JPH09243912A - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JPH09243912A
JPH09243912A JP8048563A JP4856396A JPH09243912A JP H09243912 A JPH09243912 A JP H09243912A JP 8048563 A JP8048563 A JP 8048563A JP 4856396 A JP4856396 A JP 4856396A JP H09243912 A JPH09243912 A JP H09243912A
Authority
JP
Japan
Prior art keywords
group
lens
zoom
conditional expression
half prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8048563A
Other languages
Japanese (ja)
Inventor
Naoshi Okada
尚士 岡田
Hideki Osada
英喜 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP8048563A priority Critical patent/JPH09243912A/en
Priority to US08/812,992 priority patent/US6002526A/en
Publication of JPH09243912A publication Critical patent/JPH09243912A/en
Priority to US09/295,482 priority patent/US6072637A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144105Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a zoom lens which is compact and has high optical performance without causing parallax nor complicating the constitution of a lens barrel. SOLUTION: This zoom lens is constituted of a 1st group Gr1 being positive, a 2nd group Gr2 being negative, a 3rd group Gr3 being positive and a 4th group Gr4 being negative in order from an object side, and a half prism HP splitting a luminous flux by reflecting the luminous flux after passing through the 2nd group Gr2 is interposed between the 2nd and the 3rd groups Gr2 and Gr3. A lens shutter combined with a diaphragm S1 is arranged in the rear side of the prism HP. In the case of zooming, the prism HP is moved integrally with the 3rd group Gr3 adjacently positioned at the rear of the prism HP.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ズームレンズに関
するものである。更に詳しくは、レンズシャッター式一
眼レフカメラに適したズームレンズに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens. More specifically, the present invention relates to a zoom lens suitable for a lens shutter type single-lens reflex camera.

【0002】[0002]

【従来の技術】一般に知られているレンズシャッターカ
メラには、撮影光学系とファインダー光学系とが独立し
た光学系として設けられているため、撮影光学系とファ
インダー光学系との間にパララックスが生じるという問
題がある。近年、レンズシャッターカメラには高倍率の
ズームレンズが搭載される傾向にあるため、この高倍率
化が上記パララックスの増大やカメラの大型化を招く原
因となっている。
2. Description of the Related Art Since a generally known lens shutter camera is provided with a photographing optical system and a viewfinder optical system as independent optical systems, a parallax is provided between the photographing optical system and the viewfinder optical system. There is a problem that it will occur. In recent years, since a lens shutter camera tends to be equipped with a high-magnification zoom lens, this increase in magnification causes the parallax to increase and the camera to increase in size.

【0003】一方、一眼レフカメラは、撮影光学系をフ
ァインダー光学系の対物レンズとして兼用する構成とな
っているため、撮影光学系とファインダー光学系との間
にパララックスは生じない。しかし、一般的な一眼レフ
カメラには、撮影光学系の後方に跳ね上げミラーが配置
されているため、この跳ね上げミラーによってカメラが
大型化するといった問題がある。跳ね上げミラーがカメ
ラの大型化を招くのは、第1に、撮影光学系の後方に配
置された跳ね上げミラーによって、バックフォーカスが
制限されるからである。第2に、撮影光学系の途中に配
置されている絞りから大きく離れた位置で跳ね上げミラ
ーが光束を反射させるため、その位置での大きな光束径
に対応した大きな跳ね上げミラーが必要になるからであ
る。
On the other hand, since the single-lens reflex camera has a construction in which the taking optical system also serves as the objective lens of the finder optical system, no parallax occurs between the taking optical system and the finder optical system. However, in a general single-lens reflex camera, a flip-up mirror is arranged behind the photographing optical system, so that there is a problem that the flip-up mirror enlarges the size of the camera. The flip-up mirror causes the camera to become large in size because, firstly, the back-focus is limited by the flip-up mirror arranged behind the photographing optical system. Secondly, since the flip-up mirror reflects the light beam at a position greatly apart from the diaphragm arranged in the middle of the photographing optical system, a large flip-up mirror corresponding to a large light beam diameter at that position is required. Is.

【0004】特開平5-173068号公報で提案されているズ
ームレンズは、前記パララックスの発生を防止しカメラ
の小型化を図る上で有効である。つまり、このズームレ
ンズの構成によると、ズームレンズに入射した光束が1
つのズーム群の途中に設けられている反射手段で撮影用
光束とファインダー用光束とに分割されるため前記パラ
ラックスは発生せず、また、跳ね上げミラーが不要であ
るためその分カメラを小型化することができるのであ
る。
The zoom lens proposed in Japanese Unexamined Patent Publication No. 5-173068 is effective in preventing the parallax and reducing the size of the camera. That is, according to the configuration of this zoom lens, the light flux incident on the zoom lens is 1
The parallax does not occur because the light flux for photographing and the light flux for finder are split by the reflecting means provided in the middle of one zoom group, and the flip-up mirror is unnecessary, so the camera is downsized accordingly. You can do it.

【0005】[0005]

【発明が解決しようとする課題】特開平5-173068号公報
で提案されているズームレンズは、反射手段が1つのズ
ーム群の途中に設けられている。このように1つのズー
ム群の途中に反射手段を配置すると、1つのズーム群が
反射手段で前後に分けられた状態のズームブロックを鏡
胴内に設けなければならない。従って、鏡胴構成が複雑
になると共に、そのズーム群の光学性能を維持するのが
製造上困難になる。
The zoom lens proposed in Japanese Patent Laid-Open No. 5-173068 has a reflecting means provided in the middle of one zoom group. When the reflecting means is arranged in the middle of one zoom group in this way, a zoom block in which one zoom group is divided into the front and the rear by the reflecting means must be provided in the lens barrel. Therefore, the structure of the lens barrel becomes complicated, and it becomes difficult to maintain the optical performance of the zoom group in manufacturing.

【0006】本発明は以上の点を考慮してなされたもの
であって、その目的は、パララックスが発生せず、しか
も鏡胴構成を複雑化することがない、コンパクトで高い
光学性能を有するズームレンズを提供することにある。
The present invention has been made in consideration of the above points, and an object thereof is a compact and high optical performance which does not cause parallax and does not complicate the lens barrel structure. It is to provide a zoom lens.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のズームレンズは、複数のズーム群から成
り、このズーム群間で光束を反射させることにより光束
分割又は光路切替を行う反射手段を備えたズームレンズ
であって、前記反射手段より後方に絞り及びレンズシャ
ッターを有し、ズーミングにおいて、前記反射手段がそ
の後ろ側に隣り合って位置するズーム群と一体に移動す
ることを特徴とする。上記反射手段は、ハーフプリズ
ム,ハーフミラー(例えば、ペリクルミラー)等の光半透
過性の反射面を有する光束分割器、又は跳ね上げ可動式
の全反射ミラー等の光路切替器である。
In order to achieve the above object, the zoom lens of the present invention comprises a plurality of zoom groups, and the light beams are reflected between the zoom groups to perform light beam division or optical path switching. A zoom lens having means, wherein the reflecting means has a diaphragm and a lens shutter behind the reflecting means, and in zooming, the reflecting means moves integrally with a zoom group positioned adjacent to and behind the reflecting means. And The reflecting means is a light beam splitter having a light semi-transmissive reflecting surface such as a half prism or a half mirror (for example, a pellicle mirror), or an optical path switching device such as a flip-up movable total reflection mirror.

【0008】ズームレンズに入射した光束は、上記反射
手段によって2つの光学的に同等な光束に分割され又は
光路が切り替えられるため、パララックスは発生しな
い。また、反射手段はズームレンズの途中に設けられて
いるため、バックフォーカスの短縮及び反射手段の小型
化が可能である。さらに、上記反射手段はズーム群間で
光束を反射させることにより光束分割又は光路切替を行
うため、1つのズーム群の途中で光束を反射させる構成
よりも、鏡胴構成が簡単で、しかも、そのズーム群の光
学性能を維持するのが製造上容易である。
The light flux incident on the zoom lens is divided into two optically equivalent light fluxes or the optical paths are switched by the reflecting means, so that parallax does not occur. Further, since the reflecting means is provided in the middle of the zoom lens, it is possible to shorten the back focus and downsize the reflecting means. Further, since the reflecting means performs the light beam division or the optical path switching by reflecting the light beam between the zoom groups, the lens barrel structure is simpler than that of the structure that reflects the light beam in the middle of one zoom group, and Maintaining the optical performance of the zoom group is easy in manufacturing.

【0009】反射手段より後方には、絞り及びレンズシ
ャッター(例えば、絞り兼用のレンズシャッター)が設け
られているため、光束径は反射手段の前側に隣り合って
位置するズーム群に近いほど大きくなる。一方、ズーミ
ングにおいて、反射手段がその後ろ側に隣り合って位置
するズーム群と一体に移動するため、反射手段の後ろ側
に隣り合って位置するズーム群と反射手段との間隔は変
化せず、反射手段の前側に隣り合って位置するズーム群
と反射手段との間隔は変化する。従って、反射手段がカ
バーすべき光束径は小さくて済むため、反射手段の小型
化が可能である。反射手段の小型化により、ズーミング
のための駆動機構にかかる重量等の負担が少なくて済む
ため、この構成は鏡胴構成上有利である。
Since a diaphragm and a lens shutter (for example, a lens shutter that also serves as a diaphragm) are provided behind the reflecting means, the luminous flux diameter becomes larger as it is closer to the zoom group located adjacent to the front side of the reflecting means. . On the other hand, in zooming, since the reflecting means moves integrally with the zoom group positioned adjacent to the rear side thereof, the distance between the zoom group positioned adjacent to the rear side of the reflecting means and the reflecting means does not change, The distance between the zoom unit and the reflecting unit located adjacent to the front side of the reflecting unit changes. Therefore, since the light beam diameter to be covered by the reflecting means is small, the reflecting means can be downsized. This structure is advantageous in terms of the lens barrel structure because the weight of the driving mechanism for zooming can be lightened by reducing the size of the reflecting means.

【0010】[0010]

【発明の実施の形態】以下、本発明を実施したズームレ
ンズを、図面を参照しつつ説明する。図1,図3,図
5,図7,図9,図12,図15,図18,図21,図
23,図25,図27,図29,図31は、第1〜第1
4の実施の形態に係るズームレンズにそれぞれ対応する
レンズ構成図であり、広角端[W]における無限遠撮影状
態でのレンズ配置を示している。また、各レンズ構成図
中、ri(i=1,2,3,...)は物体側から数えてi番目の面の曲
率半径、di(i=1,2,3,...)は物体側から数えてi番目の軸
上面間隔を示している。なお、第1〜第14の実施の形
態には、ズーム群間で光束を反射させることにより光束
分割を行う反射手段として、ハーフプリズムHP又はペ
リクルミラー(光半透過性のペリクル膜から成ってい
る。)PMが設けられているが、これらの反射手段の代
わりにズーム群間で光束を反射させることにより光路切
替を行う跳ね上げ可動式の全反射ミラー等の反射手段を
用いてもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a zoom lens embodying the present invention will be described with reference to the drawings. 1, FIG. 3, FIG. 5, FIG. 7, FIG. 9, FIG. 12, FIG. 15, FIG. 18, FIG. 18, FIG. 21, FIG. 23, FIG. 25, FIG. 27, FIG.
FIG. 4 is a lens configuration diagram corresponding to each of the zoom lenses according to Embodiment 4, showing a lens arrangement in a wide-angle end [W] state at infinity shooting. Also, in each lens configuration diagram, ri (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, and di (i = 1,2,3, ...). Indicates the i-th axial upper surface distance counted from the object side. In the first to fourteenth embodiments, a half prism HP or a pellicle mirror (a light semi-transmissive pellicle film is used as a reflecting means for dividing a light beam by reflecting the light beam between the zoom groups. Although PM is provided, a reflecting means such as a flip-up movable total reflection mirror that switches the optical path by reflecting a light beam between zoom groups may be used instead of these reflecting means.

【0011】《正・負・正・負の4群ズームレンズ(第
1〜第10の実施の形態)》第1〜第10の実施の形態
は、物体側より順に、正の第1群Gr1,負の第2群G
r2,正の第3群Gr3及び負の第4群Gr4から成る
4群構成のズームレンズであり、第1群Gr1が第1成
分、第2群Gr2が第2成分、第3群Gr3が第3成
分、第4群Gr4が第4成分をそれぞれ構成している。
そして、第2群Gr2と第3群Gr3との間には、第2
群Gr2通過後の光束を反射させることにより光束分割
を行うハーフプリズムHP(第1〜第8,第10の実施
の形態)又はペリクルミラーPM(第9の実施の形態)が
設けられている。また、第1群Gr1〜第4群Gr4
は、各レンズ構成図中の対応する矢印m1〜m4で示す
ように、広角端[W]から望遠端[T]にかけてのズーミン
グにおいてそれぞれ前方へ移動し、第1群Gr1と第2
群Gr2との間隔が広がり、第2群Gr2と第3群Gr
3との間隔が狭まり、第3群Gr3と第4群Gr4との
間隔が狭まる。
<< Positive / Negative / Positive / Negative Four-Group Zoom Lens (First to Tenth Embodiments) >> In the first to tenth embodiments, the positive first group Gr1 is arranged in order from the object side. , Negative second group G
r4, a third lens unit Gr3 having a positive third lens unit and a fourth lens unit Gr4 having a negative lens unit, wherein the first lens unit Gr1 is the first component, the second lens unit Gr2 is the second component, and the third lens unit Gr3 is the third lens unit. The third component and the fourth group Gr4 form the fourth component, respectively.
Then, between the second group Gr2 and the third group Gr3, the second group Gr2
There is provided a half prism HP (first to eighth and tenth embodiments) or a pellicle mirror PM (ninth embodiment) that splits a light flux after reflecting the light flux after passing through the group Gr2. In addition, the first group Gr1 to the fourth group Gr4
Respectively move forward in zooming from the wide-angle end [W] to the telephoto end [T], as indicated by corresponding arrows m1 to m4 in the respective lens configuration diagrams, and the first group Gr1 and the second group Gr1
The distance from the group Gr2 increases, and the second group Gr2 and the third group Gr2
The distance between the third lens unit Gr3 and the fourth lens unit Gr4 becomes narrower.

【0012】第1〜第10の実施の形態において、各群
は以下のように構成されている。第1群Gr1は、物体
側より順に、像側に凹の負メニスカスレンズ及び物体側
に凸の正メニスカスレンズから成っており、その負メニ
スカスレンズの像側の面は非球面である。第2群Gr2
は、物体側より順に、両凹の負レンズ及び物体側に凸の
正メニスカスレンズから成っており、その負レンズの物
体側の面と正メニスカスレンズの像側の面とは非球面で
ある。第3群Gr3は、物体側より順に、絞り兼用のレ
ンズシャッターS1,像側に凹の負メニスカスレンズ,
両凸の正レンズ及び光束規制板S2から成っており、そ
の正レンズの像側の面は非球面である。第4群Gr4
は、物体側より順に、像側に凸の正メニスカスレンズ及
び両凹の負レンズから成っており、その正メニスカスレ
ンズの両面は非球面である。なお、絞り兼用のレンズシ
ャッターS1と光束規制板S2とは、設計上、互換性が
ある。
In the first to tenth embodiments, each group is constructed as follows. The first group Gr1 is composed of, in order from the object side, a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, and the image side surface of the negative meniscus lens is an aspherical surface. Second group Gr2
Consists of a biconcave negative lens and a positive meniscus lens convex to the object side in this order from the object side, and the object side surface of the negative lens and the image side surface of the positive meniscus lens are aspherical surfaces. The third group Gr3 includes, in order from the object side, a lens shutter S1 also serving as a diaphragm, a negative meniscus lens concave on the image side,
It is composed of a biconvex positive lens and a light flux regulating plate S2, and the image-side surface of the positive lens is an aspherical surface. 4th group Gr4
Is composed of, in order from the object side, a positive meniscus lens convex to the image side and a biconcave negative lens, and both surfaces of the positive meniscus lens are aspherical surfaces. The lens shutter S1 that also serves as the diaphragm and the light flux regulating plate S2 are compatible in design.

【0013】第1〜第10の実施の形態に係るズームレ
ンズでは、先に述べたように、第2群Gr2通過後の光
束を反射させることにより光束分割を行うハーフプリズ
ムHP又はペリクルミラーPMが、第2群Gr2と第3
群Gr3との間に設けられている。この構成によると、
ズームレンズに入射した光束はハーフプリズムHP又は
ペリクルミラーPMによって2つの光学的に同等な光束
に分割されるため、パララックスは発生しない。また、
ハーフプリズムHP又はペリクルミラーPMはズームレ
ンズの途中に設けられているため、バックフォーカスの
短縮が可能であるとともに、ハーフプリズムHP又はペ
リクルミラーPM自身の小型化も可能である。
In the zoom lenses according to the first to tenth embodiments, as described above, the half prism HP or the pellicle mirror PM for splitting the light flux by reflecting the light flux after passing through the second group Gr2 is used. , The second group Gr2 and the third group
It is provided between the group Gr3. According to this configuration,
The light flux incident on the zoom lens is split into two optically equivalent light fluxes by the half prism HP or the pellicle mirror PM, so parallax does not occur. Also,
Since the half prism HP or the pellicle mirror PM is provided in the middle of the zoom lens, the back focus can be shortened and the half prism HP or the pellicle mirror PM itself can be miniaturized.

【0014】さらに、第1〜第10の実施の形態のよう
に、物体側から正・負・正・負の4群を含むズーム構成
では、第2群Gr2と第3群Gr3との間で軸上・軸外
光束が共に最も低い位置(即ち、光軸AX付近)を通るこ
とになるため、第2群Gr2と第3群Gr3との間に設
けられているハーフプリズムHP又はペリクルミラーP
Mを径方向(即ち、光軸AXに対して垂直方向)に更に小
さくすることができる。ハーフプリズムHP又はペリク
ルミラーPMは、径方向に小さくなれば光軸AX方向に
も小さくなるため、このハーフプリズムHP又はペリク
ルミラーPMの小型化によって、第2群Gr2と第3群
Gr3との間の実際の面間隔(即ち、第2群Gr2の最
も像側のレンズ面と第3群Gr3の最も物体側のレンズ
面との間隔)を小さくすることできる。従って、ズーム
レンズ全長のコンパクト化を図ることが可能である。
Further, as in the first to tenth embodiments, in the zoom structure including four groups of positive, negative, positive and negative from the object side, the second group Gr2 and the third group Gr3 are arranged between the second group Gr2 and the third group Gr3. Since both the on-axis and off-axis light fluxes pass through the lowest position (that is, near the optical axis AX), the half prism HP or the pellicle mirror P provided between the second group Gr2 and the third group Gr3.
M can be further reduced in the radial direction (that is, the direction perpendicular to the optical axis AX). The size of the half prism HP or the pellicle mirror PM becomes smaller in the optical axis AX direction as the size becomes smaller in the radial direction. Therefore, the miniaturization of the half prism HP or the pellicle mirror PM reduces the distance between the second group Gr2 and the third group Gr3. It is possible to reduce the actual surface distance (that is, the distance between the most image-side lens surface of the second group Gr2 and the most object-side lens surface of the third group Gr3). Therefore, it is possible to reduce the overall length of the zoom lens.

