubbles are easily mixed.
In this way, with the flattened resin droplets, no matter how slow the contact speed is, it is not possible to prevent the inclusion of bubbles at the time of resin contact. When the lens has a large diameter, the amount of resin increases and the resin droplets are flattened, so that bubbles are more likely to be mixed.

【0011】なお、これらの事情はレプリカレンズ以外
の他の複合型光学素子についても同様である。
Note that these circumstances are the same for other complex type optical elements other than the replica lens.

【0012】本発明は上述した事情にかんがみてなされ
たものであり、樹脂部への気泡混入を完全に防止できる
複合型光学素子の製造方法及び製造装置の提供を目的と
する。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method and an apparatus for manufacturing a composite optical element capable of completely preventing air bubbles from being mixed into a resin portion.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に本発明の複合型光学素子の製造方法は、ガラス基材と
型部材の成型表面を対接させ、ガラス基材表面又は型部
材の成型表面のうちの少なくともいずれか一方の表面
に、樹脂モノマーの液滴を載せた状態で、ガラス基材と
型部材を接近させ、ガラス基材表面に樹脂を展開した
後、樹脂層を重合硬化させ、さらに型部材から樹脂を剥
離することによって、前記ガラス基材に樹脂層を接合し
た構造の複合型光学素子を製造する方法において、ガラ
ス基材表面及び/又は型部材の成型表面に樹脂モノマー
を液滴状に注入後、少なくともガラス基材と型部材の間
の空間を真空引きする工程を設けた構成としてある。
In order to achieve the above object, a method for producing a composite optical element according to the present invention comprises a step of bringing a glass substrate and a molding surface of a mold member into contact with each other, and With the resin monomer droplets placed on at least one of the molding surfaces, the glass base material and the mold member are brought close to each other, the resin is spread on the glass base material surface, and then the resin layer is polymerized and cured. In the method for producing a composite optical element having a structure in which a resin layer is bonded to the glass base material by further peeling the resin from the mold member, a resin monomer is formed on the glass base material surface and / or the molding surface of the mold member. After injecting in the form of droplets, at least the space between the glass substrate and the mold member is evacuated.

【0014】また、本発明の複合型光学素子の製造方法
は、上記複合型光学素子の製造方法において、液滴状に
注入した樹脂モノマーが、ガラス基材表面と型部材成型
表面の両方に接触した時点で、真空状態を解除し樹脂を
展開する構成としてある。
The method for producing a composite optical element according to the present invention is the same as the method for producing a composite optical element, wherein the resin monomer injected in the form of droplets contacts both the glass substrate surface and the molding member molding surface. At that time, the vacuum state is released and the resin is developed.

【0015】さらに、本発明の複合型光学素子の製造装
置は、ガラス基材の接合面に成型表面を対接させて配設
された型部材と、ガラス基材と型部材の水平方向の位置
合わせを行う手段と、ガラス基材表面及び/又は型部材
の成型表面に樹脂モノマーの液滴を供給する手段と、ガ
ラス基材と型部材を接近させ、ガラス基材表面に樹脂を
展開する手段と、樹脂層に樹脂の重合硬化に必要なエネ
ルギーを供給する手段と、を具備する複合型光学素子の
製造装置において、少なくともガラス基材と型部材の間
の空間を密閉する手段と、ガラス基材と型部材の間の密
閉空間を真空引きする手段とを設けた構成としてある。
Further, in the apparatus for producing a composite type optical element of the present invention, the mold member is disposed such that the molding surface is in contact with the bonding surface of the glass base material, and the horizontal position of the glass base material and the mold member. Means for matching, means for supplying droplets of a resin monomer to the glass substrate surface and / or the molding surface of the mold member, and means for bringing the glass substrate and the mold member close to each other and spreading the resin on the glass substrate surface And a means for supplying the resin layer with energy necessary for polymerizing and curing the resin, in a composite optical element manufacturing apparatus comprising: a means for sealing at least a space between the glass base material and the mold member; A means for evacuating the closed space between the material and the mold member is provided.

【0016】また、本発明の複合型光学素子の製造装置
は、上記複合型光学素子の製造装置において、上記密閉
手段が、ガラス基材と型部材の間の空間を密閉可能に囲
む壁材と、ガラス基材と壁材との接触部分及び/又は型
部材と壁材との接触部分もしくは隙間部分に設けた気密
シール部材からなる構成としてある。
In the composite optical element manufacturing apparatus of the present invention, in the composite optical element manufacturing apparatus, the sealing means includes a wall member that encloses a space between the glass substrate and the mold member in a sealable manner. The airtight seal member is provided at a contact portion between the glass base material and the wall material and / or a contact portion between the mold member and the wall material or a gap portion.

【0017】[0017]

【作用】本発明では、樹脂モノマー注入後に、少なくと
もガラス基材と型部材の間の空間を真空引きすること
で、樹脂注入時に樹脂に気泡が混入したとしても除去さ
れ、樹脂接触時には、樹脂周囲が真空であるため樹脂層
への空気の巻き込みを完全に防止できる。
In the present invention, at least the space between the glass substrate and the mold member is evacuated after the resin monomer is injected, so that even if bubbles are mixed in the resin at the time of resin injection, it is removed. Since it is a vacuum, it is possible to completely prevent air from being entrapped in the resin layer.

【0018】また、真空状態のまま樹脂の展開を行う
と、樹脂モノマー中の溶存ガスが気泡となり出現するこ
とがあるが、樹脂展開前に大気圧に戻すことにより、新
たに発生した低気圧の気泡を外気圧でつぶすことができ
る。
Further, when the resin is expanded in a vacuum state, the dissolved gas in the resin monomer may appear as bubbles, but by returning to the atmospheric pressure before the resin expansion, the newly generated low pressure Bubbles can be crushed by atmospheric pressure.