【0015】第1〜第10の実施の形態では、ハーフプ
リズムHP又はペリクルミラーPMがズーム群間で光束
を反射させることにより光束分割を行うため、1つのズ
ーム群の途中で光束を反射させる構成よりも、鏡胴構成
が簡単で、しかも、そのズーム群の光学性能を維持する
のが製造上容易である。また、第1〜第10の実施の形
態では、第1群Gr1が正のパワーを有しているため、
この第1群Gr1で軸上光束の高さを抑えることによ
り、効果的に収差の発生を抑えることができる。
In the first to tenth embodiments, since the half prism HP or the pellicle mirror PM divides the light flux by reflecting the light flux between the zoom groups, the light flux is reflected in the middle of one zoom group. The lens barrel structure is simpler and the optical performance of the zoom group is easier to maintain in manufacturing. Further, in the first to tenth embodiments, the first group Gr1 has a positive power,
By suppressing the height of the axial light flux in the first group Gr1, it is possible to effectively suppress the occurrence of aberration.

【0016】第1〜第10の実施の形態のように、各ズ
ーム群が少なくとも1枚の正レンズと少なくとも1枚の
負レンズとを含んでいることが望ましい。この構成によ
ると、高変倍比でありながらコンパクトで、かつ、ズー
ム全域で収差の補正されたズームレンズを実現すること
ができる。
As in the first to tenth embodiments, it is desirable that each zoom group includes at least one positive lens and at least one negative lens. According to this configuration, it is possible to realize a compact zoom lens having a high zoom ratio and a corrected aberration in the entire zoom range.

【0017】第1〜第9の実施の形態に係るズームレン
ズでは、ハーフプリズムHP又はペリクルミラーPMが
ズーミングにおいて第3群Gr3と一体に移動するた
め、ズームレンズのコンパクト化が可能である。物体側
から正・負・正・負の4群を含むズーム構成では、第3
群Gr3付近で光束が最も細くなる(つまり、集光す
る)。このため、ハーフプリズムHP又はペリクルミラ
ーPMの径の大きさ(即ち、光軸AXに対して垂直方向
の大きさ)は最も小さくて済み、その結果、光軸AX方
向にもハーフプリズムHP又はペリクルミラーPMを小
さくすることが可能になる。このハーフプリズムHP又
はペリクルミラーPMの小型化によってスペース効率が
良くなるため、第2群Gr2と第3群Gr3との間の実
際の面間隔を小さくして、ズームレンズ全長のコンパク
ト化を図ることができるのである。
In the zoom lenses according to the first to ninth embodiments, the half prism HP or the pellicle mirror PM moves together with the third lens unit Gr3 during zooming, so that the zoom lens can be made compact. In the zoom configuration that includes four groups of positive, negative, positive, and negative from the object side,
The light flux becomes the thinnest in the vicinity of the group Gr3 (that is, the light is condensed). For this reason, the size of the diameter of the half prism HP or the pellicle mirror PM (that is, the size in the direction perpendicular to the optical axis AX) is the smallest, and as a result, the half prism HP or the pellicle PM is also formed in the optical axis AX direction. It is possible to make the mirror PM small. Since the space efficiency is improved by downsizing the half prism HP or the pellicle mirror PM, it is necessary to reduce the actual surface distance between the second group Gr2 and the third group Gr3 to make the overall length of the zoom lens compact. Can be done.

【0018】第10の実施の形態に係るズームレンズで
は、ハーフプリズムHPがズーミングにおいて第2群G
r2と一体に移動するため、搭載されるカメラの小型化
を図ることができる。ハーフプリズムHPは第2群Gr
2通過後の光束を反射させることにより光束分割を行う
が、これにより得られる光束をファインダー用光束とし
て用いる場合には、第3群Gr3以降のズーム群に相当
するファインダー光学系が必要となる。図23に示すよ
うにハーフプリズムHPが第2群Gr2と一体にズーム
移動を行うように構成すれば、ハーフプリズムHPは鏡
胴の前側でズーム移動を行うことになるため、上記ファ
インダー用光束は鏡胴の前側で取り出されることにな
る。これにより、取り出された光束に対するファインダ
ー光学系を配置するための充分なスペースが、第3群G
r3以降のズーム群の側方に確保される。従って、この
スペースにファインダー光学系を配置することによっ
て、カメラの小型化を図ることができるのである。
In the zoom lens according to the tenth embodiment, the half prism HP has the second group G during zooming.
Since it moves integrally with r2, it is possible to reduce the size of the mounted camera. The half prism HP is the second group Gr.
The light beam splitting is performed by reflecting the light beam after passing through two. When the light beam obtained by this is used as the light beam for the finder, a finder optical system corresponding to the zoom group of the third group Gr3 and thereafter is required. If the half prism HP is configured to perform zoom movement integrally with the second group Gr2 as shown in FIG. 23, the half prism HP will perform zoom movement on the front side of the lens barrel. It will be taken out on the front side of the lens barrel. As a result, a sufficient space for arranging the finder optical system for the extracted light beam is provided in the third group G.
It is secured to the side of the zoom group after r3. Therefore, by disposing the finder optical system in this space, the camera can be downsized.

【0019】第5〜第8の実施の形態に係るズームレン
ズでは、フォーカシングにおいて、ハーフプリズムHP
の直前に隣り合って位置する第2群Gr2が光軸AX方
向に移動する構成となっているが、この構成によると、
以下の点でメリットがある。第1に、第1群Gr1のみ
の移動でフォーカシングを行うより、少なくとも第2群
Gr2の移動でフォーカシングを行う方が、フォーカシ
ングのための移動量が少なくて済むので、フォーカシン
グのために必要なスペースが小さくて済む。従って、鏡
胴構成上有利であり、しかもズームレンズ全長を短くす
ることができる。第2に、第1群Gr1より第2群Gr
2の方が重量が軽いので、フォーカシングのための駆動
機構にかかる負担が少なくて済む。従って、鏡胴構成上
有利である。第3に、ハーフプリズムHPで取り出され
た光束をファインダー用光束として用いた場合、光束分
割前の光束でフォーカシングが行われるため、ファイン
ダーを通して撮影系のピント状態を目視で確認すること
ができる。
In the zoom lenses according to the fifth to eighth embodiments, the half prism HP is used for focusing.
The second group Gr2 located adjacent to each other immediately before is moved in the optical axis AX direction. According to this configuration,
There are merits in the following points. First, it is possible to reduce the amount of movement for focusing by performing focusing by moving at least the second group Gr2, as compared with performing focusing by moving only the first group Gr1, so the space required for focusing is reduced. Can be small. Therefore, it is advantageous in terms of the structure of the lens barrel, and the total length of the zoom lens can be shortened. Second, from the first group Gr1 to the second group Gr1
Since 2 is lighter in weight, the load on the drive mechanism for focusing can be reduced. Therefore, it is advantageous in terms of the lens barrel structure. Thirdly, when the light flux extracted by the half prism HP is used as the light flux for the finder, focusing is performed with the light flux before the light flux is split, so that the focus state of the imaging system can be visually confirmed through the finder.

【0020】第5の実施の形態では、図9中の矢印M2
で示すように、フォーカシングが第2群Gr2の移動の
みによって行われる。これに対し、第6〜第8の実施の
形態では、図12及び図18中の矢印M1及びM2並び
に図15中の矢印M2a及びM2bで示すように、その
フォーカシングにフローティングが伴っている。
In the fifth embodiment, the arrow M2 in FIG. 9 is used.
As shown by, the focusing is performed only by the movement of the second lens unit Gr2. On the other hand, in the sixth to eighth embodiments, as shown by arrows M1 and M2 in FIGS. 12 and 18, and arrows M2a and M2b in FIG. 15, focusing is accompanied by floating.

【0021】例えば、第6,第8の実施の形態では、図
12,図18に示すようにフォーカシングにおいて第1
群Gr1と第2群Gr2との間隔d4が微小に変化するフ
ローティングを伴った移動(矢印M1,M2)を行う構成
となっている。このフローティングを伴ったフォーカシ
ングにより、球面収差の負偏位を補正することができる
とともに、像面の正偏位を補正することができる。
For example, in the sixth and eighth embodiments, the first focusing is performed as shown in FIGS.
The configuration is such that the distance d4 between the group Gr1 and the second group Gr2 is moved (arrows M1, M2) accompanied by floating in which the distance d4 changes slightly. By the focusing accompanied with the floating, it is possible to correct the negative deviation of the spherical aberration and the positive deviation of the image surface.

【0022】第7の実施の形態では、図15に示すよう
にフォーカシングにおいて第2群Gr2を構成している
負レンズG3と正レンズG4との間隔d6が微小に変化す
るフローティングを伴った移動(矢印M2a,M2b)を
行う構成となっている。このフローティングを伴ったフ
ォーカシングにより、像面の正偏位を補正することがで
きるとともに、歪曲の正偏位を補正することができる。
なお、この像面の倒れや歪曲収差に対する効果は、第7
の実施の形態に対応する後記実施例7の近接収差から明
らかである(図17参照。)。
In the seventh embodiment, as shown in FIG. 15, during focusing, the distance d6 between the negative lens G3 and the positive lens G4 forming the second lens unit Gr2 is moved with a slight change (floating). The configuration is such that arrows M2a and M2b) are performed. By the focusing accompanied with the floating, it is possible to correct the positive deviation of the image plane and the positive deviation of the distortion.
Note that the effect on the tilt of the image plane and the distortion aberration is
It is apparent from the proximity aberration of Example 7 described later corresponding to the embodiment (see FIG. 17).

【0023】第1〜第9の実施の形態では、ハーフプリ
ズムHP又はペリクルミラーPMより後方に絞り兼用の
レンズシャッターS1が設けられているため、光束径は
ハーフプリズムHP又はペリクルミラーPMの前側に隣
り合って位置する第2群Gr2に近いほど大きくなる。
一方、第1〜第9の実施の形態では、ズーミングにおい
て、ハーフプリズムHP又はペリクルミラーPMがその
後ろ側に隣り合って位置するズーム群(即ち、第3群G
r3)と一体に移動するため、第3群Gr3とハーフプ
リズムHP又はペリクルミラーPMとの間隔は変化せ
ず、第2群Gr2とハーフプリズムHP又はペリクルミ
ラーPMとの間隔は変化する。従って、ハーフプリズム
HP又はペリクルミラーPMがカバーすべき光束径は小
さくて済むため、ハーフプリズムHP又はペリクルミラ
ーPMの小型化が可能である。ハーフプリズムHP又は
ペリクルミラーPMの小型化により、ズーミングのため
の駆動機構にかかる重量等の負担が少なくて済むため、
この構成は鏡胴構成上有利である。
In the first to ninth embodiments, since the lens shutter S1 that also serves as a diaphragm is provided behind the half prism HP or the pellicle mirror PM, the luminous flux diameter is on the front side of the half prism HP or the pellicle mirror PM. It becomes larger as it is closer to the second group Gr2 located adjacent to each other.
On the other hand, in the first to ninth embodiments, during zooming, the zoom group (that is, the third group G) in which the half prism HP or the pellicle mirror PM is positioned adjacent to the rear side thereof.
Since it moves together with r3), the distance between the third group Gr3 and the half prism HP or the pellicle mirror PM does not change, and the distance between the second group Gr2 and the half prism HP or the pellicle mirror PM changes. Therefore, the light flux diameter to be covered by the half prism HP or the pellicle mirror PM can be small, so that the half prism HP or the pellicle mirror PM can be downsized. By reducing the size of the half prism HP or the pellicle mirror PM, the load on the driving mechanism for zooming, such as the weight, can be reduced.
This structure is advantageous in terms of the lens barrel structure.

【0024】第1〜第10の実施の形態に係るズームレ
ンズは、ハーフプリズムHP又はペリクルミラーPMの
直前に隣り合って位置するズーム群(即ち、第2群Gr
2)が負のパワーを有しているため、ハーフプリズムH
P又はペリクルミラーPMに入射する軸外光束は軸上光
束に対して小さい角度を成すことになる(つまり、アフ
ォーカルに近づく。)。従って、ハーフプリズムHP又
はペリクルミラーPMがカバーすべき光束径は小さくて
済むため、ハーフプリズムHP又はペリクルミラーPM
の小型化が可能である。ハーフプリズムHP又はペリク
ルミラーPMの小型化により、ズーミングのための駆動
機構にかかる重量等の負担が少なくて済むため、この構
成は鏡胴構成上有利である。さらに、光軸AXに対して
アフォーカルに近い軸外光束をハーフプリズムHP又は
ペリクルミラーPMで反射させても反射後の軸外光束は
あまり広がらないため、ハーフプリズムHP又はペリク
ルミラーPMの後方に位置する光学系(即ち、ファイン
ダー系と、撮影系のうち反射手段の後方に位置する部
分)の径も小さくて済む。以上のように、ハーフプリズ
ムHP又はペリクルミラーPM及びその後方に位置する
光学系の小型化によって、ズームレンズ及びファインダ
ー系の小型化が達成される。
In the zoom lenses according to the first to tenth embodiments, a zoom group (that is, the second group Gr) located immediately adjacent to the half prism HP or the pellicle mirror PM is located.
2) has a negative power, the half prism H
The off-axis light beam incident on P or the pellicle mirror PM forms a small angle with the on-axis light beam (that is, approaches the afocal). Therefore, since the light beam diameter which the half prism HP or the pellicle mirror PM should cover is small, the half prism HP or the pellicle mirror PM is required.
Can be reduced in size. Since the half prism HP or the pellicle mirror PM is miniaturized, the load on the drive mechanism for zooming, such as the weight, can be reduced, and this configuration is advantageous in terms of the lens barrel configuration. Further, even if an off-axis light beam that is afocal with respect to the optical axis AX is reflected by the half prism HP or the pellicle mirror PM, the off-axis light beam after reflection does not spread so much, so that it is located behind the half prism HP or the pellicle mirror PM. The diameter of the optical system (that is, the finder system and the portion of the photographing system located behind the reflecting means) can be small. As described above, the size reduction of the zoom lens and the viewfinder system is achieved by the size reduction of the half prism HP or the pellicle mirror PM and the optical system located behind it.

【0025】第3,第4の実施の形態に係るズームレン
ズでは、図5,図7に示すように、ズーミングにおい
て、ハーフプリズムHPの前方に位置する第1群Gr1
と、ハーフプリズムHPの後方に位置する第4群Gr4
とが、リンクして移動する構成となっている。このよう
なズーミングにおける、ハーフプリズムHPの前方に位
置するズーム群と、ハーフプリズムHPの後方に位置す
るズーム群と、のリンク構成によるメリットを以下に説
明する。
In the zoom lenses according to the third and fourth embodiments, as shown in FIGS. 5 and 7, the first lens unit Gr1 located in front of the half prism HP during zooming.
And the fourth group Gr4 located behind the half prism HP.
And are configured to move by linking. The advantages of the link configuration of the zoom group positioned in front of the half prism HP and the zoom group positioned behind the half prism HP in such zooming will be described below.

【0026】本来、光学的に考えると、設計の自由度が
多いほど光学的に有利になるため、ズームレンズにおい
ては、各ズーム群が独立に移動しながらズーミングを行
う方が収差補正上有利である。しかし、上記のようにズ
ーム群間にハーフプリズムHPを設けると、ハーフプリ
ズムHPで反射された光束を(例えば、ファインダー用
光束として)ズームレンズ外に取り出すために、鏡胴構
成をそれだけ複雑な構成にしなければならなくなる。例
えば、ズームレンズ外への光束取り出し部分をまたぐズ
ームカム環は、ズーミングにおいて直進する方が、ハー
フプリズムHPでの反射光束をズームレンズ外へ取り出
す上で望ましい等の理由があるため、鏡胴構成を複雑な
構成にしなければならなくなるのである。
Originally, from an optical point of view, the greater the degree of freedom in design, the more optically advantageous. Therefore, in a zoom lens, it is advantageous for aberration correction to perform zooming while each zoom group moves independently. is there. However, when the half prism HP is provided between the zoom groups as described above, in order to take out the light beam reflected by the half prism HP (for example, as the light beam for the finder) to the outside of the zoom lens, the lens barrel structure is complicated by that much. Will have to. For example, for the zoom cam ring that straddles the portion where the light beam is extracted to the outside of the zoom lens, it is preferable that the zoom cam ring goes straight during zooming in order to extract the reflected light beam from the half prism HP to the outside of the zoom lens. It has to be a complicated structure.

【0027】ズーミングに上記リンク構成を採用すれ
ば、ズーム群を移動させるためのズームカムの数を1つ
減らすことができる。従って、部品点数の削減により鏡
胴構成を簡単にすることができるため、鏡胴構成上、非
常に有利になる。さらに、ズームレンズの鏡胴内にファ
インダー系の一部を設けた場合でも、前述のリンク構成
により鏡胴構成を簡単にすることができるので、ズーム
カム環を省略することが可能になり、鏡胴を径方向に小
型化することができる。以上のように、上記リンク構成
は、ズーム群間で光束を反射させることにより光束分割
又は光路切替を行う反射手段を備えたズームレンズにお
いて特に有効なのである。
If the above-mentioned link structure is adopted for zooming, the number of zoom cams for moving the zoom group can be reduced by one. Therefore, the lens barrel structure can be simplified by reducing the number of parts, which is very advantageous in terms of the lens barrel structure. Further, even when a part of the finder system is provided in the lens barrel of the zoom lens, the lens barrel structure can be simplified by the above-described link structure, so that the zoom cam ring can be omitted, and the lens barrel can be omitted. Can be miniaturized in the radial direction. As described above, the above-mentioned link structure is particularly effective in a zoom lens provided with a reflection unit that splits a light beam or switches an optical path by reflecting a light beam between zoom groups.

【0028】第2群Gr2と第3群Gr3との間にハー
フプリズムHPが配置された正・負・正・負の4群ズー
ムレンズにおいては、第3,第4の実施の形態のよう
に、第1群Gr1と第4群Gr4との上記リンク構成を
採用するのが特に望ましい。正・負・正・負の4群ズー
ムレンズでは、第1群Gr1と第4群Gr4の移動量が
他のズーム群の移動量よりも大きいため、カム機構でズ
ーム群の繰り出しを行うのは困難であるが、上記リンク
構成を採用すれば鏡胴構成を容易にすることができるか
らである。
In the positive / negative / positive / negative four-group zoom lens in which the half prism HP is arranged between the second group Gr2 and the third group Gr3, as in the third and fourth embodiments. It is particularly desirable to adopt the above-mentioned link configuration of the first group Gr1 and the fourth group Gr4. In the positive / negative / positive / negative four-group zoom lens, the moving amounts of the first group Gr1 and the fourth group Gr4 are larger than the moving amounts of the other zoom groups. This is because it is difficult, but if the above-mentioned link structure is adopted, the lens barrel structure can be facilitated.

【0029】次の条件式(1)を満たすことが、ズームレ
ンズのコンパクト化を達成する上で望ましい。 0.1<BFW/Y'<1.0 …(1) 但し、 BFW:広角端でのバックフォーカス Y':像高(画面対角長さの1/2) である。
It is desirable to satisfy the following conditional expression (1) in order to achieve a compact zoom lens. 0.1 <BFW / Y '<1.0 (1) However, BFW: Back focus at wide-angle end Y': Image height (1/2 of screen diagonal).

【0030】条件式(1)の上限を超えると、バックフォ
ーカスが長くなりすぎるためズームレンズ全長も長くな
り、コンパクト化を達成するのが難しくなる。条件式
(1)の下限を超えると、バックフォーカスが短くなり、
ズームレンズ全長の短縮に関しては有利になるが、周辺
照度を確保するために後玉径を大きくする必要が生じる
ため、径方向のコンパクト化を達成する上で不利にな
る。
If the upper limit of conditional expression (1) is exceeded, the back focus becomes too long, and the overall length of the zoom lens also becomes long, making it difficult to achieve compactness. Conditional expression
Beyond the lower limit of (1), the back focus becomes shorter,
Although it is advantageous in terms of shortening the overall length of the zoom lens, it is necessary to increase the rear lens diameter in order to secure the peripheral illuminance, which is disadvantageous in achieving compactness in the radial direction.