【0019】さらに、本発明の製造装置は、ガラス基材
と型部材の間の空間のみを真空引きすることができる。
したがって、装置全体を真空引きする場合に比べ、極め
て短時間で真空引き及び真空解除が可能となり、真空引
き工程による製造効率の低下を回避することができる。
また、装置全体を真空容器に入れる必要がないため、ガ
ラスレンズの交換が容易であり、ロボット等による自動
化も容易である。
Further, the manufacturing apparatus of the present invention can evacuate only the space between the glass substrate and the mold member.
Therefore, compared with the case where the entire apparatus is evacuated, it is possible to evacuate and release the vacuum in an extremely short time, and it is possible to avoid a decrease in manufacturing efficiency due to the evacuation process.
Further, since it is not necessary to put the entire apparatus in a vacuum container, the glass lens can be easily replaced, and automation by a robot or the like is easy.

【0020】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0021】まず、製造方法の発明について説明する。First, the invention of the manufacturing method will be described.

【0022】本発明では、ガラス基材と型部材の成型表
面を対接させ、ガラス基材表面又は型部材の成型表面の
うちの少なくともいずれか一方の表面に、樹脂モノマー
の液滴を載せた状態で、ガラス基材と型部材を接近さ
せ、ガラス基材表面に樹脂を展開する。
In the present invention, the glass substrate and the molding surface of the mold member are brought into contact with each other, and the droplet of the resin monomer is placed on at least one of the glass substrate surface and the molding surface of the mold member. In this state, the glass base material and the mold member are brought close to each other to spread the resin on the surface of the glass base material.

【0023】ここで、ガラス基材の材質、形状等は、目
的とする光学素子に応じて適宜選択、設計される。例え
ば、ガラス基材は、必要とされる光学特性を満たすガラ
スであれば特に制限されない。また、ガラス基材の形状
も特に制限されず、板状、レンズ状、プリズム状など各
種光学素子に応じた形状のものが使用される。ガラス基
材のサイズも特に制限されないが、本発明によれば大口
径レンズ等の大きいサイズの複合型光学素子の製造が可
能となる。
Here, the material, shape, etc. of the glass substrate are appropriately selected and designed according to the intended optical element. For example, the glass substrate is not particularly limited as long as it is glass that satisfies the required optical characteristics. Further, the shape of the glass substrate is not particularly limited, and those having a shape suitable for various optical elements such as a plate shape, a lens shape and a prism shape are used. The size of the glass substrate is not particularly limited, but the present invention enables the production of large-sized composite optical elements such as large-diameter lenses.

【0024】ガラス基材表面は、接着強度を高めたり、
表面の濡れ性を高めるなどの目的のため、必要に応じ、
シランカップリング処理、蒸着処理、樹脂コーティング
処理、クリーニング処理等を施してもよい。
The surface of the glass substrate has a high adhesive strength,
For purposes such as improving the wettability of the surface, if necessary,
Silane coupling treatment, vapor deposition treatment, resin coating treatment, cleaning treatment and the like may be performed.

【0025】型部材は、ガラス基材に接合する樹脂層を
所望の形状にするための成型表面を有する。型部材の成
型面は、精密加工などによって所望の非球面形状等に鏡
面加工する。型部材の成型面は、成型後の剥離を容易に
するため、離型剤などによる離型処理を行うこともでき
る。型部材成型面の樹脂モノマーに対する濡れ性は、一
般的な金属表面より若干悪くすることが好ましい。型部
材の材質としては、各種金属材料やガラス、セラミッ
ク、高分子材料などが使用される。
The mold member has a molding surface for shaping the resin layer bonded to the glass substrate into a desired shape. The molding surface of the mold member is mirror-finished into a desired aspherical shape or the like by precision processing or the like. The molding surface of the mold member may be subjected to a mold release treatment with a mold release agent or the like in order to facilitate the peeling after molding. The wettability of the molding surface of the mold member with respect to the resin monomer is preferably slightly worse than that of a general metal surface. As the material of the mold member, various metal materials, glass, ceramics, polymer materials and the like are used.

【0026】樹脂の供給は、ディスペンサー、注射器、
精密分注機などによって行う。
The resin is supplied by a dispenser, a syringe,
Use a precision dispenser.

【0027】樹脂の供給は、必要に応じ、ガラス基材表
面、又は型部材の成型表面、あるいはこれらの両方の面
に行う。この際、樹脂モノマーが液滴となるように、樹
脂の供給速度、ノズルの位置、ノズル先端と樹脂供給表
面との距離、樹脂の粘度等を適宜調整する。この観点か
ら樹脂の粘度は、数千cP(センチポイズ)程度が好ま
しい。なお、樹脂の供給前に、樹脂中の気泡と溶存ガス
を真空下(減圧下)で充分除去しておくことが好まし
い。
The resin is supplied to the surface of the glass base material, the molding surface of the mold member, or both surfaces thereof, if necessary. At this time, the resin supply speed, the nozzle position, the distance between the nozzle tip and the resin supply surface, the resin viscosity, etc. are appropriately adjusted so that the resin monomer becomes droplets. From this viewpoint, the viscosity of the resin is preferably about several thousand cP (centipoise). Before supplying the resin, it is preferable to sufficiently remove bubbles and dissolved gas in the resin under vacuum (under reduced pressure).

【0028】使用する樹脂は、エネルギー硬化型樹脂、
熱重合型樹脂など重合可能な樹脂であればよく、重合方
法は樹脂に合わせた方法をとればよい。
The resin used is an energy curable resin,
Any polymerizable resin such as a heat-polymerizable resin may be used, and the polymerization method may be a method suitable for the resin.