【0031】次の条件式(2)を満たすことが、高い光学
性能を保持しつつコンパクトで高変倍比のズームレンズ
を実現する上で望ましい。 3.5<fT/fW …(2) 但し、 fW:広角端での全系の焦点距離 fT:望遠端での全系の焦点距離 である。
It is desirable that the following conditional expression (2) is satisfied in order to realize a compact zoom lens having a high zoom ratio while maintaining high optical performance. 3.5 <fT / fW (2) where fW: focal length of the entire system at the wide-angle end fT: focal length of the entire system at the telephoto end

【0032】条件式(2)を満足するズーム比を有するズ
ームレンズでは、レンズバック部の反射手段を設けた構
成の場合、カメラの大型化やパララックスの発生が著し
い。このため、条件式(2)を満足するズームレンズにお
いては、第2群Gr2と第3群Gr3との間に反射手段
を設けることの効果が顕著になる。
In a zoom lens having a zoom ratio satisfying the conditional expression (2), the size of the camera and the occurrence of parallax remarkably occur when the reflecting means of the lens back portion is provided. Therefore, in the zoom lens satisfying the conditional expression (2), the effect of providing the reflecting means between the second group Gr2 and the third group Gr3 becomes remarkable.

【0033】ハーフプリズムHP等の反射手段を第2群
Gr2と第3群Gr3との間に設けるためには、ハーフ
プリズムHP等の反射手段が入った状態で、次の条件式
(3)を満たすことが望ましい。 0.25<T(2-3)/fW …(3) 但し、 T(2-3):広角端での第2群の最も像側のレンズ面と第3
群の最も物体側のレンズ面との間隔 である。
In order to provide the reflecting means such as the half prism HP between the second group Gr2 and the third group Gr3, the following conditional expression is satisfied with the reflecting means such as the half prism HP included.
It is desirable to satisfy (3). 0.25 <T (2-3) / fW (3) However, T (2-3): The lens surface closest to the image side of the second group at the wide-angle end and the third
It is the distance from the lens surface closest to the object in the group.

【0034】条件式(3)の下限を超えると、第2群Gr
2と第3群Gr3との間隔T(2-3)が小さくなり過ぎるの
で、反射手段を第2群Gr2と第3群Gr3との間に配
置することが、鏡胴構成上困難となる。
If the lower limit of conditional expression (3) is exceeded, the second lens unit Gr
Since the distance T (2-3) between the second lens unit 3 and the third lens unit Gr3 becomes too small, it is difficult to arrange the reflecting means between the second lens unit Gr2 and the third lens unit Gr3 due to the lens barrel structure.

【0035】第2群Gr2及び第3群Gr3は、ズーム
移動量に関して次の条件式(4)を満たすことが望まし
い。 0.5<M2/M3<0.95 …(4) 但し、 M2:広角端から望遠端へのズーミングにおける第2群の
移動量 M3:広角端から望遠端へのズーミングにおける第3群の
移動量 である。
It is desirable that the second lens unit Gr2 and the third lens unit Gr3 satisfy the following conditional expression (4) with respect to the zoom movement amount. 0.5 <M2 / M3 <0.95 (4) However, M2: The amount of movement of the second group during zooming from the wide-angle end to the telephoto end M3: The amount of movement of the third group during zooming from the wide-angle end to the telephoto end.

【0036】条件式(4)の上限を超えると、第2群Gr
2と第3群Gr3のズーミングにおける動きがほとんど
同じになるため、3群ズームと同等の効果しか得られな
くなり、高変倍比を達成しようとすると移動量の増加に
よって光学系が大型化してしまう。条件式(4)の下限を
超えると、第2群Gr2と第3群Gr3との移動量差が
大きくなるため、広角端において第2群Gr2と第3群
Gr3との間隔が広がってしまう。従って、第3群Gr
3に入射する軸上光束の高さが高くなり、収差補正に対
する第3群Gr3の負担が大きくなるため、球面収差の
補正が困難になるとともに、広角端における全長の増大
を招いてしまう。
If the upper limit of conditional expression (4) is exceeded, the second lens unit Gr
Since the movements of the second group 3 and the third group Gr3 during zooming are almost the same, only the same effect as that of the third group zoom can be obtained, and if an attempt is made to achieve a high zoom ratio, the optical system becomes large due to an increase in the amount of movement. . When the value goes below the lower limit of conditional expression (4), the difference in the amount of movement between the second lens unit Gr2 and the third lens unit Gr3 becomes large, so that the distance between the second lens unit Gr2 and the third lens unit Gr3 becomes wide at the wide-angle end. Therefore, the third group Gr
Since the height of the axial light flux incident on the third lens group 3 becomes high and the burden of the third lens unit Gr3 on the aberration correction becomes large, it becomes difficult to correct the spherical aberration and the total length at the wide angle end increases.

【0037】次に、各ズーム群ごとに構成上の特徴を説
明する。まず、第1群Gr1から説明する。第1〜第1
0の実施の形態においては、第1群Gr1が物体側から
順に負レンズ・正レンズの2枚で構成されている。この
構成によると、負レンズを通過した軸外光束が負レンズ
への入射角よりも緩い角度で正レンズに入射することに
なるため、画角のきつい広角側での軸外光束の収差補正
が容易になる。
Next, the structural features of each zoom group will be described. First, the first group Gr1 will be described. First to first
In the embodiment of No. 0, the first group Gr1 is composed of two lenses, a negative lens and a positive lens, in order from the object side. With this configuration, the off-axis light flux that has passed through the negative lens is incident on the positive lens at an angle that is less than the angle of incidence on the negative lens, so aberration correction of the off-axis light flux on the wide-angle side with a tight angle of view is possible. It will be easier.

【0038】第1群Gr1は、次の条件式(5)を満たす
ことが望ましい。 0.4<f1/fT<0.7 …(5) 但し、 f1:第1群の焦点距離 である。
It is desirable that the first lens unit Gr1 satisfy the following conditional expression (5). 0.4 <f1 / fT <0.7 (5) where f1: is the focal length of the first lens unit.

【0039】条件式(5)の上限を超えると、広角側にお
いて負の歪曲収差が著しく生じるとともに、望遠側にお
いて球面収差がオーバー側に倒れる傾向が著しくなる。
条件式(5)の下限を超えると、第1群Gr1のパワーが
強くなりすぎるため、広角側において正の歪曲収差が著
しく生じるとともに、望遠側において球面収差がアンダ
ー側に倒れる傾向が著しくなる。
If the upper limit of conditional expression (5) is exceeded, negative distortion will occur remarkably on the wide-angle side, and spherical aberration will tend to fall to the over side on the telephoto side.
If the lower limit of conditional expression (5) is exceeded, the power of the first lens unit Gr1 will become too strong, and thus positive distortion will occur remarkably on the wide-angle side and spherical aberration will tend to fall toward the under side on the telephoto side.

【0040】第1〜第10の実施の形態のように第1群
Gr1中に非球面を用いれば、更に良好な光学性能が得
られる。非球面は、非球面の最大有効光路径をYmaxとす
るとき、0.5Ymax<y<Ymaxの任意の光軸垂直方向高さy
に対して、次の条件式(6)を満たすことが望ましい。 -0.04<φ1・(N'-N)・d{X(y)-X0(y)}/dy<0.005 …(6) 但し、 φ1:第1群のパワー N :非球面の物体側媒質の屈折率 N':非球面の像側媒質の屈折率 X(y):非球面の面形状 X0(y):非球面の参照球面形状 である。
If an aspherical surface is used in the first lens unit Gr1 as in the first to tenth embodiments, better optical performance can be obtained. An aspherical surface has a height y in the direction perpendicular to the optical axis of 0.5Ymax <y <Ymax, where Ymax is the maximum effective optical path diameter of the aspherical surface.
On the other hand, it is desirable to satisfy the following conditional expression (6). -0.04 <φ1 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.005 (6) where φ1: power of the first group N: of the aspherical object side medium Refractive index N ': Refractive index of aspherical image side medium X (y): Surface shape of aspherical surface X0 (y): Reference spherical surface shape of aspherical surface.

【0041】また、X(y)及びX0(y)は、以下の式(A)及び
(B)で表される。 X(y)=(r/ε)・[1-{1-ε・(y2/r2)}1/2]+ΣAiyi(ここで、i≧2である。) …(A ) X0(y)=r#・[1-{1-ε・(y2/r#2)}1/2] …(B)
Further, X (y) and X0 (y) are expressed by the following formulas (A) and
It is represented by (B). X (y) = (r / ε) ・ [1- {1-ε ・ (y 2 / r 2 )} 1/2 ] + ΣAiy i (where i ≧ 2) ... (A) X0 (y) = r # ・ [1- {1-ε ・ (y 2 / r # 2 )} 1/2 ]… (B)

【0042】但し、式(A)及び(B)中、 r:非球面の基準曲率半径 ε:2次曲面パラメータ Ai:i次の非球面係数 r#:非球面の近軸曲率半径{ここで、1/r#=(1/r)+2・A2} である。However, in the formulas (A) and (B), r: reference radius of curvature of aspherical surface ε: quadric surface parameter Ai: aspherical coefficient of i-th order r #: paraxial radius of curvature of aspherical surface {here , 1 / r # = (1 / r) + 2 · A2}.

【0043】条件式(6)は、広角側での軸外収差(特に歪
曲収差)と望遠側での球面収差とをバランス良く補正す
るための条件である。条件式(6)の上限を超えると、広
角側において負の歪曲収差が著しく生じるとともに、望
遠側において球面収差がオーバー側に倒れる傾向が著し
くなる。条件式(6)の下限を超えると、広角側において
正の歪曲収差が大きくなるとともに、望遠側において球
面収差がアンダー側に倒れる傾向が著しくなる。
Conditional expression (6) is a condition for correcting off-axis aberrations (especially distortion) on the wide-angle side and spherical aberration on the telephoto side in a well-balanced manner. If the upper limit of conditional expression (6) is exceeded, negative distortion will occur remarkably on the wide-angle side, and spherical aberration will tend to fall to the over side on the telephoto side. When the value goes below the lower limit of the conditional expression (6), the positive distortion becomes large on the wide angle side, and the spherical aberration tends to fall to the under side on the telephoto side.

【0044】次に、第2群Gr2について望ましい構成
を説明する。第2群Gr2は、最も物体側に負レンズ、
最も像側に正レンズが配置された構成となっているのが
望ましく、更には第1〜第10の実施の形態のように、
物体側から順に負レンズ・正レンズの2枚で構成されて
いるのが望ましい。この構成によると、バックフォーカ
スを所定の長さにすることが容易になり、さらに、ズー
ム全域においてコマ収差と球面収差とをバランス良く補
正することが容易になる。
Next, a desirable configuration for the second lens unit Gr2 will be described. The second group Gr2 is a negative lens closest to the object side,
It is desirable that the positive lens is arranged closest to the image side. Further, as in the first to tenth embodiments,
It is preferable that the two lenses are composed of a negative lens and a positive lens in order from the object side. With this configuration, it becomes easy to set the back focus to a predetermined length, and it becomes easy to correct coma and spherical aberration in a good balance in the entire zoom range.

【0045】第2群Gr2中の最も物体側に配置される
負レンズは、次の条件式(7)を満たすことが望ましい。 1.0<(R1-R2)/(R1+R2)<2.0 …(7) 但し、 R1:負レンズの物体側の面の曲率半径 R2:負レンズの像側の面の曲率半径 である。
The negative lens arranged closest to the object in the second lens unit Gr2 preferably satisfies the following conditional expression (7). 1.0 <(R1-R2) / (R1 + R2) <2.0 (7) where R1: radius of curvature of the object side surface of the negative lens R2: radius of curvature of the image side surface of the negative lens.

【0046】条件式(7)は、第2群Gr2中の最も物体
側に配置される負レンズの形状を表すシェイプファクタ
ー(shape facter)を規定しており、球面収差とコマ収差
とをバランス良く補正するための条件である。条件式
(7)の上限を超えると、球面収差がオーバー側に倒れる
傾向が著しく生じるとともに、外方性のコマが発生す
る。条件式(7)の下限を超えると、球面収差がアンダー
側に倒れる傾向が著しく生じるとともに、内方性のコマ
が発生する。
Conditional expression (7) defines a shape factor that represents the shape of the negative lens arranged closest to the object in the second lens unit Gr2, and balances spherical aberration and coma. This is the condition for correction. Conditional expression
When the value exceeds the upper limit of (7), spherical aberration tends to fall to the over side, and an outward coma occurs. If the lower limit of conditional expression (7) is exceeded, spherical aberration will tend to fall toward the under side, and inward coma will occur.

【0047】コンパクトで高い光学性能を有するズーム
レンズを実現するためには、第2群Gr2が次の条件式
(8),(9)を満たすことが望ましい。 0.05<D2/fW<0.40 …(8) 0.01<D2/fT<0.08 …(9) 但し、 D2:第2群の光軸方向の厚さ(最も物体側のレンズ面と
最も像側のレンズ面との軸上面間隔) である。
In order to realize a compact zoom lens having high optical performance, the second lens unit Gr2 has the following conditional expression:
It is desirable to satisfy (8) and (9). 0.05 <D2 / fW <0.40 (8) 0.01 <D2 / fT <0.08 (9) where D2 is the thickness of the second lens group in the optical axis direction (the lens surface closest to the object side and the lens surface closest to the image side). And the axial upper surface distance).

【0048】条件式(8),(9)の上限を超えると、全長が
増大するとともに、第1群Gr1が入射瞳から遠くなる
ため前玉径(第1群Gr1の径)が増大してしまう。条件
式(8),(9)の下限を超えると、充分な収差補正、特に色
収差をズーム全域でバランス良く補正することが困難に
なり、たとえ補正ができたとしても、第2群Gr2を構
成するレンズが薄くなり過ぎるので、加工がほとんど不
可能な光学系になってしまう。
When the upper limits of conditional expressions (8) and (9) are exceeded, the total length increases and the front lens diameter (the diameter of the first group Gr1) increases because the first group Gr1 becomes far from the entrance pupil. I will end up. If the lower limits of conditional expressions (8) and (9) are exceeded, it will be difficult to perform sufficient aberration correction, particularly chromatic aberration in a well-balanced manner over the entire zoom range, and even if correction is possible, the second lens unit Gr2 is configured. Since the lens to be used becomes too thin, it becomes an optical system that is almost impossible to process.

【0049】第1〜第10の実施の形態のように第2群
Gr2中に非球面を用いれば、更に良好な光学性能が得
られる。非球面は、0<y<Ymaxの任意の光軸垂直方向高
さyに対して、次の条件式(10)を満たすことが望まし
い。 -0.1<φ2・(N'-N)・d{X(y)-X0(y)}/dy<0.01 …(10) 但し、 φ2:第2群のパワー である。
If an aspherical surface is used in the second lens unit Gr2 as in the first to tenth embodiments, better optical performance can be obtained. It is desirable that the aspherical surface satisfy the following conditional expression (10) for any height y in the vertical direction of the optical axis, where 0 <y <Ymax. -0.1 <φ2 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.01 (10) where φ2 is the power of the second group.

【0050】条件式(10)の上限を超えると、ズーム全域
で球面収差がアンダー側へ倒れる傾向が著しくなるとと
もに、望遠側において軸外光束のフレアーが著しく発生
し、広角側においては外方性のコマ収差が発生する。条
件式(10)の下限を超えると、ズーム全域で球面収差がオ
ーバー側へ倒れる傾向が著しくなるとともに、望遠側に
おいて軸外光束のフレアーの補正過剰の傾向が著しくな
り、広角側においては内方性のコマ収差が発生する。
If the upper limit of conditional expression (10) is exceeded, the spherical aberration tends to fall toward the under side over the entire zoom range, flare of off-axis light rays significantly occurs at the telephoto side, and outwardness at the wide angle side occurs. Coma occurs. If the lower limit of conditional expression (10) is exceeded, the spherical aberration will tend to fall to the over side over the entire zoom range, and the flare of the off-axis light beam will become overcorrected at the telephoto side, and the inward direction at the wide-angle side. Comatic aberration occurs.

【0051】第2群Gr2中、非球面を最も物体側のレ
ンズ(望ましくはその物体側面)又は最も像側のレンズ
(望ましくはその像側面)に設けるのが望ましい。前者の
構成によると、広角側でのコマ収差の補正が容易にな
る。一方、後者の構成によると、球面収差の補正が容易
になる。
In the second lens unit Gr2, the aspherical surface is the lens closest to the object side (preferably the object side surface) or the lens closest to the image side.
It is desirable to provide it (preferably on the image side surface). According to the former configuration, it becomes easy to correct coma on the wide angle side. On the other hand, the latter configuration facilitates correction of spherical aberration.

【0052】上記非球面が設けられたレンズを両面非球
面レンズにするか、又は第2群Gr2の最も物体側面と
最も像側面に非球面を設けると、球面収差,望遠側での
軸外光束のフレアー,広角側でのコマ収差を更にバラン
ス良く補正することができる。つまり、一方の非球面で
の球面収差・フレアー・コマ収差の補正過不足分を、も
う一方の非球面で補正することが可能となる。この際、
いずれの非球面も上記条件式(10)を満たすことが望まし
い。
If the lens provided with the aspherical surface is a double-sided aspherical lens, or if an aspherical surface is provided on the most object side surface and the most image side surface of the second lens unit Gr2, spherical aberration and off-axis light flux on the telephoto side will occur. The flare and coma on the wide-angle side can be corrected in a better balance. In other words, it becomes possible to correct the spherical aberration, flare, and coma aberrations on one aspherical surface by the other aspherical surface. On this occasion,
It is desirable that all the aspherical surfaces satisfy the conditional expression (10).

【0053】第2群Gr2は、次の条件式(11)を満たす
ことが望ましい。 0.1<|f2|/fT<0.5 …(11) 但し、 f2:第2群の焦点距離 である。
It is desirable that the second lens unit Gr2 satisfy the following conditional expression (11). 0.1 <| f2 | / fT <0.5 (11) where f2 is the focal length of the second lens group.

【0054】条件式(11)の上限を超えると、第2群Gr
2のパワーが弱くなりすぎるため、広角端における全長
が増大するとともに、ズーミング時における第2群Gr
2の移動量が増大して、望遠端における全長の増大を招
いてしまう。条件式(11)の下限を超えると、第2群Gr
2のパワーが強くなりすぎるため、広角側において内方
性のコマが発生するとともに、望遠側において球面収差
がオーバー側に倒れる傾向が著しくなる。
If the upper limit of conditional expression (11) is exceeded, the second lens unit Gr
Since the power of 2 becomes too weak, the total length at the wide-angle end increases, and the second lens unit Gr during zooming also increases.
The moving amount of 2 increases, which causes an increase in the total length at the telephoto end. If the lower limit of conditional expression (11) is exceeded, the second lens unit Gr
Since the power of 2 becomes too strong, an inward coma is generated on the wide angle side, and the spherical aberration tends to fall to the over side on the telephoto side.

【0055】ついで、第3群Gr3の望ましい構成を説
明する。コンパクトで高い光学性能を有するズームレン
ズを実現するためには、第3群Gr3は次の条件式(1
2),(13)を満たすことが望ましい。 0.05<D3/fW<0.40 …(12) 0.01<D3/fT<0.08 …(13) 但し、 D3:第3群の光軸方向の厚さ(最も物体側のレンズ面と
最も像側のレンズ面との軸上面間隔) である。
Next, a desirable structure of the third lens unit Gr3 will be described. In order to realize a compact zoom lens having high optical performance, the third lens unit Gr3 has the following conditional expression (1
It is desirable to satisfy 2) and (13). 0.05 <D3 / fW <0.40 (12) 0.01 <D3 / fT <0.08 (13) However, D3: Thickness of the third lens unit in the optical axis direction (lens surface closest to object side and lens surface closest to image side) And the axial upper surface distance).

【0056】条件式(12),(13)の上限を超えると、全長
が増大するとともに、バックフォーカスが短くなるため
後玉径(第4群Gr4の径)が増大してしまう。条件式(1
2),(13)の下限を超えると、充分な収差補正、特に色収
差をズーム全域でバランス良く補正することが困難にな
り、たとえ補正ができたとしても、第3群Gr3を構成
するレンズが薄くなり過ぎるので、加工がほとんど不可
能な光学系になってしまう。
If the upper limits of conditional expressions (12) and (13) are exceeded, the total length increases and the back focus becomes short, so that the rear lens diameter (the diameter of the fourth lens unit Gr4) increases. Conditional expression (1
If the lower limits of 2) and (13) are exceeded, it will be difficult to perform sufficient aberration correction, especially chromatic aberration in a well-balanced manner over the entire zoom range, and even if correction is possible, the lenses constituting the third lens unit Gr3 Since it becomes too thin, the optical system becomes almost impossible to process.

【0057】第1〜第10の実施の形態のように第3群
Gr3中に非球面を用いれば、更に良好な光学性能が得
られる。非球面は、0<y<Ymaxの任意の光軸垂直方向高
さyに対して、次の条件式(14)を満たすことが望まし
い。 -0.01<φ3・(N'-N)・d{X(y)-X0(y)}/dy<0.003 …(14) 但し、 φ3:第3群のパワー である。
If an aspherical surface is used in the third lens unit Gr3 as in the first to tenth embodiments, better optical performance can be obtained. It is desirable that the aspherical surface satisfy the following conditional expression (14) for any height y in the vertical direction of the optical axis, where 0 <y <Ymax. -0.01 <φ3 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.003 (14) where φ3 is the power of the third group.

【0058】条件式(14)の上限を超えると、ズーム全域
で球面収差がアンダー側へ倒れる傾向が著しくなるとと
もに、広角側において内方性のコマ収差が発生する。条
件式(14)の下限を超えると、ズーム全域で球面収差がオ
ーバー側へ倒れる傾向が著しくなるとともに、広角側に
おいては外方性のコマ収差が発生する。
If the upper limit of conditional expression (14) is exceeded, spherical aberration tends to fall toward the under side over the entire zoom range, and inward coma occurs at the wide-angle side. If the lower limit of conditional expression (14) is exceeded, the spherical aberration will tend to fall to the over side over the entire zoom range, and outward coma will occur on the wide angle side.

【0059】第3群Gr3中、非球面を最も物体側のレ
ンズ(望ましくはその物体側面)又は最も像側のレンズ
(望ましくはその像側面)に設けるのが望ましい。前者の
構成によると、球面収差の補正が容易になる。一方、後
者の構成によると、コマ収差の補正が容易になる。
In the third lens unit Gr3, the aspherical surface is the lens closest to the object side (preferably the object side surface) or the lens closest to the image side.
It is desirable to provide it (preferably on the image side surface). According to the former configuration, it becomes easy to correct spherical aberration. On the other hand, the latter configuration facilitates correction of coma aberration.

【0060】第3群Gr3は、次の条件式(15)を満たす
ことが望ましい。 0.1<f3/fT<0.5 …(15) 但し、 f3:第3群の焦点距離 である。
It is desirable that the third lens unit Gr3 satisfy the following conditional expression (15). 0.1 <f3 / fT <0.5 (15) where f3 is the focal length of the third lens unit.

【0061】条件式(15)の上限を超えると、第3群Gr
3のパワーが弱くなりすぎるため、広角端における全長
が増大するとともに、ズーミング時における第3群Gr
3の移動量が増大して、望遠端における全長の増大を招
いてしまう。条件式(15)の下限を超えると、第3群Gr
3のパワーが強くなりすぎるため、ズーム全域で球面収
差がアンダー側に倒れる傾向が著しくなる。
If the upper limit of conditional expression (15) is exceeded, the third lens unit Gr
Since the power of 3 becomes too weak, the total length at the wide-angle end increases, and the third lens unit Gr during zooming also increases.
The moving amount of 3 increases, and the total length at the telephoto end increases. If the lower limit of conditional expression (15) is exceeded, the third group Gr
Since the power of 3 becomes too strong, the spherical aberration tends to fall to the under side over the entire zoom range.

【0062】次に、第4群Gr4の望ましい構成を説明
する。第4群Gr4は、最も物体側に正レンズ、最も像
側に負レンズが配置された構成であるのが望ましい。こ
のテレフォトタイプの構成によって、バックフォーカス
を必要最小限に短くすることができる。さらに望ましく
は、第1〜第10の実施の形態のように、物体側から順
に正レンズ・負レンズの2枚構成であるのがよく、この
構成により第4群Gr4を光軸方向に更に薄くしてズー
ムレンズのコンパクト化を図ることができる。
Next, a desirable structure of the fourth lens unit Gr4 will be described. It is desirable that the fourth lens unit Gr4 has a configuration in which a positive lens is arranged closest to the object side and a negative lens is arranged closest to the image side. With this telephoto type configuration, the back focus can be shortened to the necessary minimum. More preferably, as in the first to tenth embodiments, it is preferable to have a two-lens configuration of a positive lens and a negative lens in order from the object side. With this configuration, the fourth group Gr4 is made thinner in the optical axis direction. Therefore, the zoom lens can be made compact.

【0063】第1〜第10の実施の形態のように第4群
Gr4中に非球面を用いれば、更に良好な光学性能が得
られる。非球面は、0.5Ymax<y<Ymaxの任意の光軸垂直
方向高さyに対して、次の条件式(16)を満たすことが望
ましい。 -0.05<φ4・(N'-N)・d{X(y)-X0(y)}/dy<0.01 …(16) 但し、 φ4:第4群のパワー である。
If an aspherical surface is used in the fourth lens unit Gr4 as in the first to tenth embodiments, better optical performance can be obtained. It is desirable that the aspherical surface satisfy the following conditional expression (16) for any height y in the direction perpendicular to the optical axis, where 0.5Ymax <y <Ymax. -0.05 <φ4 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.01 (16) where φ4 is the power of the fourth group.

【0064】条件式(16)の上限を超えると、広角端から
中間焦点距離域において正の歪曲収差及び像面湾曲の正
偏位傾向が著しくなるとともに、望遠側において球面収
差がオーバー側に倒れてしまう。条件式(16)の下限を超
えると、広角端から中間焦点距離域において負の歪曲収
差及び像面湾曲の負偏位傾向が著しくなるとともに、望
遠側において球面収差がアンダー側に倒れてしまう。
When the upper limit of conditional expression (16) is exceeded, positive distortion aberration and positive excursion of field curvature become remarkable in the intermediate focal length range from the wide-angle end, and spherical aberration falls to the over side on the telephoto side. Will end up. When the value goes below the lower limit of the conditional expression (16), negative distortion aberration and negative excursion of field curvature become remarkable in the intermediate focal length range from the wide-angle end, and spherical aberration falls to the under side on the telephoto side.

【0065】上記非球面が設けられたレンズを両面非球
面レンズにするか、又は第4群Gr4の最も物体側面と
最も像側面に非球面を設けると、球面収差,歪曲収差,
像面湾曲を更にバランス良く補正することができる。つ
まり、一方の非球面での球面収差・歪曲収差・像面湾曲
の補正過不足分を、もう一方の非球面で補正することが
可能となる。この際、いずれの非球面も上記条件式(16)
を満たすことが望ましい。
If the lens provided with the aspherical surface is a double-sided aspherical lens, or if an aspherical surface is provided on the most object side and the image side of the fourth lens unit Gr4, spherical aberration, distortion,
The field curvature can be corrected in a better balance. That is, it becomes possible to correct spherical aberration, distortion, and curvature of field on one aspherical surface by the other aspherical surface. At this time, any of the aspherical surfaces has the above conditional expression (16).
It is desirable to satisfy

【0066】第4群Gr4は、次の条件式(17)を満たす
ことが望ましい。 0.1<|f4|/fT<0.4 …(17) 但し、 f4:第4群の焦点距離 である。
It is desirable that the fourth lens unit Gr4 satisfy the following conditional expression (17). 0.1 <| f4 | / fT <0.4 (17) where f4 is the focal length of the fourth lens unit.

【0067】条件式(17)の上限を超えると、第4群Gr
4のパワーが弱くなりすぎるため、広角端における全長
が増大してしまう。条件式(17)の下限を超えると、第4
群Gr4のパワーが強くなりすぎるため、正の歪曲収差
が著しく生じるとともに、望遠側において球面収差がオ
ーバー側に倒れる傾向が強くなる。
When the upper limit of conditional expression (17) is exceeded, the fourth lens unit Gr
Since the power of 4 becomes too weak, the total length at the wide-angle end increases. If the lower limit of conditional expression (17) is exceeded, the fourth
Since the power of the group Gr4 becomes too strong, a positive distortion is significantly generated, and the spherical aberration on the telephoto side tends to fall to the over side.

【0068】《正・負・正・負の4成分構成において、
第1成分がフローティング的なズーム移動を行う5群ズ
ームレンズ(第11の実施の形態)》第11の実施の形態
は、物体側より順に、負の第1群Gr1,正の第2群G
r2,負の第3群Gr3,正の第4群Gr4及び負の第
5群Gr5から成る5群構成のズームレンズであり、第
1群Gr1と第2群Gr2が第1成分、第3群Gr3が
第2成分、第4群Gr4が第3成分、第5群Gr5が第
4成分をそれぞれ構成している。そして、第3群Gr3
と第4群Gr4との間には、第3群Gr3通過後の光束
を反射させることにより光束分割を行うハーフプリズム
HPが設けられている。また、第1群Gr1〜第5群G
r5は、図25のレンズ構成図中の対応する矢印m1〜
m5で示すように、広角端[W]から望遠端[T]にかけて
のズーミングにおいてそれぞれ前方へ移動し、第1群G
r1と第2群Gr2との間隔が狭まり、第2群Gr2と
第3群Gr3との間隔が広がり、第3群Gr3と第4群
Gr4との間隔が狭まり、第4群Gr4と第5群Gr5
との間隔が狭まる。
<< In a positive / negative / positive / negative four-component configuration,
Fifth group zoom lens in which the first component performs floating zoom movement (the eleventh embodiment) >> The eleventh embodiment is, in order from the object side, a negative first group Gr1 and a positive second group G.
r2, a negative third lens unit Gr3, a positive fourth lens unit Gr4, and a negative fifth lens unit Gr5, and a zoom lens having a five-unit structure. The first lens unit Gr1 and the second lens unit Gr2 are the first component and the third lens unit. Gr3 constitutes the second component, the fourth group Gr4 constitutes the third component, and the fifth group Gr5 constitutes the fourth component. And the third group Gr3
A half prism HP is provided between the third group Gr4 and the fourth group Gr4 to reflect the light beam after passing through the third group Gr3. Also, the first group Gr1 to the fifth group G
r5 is the corresponding arrow m1 in the lens configuration diagram of FIG.
As indicated by m5, each of the first group G moves forward in zooming from the wide-angle end [W] to the telephoto end [T].
The distance between r1 and the second group Gr2 is narrowed, the distance between the second group Gr2 and the third group Gr3 is widened, the distance between the third group Gr3 and the fourth group Gr4 is narrowed, and the fourth group Gr4 and the fifth group. Gr5
The space between and becomes narrower.

【0069】第11の実施の形態において、各群は以下
のように構成されている。第1群Gr1は、像側に凹の
負メニスカスレンズから成っており、その像側の面は非
球面である。第2群Gr2は、物体側に凸の正メニスカ
スレンズから成っている。第3群Gr3は、物体側より
順に、両凹の負レンズ及び物体側に凸の正メニスカスレ
ンズから成っており、その負レンズの物体側の面と正メ
ニスカスレンズの像側の面とは非球面である。第4群G
r4は、物体側より順に、絞り兼用のレンズシャッター
S1,像側に凹の負メニスカスレンズ,両凸の正レンズ
及び光束規制板S2から成っており、その正レンズの像
側の面は非球面である。第5群Gr5は、物体側より順
に、像側に凸の正メニスカスレンズ及び両凹の負レンズ
から成っており、その正メニスカスレンズの両面は非球
面である。なお、絞り兼用のレンズシャッターS1と光
束規制板S2とは、設計上、互換性がある。
In the eleventh embodiment, each group is constructed as follows. The first group Gr1 is composed of a negative meniscus lens concave on the image side, and its image-side surface is an aspherical surface. The second group Gr2 is composed of a positive meniscus lens convex on the object side. The third group Gr3 is composed of, in order from the object side, a biconcave negative lens and a positive meniscus lens convex to the object side. The object side surface of the negative lens and the image side surface of the positive meniscus lens are not It is a sphere. 4th group G
Reference numeral r4 comprises, in order from the object side, a lens shutter S1 also serving as a diaphragm, a negative meniscus lens concave to the image side, a biconvex positive lens and a light flux regulating plate S2, and the image side surface of the positive lens is an aspherical surface. Is. The fifth group Gr5 is composed of, in order from the object side, a positive meniscus lens having a convex surface on the image side and a biconcave negative lens, and both surfaces of the positive meniscus lens are aspherical surfaces. The lens shutter S1 that also serves as the diaphragm and the light flux regulating plate S2 are compatible in design.

【0070】第11の実施の形態は、図25に示すよう
に、広角側から望遠側へのズーミングにおいて第1群G
r1と第2群Gr2との間隔d2が微小に狭まる5群ズー
ムレンズである。つまり、正・負・正・負の4成分ズー
ム構成において、第1成分が負の第1群Gr1と正の第
2群Gr2とに分割されてフローティング的なズーム移
動を行う構成となっている。このフローティングにより
望遠側での球面収差及び像面の負方向への倒れを補正す
ることができる。また、このようにハーフプリズムHP
より前方に位置するズーム群を物体側から負・正・負の
3群で構成すると、負の第1群Gr1より後方に位置す
るズーム群に入射する軸外光束の角度が弱くなるため、
それ以降のレンズでの収差補正が有利になる。
In the eleventh embodiment, as shown in FIG. 25, the first group G is used in zooming from the wide-angle side to the telephoto side.
This is a five-group zoom lens in which the distance d2 between r1 and the second group Gr2 is slightly narrowed. That is, in the positive / negative / positive / negative four-component zoom configuration, the first component is divided into the negative first group Gr1 and the positive second group Gr2 to perform floating zoom movement. . This floating makes it possible to correct spherical aberration on the telephoto side and tilt of the image plane in the negative direction. Also, in this way, the half prism HP
If the zoom group located in the front is composed of three groups of negative, positive, and negative from the object side, the angle of the off-axis light flux incident on the zoom group located behind the negative first group Gr1 becomes weak,
Aberration correction in the lens after that becomes advantageous.

【0071】ズームレンズの途中にハーフプリズムHP
等の反射手段を設けようとすると、その前方に位置する
ズーム群と後方に位置するズーム群との独自性がそれぞ
れ強くなるため、ハーフプリズムHPの前方・後方のそ
れぞれについて良好に収差補正が行われなければならな
い。第11の実施の形態では、ハーフプリズムHPより
前方にズーム群を3群有する構成となっているため、ハ
ーフプリズムHPより前方での収差補正を充分に行うこ
とができる。一方、ハーフプリズムHPより後方に正の
第4群Gr4と負の第5群Gr5を有する構成となって
いるため、ハーフプリズムHPより後方での収差補正も
充分に行うことができる。
A half prism HP is provided in the middle of the zoom lens.
If such a reflecting means is to be provided, the uniqueness of the zoom group positioned in front of the zoom group and the zoom group positioned in the rear of the zoom group becomes stronger, so that aberrations can be corrected well in front of and behind the half prism HP. Must be broken. In the eleventh embodiment, three zoom groups are provided in front of the half prism HP, so that aberrations can be sufficiently corrected in front of the half prism HP. On the other hand, since the positive fourth lens unit Gr4 and the negative fifth lens unit Gr5 are provided behind the half prism HP, the aberrations after the half prism HP can be sufficiently corrected.

【0072】さらに、ハーフプリズムHPより前方に位
置する第1群Gr1〜第3群Gr3で充分に変倍量を稼
ぐことができるので、ハーフプリズムHPでの光束分割
によりファインダー系に光束を導く場合には、変倍のた
めにファインダー系にかかる負担が小さくなる。その負
担が軽減された分、ズームレンズの高変倍比化を図りつ
つファインダー系の構成を簡単にすることができる。
Further, since the first group Gr1 to the third group Gr3 located in front of the half prism HP can obtain a sufficient amount of zooming, when the light beam is guided to the finder system by the light beam splitting in the half prism HP. In addition, the load on the finder system due to zooming is reduced. Since the burden is reduced, it is possible to simplify the structure of the finder system while achieving a high zoom ratio of the zoom lens.

【0073】第11の実施の形態に係るズームレンズで
は、先に述べたように、第3群Gr3通過後の光束を反
射させることにより光束分割を行うハーフプリズムHP
が、第3群Gr3と第4群Gr4との間に設けられてい
る。この構成によると、ズームレンズに入射した光束は
ハーフプリズムHPによって2つの光学的に同等な光束
に分割されるため、パララックスは発生しない。また、
ハーフプリズムHPはズームレンズの途中に設けられて
いるため、バックフォーカスの短縮が可能であるととも
に、ハーフプリズムHP自身の小型化も可能である。
In the zoom lens according to the eleventh embodiment, as described above, the half prism HP for splitting the light flux by reflecting the light flux after passing through the third group Gr3.
Are provided between the third group Gr3 and the fourth group Gr4. According to this configuration, the light flux incident on the zoom lens is split into two optically equivalent light fluxes by the half prism HP, so parallax does not occur. Also,
Since the half prism HP is provided in the middle of the zoom lens, the back focus can be shortened and the half prism HP itself can be downsized.

【0074】さらに、第11の実施の形態のように、正
・負・正・負の4成分ズーム構成において、第1成分が
負の第1群Gr1と正の第2群Gr2とに分割されてフ
ローティング的なズーム移動を行う、実質的な正(負・
正)・負・正・負の4成分ズーム構成では、第3群Gr
3と第4群Gr4との間で軸上・軸外光束が共に最も低
い位置(即ち、光軸AX付近)を通ることになるため、第
3群Gr3と第4群Gr4との間に設けられているハー
フプリズムHPを径方向(即ち、光軸AXに対して垂直
方向)に更に小さくすることができる。ハーフプリズム
HPは、径方向に小さくなれば光軸AX方向にも小さく
なるため、このハーフプリズムHPの小型化によって第
3群Gr3と第4群Gr4との間の実際の面間隔(即
ち、第3群Gr3の最も像側のレンズ面と第4群Gr4
の最も物体側のレンズ面との間隔)を小さくすることで
きる。従って、ズームレンズ全長のコンパクト化を図る
ことが可能である。
Furthermore, in the positive / negative / positive / negative four-component zoom configuration as in the eleventh embodiment, the first component is divided into a negative first group Gr1 and a positive second group Gr2. To perform a floating zoom movement.
In the positive / negative / positive / negative four-component zoom configuration, the third group Gr
Since both the on-axis and off-axis light fluxes pass through the lowest position (that is, near the optical axis AX) between the third lens unit Gr4 and the fourth lens unit Gr4, they are provided between the third lens unit Gr3 and the fourth lens unit Gr4. The half prism HP provided can be further reduced in the radial direction (that is, the direction perpendicular to the optical axis AX). Since the half prism HP also becomes smaller in the optical axis AX direction when it becomes smaller in the radial direction, the real surface spacing (that is, the first lens group Gr3 and the fourth group Gr4) is reduced by downsizing the half prism HP. The most image side lens surface of the third group Gr3 and the fourth group Gr4
Distance from the lens surface closest to the object side) can be reduced. Therefore, it is possible to reduce the overall length of the zoom lens.