【0029】樹脂としては、具体的には、ウレタンアク
リレート系樹脂、ウレタンメタクリレート系樹脂、ウレ
タン変性アクリレート系樹脂、エポキシアクリレート系
樹脂、エポキシメタクリレート系樹脂、アクリル系樹
脂、エポキシ樹脂等の光学樹脂や硬化型光学用樹脂組成
物などが挙げられる。
Specific examples of the resin include urethane acrylate resin, urethane methacrylate resin, urethane modified acrylate resin, epoxy acrylate resin, epoxy methacrylate resin, acrylic resin, epoxy resin, and other optical resins and curing. Mold optical resin compositions and the like can be mentioned.

【0030】これらの樹脂は、重合性(架橋性を含む)
を有していればよく、モノマー(単官能モノマー、多官
能モノマー)、オリゴマー(プレポリマー)、ポリマー
(ポリウレタン(メタ)アクリレートなど)等のいずれ
の形態であってもよい。
These resins are polymerizable (including crosslinkable)
It may be any form of a monomer (monofunctional monomer, polyfunctional monomer), oligomer (prepolymer), polymer (polyurethane (meth) acrylate, etc.).

【0031】ウレタン(メタ)アクリレートとしては、
例学(株)社製)、U−4HA(新中村化学工業(株)
社製)などの市販の各種ウレタン(メタ)アクリレート
樹脂(紫外線硬化樹脂、光学用接着剤、樹脂改質剤など
として市販)から選定して使用することもできる。
As the urethane (meth) acrylate,
Ugaku Co., Ltd.), U-4HA (Shin Nakamura Chemical Co., Ltd.)
It can also be used by selecting from various commercially available urethane (meth) acrylate resins (commercially available), such as UV curable resins, optical adhesives, and resin modifiers.

【0032】なお、これらの樹脂は、一種単独で用いて
もよく、二種以上を混合して用いてもよい。この場合、
気泡の発生しにくい樹脂の組合せとすることが好まし
い。
These resins may be used alone or in combination of two or more. in this case,
It is preferable to use a combination of resins that hardly generate bubbles.

【0033】光学樹脂層におけるその他の添加成分とし
ては、重合開始剤、希釈樹脂成分などが挙げられる。
Examples of other additive components in the optical resin layer include a polymerization initiator and a diluting resin component.

【0034】重合開始剤は、必要に応じ樹脂中に添加さ
れる。重合開始剤による重合は、光る重合、熱重合さら
には放射線重合などによって開始できる。光重合開始剤
としては、ベンゾフェノン、ベンゾインエチルエーテ
ル、ベンジルメチルケタール、1−ヒドロキシシクロヘ
キシルフェニルケトン、2−クロロチオキサゾリン、p
−ジメチルアミノ安息香酸エチルなど、熱重合開始剤と
しては、クメンヒドロキシパーオキサイド、過酸化ベン
ゾイル、アゾビスイソブチロニトリル、アゾビスジメチ
ルバレロニトリルなどを用いることができる。
The polymerization initiator is added to the resin as needed. Polymerization with a polymerization initiator can be initiated by light polymerization, thermal polymerization, radiation polymerization or the like. As the photopolymerization initiator, benzophenone, benzoin ethyl ether, benzyl methyl ketal, 1-hydroxycyclohexyl phenyl ketone, 2-chlorothioxazoline, p
As the thermal polymerization initiator such as ethyl dimethylaminobenzoate, cumene hydroxyperoxide, benzoyl peroxide, azobisisobutyronitrile, azobisdimethylvaleronitrile and the like can be used.

【0035】希釈樹脂成分としては、メチルアクリレー
ト、エチルアクリレートなどの光硬化性モノマーなどが
挙げられる。
Examples of the diluting resin component include photocurable monomers such as methyl acrylate and ethyl acrylate.

【0036】樹脂供給後、ガラス基材と型部材の成型表
面との位置合わせ(アライメント)を行う。位置合わせ
手段としては、光軸合わせ機構などの公知の方法が使用
される。
After the resin is supplied, the glass base material and the molding surface of the mold member are aligned with each other. As the alignment means, a known method such as an optical axis alignment mechanism is used.

【0037】本発明では、樹脂供給後、少なくともガラ
ス基材と型部材の間の空間を真空引きする。ここで、真
空度(減圧時の圧力)は、樹脂の種類、特性等によって
適宜設定し、樹脂注入時に混入した気泡を充分除去する
ことが好ましい。
In the present invention, after the resin is supplied, at least the space between the glass base material and the mold member is evacuated. Here, it is preferable that the degree of vacuum (pressure at the time of depressurization) is appropriately set according to the type and characteristics of the resin, and the bubbles mixed during the resin injection are sufficiently removed.

【0038】通常、樹脂周辺の空間を減圧状態に保ち気
泡を除去するのに必要な時間は1分以内である。また、
減圧時の圧力は10-3〜10-1torr程度で充分であ
る。
Usually, the time required to remove air bubbles while keeping the space around the resin under reduced pressure is within 1 minute. Also,
It is sufficient that the pressure during depressurization is about 10 -3 to 10 -1 torr.

【0039】真空引きにはロータリーポンンプなどの公
知の真空ポンプを使用することができる。
A known vacuum pump such as a rotary pump can be used for evacuation.

【0040】真空引き後、ガラス基材と型部材を接近さ
せ、樹脂モノマーの液滴と型部材成型表面又はガラス基
材表面とを接触させる。本発明では樹脂接触時には、樹
脂周囲が真空であるため樹脂層への空気の巻き込みを完
全に防止できる。
After evacuation, the glass base material and the mold member are brought close to each other to bring the droplets of the resin monomer into contact with the mold member molding surface or the glass base material surface. In the present invention, when the resin is in contact with the resin layer, a vacuum around the resin can completely prevent air from being entrapped in the resin layer.