【0075】第11の実施の形態では、ハーフプリズム
HPがズーム群間で光束を反射させることにより光束分
割を行うため、1つのズーム群の途中で光束を反射させ
る構成よりも、鏡胴構成が簡単で、しかも、そのズーム
群の光学性能を維持するのが製造上容易である。また、
第11の実施の形態では、第1群Gr1が正のパワーを
有しているため、この第1群Gr1で軸上光束の高さを
抑えることにより、効果的に収差の発生を抑えることが
できる。
In the eleventh embodiment, since the half prism HP splits the light flux by reflecting the light flux between the zoom groups, the lens barrel configuration is more advantageous than the configuration in which the light flux is reflected in the middle of one zoom group. It is simple and easy to maintain the optical performance of the zoom group in terms of manufacturing. Also,
In the eleventh embodiment, since the first lens unit Gr1 has a positive power, by suppressing the height of the axial light flux in the first lens unit Gr1, it is possible to effectively suppress the occurrence of aberration. it can.

【0076】第11の実施の形態に係るズームレンズで
は、ハーフプリズムHPがズーミングにおいて第4群G
r4と一体に移動するため、ズームレンズのコンパクト
化が可能である。前述したように、実質的な正(負・正)
・負・正・負の4成分ズーム構成では、第4群Gr4付
近で光束が最も細くなる(つまり、集光する)。このた
め、ハーフプリズムHPの径の大きさ(即ち、光軸AX
に対して垂直方向の大きさ)は最も小さくて済み、その
結果、光軸AX方向にもハーフプリズムHPを小さくす
ることが可能になる。このハーフプリズムHPの小型化
によってスペース効率が良くなるため、第3群Gr3と
第4群Gr4との間の実際の面間隔を小さくして、ズー
ムレンズ全長のコンパクト化を図ることができるのであ
る。
In the zoom lens according to the eleventh embodiment, the half prism HP is moved to the fourth group G during zooming.
Since it moves integrally with r4, the zoom lens can be made compact. As mentioned above, practically positive (negative / positive)
In the negative / positive / negative four-component zoom configuration, the luminous flux becomes the thinnest in the vicinity of the fourth group Gr4 (that is, the light is condensed). Therefore, the size of the diameter of the half prism HP (that is, the optical axis AX
(The size in the vertical direction) is the smallest, and as a result, it is possible to make the half prism HP small also in the optical axis AX direction. Since the space efficiency is improved due to the miniaturization of the half prism HP, it is possible to reduce the actual surface distance between the third group Gr3 and the fourth group Gr4 and to make the overall zoom lens compact. .

【0077】第11の実施の形態では、ハーフプリズム
HPより後方に絞り兼用のレンズシャッターS1が設け
られているため、光束径はハーフプリズムHPの前側に
隣り合って位置する第3群Gr3に近いほど大きくな
る。一方、第11の実施の形態では、ズーミングにおい
て、ハーフプリズムHPがその後ろ側に隣り合って位置
するズーム群(即ち、第4群Gr4)と一体に移動するた
め、第4群Gr4とハーフプリズムHPとの間隔は変化
せず、第3群Gr3とハーフプリズムHPとの間隔は変
化する。従って、ハーフプリズムHPがカバーすべき光
束径は小さくて済むため、ハーフプリズムHPの小型化
が可能である。ハーフプリズムHPの小型化により、ズ
ーミングのための駆動機構にかかる重量等の負担が少な
くて済むため、この構成は鏡胴構成上有利である。
In the eleventh embodiment, since the lens shutter S1 that also serves as the diaphragm is provided behind the half prism HP, the light beam diameter is close to that of the third group Gr3 located adjacent to the front side of the half prism HP. The bigger it gets. On the other hand, in the eleventh embodiment, in zooming, the half prism HP moves integrally with the zoom group (that is, the fourth group Gr4) positioned adjacent to the rear side of the half prism HP, so that the fourth group Gr4 and the half prism are moved. The distance between HP and HP does not change, and the distance between the third lens unit Gr3 and the half prism HP changes. Therefore, the beam diameter to be covered by the half prism HP can be small, and the half prism HP can be downsized. This structure is advantageous in terms of the lens barrel structure because the size of the half prism HP can be reduced so that the weight of the driving mechanism for zooming can be reduced.

【0078】第11の実施の形態に係るズームレンズ
は、ハーフプリズムHPの直前に隣り合って位置するズ
ーム群(即ち、第3群)が負のパワーを有しているため、
ハーフプリズムHPに入射する軸外光束は軸上光束に対
して小さい角度を成すことになる(つまり、アフォーカ
ルに近づく。)。従って、ハーフプリズムHPがカバー
すべき光束径は小さくて済むため、ハーフプリズムHP
の小型化が可能である。ハーフプリズムHPの小型化に
より、ズーミングのための駆動機構にかかる重量等の負
担が少なくて済むため、この構成は鏡胴構成上有利であ
る。さらに、光軸AXに対してアフォーカルに近い軸外
光束をハーフプリズムHPで反射させても反射後の軸外
光束はあまり広がらないため、ハーフプリズムHPの後
方に位置する光学系(即ち、ファインダー系と、撮影系
のうち反射手段の後方に位置する部分)の径も小さくて
済む。以上のように、ハーフプリズムHP及びその後方
に位置する光学系の小型化によって、ズームレンズ及び
ファインダー系の小型化が達成される。
In the zoom lens according to the eleventh embodiment, the zoom group (that is, the third group) located immediately before the half prism HP and adjacent to each other has negative power.
The off-axis light beam incident on the half prism HP makes a small angle with the on-axis light beam (that is, approaches the afocal). Therefore, since the light beam diameter that the half prism HP should cover is small, the half prism HP
Can be reduced in size. This structure is advantageous in terms of the lens barrel structure because the size of the half prism HP can be reduced so that the weight of the driving mechanism for zooming can be reduced. Furthermore, even if an off-axis light beam that is near afocal with respect to the optical axis AX is reflected by the half prism HP, the off-axis light beam after reflection does not spread so much, so an optical system located behind the half prism HP (ie, a finder). The diameter of the system and the portion of the photographing system located behind the reflecting means) can be small. As described above, the miniaturization of the zoom lens and the viewfinder system is achieved by miniaturization of the half prism HP and the optical system located behind it.

【0079】第11の実施の形態においても、前述の条
件式(1)を満たすことが、ズームレンズのコンパクト化
を達成する上で望ましく、また、前述の条件式(2)を満
たすことが、高い光学性能を保持しつつコンパクトで高
変倍比のズームレンズを実現する上で望ましい。
Also in the eleventh embodiment, it is desirable that the above conditional expression (1) is satisfied in order to achieve compactness of the zoom lens, and that the above conditional expression (2) is satisfied. It is desirable to realize a compact zoom lens with high zoom ratio while maintaining high optical performance.

【0080】ハーフプリズムHPのような反射手段を第
3群Gr3と第4群Gr4との間に設けるためには、ハ
ーフプリズムHP等の反射手段が入った状態で、次の条
件式(3a)を満たすことが望ましい。 0.25<T(3-4)/fW …(3a) 但し、 T(3-4):広角端での第3群の最も像側のレンズ面と第4
群の最も物体側のレンズ面との間隔 である。
In order to provide the reflecting means such as the half prism HP between the third group Gr3 and the fourth group Gr4, the following conditional expression (3a) should be provided with the reflecting means such as the half prism HP included. It is desirable to satisfy. 0.25 <T (3-4) / fW (3a) However, T (3-4): The lens surface closest to the image side of the third lens group at the wide-angle end and the fourth lens surface.
It is the distance from the lens surface closest to the object in the group.

【0081】条件式(3a)の下限を超えると、第3群Gr
3と第4群Gr4との間隔T(3-4)が小さくなり過ぎるの
で、反射手段を第3群Gr3と第4群Gr4との間に配
置することが、鏡胴構成上困難となる。
If the lower limit of conditional expression (3a) is exceeded, the third lens unit Gr
Since the interval T (3-4) between the third lens unit Gr4 and the fourth lens unit Gr4 becomes too small, it is difficult to dispose the reflecting means between the third lens unit Gr3 and the fourth lens unit Gr4 in terms of the lens barrel structure.

【0082】第3群Gr3及び第4群Gr4は、ズーム
移動量に関して次の条件式(4a)を満たすことが望まし
い。 0.5<M3/M4<0.95 …(4a) 但し、 M4:広角端から望遠端へのズーミングにおける第4群の
移動量 である。
It is desirable that the third lens unit Gr3 and the fourth lens unit Gr4 satisfy the following conditional expression (4a) with respect to the zoom movement amount. 0.5 <M3 / M4 <0.95 (4a) where M4 is the amount of movement of the fourth lens unit during zooming from the wide-angle end to the telephoto end.

【0083】条件式(4a)の上限を超えると、第3群Gr
3と第4群Gr4のズーミングにおける動きがほとんど
同じになるため、3群ズームと同等の効果しか得られな
くなり、高変倍比を達成しようとすると移動量の増加に
よって光学系が大型化してしまう。条件式(4a)の下限を
超えると、第3群Gr3と第4群Gr4との移動量差が
大きくなるため、広角端において第3群Gr3と第4群
Gr4との間隔が広がってしまう。従って、第4群Gr
4に入射する軸上光束の高さが高くなり、球面収差の補
正が困難になるとともに、広角端における全長の増大を
招いてしまう。
If the upper limit of conditional expression (4a) is exceeded, the third lens unit Gr
Since the movements of the third and fourth groups Gr4 during zooming are almost the same, only the same effect as that of the third group zoom can be obtained, and when attempting to achieve a high zoom ratio, the optical system becomes large due to an increase in the amount of movement. . When the value goes below the lower limit of the conditional expression (4a), the movement amount difference between the third lens unit Gr3 and the fourth lens unit Gr4 becomes large, so that the distance between the third lens unit Gr3 and the fourth lens unit Gr4 widens at the wide-angle end. Therefore, the fourth group Gr
The height of the on-axis light beam entering 4 becomes high, it becomes difficult to correct spherical aberration, and the total length at the wide-angle end is increased.

【0084】次に、各ズーム群ごとに構成上の特徴を説
明する。まず、第1群Gr1及び第2群Gr2から説明
する。第11の実施の形態においては、第1群Gr1が
負レンズから成り、第2群Gr2が正レンズから成って
いる。この構成によると、負レンズを通過した軸外光束
が負レンズへの入射角よりも緩い角度で正レンズに入射
することになるため、画角のきつい広角側での軸外光束
の収差補正が容易になる。
Next, the structural features of each zoom group will be described. First, the first group Gr1 and the second group Gr2 will be described. In the eleventh embodiment, the first group Gr1 is composed of a negative lens and the second group Gr2 is composed of a positive lens. With this configuration, the off-axis light flux that has passed through the negative lens is incident on the positive lens at an angle that is less than the angle of incidence on the negative lens, so aberration correction of the off-axis light flux on the wide-angle side with a tight angle of view is possible. It will be easier.

【0085】第1群Gr1及び第2群Gr2は、次の条
件式(5a)を満たすことが望ましい。 0.4<f1,2/fT<0.7 …(5a) 但し、 f1,2:第1群と第2群との合成焦点距離 である。
It is desirable that the first group Gr1 and the second group Gr2 satisfy the following conditional expression (5a). 0.4 <f1,2 / fT <0.7 (5a) where f1,2 is the combined focal length of the first group and the second group.

【0086】条件式(5a)の上限を超えると、広角側にお
いて負の歪曲収差が著しく生じるとともに、望遠側にお
いて球面収差がオーバー側に倒れる傾向が著しくなる。
条件式(5a)の下限を超えると、第1群Gr1と第2群G
r2との合成パワーが強くなりすぎるため、広角側にお
いて正の歪曲収差が著しく生じるとともに、望遠側にお
いて球面収差がアンダー側に倒れる傾向が著しくなる。
If the upper limit of conditional expression (5a) is exceeded, negative distortion will occur remarkably on the wide angle side, and spherical aberration will tend to fall to the over side on the telephoto side.
When the lower limit of conditional expression (5a) is exceeded, the first group Gr1 and the second group G1
Since the combined power with r2 becomes too strong, positive distortion is remarkably generated on the wide angle side, and the spherical aberration is apt to fall to the under side on the telephoto side.

【0087】第11の実施の形態のように第1群Gr1
中に非球面を用いたり、第2群Gr2中に非球面を用い
れば、更に良好な光学性能が得られる。非球面は、0.5Y
max<y<Ymaxの任意の光軸垂直方向高さyに対して、次
の条件式(6a)を満たすことが望ましい。 -0.04<φ1,2・(N'-N)・d{X(y)-X0(y)}/dy<0.005 …(6a) 但し、 φ1,2:第1群と第2群との合成パワー である。
As in the eleventh embodiment, the first group Gr1
If an aspherical surface is used therein or an aspherical surface is used in the second lens unit Gr2, even better optical performance can be obtained. Aspherical surface is 0.5Y
It is desirable that the following conditional expression (6a) be satisfied for any height y in the direction perpendicular to the optical axis, where max <y <Ymax. -0.04 <φ1,2 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.005 (6a) where φ1,2: Composition of the first and second groups Power.

【0088】条件式(6a)は、広角側での軸外収差(特に
歪曲収差)と望遠側での球面収差とをバランス良く補正
するための条件である。条件式(6a)の上限を超えると、
広角側において負の歪曲収差が著しく生じるとともに、
望遠側において球面収差がオーバー側に倒れる傾向が著
しくなる。条件式(6a)の下限を超えると、広角側におい
て正の歪曲収差が大きくなるとともに、望遠側において
球面収差がアンダー側に倒れる傾向が著しくなる。
Conditional expression (6a) is a condition for correcting off-axis aberrations (particularly distortion) on the wide-angle side and spherical aberration on the telephoto side in a well-balanced manner. When the upper limit of conditional expression (6a) is exceeded,
Negative distortion occurs remarkably on the wide-angle side,
At the telephoto side, the spherical aberration tends to fall to the over side. When the value goes below the lower limit of the conditional expression (6a), the positive distortion becomes large on the wide-angle side, and the spherical aberration tends to fall to the under side on the telephoto side.

【0089】次に、第3群Gr3について望ましい構成
を説明する。第3群Gr3は、最も物体側に負レンズ、
最も像側に正レンズが配置された構成となっているのが
望ましく、更には第11の実施の形態のように、物体側
から順に負レンズ・正レンズの2枚で構成されているの
が望ましい。この構成によると、バックフォーカスを所
定の長さにすることが容易になり、さらに、ズーム全域
においてコマ収差と球面収差とをバランス良く補正する
ことが容易になる。
Next, a desirable configuration for the third lens unit Gr3 will be described. The third lens unit Gr3 has a negative lens closest to the object side,
It is desirable that the positive lens is arranged closest to the image side. Further, as in the eleventh embodiment, it is composed of two negative lenses and positive lenses in order from the object side. desirable. With this configuration, it becomes easy to set the back focus to a predetermined length, and it becomes easy to correct coma and spherical aberration in a good balance in the entire zoom range.

【0090】第3群Gr3中の最も物体側に配置される
負レンズは、前述の条件式(7)を満たすことが望まし
い。第11の実施の形態における第3群Gr3は、第1
〜第10の実施の形態における第2群Gr2に相当する
ため、条件式(7)を満たす意義も第1〜第10の実施の
形態の場合と同様である。
It is desirable that the negative lens arranged closest to the object in the third lens unit Gr3 satisfies the above-mentioned conditional expression (7). The third group Gr3 in the eleventh embodiment has a first
Since it corresponds to the second lens unit Gr2 in the tenth embodiment, the significance of satisfying the conditional expression (7) is the same as in the first to tenth embodiments.

【0091】コンパクトで高い光学性能を有するズーム
レンズを実現するためには、第3群Gr3が次の条件式
(8a),(9a)を満たすことが望ましい。 0.05<D3/fW<0.40 …(8a) 0.01<D3/fT<0.08 …(9a)
In order to realize a compact and high-performance zoom lens, the third lens unit Gr3 has the following conditional expression:
It is desirable to satisfy (8a) and (9a). 0.05 <D3 / fW <0.40… (8a) 0.01 <D3 / fT <0.08… (9a)

【0092】条件式(8a),(9a)の上限を超えると、全長
が増大するとともに、第1群Gr1が入射瞳から遠くな
るため前玉径(第1群Gr1の径)が増大してしまう。条
件式(8a),(9a)の下限を超えると、充分な収差補正、特
に色収差補正を行うことが困難になり、たとえ補正がで
きたとしても、加工がほとんど不可能な光学系になって
しまう。
When the upper limits of conditional expressions (8a) and (9a) are exceeded, the total length increases and the front lens diameter (the diameter of the first group Gr1) increases because the first group Gr1 becomes far from the entrance pupil. I will end up. If the lower limits of conditional expressions (8a) and (9a) are exceeded, it will be difficult to perform sufficient aberration correction, especially chromatic aberration correction. Even if correction is possible, the optical system will be almost impossible to process. I will end up.

【0093】第11の実施の形態のように第3群Gr3
中に非球面を用いれば、更に良好な光学性能が得られ
る。非球面は、0<y<Ymaxの任意の光軸垂直方向高さy
に対して、次の条件式(10a)を満たすことが望ましい。 -0.1<φ3・(N'-N)・d{X(y)-X0(y)}/dy<0.01 …(10
a)
As in the eleventh embodiment, the third lens unit Gr3
If an aspherical surface is used, better optical performance can be obtained. The aspherical surface has a height y in the direction perpendicular to the optical axis with 0 <y <Ymax.
On the other hand, it is desirable to satisfy the following conditional expression (10a). -0.1 <φ3 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.01… (10
a)

【0094】条件式(10a)の上限を超えると、ズー
ム全域で球面収差がアンダー側へ倒れる傾向が著しくな
るとともに、望遠側において軸外光束のフレアーが著し
く発生し、広角側においては外方性のコマ収差が発生す
る。条件式(10a)の下限を超えると、ズーム全域で球面
収差がオーバー側へ倒れる傾向が著しくなるとともに、
望遠側において軸外光束のフレアーの補正過剰の傾向が
著しくなり、広角側においては内方性のコマ収差が発生
する。
If the upper limit of conditional expression (10a) is exceeded, the spherical aberration tends to fall toward the under side over the entire zoom range, flare of off-axis light rays significantly occurs at the telephoto side, and outwardness at the wide angle side occurs. Coma occurs. If the lower limit of conditional expression (10a) is exceeded, the spherical aberration tends to fall to the over side over the entire zoom range, and
On the telephoto side, the tendency for overcorrection of flare of off-axis light beams becomes remarkable, and inward coma occurs on the wide-angle side.

【0095】第3群Gr3中、非球面を最も物体側のレ
ンズ(望ましくはその物体側面)又は最も像側のレンズ
(望ましくはその像側面)に設けるのが望ましい。前者の
構成によると、広角側でのコマ収差の補正が容易にな
る。一方、後者の構成によると、球面収差の補正が容易
になる。
In the third lens unit Gr3, the aspherical surface is the lens closest to the object side (preferably the object side surface) or the lens closest to the image side.
It is desirable to provide it (preferably on the image side surface). According to the former configuration, it becomes easy to correct coma on the wide angle side. On the other hand, the latter configuration facilitates correction of spherical aberration.