【0041】樹脂モノマー液滴と接触後、真空状態を解
除し、ガラス基材と型部材をさらに接近させて、樹脂を
展開する。
After contact with the resin monomer droplets, the vacuum state is released, the glass base material and the mold member are brought closer to each other, and the resin is developed.

【0042】ここで、真空状態の解除は、樹脂モノマー
液滴と接触後、ガラス基材と型部材の接近を一旦停止し
て行う方が真空解除のタイミングを制御しやすいが、接
近速度が充分に低速である場合には、接近させながら真
空を解除してもよい。真空解除のために導入する気体
は、空気であってもよいが、空気中の酸素が樹脂の重合
を阻害する場合は、不活性ガス等を用いることが望まし
い。真空解除のために導入する気体は、埃、塵、オイル
ミストなどの流入を防ぐためフィルタリングすることが
好ましい。
It is easier to control the vacuum release timing by releasing the vacuum state by temporarily stopping the approach of the glass substrate and the mold member after contact with the resin monomer droplets, but the approach speed is sufficient. When the speed is low, the vacuum may be released while approaching. The gas introduced for releasing the vacuum may be air, but when oxygen in the air hinders the polymerization of the resin, it is desirable to use an inert gas or the like. The gas introduced for releasing the vacuum is preferably filtered to prevent inflow of dust, dust, oil mist and the like.

【0043】なお、真空状態の解除は、完全に大気圧ま
で戻す必要はなく、新たな気泡発生が起こらない程度に
真空度を落とすだけでもよい。
In order to release the vacuum state, it is not necessary to completely return it to the atmospheric pressure, and it is sufficient to reduce the degree of vacuum to the extent that new bubbles are not generated.

【0044】樹脂の展開は、ガラス基材と型部材の接近
速度を遅くして樹脂の展開速度を遅くすると、不均一な
樹脂の広がりが抑制され、樹脂展開時に空気を巻き込む
危険性が少なくなる。この場合、ガラス基材と型部材の
接近速度は0.05〜0.1mm/秒程度が好ましい。
In the resin development, when the approaching speed of the glass base material and the mold member is slowed to slow the resin developing speed, the nonuniform spread of the resin is suppressed and the risk of entraining air during the resin developing is reduced. . In this case, the approaching speed of the glass base material and the mold member is preferably about 0.05 to 0.1 mm / sec.

【0045】樹脂展開後、樹脂層を重合硬化させ、さら
に型部材から樹脂を剥離することによって、ガラス基材
に樹脂層を接合した構造の複合型光学素子を製造する。
After the development of the resin, the resin layer is polymerized and cured, and the resin is peeled off from the mold member to manufacture a composite optical element having a structure in which the resin layer is bonded to the glass base material.

【0046】なお、複合型光学素子の表面には、必要に
応じ、反射防止膜などが形成される。
If necessary, an antireflection film or the like is formed on the surface of the composite optical element.

【0047】次に、上述した製造方法の実施に適した製
造装置の発明について説明する。
Next, the invention of a manufacturing apparatus suitable for carrying out the above-described manufacturing method will be described.

【0048】複合型光学素子の製造装置としては、各種
形態、態様の装置が知られているが本発明はいずれの装
置にも適用できる。
As the manufacturing apparatus of the composite type optical element, various types and modes of apparatus are known, but the present invention can be applied to any apparatus.

【0049】本発明は、複合型光学素子の製造装置にお
いて、少なくともガラス基材と型部材の間の空間を密閉
する手段と、ガラス基材と型部材の間の密閉空間を真空
引きする手段を設けたことを特徴とする。
The present invention provides, in a composite optical element manufacturing apparatus, means for sealing at least the space between the glass base material and the mold member, and means for vacuuming the sealed space between the glass base material and the mold member. It is characterized by being provided.

【0050】ここで、ガラス基材と型部材の間の空間を
密閉する手段は、例えば、ガラス基材と型部材の間の空
間を密閉可能に囲む壁材と、ガラス基材と壁材との接触
部分及び型部材と壁材との接触部分もしくは隙間部分に
設けた気密シール部材とで構成できる。
Here, the means for sealing the space between the glass base material and the mold member includes, for example, a wall material that encloses the space between the glass base material and the mold member in a sealable manner, and a glass base material and a wall material. And the airtight seal member provided in the contact portion between the mold member and the wall material or in the gap portion.

【0051】この場合、型部材と壁材とを一体的に成形
した場合は、型部材と壁材との間の気密シール部材は省
略できる。また、ガラス基材保持部材と壁材とを一体的
に成形した場合は、ガラス基材保持部材と壁材との間の
気密シール部材は省略でき、その代わり、ガラス基材保
持部材とガラス基材の接触部にシール部材を用いればよ
い。気密シール部材の材料としては、シリコンゴム、天
然ゴム等の通常のエラストマーが好ましい。
In this case, when the mold member and the wall material are integrally molded, the airtight seal member between the mold member and the wall material can be omitted. Further, when the glass base material holding member and the wall material are integrally molded, the airtight sealing member between the glass base material holding member and the wall material can be omitted. Instead, the glass base material holding member and the glass base material can be omitted. A seal member may be used for the contact portion of the material. As a material for the airtight seal member, a usual elastomer such as silicone rubber or natural rubber is preferable.

【0052】通常、ガラス基材保持手段と、位置合わせ
手段(光軸合わせ機構)は兼用されるが、例えば金型を
移動して位置合わせを行う場合には、これらを別々に構
成してもよい。
Normally, the glass base material holding means and the aligning means (optical axis aligning mechanism) are also used. However, for example, when the die is moved to perform the aligning, these may be configured separately. Good.