【0096】上記非球面が設けられたレンズを両面非球
面レンズにするか、又は最も物体側面と最も像側面に非
球面を設けると、球面収差,望遠側での軸外光束のフレ
アー,広角側でのコマ収差を更にバランス良く補正する
ことができる。つまり、一方の非球面での球面収差・フ
レアー・コマ収差の補正過不足分を、もう一方の非球面
で補正することが可能となる。この際、いずれの非球面
も前述の条件式(10a)を満たすことが望ましい。
If the lens provided with the aspherical surface is a double-sided aspherical lens, or if an aspherical surface is provided on the most object side surface and the most image side surface, spherical aberration, flare of off-axis light beam on the telephoto side, and wide angle side. It is possible to correct coma aberration in a more balanced manner. In other words, it becomes possible to correct the spherical aberration, flare, and coma aberrations on one aspherical surface by the other aspherical surface. At this time, it is desirable that all the aspherical surfaces satisfy the above-mentioned conditional expression (10a).

【0097】第3群Gr3は、次の条件式(11a)を満た
すことが望ましい。 0.1<|f3|/fT<0.5 …(11a)
It is desirable that the third lens unit Gr3 satisfy the following conditional expression (11a). 0.1 <| f3 | / fT <0.5 (11a)

【0098】条件式(11a)の上限を超えると、第3群G
r3のパワーが弱くなりすぎるため、広角端における全
長が増大するとともに、ズーミング時における第3群G
r3の移動量が増大して、望遠端における全長の増大を
招いてしまう。条件式(11a)の下限を超えると、第3群
Gr3のパワーが強くなりすぎるため、広角側において
内方性のコマが発生するとともに、望遠側において球面
収差がオーバー側に倒れる傾向が著しくなる。
If the upper limit of conditional expression (11a) is exceeded, the third lens group G
Since the power of r3 becomes too weak, the total length at the wide-angle end increases and the third lens unit G during zooming
The amount of movement of r3 increases, causing an increase in the total length at the telephoto end. If the lower limit of conditional expression (11a) is exceeded, the power of the third lens unit Gr3 becomes too strong, so that an internal coma occurs on the wide-angle side, and the spherical aberration tends to fall to the over side on the telephoto side. .

【0099】ついで、第4群Gr4の望ましい構成を説
明する。第11の実施の形態のような実質的な正(負・
正)・負・正・負の4成分ズーム構成においては、コン
パクトで高い光学性能を有するズームレンズを実現する
ために、第4群Gr4が次の条件式(12a),(13a)を満た
すことが望ましい。 0.05<D4/fW<0.40 …(12a) 0.01<D4/fT<0.08 …(13a) 但し、 D4:第4群の光軸方向の厚さ(最も物体側のレンズ面と
最も像側のレンズ面との軸上面間隔) である。
Next, a desirable structure of the fourth lens unit Gr4 will be described. Substantially positive (negative / negative) as in the eleventh embodiment.
In the positive / negative / positive / negative four-component zoom configuration, the fourth lens unit Gr4 must satisfy the following conditional expressions (12a) and (13a) in order to realize a compact zoom lens having high optical performance. Is desirable. 0.05 <D4 / fW <0.40… (12a) 0.01 <D4 / fT <0.08… (13a) where D4 is the thickness of the fourth lens unit in the optical axis direction (the lens surface closest to the object side and the lens surface closest to the image side). And the axial upper surface distance).

【0100】条件式(12a),(13a)の上限を超えると、全
長が増大するとともに、バックフォーカスが短くなるた
め後玉径(第5群Gr5の径)が増大してしまう。条件式
(12a),(13a)の下限を超えると、充分な収差補正、特に
色収差補正を行うことが困難になり、たとえ補正ができ
たとしても、加工がほとんど不可能な光学系になってし
まう。
When the upper limits of conditional expressions (12a) and (13a) are exceeded, the total length increases and the back focus becomes short, so the rear lens diameter (the diameter of the fifth lens unit Gr5) increases. Conditional expression
When the lower limits of (12a) and (13a) are exceeded, it becomes difficult to perform sufficient aberration correction, particularly chromatic aberration correction, and even if correction is possible, the optical system will be almost impossible to process.

【0101】第11の実施の形態のように第4群Gr4
中に非球面を用いれば、更に良好な光学性能が得られ
る。非球面は、0<y<Ymaxの任意の光軸垂直方向高さy
に対して、次の条件式(14a)を満たすことが望ましい。 -0.01<φ4・(N'-N)・d{X(y)-X0(y)}/dy<0.003 …(14a)
As in the eleventh embodiment, the fourth lens unit Gr4
If an aspherical surface is used, better optical performance can be obtained. The aspherical surface has a height y in the direction perpendicular to the optical axis with 0 <y <Ymax.
On the other hand, it is desirable to satisfy the following conditional expression (14a). -0.01 <φ4 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.003… (14a)

【0102】条件式(14a)の上限を超えると、ズーム全
域で球面収差がアンダー側へ倒れる傾向が著しくなると
ともに、広角側において内方性のコマ収差が発生する。
条件式(14a)の下限を超えると、ズーム全域で球面収差
がオーバー側へ倒れる傾向が著しくなるとともに、広角
側においては外方性のコマ収差が発生する。
When the upper limit of conditional expression (14a) is exceeded, spherical aberration tends to fall to the under side over the entire zoom range, and inward coma occurs on the wide angle side.
When the value goes below the lower limit of the conditional expression (14a), the spherical aberration tends to fall to the over side over the entire zoom range, and outward coma occurs on the wide angle side.

【0103】第4群Gr4中、非球面を最も物体側のレ
ンズ(望ましくはその物体側面)又は最も像側のレンズ
(望ましくはその像側面)に設けるのが望ましい。前者の
構成によると、球面収差の補正が容易になる。一方、後
者の構成によると、コマ収差の補正が容易になる。
In the fourth lens unit Gr4, the aspherical surface is the lens closest to the object side (preferably the object side surface) or the lens closest to the image side.
It is desirable to provide it (preferably on the image side surface). According to the former configuration, it becomes easy to correct spherical aberration. On the other hand, the latter configuration facilitates correction of coma aberration.

【0104】第4群Gr4は、次の条件式(15a)を満た
すことが望ましい。 0.1<f4/fT<0.5 …(15a)
It is desirable that the fourth lens unit Gr4 satisfy the following conditional expression (15a). 0.1 <f4 / fT <0.5 (15a)

【0105】条件式(15a)の上限を超えると、第4群G
r4のパワーが弱くなりすぎるため、広角端における全
長が増大するとともに、ズーミング時における第4群G
r4の移動量が増大して、望遠端における全長の増大を
招いてしまう。条件式(15a)の下限を超えると、第4群
Gr4のパワーが強くなりすぎるため、ズーム全域で球
面収差がアンダー側に倒れる傾向が著しくなる。
When the upper limit of conditional expression (15a) is exceeded, the fourth group G
Since the power of r4 becomes too weak, the total length at the wide-angle end increases and the fourth lens unit G during zooming
The amount of movement of r4 increases, causing an increase in the total length at the telephoto end. If the lower limit of conditional expression (15a) is exceeded, the power of the fourth lens unit Gr4 becomes too strong, and the spherical aberration tends to fall toward the under side over the entire zoom range.

【0106】次に、第5群Gr5の望ましい構成を説明
する。第5群Gr5は、最も物体側に正レンズ、最も像
側に負レンズが配置された構成であるのが望ましい。こ
のテレフォトタイプの構成によって、バックフォーカス
を必要最小限に短くすることができる。さらに望ましく
は、第11の実施の形態のように、物体側から順に正レ
ンズ・負レンズの2枚構成であるのがよく、この構成に
より第5群Gr5を光軸方向に更に薄くしてズームレン
ズのコンパクト化を図ることができる。
Next, a desirable structure of the fifth lens unit Gr5 will be described. It is desirable that the fifth lens unit Gr5 has a configuration in which a positive lens is disposed closest to the object side and a negative lens is disposed closest to the image side. With this telephoto type configuration, the back focus can be shortened to the necessary minimum. More preferably, as in the eleventh embodiment, it is preferable to have a two-lens structure of a positive lens and a negative lens in order from the object side. With this structure, the fifth group Gr5 is made thinner in the optical axis direction and zoomed. The lens can be made compact.

【0107】第11の実施の形態のように第5群Gr5
中に非球面を用いれば、更に良好な光学性能が得られ
る。非球面は、0.5Ymax<y<Ymaxの任意の光軸垂直方向
高さyに対して、次の条件式(16a)を満たすことが望まし
い。 -0.05<φ5・(N'-N)・d{X(y)-X0(y)}/dy<0.01 …(16a) 但し、 φ5:第5群のパワー である。
As in the eleventh embodiment, the fifth group Gr5
If an aspherical surface is used, better optical performance can be obtained. It is desirable that the aspherical surface satisfy the following conditional expression (16a) for any height y in the direction perpendicular to the optical axis, where 0.5Ymax <y <Ymax. -0.05 <φ5 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.01 (16a) where φ5 is the power of the fifth group.

【0108】条件式(16a)の上限を超えると、広角端か
ら中間焦点距離域において正の歪曲収差及び像面湾曲の
正偏位傾向が著しくなるとともに、望遠側において球面
収差がオーバー側に倒れてしまう。条件式(16a)の下限
を超えると、広角端から中間焦点距離域において負の歪
曲収差及び像面湾曲の負偏位傾向が著しくなるととも
に、望遠側において球面収差がアンダー側に倒れてしま
う。
If the upper limit of conditional expression (16a) is exceeded, the positive distortion and the positive excursion of the field curvature will become remarkable from the wide-angle end to the intermediate focal length range, and the spherical aberration will fall to the over side on the telephoto side. Will end up. If the lower limit of conditional expression (16a) is exceeded, negative distortion aberration and negative excursion of field curvature will be remarkable in the intermediate focal length range from the wide-angle end, and spherical aberration will fall to the under side on the telephoto side.

【0109】上記非球面が設けられたレンズを両面非球
面レンズにするか、又は最も物体側面と最も像側面に非
球面を設けると、球面収差,歪曲収差,像面湾曲を更に
バランス良く補正することができる。つまり、一方の非
球面での球面収差・歪曲収差・像面湾曲の補正過不足分
を、もう一方の非球面で補正することが可能となる。こ
の際、いずれの非球面も上記条件式(16a)を満たすこと
が望ましい。
If the lens provided with the aspherical surface is a double-sided aspherical lens, or if an aspherical surface is provided on the most object side surface and the most image side surface, spherical aberration, distortion, and field curvature can be corrected in a better balance. be able to. That is, it becomes possible to correct spherical aberration, distortion, and curvature of field on one aspherical surface by the other aspherical surface. At this time, it is desirable that all the aspherical surfaces satisfy the conditional expression (16a).

【0110】第5群Gr5は、次の条件式(17a)を満た
すことが望ましい。 0.1<|f5|/fT<0.4 …(17a) 但し、 f5:第5群の焦点距離 である。
It is desirable that the fifth lens unit Gr5 satisfy the following conditional expression (17a). 0.1 <| f5 | / fT <0.4 (17a) where f5 is the focal length of the fifth lens unit.

【0111】条件式(17a)の上限を超えると、第5群G
r5のパワーが弱くなりすぎるため、広角端における全
長が増大してしまう。条件式(17a)の下限を超えると、
第5群Gr5のパワーが強くなりすぎるため、正の歪曲
収差が著しく生じるとともに、望遠側において球面収差
がオーバー側に倒れる傾向が強くなる。
If the upper limit of conditional expression (17a) is exceeded, the fifth group G
Since the power of r5 becomes too weak, the total length at the wide-angle end increases. When the lower limit of conditional expression (17a) is exceeded,
Since the power of the fifth lens unit Gr5 becomes too strong, a positive distortion occurs remarkably, and the spherical aberration on the telephoto side tends to fall to the over side.

【0112】《正・負・正・負の4成分構成において、
第2成分がフローティング的なズーム移動を行う5群ズ
ームレンズ(第12の実施の形態)》第12の実施の形態
は、物体側より順に、正の第1群Gr1,負の第2群G
r2,正の第3群Gr3,正の第4群Gr4及び負の第
5群Gr5から成る5群構成のズームレンズであり、第
1群Gr1が第1成分、第2群Gr2と第3群Gr3が
第2成分、第4群Gr4が第3成分、第5群Gr5が第
4成分をそれぞれ構成している。そして、第3群Gr3
と第4群Gr4との間には、第3群Gr3通過後の光束
を反射させることにより光束分割を行うハーフプリズム
HPが設けられている。また、第1群Gr1〜第5群G
r5は、図27のレンズ構成図中の対応する矢印m1〜
m5で示すように、広角端[W]から望遠端[T]にかけて
のズーミングにおいてそれぞれ前方へ移動し、第1群G
r1と第2群Gr2との間隔が広がり、第2群Gr2と
第3群Gr3との間隔が狭まり、第3群Gr3と第4群
Gr4との間隔が狭まり、第4群Gr4と第5群Gr5
との間隔が狭まる。
<< In a positive / negative / positive / negative four-component configuration,
Fifth group zoom lens in which second component makes zooming movement in a floating manner (twelfth embodiment) >> The twelfth embodiment has a positive first group Gr1 and a negative second group G in order from the object side.
r2, a positive third lens unit Gr3, a positive fourth lens unit Gr4, and a negative fifth lens unit Gr5, which is a zoom lens having a five-unit structure. The first lens unit Gr1 is the first component, and the second lens unit Gr2 and the third lens unit. Gr3 constitutes the second component, the fourth group Gr4 constitutes the third component, and the fifth group Gr5 constitutes the fourth component. And the third group Gr3
A half prism HP is provided between the third group Gr4 and the fourth group Gr4 to reflect the light beam after passing through the third group Gr3. Also, the first group Gr1 to the fifth group G
r5 is the corresponding arrow m1 to the corresponding lens configuration diagram in FIG.
As indicated by m5, each of the first group G moves forward in zooming from the wide-angle end [W] to the telephoto end [T].
The distance between r1 and the second group Gr2 is widened, the distance between the second group Gr2 and the third group Gr3 is narrowed, the distance between the third group Gr3 and the fourth group Gr4 is narrowed, and the fourth group Gr4 and the fifth group. Gr5
The space between and becomes narrower.

【0113】第12の実施の形態において、各群は以下
のように構成されている。第1群Gr1は、物体側より
順に、像側に凹の負メニスカスレンズ及び物体側に凸の
正メニスカスレンズから成っており、その負メニスカス
レンズの像側の面は非球面である。第2群Gr2は、両
凹の負レンズから成っており、その物体側の面は非球面
である。第3群Gr3は、物体側に凸の正メニスカスレ
ンズから成っており、その像側の面は非球面である。第
4群Gr4は、物体側より順に、絞り兼用のレンズシャ
ッターS1,像側に凹の負メニスカスレンズ,両凸の正
レンズ及び光束規制板S2から成っており、その正レン
ズの像側の面は非球面である。第5群Gr5は、物体側
より順に、像側に凸の正メニスカスレンズ及び両凹の負
レンズから成っており、その正メニスカスレンズの両面
は非球面である。なお、絞り兼用のレンズシャッターS
1と光束規制板S2とは、設計上、互換性がある。
In the twelfth embodiment, each group is constructed as follows. The first group Gr1 is composed of, in order from the object side, a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, and the image side surface of the negative meniscus lens is an aspherical surface. The second group Gr2 is composed of a biconcave negative lens, and its object-side surface is an aspherical surface. The third group Gr3 is composed of a positive meniscus lens having a convex surface on the object side, and its image-side surface is an aspherical surface. The fourth group Gr4 is composed of, in order from the object side, a lens shutter S1 also serving as a diaphragm, a negative meniscus lens concave to the image side, a biconvex positive lens and a light flux regulating plate S2, and the image side surface of the positive lens. Is an aspherical surface. The fifth group Gr5 is composed of, in order from the object side, a positive meniscus lens having a convex surface on the image side and a biconcave negative lens, and both surfaces of the positive meniscus lens are aspherical surfaces. In addition, the lens shutter S that also serves as the diaphragm
1 and the light flux regulating plate S2 are compatible in design.

【0114】第12の実施の形態は、図27に示すよう
にズーミングにおいて第2群Gr2と第3群Gr3との
間隔d6が微小に変化する5群ズームレンズである。つま
り、正・負・正・負の4成分ズーム構成において、第2
成分が負の第2群Gr2と正の第3群Gr3とに分割さ
れてフローティング的なズーム移動を行う構成となって
いる。このフローティングにより望遠側での球面収差及
び像面の負方向への倒れを補正することができる。ま
た、このようにハーフプリズムHPより前方に位置する
ズーム群を物体側から正・負・正の3群で構成すると、
ハーフプリズムHPより前方に位置するズーム群で軸上
光束の高さを低くすることができるため、望遠レンズで
補正困難な軸上光束の収差を補正することができる。ま
た、誤差感度が小さくなるため、製造が容易になるとい
うメリットもある。
The twelfth embodiment is a five-group zoom lens in which the distance d6 between the second group Gr2 and the third group Gr3 changes slightly during zooming, as shown in FIG. That is, in the positive / negative / positive / negative four-component zoom configuration, the second
The second group Gr2 having a negative component and the third group Gr3 having a positive component are divided to perform floating zoom movement. This floating makes it possible to correct spherical aberration on the telephoto side and tilt of the image plane in the negative direction. Further, if the zoom group positioned in front of the half prism HP is composed of three groups of positive, negative, and positive from the object side,
Since the height of the axial light flux can be lowered in the zoom group located in front of the half prism HP, it is possible to correct the aberration of the axial light flux which is difficult to correct by the telephoto lens. Further, since the error sensitivity is reduced, there is an advantage that the manufacturing becomes easy.

【0115】前述したように、ズームレンズの途中にハ
ーフプリズムHP等の反射手段を設けようとすると、そ
の前方に位置するズーム群と後方に位置するズーム群と
の独自性がそれぞれ強くなるため、ハーフプリズムHP
の前方・後方のそれぞれについて良好に収差補正が行わ
れなければならない。第11の実施の形態と同様、第1
2の実施の形態では、ハーフプリズムHPより前方にズ
ーム群を3群有する構成となっているため、ハーフプリ
ズムHPより前方での収差補正を充分に行うことができ
る。一方、ハーフプリズムHPより後方に正の第4群G
r4と負の第5群Gr5を有する構成となっているた
め、ハーフプリズムHPより後方での収差補正も充分に
行うことができる。
As described above, when it is attempted to provide a reflecting means such as a half prism HP in the middle of the zoom lens, the zoom group located in front of the zoom group and the zoom group located behind it become more unique. Half prism HP
Aberrations must be corrected well in front of and in the rear. Similar to the eleventh embodiment, the first
In the second embodiment, three zoom groups are provided in front of the half prism HP, so that aberrations can be sufficiently corrected in front of the half prism HP. On the other hand, the fourth group G, which is positive behind the half prism HP
Since it has a configuration including r4 and the negative fifth lens unit Gr5, it is possible to sufficiently correct aberrations behind the half prism HP.

【0116】さらに、ハーフプリズムHPより前方に位
置する第1群Gr1〜第3群Gr3で充分に変倍量を稼
ぐことができるので、ハーフプリズムHPでの光束分割
によりファインダー系に光束を導く場合には、変倍のた
めにファインダー系にかかる負担が小さくなる。その負
担が軽減された分、ズームレンズの高変倍比化を図りつ
つファインダー系の構成を簡単にすることができる。
Further, since the first group Gr1 to the third group Gr3 located in front of the half prism HP can obtain a sufficient amount of variable power, when the light beam is guided to the finder system by the light beam splitting in the half prism HP. In addition, the load on the finder system due to zooming is reduced. Since the burden is reduced, it is possible to simplify the structure of the finder system while achieving a high zoom ratio of the zoom lens.

【0117】第12の実施の形態に係るズームレンズで
は、第11の実施の形態と同様、第3群Gr3通過後の
光束を反射させることにより光束分割を行うハーフプリ
ズムHPが、第3群Gr3と第4群Gr4との間に設け
られている。従って、この構成によると、ズームレンズ
に入射した光束はハーフプリズムHPによって2つの光
学的に同等な光束に分割されるため、パララックスは発
生しない。また、ハーフプリズムHPはズームレンズの
途中に設けられているため、バックフォーカスの短縮が
可能であるとともに、ハーフプリズムHP自身の小型化
も可能である。
In the zoom lens according to the twelfth embodiment, as in the eleventh embodiment, the half prism HP for splitting the light flux by reflecting the light flux after passing through the third lens unit Gr3 is provided by the third lens unit Gr3. And the fourth group Gr4. Therefore, according to this configuration, the light flux incident on the zoom lens is split into two optically equivalent light fluxes by the half prism HP, so that parallax does not occur. Since the half prism HP is provided in the middle of the zoom lens, the back focus can be shortened and the half prism HP itself can be downsized.

【0118】さらに、第12の実施の形態のように、正
・負・正・負の4成分ズーム構成において、第2成分が
負の第2群Gr2と正の第3群Gr3とに分割されてフ
ローティング的なズーム移動を行う、実質的な正・負
(負・正)・正・負の4成分ズーム構成では、第11の実
施の形態と同様、第3群Gr3と第4群Gr4との間で
軸上・軸外光束が共に最も低い位置(即ち、光軸AX付
近)を通ることになるため、第3群Gr3と第4群Gr
4との間に設けられているハーフプリズムHPを径方向
(即ち、光軸AXに対して垂直方向)に更に小さくするこ
とができる。ハーフプリズムHPは、径方向に小さくな
れば光軸AX方向にも小さくなるため、このハーフプリ
ズムHPの小型化によって第3群Gr3と第4群Gr4
との間の実際の面間隔(即ち、第3群Gr3の最も像側
のレンズ面と第4群Gr4の最も物体側のレンズ面との
間隔)を小さくすることできる。従って、ズームレンズ
全長のコンパクト化を図ることが可能である。
Further, as in the twelfth embodiment, in the positive / negative / positive / negative four-component zoom configuration, the second component is divided into the negative second group Gr2 and the positive third group Gr3. Performs a floating zoom movement, which is substantially positive / negative
In the (negative / positive) / positive / negative four-component zoom configuration, as in the eleventh embodiment, the positions where the axial and off-axis light fluxes are both the lowest between the third group Gr3 and the fourth group Gr4 ( That is, since it passes through the optical axis AX), the third group Gr3 and the fourth group Gr3
4 and the half prism HP provided between
It can be further reduced (that is, in the direction perpendicular to the optical axis AX). Since the half prism HP becomes smaller in the optical axis AX direction as it becomes smaller in the radial direction, the size reduction of the half prism HP results in the third group Gr3 and the fourth group Gr4.
It is possible to reduce the actual surface distance between (i.e., the distance between the most image side lens surface of the third group Gr3 and the most object side lens surface of the fourth group Gr4). Therefore, it is possible to reduce the overall length of the zoom lens.

【0119】また、第1〜第11の実施の形態と同様、
第12の実施の形態では、ハーフプリズムHPがズーム
群間で光束を反射させることにより光束分割を行うた
め、1つのズーム群の途中で光束を反射させる構成より
も、鏡胴構成が簡単で、しかも、そのズーム群の光学性
能を維持するのが製造上容易である。また、第12の実
施の形態では、第1群Gr1が正のパワーを有している
ため、この第1群Gr1で軸上光束の高さを抑えること
により、効果的に収差の発生を抑えることができる。
Further, similar to the first to eleventh embodiments,
In the twelfth embodiment, since the half prism HP splits the light flux by reflecting the light flux between the zoom groups, the lens barrel configuration is simpler than the configuration in which the light flux is reflected in the middle of one zoom group. Moreover, maintaining the optical performance of the zoom group is easy in manufacturing. In addition, in the twelfth embodiment, since the first group Gr1 has a positive power, by suppressing the height of the axial light flux in this first group Gr1, the occurrence of aberration is effectively suppressed. be able to.

【0120】第12の実施の形態に係るズームレンズで
は、第11の実施の形態と同様、ハーフプリズムHPが
ズーミングにおいて第4群Gr4と一体に移動するた
め、ズームレンズのコンパクト化が可能である。前述し
たように、実質的な正・負(負・正)・正・負の4成分ズ
ーム構成では、第4群Gr4付近で光束が最も細くなる
(つまり、集光する)。このため、ハーフプリズムHPの
径の大きさ(即ち、光軸AXに対して垂直方向の大きさ)
は最も小さくて済み、その結果、光軸AX方向にもハー
フプリズムHPを小さくすることが可能になる。このハ
ーフプリズムHPの小型化によってスペース効率が良く
なるため、第3群Gr3と第4群Gr4との間の実際の
面間隔を小さくして、ズームレンズ全長のコンパクト化
を図ることができるのである。
In the zoom lens according to the twelfth embodiment, as in the eleventh embodiment, the half prism HP moves integrally with the fourth lens unit Gr4 during zooming, so that the zoom lens can be made compact. . As described above, in the substantially positive / negative (negative / positive) / positive / negative four-component zoom configuration, the luminous flux becomes the thinnest in the vicinity of the fourth group Gr4.
(That is, it collects light.) Therefore, the size of the diameter of the half prism HP (that is, the size in the direction perpendicular to the optical axis AX).
Is the smallest, and as a result, it is possible to make the half prism HP small also in the optical axis AX direction. Since the space efficiency is improved due to the miniaturization of the half prism HP, it is possible to reduce the actual surface distance between the third group Gr3 and the fourth group Gr4 and to make the overall zoom lens compact. .

【0121】第12の実施の形態では、ハーフプリズム
HPより後方に絞り兼用のレンズシャッターS1が設け
られているため、光束径はハーフプリズムHPの前側に
隣り合って位置する第3群Gr3に近いほど大きくな
る。一方、第12の実施の形態では、ズーミングにおい
て、ハーフプリズムHPがその後ろ側に隣り合って位置
するズーム群(即ち、第4群Gr4)と一体に移動するた
め、第4群Gr4とハーフプリズムHPとの間隔は変化
せず、第3群Gr3とハーフプリズムHPとの間隔は変
化する。従って、ハーフプリズムHPがカバーすべき光
束径は小さくて済むため、ハーフプリズムHPの小型化
が可能である。ハーフプリズムHPの小型化により、ズ
ーミングのための駆動機構にかかる重量等の負担が少な
くて済むため、この構成は鏡胴構成上有利である。
In the twelfth embodiment, since the lens shutter S1 that also serves as the diaphragm is provided behind the half prism HP, the luminous flux diameter is close to that of the third group Gr3 located adjacent to the front side of the half prism HP. The bigger it gets. On the other hand, in the twelfth embodiment, during zooming, the half prism HP moves integrally with the zoom group (that is, the fourth group Gr4) positioned adjacent to the back side of the half prism HP, so that the fourth group Gr4 and the half prism are moved. The distance between HP and HP does not change, and the distance between the third lens unit Gr3 and the half prism HP changes. Therefore, the beam diameter to be covered by the half prism HP can be small, and the half prism HP can be downsized. This structure is advantageous in terms of the lens barrel structure because the size of the half prism HP can be reduced so that the weight of the driving mechanism for zooming can be reduced.

【0122】第12の実施の形態に係るズームレンズ
は、ハーフプリズムHPの前方に位置する第2群Gr2
と第3群Gr3との合成パワーが負であるため、ハーフ
プリズムHPに入射する軸外光束は軸上光束に対して小
さい角度を成すことになる(つまり、アフォーカルに近
づく。)。従って、ハーフプリズムHPがカバーすべき
光束径は小さくて済むため、ハーフプリズムHPの小型
化が可能である。ハーフプリズムHPの小型化により、
ズーミングのための駆動機構にかかる重量等の負担が少
なくて済むため、この構成は鏡胴構成上有利である。さ
らに、光軸AXに対してアフォーカルに近い軸外光束を
ハーフプリズムHPで反射させても反射後の軸外光束は
あまり広がらないため、ハーフプリズムHPの後方に位
置する光学系(即ち、ファインダー系と、撮影系のうち
反射手段の後方に位置する部分)の径も小さくて済む。
以上のように、ハーフプリズムHP及びその後方に位置
する光学系の小型化によって、ズームレンズ及びファイ
ンダー系の小型化が達成される。
The zoom lens according to the twelfth embodiment has a second group Gr2 located in front of the half prism HP.
Since the combined power of the third lens unit Gr3 and the third lens unit Gr3 is negative, the off-axis light beam entering the half prism HP forms a small angle with respect to the on-axis light beam (that is, approaches the afocal). Therefore, the beam diameter to be covered by the half prism HP can be small, and the half prism HP can be downsized. Due to the miniaturization of the half prism HP,
This configuration is advantageous in terms of the lens barrel structure, because the weight of the drive mechanism for zooming and the like can be lightened. Furthermore, even if an off-axis light beam that is near afocal with respect to the optical axis AX is reflected by the half prism HP, the off-axis light beam after reflection does not spread so much, so an optical system located behind the half prism HP (ie, a finder). The diameter of the system and the portion of the photographing system located behind the reflecting means) can be small.
As described above, the miniaturization of the zoom lens and the viewfinder system is achieved by miniaturization of the half prism HP and the optical system located behind it.

【0123】第12の実施の形態においても、前述の条
件式(1)を満たすことが、ズームレンズのコンパクト化
を達成する上で望ましく、また、前述の条件式(2)を満
たすことが、高い光学性能を保持しつつコンパクトで高
変倍比のズームレンズを実現する上で望ましい。
Also in the twelfth embodiment, it is desirable that the above conditional expression (1) is satisfied in order to achieve compactness of the zoom lens, and that the above conditional expression (2) is satisfied. It is desirable to realize a compact zoom lens with high zoom ratio while maintaining high optical performance.

【0124】ハーフプリズムHPのような反射手段を第
3群Gr3と第4群Gr4との間に設けるためには、第
11の実施の形態と同様、前述の条件式(3a)を満たすこ
とが望ましい。また、第3群Gr3及び第4群Gr4
は、第11の実施の形態と同様、ズーム移動量に関して
前述の条件式(4a)を満たすことが望ましく、さらには、
第2群Gr2及び第4群Gr4が、ズーム移動量に関し
て次の条件式(4b)を満たすことが望ましい。 0.5<M2/M4<0.95 …(4b)
In order to provide the reflecting means such as the half prism HP between the third group Gr3 and the fourth group Gr4, it is necessary to satisfy the above-mentioned conditional expression (3a) as in the eleventh embodiment. desirable. In addition, the third group Gr3 and the fourth group Gr4
Similarly to the eleventh embodiment, it is desirable that the above conditional expression (4a) is satisfied with respect to the zoom movement amount.
It is desirable that the second group Gr2 and the fourth group Gr4 satisfy the following conditional expression (4b) with respect to the zoom movement amount. 0.5 <M2 / M4 <0.95 (4b)

【0125】条件式(4a),(4b)の上限を超えると、第2
群Gr2〜第4群Gr4のズーミングにおける動きがほ
とんど同じになるため、3群ズームと同等の効果しか得
られなくなり、高変倍比を達成しようとすると移動量の
増加によって光学系が大型化してしまう。条件式(4a),
(4b)の下限を超えると、第2群Gr2,第3群Gr3と
第4群Gr4との移動量差が大きくなるため、広角端に
おいて第3群Gr3と第4群Gr4との間隔が広がって
しまう。従って、第4群Gr4に入射する軸上光束の高
さが高くなり、球面収差の補正が困難になるとともに、
広角端における全長の増大を招いてしまう。
When the upper limits of conditional expressions (4a) and (4b) are exceeded, the second
Since the movements in zooming of the group Gr2 to the fourth group Gr4 are almost the same, only the same effect as that of the third group zoom can be obtained, and when attempting to achieve a high zoom ratio, the optical system becomes large due to an increase in the amount of movement. I will end up. Conditional expression (4a),
When the value goes below the lower limit of (4b), the difference in the amount of movement between the second lens unit Gr2, the third lens unit Gr3, and the fourth lens unit Gr4 becomes large, so that the distance between the third lens unit Gr3 and the fourth lens unit Gr4 widens at the wide-angle end. Will end up. Therefore, the height of the axial light flux incident on the fourth lens unit Gr4 becomes high, and it becomes difficult to correct spherical aberration.
This causes an increase in the total length at the wide-angle end.

【0126】次に、各ズーム群ごとに構成上の特徴を説
明する。第1群Gr1については、前述した第1〜第1
0の実施の形態と同様であり、例えば、前述の条件式
(5),(6)を満たすのが望ましい。また、第4群Gr4及
び第5群Gr5については、前述した第11の実施の形
態と同様であり、例えば、前述の条件式(12a),(13a),
(14a),(15a),(16a),(17a)を満たすのが望ましい。
Next, the structural features of each zoom group will be described. Regarding the first group Gr1, the above-described first to first
0 is similar to that of the embodiment of FIG.
It is desirable to satisfy (5) and (6). The fourth group Gr4 and the fifth group Gr5 are the same as in the eleventh embodiment described above, and, for example, the conditional expressions (12a), (13a),
It is desirable to satisfy (14a), (15a), (16a) and (17a).

【0127】第2群Gr2及び第3群Gr3について望
ましい構成を説明する。第2群Gr2が最も物体側に負
レンズが配置され、第3群Gr3が最も像側に正レンズ
が配置された構成となっているのが望ましく、更には第
12の実施の形態のように、第2群Gr2が負レンズか
ら成り、第3群Gr3が正レンズから成るのが望まし
い。この構成によると、バックフォーカスを所定の長さ
にすることが容易になり、さらに、ズーム全域において
コマ収差と球面収差とをバランス良く補正することが容
易になる。
Desirable configurations of the second lens unit Gr2 and the third lens unit Gr3 will be described. It is desirable that the second lens unit Gr2 has a negative lens disposed closest to the object side and the third lens unit Gr3 has a positive lens disposed closest to the image side. Further, as in the twelfth embodiment. , 2nd group Gr2 consists of a negative lens, and it is desirable that the 3rd group Gr3 consists of a positive lens. With this configuration, it becomes easy to set the back focus to a predetermined length, and it becomes easy to correct coma and spherical aberration in a good balance in the entire zoom range.

【0128】第2群Gr2中の最も物体側に配置される
負レンズは、前述の条件式(7)を満たすことが望まし
い。第12の実施の形態における第3群Gr3は、第1
〜第10の実施の形態における第2群Gr2中の物体側
の負レンズに相当するため、条件式(7)を満たす意義も
第1〜第10の実施の形態の場合と同様である。
It is desirable that the negative lens arranged closest to the object in the second lens unit Gr2 satisfy the above-mentioned conditional expression (7). In the twelfth embodiment, the third group Gr3 has a first
Since it corresponds to the negative lens on the object side in the second lens unit Gr2 in the tenth embodiment, the significance of satisfying conditional expression (7) is the same as in the first to tenth embodiments.

【0129】コンパクトで高い光学性能を有するズーム
レンズを実現するためには、第2群Gr2及び第3群G
r3が次の条件式(8b),(9b)を満たすことが望ましい。 0.05<D2,3/fW<0.40 …(8b) 0.01<D2,3/fT<0.08 …(9b) 但し、 D2,3:第2群及び第3群の光軸方向の厚さ(第2群の最
も物体側のレンズ面と第3群の最も像側のレンズ面との
軸上面間隔) である。
In order to realize a compact and high-performance zoom lens, the second group Gr2 and the third group G
It is desirable that r3 satisfy the following conditional expressions (8b) and (9b). 0.05 <D2,3 / fW <0.40… (8b) 0.01 <D2,3 / fT <0.08… (9b) where D2,3: Thickness of the second and third groups in the optical axis direction (second group) Is the axial upper surface distance between the lens surface closest to the object and the lens surface closest to the image in the third lens group).

【0130】条件式(8b),(9b)の上限を超えると、全長
が増大するとともに、第1群Gr1が入射瞳から遠くな
るため前玉径(第1群Gr1の径)が増大してしまう。条
件式(8b),(9b)の下限を超えると、充分な収差補正、特
に色収差補正を行うことが困難になり、たとえ補正がで
きたとしても、加工がほとんど不可能な光学系になって
しまう。
When the upper limits of conditional expressions (8b) and (9b) are exceeded, the overall length increases and the front lens diameter (the diameter of the first group Gr1) increases because the first group Gr1 becomes far from the entrance pupil. I will end up. If the lower limits of conditional expressions (8b) and (9b) are exceeded, it will be difficult to perform sufficient aberration correction, especially chromatic aberration correction. Even if correction is possible, the optical system will be almost impossible to process. I will end up.

【0131】第12の実施の形態のように第2群Gr2
中に非球面を用いたり、第3群Gr3中に非球面を用い
れば、更に良好な光学性能が得られる。非球面は、0<y
<Ymaxの任意の光軸垂直方向高さyに対して、次の条件
式(10b)を満たすことが望ましい。 -0.1<φ2,3・(N'-N)・d{X(y)-X0(y)}/dy<0.01 …(10b) 但し、 φ2,3:第2群と第3群との合成パワー である。
As in the twelfth embodiment, the second lens unit Gr2
If an aspherical surface is used inside or an aspherical surface is used in the third lens unit Gr3, even better optical performance can be obtained. Aspherical surface is 0 <y
It is desirable that the following conditional expression (10b) be satisfied for any height y of Ymax in the direction perpendicular to the optical axis. -0.1 <φ2,3 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.01… (10b) However, φ2,3: Composition of the second and third groups Power.

【0132】条件式(10b)の上限を超えると、ズーム全
域で球面収差がアンダー側へ倒れる傾向が著しくなると
ともに、望遠側において軸外光束のフレアーが著しく発
生し、広角側においては外方性のコマ収差が発生する。
条件式(10b)の下限を超えると、ズーム全域で球面収差
がオーバー側へ倒れる傾向が著しくなるとともに、望遠
側において軸外光束のフレアーの補正過剰の傾向が著し
くなり、広角側においては内方性のコマ収差が発生す
る。
If the upper limit of conditional expression (10b) is exceeded, the spherical aberration tends to fall toward the under side over the entire zoom range, flare of off-axis light rays significantly occurs at the telephoto side, and outwardness at the wide angle side occurs. Coma occurs.
If the lower limit of conditional expression (10b) is exceeded, the spherical aberration will tend to fall toward the over side over the entire zoom range, and the flare of the off-axis light beam will become overcorrected at the telephoto side, and inward at the wide-angle side. Comatic aberration occurs.

【0133】第2群Gr2中、非球面を最も物体側のレ
ンズ(望ましくはその物体側面)に望ましく、第3群Gr
3中、非球面を最も像側のレンズ(望ましくはその像側
面)に設けるのが望ましい。前者の構成によると、広角
側でのコマ収差の補正が容易になる。一方、後者の構成
によると、球面収差の補正が容易になる。
In the second lens unit Gr2, an aspherical surface is preferably used as the lens closest to the object side (preferably the object side surface thereof), and the third lens unit Gr2.
It is desirable to provide an aspherical surface on the lens closest to the image side (preferably the image side surface). According to the former configuration, it becomes easy to correct coma on the wide angle side. On the other hand, the latter configuration facilitates correction of spherical aberration.