【0053】なお、真空引きを行う密閉空間の範囲は、
型部材とガラスレンズの間の空間のみとすることが製造
効率上望ましいが、より広い範囲を真空引きしても、製
造能率以外は同様な効果が期待できる。
The range of the closed space for vacuuming is
It is desirable to make only the space between the mold member and the glass lens in terms of manufacturing efficiency, but even if a wider range is evacuated, similar effects can be expected except for the manufacturing efficiency.

【0054】ガラス基材と型部材との間の密閉空間を真
空引きする手段としては、ロータリーポンンプなどの各
種分野で公知の真空ポンプを使用することができる。
As a means for evacuating the closed space between the glass substrate and the mold member, a vacuum pump known in various fields such as a rotary pump can be used.

【0055】樹脂層に樹脂の重合硬化に必要なエネルギ
ーを供給する手段としては、紫外線照射装置などの活性
エネルギー線照射装置や、加熱装置などが挙げられ、こ
れらの装置は樹脂の種類に応じて選択使用される。
Examples of means for supplying energy required for polymerization and curing of the resin to the resin layer include active energy ray irradiation devices such as an ultraviolet irradiation device and heating devices. These devices are used depending on the type of resin. Used as an option.

【0056】ガラス基材と型部材を接近させる手段は、
ガラス基材と型部材のいずれか一方を両者の水平度を保
ちつつ垂直方向に精密駆動する機構で構成すればよい
が、光軸精度の確保のためには、金型側を上下動させる
方が好ましい。
Means for bringing the glass base material and the mold member close to each other are as follows:
Either one of the glass substrate and the mold member may be configured by a mechanism that precisely drives in the vertical direction while maintaining the horizontalness of both, but in order to ensure the accuracy of the optical axis, the mold side is moved up and down. Is preferred.

【0057】本発明の製造装置は、ガラス基材と型部材
の間の空間の容積が小さいため、真空引き及び真空解除
が容易であるとともに、ガラス基材と型部材の間の空間
の雰囲気、圧力などの条件の制御が容易で短時間かつ低
コストでありこれらの制御を必要とする製造装置として
も適する。
In the manufacturing apparatus of the present invention, since the volume of the space between the glass base material and the mold member is small, it is easy to evacuate and release the vacuum, and the atmosphere of the space between the glass base material and the mold member, Control of conditions such as pressure is easy, and it is short-time and low-cost, and is suitable as a manufacturing apparatus that requires these controls.

【0058】なお、本発明方法の利用分野はレプリカレ
ンズに限定されるものではなく、樹脂とガラスを接合し
て製造するいかなる複合型光学素子(複合型光学部品を
含む)に対しても適用できる。また本発明装置は気泡の
混入を嫌う各種光学部品の成型装置としても利用可能で
ある。
The field of use of the method of the present invention is not limited to the replica lens, but can be applied to any composite optical element (including composite optical component) manufactured by bonding resin and glass. . Further, the device of the present invention can also be used as a molding device for various optical components which are reluctant to mix bubbles.

【0059】具体的には、例えば、カメラレンズ、ビデ
オカメラ用レンズ、写真用レンズ、光通信用光源レン
ズ、眼鏡レンズ、コンパクトディスクプレイヤーのピッ
クアップレンズ、プロジェクションテレビ用の大口径レ
ンズなどの光学レンズや、位相格子型ローパスフィルタ
ー、色フィルター、位相格子フィルター、アナモルフィ
ックレンズ、レンチキュラーレンズ、グレーティング、
プリズム、ゾーンプレート、フレネルレンズ、ホログラ
フィックレンズなどの微小な複合型光学素子についても
利用できる。
Specifically, for example, an optical lens such as a camera lens, a video camera lens, a photographic lens, a light source lens for optical communication, a spectacle lens, a pickup lens of a compact disc player, a large-diameter lens for a projection television, and the like. , Phase grating type low pass filter, color filter, phase grating filter, anamorphic lens, lenticular lens, grating,
It can also be used for minute composite optical elements such as prisms, zone plates, Fresnel lenses, and holographic lenses.

【0060】[0060]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0061】図1はレプリカレンズの製造装置の主要部
分を示す部分断面図である。図1に示すように、非球面
状に精密加工された金型1には円筒状の胴型2が同軸上
に装着されており、胴型2は支持台12に固定され、金
型1は上下動可能に設置されている。金型1と胴型2と
の隙間の下部には気密シール部材としてゴム製Oリング
3が装着されている。また、胴型2の上端部にもゴム製
の気密シール部材4が接合されており、このゴム製の気
密シール部材4を球面ガラスレンズ5の表面に接触させ
た状態で、胴型2の上部側面の真空口6から脱気するこ
とにより、ガラスレンズ5と金型2で挟まれた僅かな空
間7のみを真空引きすることができる。また、真空状態
の解除は、真空口6からガスを導入して行う。次に、上
記図1に示した製造装置を用いた本発明の製造方法につ
いて説明する。
FIG. 1 is a partial sectional view showing a main part of a replica lens manufacturing apparatus. As shown in FIG. 1, a cylindrical body 2 is coaxially mounted on a die 1 precision-machined to an aspherical surface. The body 2 is fixed to a support 12 and the die 1 is It is installed so that it can move up and down. A rubber O-ring 3 is mounted as an airtight seal member below the gap between the mold 1 and the body mold 2. Further, a rubber airtight seal member 4 is also joined to the upper end of the barrel die 2, and the rubber die airtight seal member 4 is brought into contact with the surface of the spherical glass lens 5 and the upper portion of the barrel die 2 is covered. By degassing from the vacuum port 6 on the side surface, only a small space 7 sandwiched between the glass lens 5 and the mold 2 can be evacuated. The vacuum state is released by introducing gas from the vacuum port 6. Next, the manufacturing method of the present invention using the manufacturing apparatus shown in FIG. 1 will be described.

【0062】あらかじめ光重合開始剤を混合した樹脂モ
ノマーを調製し、充分に真空下で樹脂モノマー中の気泡
と溶存ガスを除去した後に、樹脂供給用のディスペンサ
ーに樹脂モノマーを充填する。次いで、ディスペンサー
により金型1の上部中央に樹脂モノマー8を注入後、球
面ガラスレンズ5を金型1上部に設置し、光軸合わせ機
構9により金型1と球面ガラスレンズ5との光軸合わせ
を行う(図1)。
A resin monomer mixed with a photopolymerization initiator is prepared in advance, the air bubbles and the dissolved gas in the resin monomer are sufficiently removed under vacuum, and then the resin monomer is filled in a dispenser for supplying resin. Next, after injecting the resin monomer 8 into the center of the upper part of the mold 1 with the dispenser, the spherical glass lens 5 is set on the upper part of the mold 1, and the optical axis alignment mechanism 9 aligns the optical axes of the mold 1 and the spherical glass lens 5. (Fig. 1).

【0063】次に、胴型2の真空口6から真空引きを行
い、樹脂注入により混入した気泡を除去する。溶存ガス
とは異なり、樹脂注入時に混入した気泡は直ちに除去で
きる。
Next, a vacuum is drawn from the vacuum port 6 of the barrel die 2 to remove the bubbles mixed by the resin injection. Unlike dissolved gas, bubbles mixed during resin injection can be removed immediately.

【0064】次に、金型1と球面ガラスレンズ5を低速
で接近させ、樹脂液滴が球面ガラスレンズ5に接触した
直後に、不活性ガス等を真空口6から導入して真空状態
を解除する(図2)。これは、充分に溶存ガスを除去し
た樹脂であっても、高真空状態では金型やガラスレンズ
表面との新たな接触によって、稀に気泡が発生する場合
があるためである。そこで、樹脂液滴が球面ガラスレン
ズ5に接触した直後に、大気圧に戻すことで、新たな気
泡発生を防止できるとともに、真空を解除する前に発生
した気圧の低い気泡を外気圧により押し潰すことができ
る。
Next, the mold 1 and the spherical glass lens 5 are brought close to each other at a low speed, and immediately after the resin droplet comes into contact with the spherical glass lens 5, an inert gas or the like is introduced from the vacuum port 6 to release the vacuum state. (Fig. 2). This is because even in the case of a resin from which dissolved gas has been sufficiently removed, bubbles may rarely be generated due to new contact with the mold or glass lens surface in a high vacuum state. Therefore, immediately after the resin droplet comes into contact with the spherical glass lens 5, it is possible to prevent the generation of new bubbles by returning the atmospheric pressure to the atmospheric pressure, and the bubbles having a low atmospheric pressure generated before the vacuum is released are crushed by the external pressure. be able to.

【0065】真空解除後に、再び金型1と球面ガラスレ
ンズ5を低速で接近させ、ガラスレンズ表面全体に樹脂
8を展開する(図3)。
After releasing the vacuum, the mold 1 and the spherical glass lens 5 are again brought close to each other at low speed, and the resin 8 is spread over the entire surface of the glass lens (FIG. 3).

【0066】次いで、ガラスレンズ側から活性エネルギ
ー線を照射し、展開した樹脂を重合硬化させる。樹脂の
重合硬化後、金型からレンズを剥離することで気泡のな
いレプリカレンズが製造できる。
Then, active energy rays are irradiated from the glass lens side to polymerize and cure the developed resin. After the resin is polymerized and cured, the lens is peeled off from the mold, so that a bubble-free replica lens can be manufactured.

【0067】以上好ましい実施例をあげて本発明を説明
したが、本発明は必ずしも上記実施例に限定されるもの
ではない。
Although the present invention has been described with reference to the preferred embodiments, the present invention is not necessarily limited to the above embodiments.

【0068】例えば、図1〜3に示した光軸合わせ機構
9として、図4(a)及び(b)に示すような3点外径
衝方式や、図5に示すようなベルチャック方式等の公知
の光軸合わせ機構を用いることができる。
For example, as the optical axis adjusting mechanism 9 shown in FIGS. 1 to 3, a three-point outer diameter collision method as shown in FIGS. 4 (a) and 4 (b), a bell chuck method as shown in FIG. A known optical axis adjusting mechanism of can be used.

【0069】また、光軸合わせの方法としてベルチャッ
ク方式を採用する場合、図6に示すように、ベルチャッ
ク10は円筒状なので、胴型として代用することもでき
る。この場合、金型1と円筒状のベルチャック10との
隙間の下部をゴム製シール部材3でシールし、真空口6
をベルチャック10側面に設ければよい。ただし、ベル
チャック先端のゴム製シールが部材が、ベルチャック本
来の光軸合わせの精度を悪化させる可能性があるため、
ベルチャック先端のゴム製シール部材は、例えば図6に
示すように、真空引きの時のみベルチャック先端に圧着
(付着)するようなゴム製シール部材11とする必要が
ある。
When the bell chuck method is adopted as the optical axis alignment method, the bell chuck 10 has a cylindrical shape as shown in FIG. In this case, the lower part of the gap between the die 1 and the cylindrical bell chuck 10 is sealed with the rubber seal member 3, and the vacuum port 6
May be provided on the side surface of the bell chuck 10. However, the rubber seal on the tip of the bell chuck may deteriorate the accuracy of the optical alignment of the bell chuck itself, so
The rubber seal member at the tip of the bell chuck needs to be a rubber seal member 11 that is pressed (attached) to the tip of the bell chuck only when vacuuming, as shown in FIG. 6, for example.

【0070】[0070]

【発明の効果】以上説明したように、本発明の複合型光
学素子の製造方法によれば、樹脂層中に気泡のない複合
型光学素子を確実に製造することができる。
As described above, according to the method for producing a composite optical element of the present invention, it is possible to reliably produce a composite optical element having no bubbles in the resin layer.

【0071】また、大口径の複合型光学素子であって
も、樹脂層中に気泡のない複合型光学素子を確実に製造
することができる。
Even with a large-diameter composite optical element, it is possible to reliably manufacture a composite optical element having no bubbles in the resin layer.

【0072】さらに、本発明の複合型光学素子の製造装
置によれば、極めて短時間で真空引き及び真空解除が可
能であり、効率的かつ確実に樹脂層中に気泡のない複合
型光学素子を確実に製造することができる。
Further, according to the apparatus for producing a composite optical element of the present invention, it is possible to evacuate and release the vacuum in an extremely short time, and to efficiently and reliably provide a composite optical element having no bubbles in the resin layer. It can be reliably manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る複合型光学素子の製造
装置の基本構成及び製造手順を説明するための断面図で
ある。
FIG. 1 is a sectional view for explaining a basic configuration and a manufacturing procedure of a manufacturing apparatus for a composite optical element according to an embodiment of the present invention.

【図2】図1に示す製造装置の次の動作及び製造工程を
説明するための断面図である。
FIG. 2 is a cross-sectional view for explaining the next operation and manufacturing process of the manufacturing apparatus shown in FIG.

【図3】図1に示す製造装置のさらに次の動作及び製造
工程を説明するための断面図である。
FIG. 3 is a cross-sectional view for explaining still another operation and manufacturing process of the manufacturing apparatus shown in FIG.

【図4】光軸合わせ方法における3点外径衝方式を説明
するための図であり、(a)は平面図、(b)は(a)
のA−A線断面図である。
4A and 4B are views for explaining a three-point outer diameter collision method in the optical axis alignment method, in which FIG. 4A is a plan view and FIG.
FIG. 4 is a sectional view taken along line AA of FIG.

【図5】光軸合わせ方法におけるベルチャック方式を説
明するための断面図である。
FIG. 5 is a sectional view for explaining a bell chuck method in an optical axis alignment method.

【図6】ベルチャックを胴型に代用した場合の製造装置
を示す概略断面図である。
FIG. 6 is a schematic cross-sectional view showing a manufacturing apparatus when the bell chuck is substituted for a body mold.

【図7】従来の一般的な複合型光学素子の製造手順を説
明するための断面図である。
FIG. 7 is a cross-sectional view for explaining a manufacturing procedure for a conventional general composite optical element.

【図8】図7の次の製造工程を説明するための断面図で
ある。
FIG. 8 is a cross-sectional view for explaining the next manufacturing step after FIG.

【図9】図8の次の製造工程を説明するための断面図で
ある。
FIG. 9 is a cross-sectional view for explaining the next manufacturing step after FIG.

【図10】図9の次の製造工程を説明するための断面図
である。
FIG. 10 is a cross-sectional view for explaining the next manufacturing step after FIG.

【符号の説明】[Explanation of symbols]

1 金型 2 胴型 3 ゴム製Oリング 4 ゴム製シール部材 5 ガラスレンズ 6 真空口 7 ガラスレンズと金型の間の空間 8 樹脂モノマー 9 光軸合わせ機構 10 ベルチャック 11 ゴム製シール部材 12 支持台 1 Mold 2 Body 3 Rubber O Ring 4 Rubber Seal Member 5 Glass Lens 6 Vacuum Port 7 Space Between Glass Lens and Mold 8 Resin Monomer 9 Optical Axis Alignment Mechanism 10 Bell Chuck 11 Rubber Seal Member 12 Support Stand

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基材と型部材の成型表面を対接さ
せ、ガラス基材表面又は型部材の成型表面のうちの少な
くともいずれか一方の表面に、樹脂モノマーの液滴を載
せた状態で、ガラス基材と型部材を接近させ、ガラス基
材表面に樹脂を展開した後、樹脂層を重合硬化させ、さ
らに型部材から樹脂を剥離することによって、前記ガラ
ス基材に樹脂層を接合した構造の複合型光学素子を製造
する方法において、 ガラス基材表面及び/又は型部材の成型表面に樹脂モノ
マーを液滴状に注入後、少なくともガラス基材と型部材
の間の空間を真空引きする工程を設けたことを特徴とす
る複合型光学素子の製造方法。
1. A glass substrate and a molding surface of a mold member are brought into contact with each other, and a droplet of a resin monomer is placed on at least one surface of the glass substrate surface and the molding surface of the mold member. , The glass base material and the mold member are brought close to each other, the resin is spread on the surface of the glass base material, the resin layer is polymerized and cured, and the resin is peeled off from the mold member to bond the resin layer to the glass base material. In a method of manufacturing a composite optical element having a structure, after injecting a resin monomer in the form of droplets onto the surface of a glass base material and / or the molding surface of a mold member, at least the space between the glass base material and the mold member is evacuated. A method for manufacturing a composite optical element, characterized by comprising steps.
【請求項2】 請求項1記載の複合型光学素子の製造方
法において、液滴状に注入した樹脂モノマーが、ガラス
基材表面と型部材成型表面の両方に接触した時点で、真
空状態を解除し樹脂を展開することを特徴とする複合型
光学素子の製造方法。
2. The method for producing a composite optical element according to claim 1, wherein the vacuum state is released when the resin monomer injected in the form of droplets contacts both the glass substrate surface and the mold member molding surface. A method for manufacturing a composite optical element, which comprises developing a resin.
【請求項3】 ガラス基材を保持する手段と、 ガラス基材の接合面に成型表面を対接させて配設された
型部材と、 ガラス基材と型部材の水平方向の位置合わせを行う手段
と、 ガラス基材表面及び/又は型部材の成型表面に樹脂モノ
マーの液滴を供給する手段と、 ガラス基材と型部材を接近させ、ガラス基材表面に樹脂
を展開する手段と、 樹脂層に樹脂の重合硬化に必要なエネルギーを供給する
手段と、を具備する複合型光学素子の製造装置におい
て、 少なくともガラス基材と型部材の間の空間を密閉する手
段と、 ガラス基材と型部材の間の密閉空間を真空引きする手段
とを設けたことを特徴とする複合型光学素子の製造装
置。
3. A means for holding a glass base material, a mold member arranged such that a molding surface is in contact with a bonding surface of the glass base material, and the glass base material and the mold member are aligned in the horizontal direction. A means for supplying droplets of a resin monomer to the glass substrate surface and / or the molding surface of the mold member; a means for bringing the glass substrate and the mold member close to each other and developing the resin on the glass substrate surface; A device for manufacturing a composite optical element, comprising means for supplying energy required for polymerization and curing of a resin to the layer, means for sealing at least a space between the glass base material and the mold member, and the glass base material and the mold. An apparatus for manufacturing a composite optical element, which is provided with means for evacuating a closed space between members.
【請求項4】 密閉手段が、ガラス基材と型部材の間の
空間を密閉可能に囲む壁材と、ガラス基材と壁材との接
触部分及び/又は型部材と壁材との接触部分もしくは隙
間部分に設けた気密シール部材からなることを特徴とす
る請求項3記載の複合型光学素子の製造装置。
4. A wall means for sealingly enclosing a space between a glass base material and a mold member, a contact portion between the glass base material and the wall material, and / or a contact portion between the mold member and the wall material. Alternatively, the apparatus for manufacturing a composite optical element according to claim 3, characterized by comprising an airtight seal member provided in the gap.
JP19908095A 1995-07-12 1995-07-12 Method and apparatus for manufacturing composite optical element Pending JPH0924522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19908095A JPH0924522A (en) 1995-07-12 1995-07-12 Method and apparatus for manufacturing composite optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19908095A JPH0924522A (en) 1995-07-12 1995-07-12 Method and apparatus for manufacturing composite optical element

Publications (1)

Publication Number Publication Date
JPH0924522A true JPH0924522A (en) 1997-01-28

Family

ID=16401780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19908095A Pending JPH0924522A (en) 1995-07-12 1995-07-12 Method and apparatus for manufacturing composite optical element

Country Status (1)

Country Link
JP (1) JPH0924522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001646A (en) * 2001-06-25 2003-01-08 Matsushita Electric Works Ltd Method for transferring minutely processed surface and optical part
JP2006268015A (en) * 2005-02-25 2006-10-05 Sanyo Electric Co Ltd Optical element, optical system and methods of manufacturing the same, and optical device
JP2011194842A (en) * 2010-03-23 2011-10-06 Fujifilm Corp Method of manufacturing lens array, and apparatus for manufacturing lens array

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001646A (en) * 2001-06-25 2003-01-08 Matsushita Electric Works Ltd Method for transferring minutely processed surface and optical part
JP2006268015A (en) * 2005-02-25 2006-10-05 Sanyo Electric Co Ltd Optical element, optical system and methods of manufacturing the same, and optical device
JP2011194842A (en) * 2010-03-23 2011-10-06 Fujifilm Corp Method of manufacturing lens array, and apparatus for manufacturing lens array

Similar Documents

Publication Publication Date Title
CN111381341B (en) Method for attaching lens group
JP2001519601A (en) Method for integrating multiple optical components at the wafer stage
JP5525985B2 (en) Lens manufacturing method and manufacturing apparatus
JP2007094368A (en) Microlens substrate, method for manufacturing microlens substrate, liquid crystal panel and projection type display apparatus
JPH0924522A (en) Method and apparatus for manufacturing composite optical element
JPS62288030A (en) Manufacturing device for composite linse
JPS61177215A (en) Manufacture of fresnel lens
JP2003159719A (en) Method for manufacturing compound aspheric lens
JP2001105435A (en) Method and apparatus for producing optical element, and projector
JP2019101343A (en) Image display device and method for manufacturing image display device
JP2002268146A (en) Method of manufacturing optical article and projection screen and projection television using these optical articles
JP2986826B2 (en) Molding method of radiation curing resin
JP2800697B2 (en) Method and apparatus for manufacturing lens sheet
JP4196139B2 (en) Manufacturing method of optical substrate
JP4171936B2 (en) Resin-molding mold for resin-bonded optical element and manufacturing method
JP3345925B2 (en) Manufacturing method of cured plastic
JP2006231825A (en) Raw material injection method
KR100388229B1 (en) Film for controlling vertically vibrating light in polarizing plate and manufacturing method thereof
JP3801080B2 (en) Method of manufacturing a molded body by casting molding method
JP2002287043A (en) Fine structure and method of manufacturing fine structure
JP3504701B2 (en) Optical device and method of manufacturing the same
JPH095680A (en) Production of plastic lens
JP4707347B2 (en) COMPOSITION CONTAINING RESIN MATERIAL, METHOD FOR ADJUSTING CHARACTERISTICS OF COMPOSITION CONTAINING RESIN MATERIAL, METHOD FOR PRODUCING 3D STRUCTURE, AND 3D STRUCTURE
JP2003202632A (en) Method of manufacturing optical article
WO2023079041A1 (en) Lightguide and method of making the same