【0134】上記非球面が設けられたレンズを両面非球
面レンズにするか、又は最も物体側面と最も像側面に非
球面を設けると、球面収差,望遠側での軸外光束のフレ
アー,広角側でのコマ収差を更にバランス良く補正する
ことができる。つまり、一方の非球面での球面収差・フ
レアー・コマ収差の補正過不足分を、もう一方の非球面
で補正することが可能となる。この際、いずれの非球面
も前述の条件式(10b)を満たすことが望ましい。
If the lens provided with the aspherical surface is a double-sided aspherical lens, or if an aspherical surface is provided on the most object side surface and the most image side surface, spherical aberration, flare of off-axis light beam on the telephoto side, and wide angle side. It is possible to correct coma aberration in a more balanced manner. In other words, it becomes possible to correct the spherical aberration, flare, and coma aberrations on one aspherical surface by the other aspherical surface. At this time, it is desirable that all the aspherical surfaces satisfy the conditional expression (10b) described above.

【0135】第2群Gr2及び第3群Gr3は、次の条
件式(11b)を満たすことが望ましい。 0.1<|f2,3|/fT<0.5 …(11b) 但し、 f2,3:第2群と第3群との合成焦点距離 である。
It is desirable that the second lens unit Gr2 and the third lens unit Gr3 satisfy the following conditional expression (11b). 0.1 <| f2,3 | / fT <0.5 (11b) where f2,3 is the combined focal length of the second and third groups.

【0136】条件式(11b)の上限を超えると、第2群G
r2と第3群Gr3との合成パワーが弱くなりすぎるた
め、広角端における全長が増大するとともに、ズーミン
グ時における第2群Gr2及び第3群Gr3の移動量が
増大して、望遠端における全長の増大を招いてしまう。
条件式(11b)の下限を超えると、第2群Gr2と第3群
Gr3との合成パワーが強くなりすぎるため、広角側に
おいて内方性のコマが発生するとともに、望遠側におい
て球面収差がオーバー側に倒れる傾向が著しくなる。
When the upper limit of conditional expression (11b) is exceeded, the second lens group G
Since the combined power of r2 and the third lens unit Gr3 becomes too weak, the total length at the wide-angle end increases, and the movement amounts of the second lens unit Gr2 and the third lens unit Gr3 during zooming increase, so that the total length at the telephoto end increases. It causes an increase.
If the lower limit of conditional expression (11b) is exceeded, the combined power of the second lens unit Gr2 and the third lens unit Gr3 becomes too strong, which causes an internal coma on the wide-angle side and an excessive spherical aberration on the telephoto side. The tendency to fall to the side becomes remarkable.

【0137】《正・負・正・負の4成分構成において、
第3成分がフローティング的なズーム移動を行う6群ズ
ームレンズ(第13の実施の形態)》第13の実施の形態
は、物体側より順に、正の第1群Gr1,負の第2群G
r2,ノンパワーの第3群Gr3,負の第4群Gr4,
正の第5群Gr5及び負の第6群Gr6から成る6群構
成のズームレンズであり、第1群Gr1が第1成分、第
2群Gr2が第2成分、第3群Gr3〜第5群Gr5が
第3成分、第6群Gr6が第4成分をそれぞれ構成して
いる。そして、第2群Gr2と第3群Gr3との間に
は、第2群Gr2通過後の光束を反射させることにより
光束分割を行うハーフプリズムHPが設けられている。
また、第1群Gr1〜第6群Gr6は、図29のレンズ
構成図中の対応する矢印m1〜m6で示すように、広角
端[W]から望遠端[T]にかけてのズーミングにおいてそ
れぞれ前方へ移動し、第1群Gr1と第2群Gr2との
間隔が広がり、第2群Gr2と第3群Gr3との間隔が
狭まり、第3群Gr3と第4群Gr4との間隔が狭ま
り、第4群Gr4と第5群Gr5との間隔が広がり、第
5群Gr5と第6群Gr6との間隔が狭まる。
<< In a positive / negative / positive / negative four-component configuration,
Sixth Group Zoom Lens Having Third Component Performing Floating Zoom Movement (Thirteenth Embodiment) >> In the thirteenth embodiment, a positive first group Gr1 and a negative second group G are arranged in order from the object side.
r2, the non-power third group Gr3, the negative fourth group Gr4,
A zoom lens having a six-group configuration including a positive fifth group Gr5 and a negative sixth group Gr6, wherein the first group Gr1 is the first component, the second group Gr2 is the second component, and the third group Gr3 to the fifth group. Gr5 constitutes the third component, and the sixth group Gr6 constitutes the fourth component. A half prism HP is provided between the second group Gr2 and the third group Gr3 to split the beam by reflecting the beam after passing through the second group Gr2.
Further, the first group Gr1 to the sixth group Gr6 are respectively moved forward in zooming from the wide-angle end [W] to the telephoto end [T], as indicated by corresponding arrows m1 to m6 in the lens configuration diagram of FIG. Moving, the interval between the first group Gr1 and the second group Gr2 widens, the interval between the second group Gr2 and the third group Gr3 narrows, the interval between the third group Gr3 and the fourth group Gr4 narrows, and the fourth group The distance between the group Gr4 and the fifth group Gr5 increases, and the distance between the fifth group Gr5 and the sixth group Gr6 decreases.

【0138】第13の実施の形態において、各群は以下
のように構成されている。第1群Gr1は、物体側より
順に、像側に凹の負メニスカスレンズ及び物体側に凸の
正メニスカスレンズから成っており、その負メニスカス
レンズの像側の面は非球面である。第2群Gr2は、物
体側より順に、両凹の負レンズ及び物体側に凸の正メニ
スカスレンズから成っており、その負レンズの物体側の
面と正メニスカスレンズの像側の面とは非球面である。
第3群Gr3は、絞り兼用のレンズシャッターS1から
成っている。第4群Gr4は、像側に凹の負メニスカス
レンズから成っている。第5群Gr5は、両凸の正レン
ズ及び光束規制板S2から成っており、その正レンズの
像側の面は非球面である。第6群Gr6は、物体側より
順に、像側に凸の正メニスカスレンズ及び両凹の負レン
ズから成っており、その正メニスカスレンズの両面は非
球面である。なお、絞り兼用のレンズシャッターS1と
光束規制板S2とは、設計上、互換性がある。
In the thirteenth embodiment, each group is constructed as follows. The first group Gr1 is composed of, in order from the object side, a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, and the image side surface of the negative meniscus lens is an aspherical surface. The second group Gr2 is composed of, in order from the object side, a biconcave negative lens and a positive meniscus lens convex to the object side, and the object side surface of the negative lens and the image side surface of the positive meniscus lens are not It is a sphere.
The third lens unit Gr3 is composed of a lens shutter S1 that also serves as a diaphragm. The fourth lens unit Gr4 is composed of a negative meniscus lens element concave on the image side. The fifth lens unit Gr5 includes a biconvex positive lens and a light flux regulating plate S2, and the image-side surface of the positive lens is an aspherical surface. The sixth group Gr6 is composed of, in order from the object side, a positive meniscus lens convex to the image side and a biconcave negative lens, and both surfaces of the positive meniscus lens are aspherical. The lens shutter S1 that also serves as the diaphragm and the light flux regulating plate S2 are compatible in design.

【0139】第13の実施の形態は、図29に示すよう
にズーミングにおいて第4群Gr4と第5群Gr5との
間隔d13が微小に変化する6群ズームレンズである。つ
まり、正・負・正・負の4成分ズーム構成において、第
3成分がノンパワーの第3群Gr3と負の第4群Gr4
と正の第5群Gr5とに分割されてフローティング的な
ズーム移動を行う構成となっている。このように、ズー
ミングにおいて第4群Gr4と第5群Gr5との間隔を
微小に変化させることにより、望遠側での球面収差及び
像面の負方向への倒れを補正することができるととも
に、望遠側でのupper-rayによるフレアを補正すること
ができる。また、このようにハーフプリズムHPより後
方に位置するズーム群を物体側から負・正・負で構成す
ると、レンズバックを確保することができるとともに、
第6群Gr6の径を小さくすることができる。
The thirteenth embodiment is a 6-group zoom lens in which the distance d13 between the fourth group Gr4 and the fifth group Gr5 changes slightly during zooming, as shown in FIG. That is, in the positive / negative / positive / negative four-component zoom configuration, the third component Gr3 and the negative fourth lens unit Gr4 each of which has a non-power third component
Is divided into a positive fifth lens unit Gr5 and floating zoom movement is performed. As described above, by slightly changing the distance between the fourth lens unit Gr4 and the fifth lens unit Gr5 during zooming, spherical aberration on the telephoto side and tilt of the image plane in the negative direction can be corrected, and at the same time, the telephoto lens can be corrected. It is possible to correct flare due to upper-ray on the side. In addition, when the zoom group positioned behind the half prism HP is composed of negative, positive, and negative from the object side, the lens back can be secured, and
The diameter of the sixth lens unit Gr6 can be reduced.

【0140】第13の実施の形態に係るズームレンズ
は、ハーフプリズムHPより後方にズーム群を3群有す
る構成となっているため、ハーフプリズムHPより前方
に位置するズーム群にかかる収差補正上の負担は小さ
い。一般に、ファインダー系は撮影系に比べて配置の制
約が大きいが、上記のようにハーフプリズムHPより前
方に位置するズーム群にかかる収差補正上の負担が小さ
くなると、ハーフプリズムHPでの光束分割によりファ
インダー系に光束を導く場合には、ハーフプリズムHP
より前方に位置するズーム群をファインダーに適した構
成にするのが容易になる。このため、ファインダー系の
配置の制約を小さくすることが可能になる。
Since the zoom lens according to the thirteenth embodiment has three zoom groups behind the half prism HP, the zoom lens located in front of the half prism HP can be corrected in terms of aberration. The burden is small. In general, the finder system has a larger arrangement restriction than the photographing system, but when the burden on the zoom group located in front of the half prism HP on the aberration correction becomes small as described above, the light flux is split by the half prism HP. When guiding the light flux to the finder system, the half prism HP
It becomes easy to make the zoom group located in the front more suitable for the finder. Therefore, it is possible to reduce restrictions on the layout of the finder system.

【0141】第13の実施の形態に係るズームレンズで
は、第1〜第10の実施の形態と同様、第2群Gr2通
過後の光束を反射させることにより光束分割を行うハー
フプリズムHPが、第2群Gr2と第3群Gr3との間
に設けられている。従って、この構成によると、ズーム
レンズに入射した光束はハーフプリズムHPによって2
つの光学的に同等な光束に分割されるため、パララック
スは発生しない。また、ハーフプリズムHPはズームレ
ンズの途中に設けられているため、バックフォーカスの
短縮が可能であるとともに、ハーフプリズムHP自身の
小型化も可能である。
In the zoom lens according to the thirteenth embodiment, as in the first to tenth embodiments, the half prism HP for splitting the light flux by reflecting the light flux after passing through the second lens unit Gr2 has the first prism. It is provided between the second group Gr2 and the third group Gr3. Therefore, according to this configuration, the light flux incident on the zoom lens is converted into two rays by the half prism HP.
Parallax does not occur because it is split into two optically equivalent beams. Since the half prism HP is provided in the middle of the zoom lens, the back focus can be shortened and the half prism HP itself can be downsized.

【0142】さらに、第13の実施の形態のように、正
・負・正・負の4成分ズーム構成において、第3成分が
絞り兼用のレンズシャッターS1と負の第4群Gr4と
正の第5群Gr5とに分割されてフローティング的なズ
ーム移動を行う、実質的な正・負・正(負・正)・負の4
成分ズーム構成では、第1〜第10の実施の形態と同
様、第2群Gr2と第3群Gr3との間で軸上・軸外光
束が共に最も低い位置(即ち、光軸AX付近)を通ること
になるため、第2群Gr2と第3群Gr3との間に設け
られているハーフプリズムHPを径方向(即ち、光軸A
Xに対して垂直方向)に更に小さくすることができる。
ハーフプリズムHPは、径方向に小さくなれば光軸AX
方向にも小さくなるため、このハーフプリズムHPの小
型化によって第2群Gr2と第4群Gr4との間の実際
の面間隔(即ち、第2群Gr2の最も像側のレンズ面と
第4群Gr4の最も物体側のレンズ面との間隔)を小さ
くすることできる。従って、ズームレンズ全長のコンパ
クト化を図ることが可能である。
Furthermore, as in the thirteenth embodiment, in the positive / negative / positive / negative four-component zoom configuration, the third component is the lens shutter S1 also serving as the aperture, the negative fourth lens unit Gr4, and the positive fourth component Gr4. Substantially positive, negative, positive (negative, positive), negative 4 divided into 5 groups Gr5 for floating zoom movement.
In the component zoom configuration, as in the first to tenth embodiments, a position where the on-axis and off-axis light fluxes are both lowest between the second group Gr2 and the third group Gr3 (that is, near the optical axis AX) is set. Since it passes through, the half prism HP provided between the second group Gr2 and the third group Gr3 is moved in the radial direction (that is, the optical axis A
It can be further reduced in the direction perpendicular to X).
The half prism HP has an optical axis AX if it becomes smaller in the radial direction.
Since the half prism HP is also downsized, the actual surface spacing between the second lens unit Gr2 and the fourth lens unit Gr4 (that is, the lens surface closest to the image side of the second lens unit Gr2 and the fourth lens unit Gr4) is reduced. The distance from the lens surface of Gr4 closest to the object can be reduced. Therefore, it is possible to reduce the overall length of the zoom lens.

【0143】また、第1〜第12の実施の形態と同様、
第13の実施の形態では、ハーフプリズムHPがズーム
群間で光束を反射させることにより光束分割を行うた
め、1つのズーム群の途中で光束を反射させる構成より
も、鏡胴構成が簡単で、しかも、そのズーム群の光学性
能を維持するのが製造上容易である。また、第13の実
施の形態では、第1群Gr1が正のパワーを有している
ため、この第1群Gr1で軸上光束の高さを抑えること
により、効果的に収差の発生を抑えることができる。
Further, similar to the first to twelfth embodiments,
In the thirteenth embodiment, since the half prism HP splits the light flux by reflecting the light flux between the zoom groups, the lens barrel configuration is simpler than the configuration in which the light flux is reflected in the middle of one zoom group. Moreover, maintaining the optical performance of the zoom group is easy in manufacturing. In addition, in the thirteenth embodiment, since the first group Gr1 has a positive power, by suppressing the height of the axial light flux in this first group Gr1, the occurrence of aberration is effectively suppressed. be able to.

【0144】第13の実施の形態に係るズームレンズで
は、第1〜第10の実施の形態と同様、ハーフプリズム
HPがズーミングにおいて第3群Gr3と一体に移動す
るため、ズームレンズのコンパクト化が可能である。前
述したように、実質的な正・負・正(負・正)・負の4成
分ズーム構成では、第3群Gr3付近で光束が最も細く
なる(つまり、集光する)。このため、ハーフプリズムH
Pの径の大きさ(即ち、光軸AXに対して垂直方向の大
きさ)は最も小さくて済み、その結果、光軸AX方向に
もハーフプリズムHPを小さくすることが可能になる。
このハーフプリズムHPの小型化によってスペース効率
が良くなるため、第2群Gr2と第4群Gr4との間の
実際の面間隔を小さくして、ズームレンズ全長のコンパ
クト化を図ることができるのである。
In the zoom lens according to the thirteenth embodiment, as in the first to tenth embodiments, the half prism HP moves integrally with the third lens unit Gr3 during zooming, so that the zoom lens can be made compact. It is possible. As described above, in the substantially positive / negative / positive (negative / positive) / negative four-component zoom configuration, the luminous flux becomes the thinnest (that is, converges) near the third group Gr3. Therefore, the half prism H
The size of the diameter of P (that is, the size in the direction perpendicular to the optical axis AX) is the smallest, and as a result, it is possible to make the half prism HP small also in the optical axis AX direction.
Since the space efficiency is improved by downsizing the half prism HP, it is possible to reduce the actual surface distance between the second lens unit Gr2 and the fourth lens unit Gr4 and to reduce the overall length of the zoom lens. .

【0145】第13の実施の形態では、絞り兼用のレン
ズシャッターS1から成る第3群Gr3がハーフプリズ
ムHPの後側に隣り合って設けられているため、光束径
はハーフプリズムHPの前側に隣り合って位置する第2
群Gr2に近いほど大きくなる。一方、第13の実施の
形態では、ズーミングにおいて、ハーフプリズムHPが
その後ろ側に隣り合って位置する第3群Gr3と一体に
移動するため、第3群Gr3とハーフプリズムHPとの
間隔は変化せず、第2群Gr2とハーフプリズムHPと
の間隔は変化する。従って、ハーフプリズムHPがカバ
ーすべき光束径は小さくて済むため、ハーフプリズムH
Pの小型化が可能である。ハーフプリズムHPの小型化
により、ズーミングのための駆動機構にかかる重量等の
負担が少なくて済むため、この構成は鏡胴構成上有利で
ある。
In the thirteenth embodiment, since the third lens unit Gr3 including the lens shutter S1 that also serves as the diaphragm is provided adjacent to the rear side of the half prism HP, the luminous flux diameter is adjacent to the front side of the half prism HP. Second located together
The closer to the group Gr2, the larger. On the other hand, in the thirteenth embodiment, during zooming, the half prism HP moves integrally with the third group Gr3 positioned adjacent to the rear side of the half prism HP, so the distance between the third group Gr3 and the half prism HP changes. Instead, the distance between the second group Gr2 and the half prism HP changes. Therefore, since the light beam diameter that the half prism HP should cover is small, the half prism H
The size of P can be reduced. This structure is advantageous in terms of the lens barrel structure because the size of the half prism HP can be reduced so that the weight of the driving mechanism for zooming can be reduced.

【0146】第13の実施の形態に係るズームレンズ
は、ハーフプリズムHPの直前に隣り合って位置するズ
ーム群(即ち、第2群Gr2)が負のパワーを有している
ため、ハーフプリズムHPに入射する軸外光束は軸上光
束に対して小さい角度を成すことになる(つまり、アフ
ォーカルに近づく。)。従って、ハーフプリズムHPが
カバーすべき光束径は小さくて済むため、ハーフプリズ
ムHPの小型化が可能である。ハーフプリズムHPの小
型化により、ズーミングのための駆動機構にかかる重量
等の負担が少なくて済むため、この構成は鏡胴構成上有
利である。さらに、光軸AXに対してアフォーカルに近
い軸外光束をハーフプリズムHPで反射させても反射後
の軸外光束はあまり広がらないため、ハーフプリズムH
Pの後方に位置する光学系(即ち、ファインダー系と、
撮影系のうち反射手段の後方に位置する部分)の径も小
さくて済む。以上のように、ハーフプリズムHP及びそ
の後方に位置する光学系の小型化によって、ズームレン
ズ及びファインダー系の小型化が達成される。
In the zoom lens according to the thirteenth embodiment, since the zoom group (that is, the second group Gr2) located immediately adjacent to the half prism HP has a negative power, the half prism HP The off-axis light beam incident on forms a small angle with the on-axis light beam (that is, approaches an afocal). Therefore, the beam diameter to be covered by the half prism HP can be small, and the half prism HP can be downsized. This structure is advantageous in terms of the lens barrel structure because the size of the half prism HP can be reduced so that the weight of the driving mechanism for zooming can be reduced. Furthermore, even if an off-axis light beam that is afocal with respect to the optical axis AX is reflected by the half prism HP, the off-axis light beam after reflection does not spread so much.
An optical system located behind P (that is, a finder system,
The diameter of the portion of the imaging system located behind the reflecting means) can be small. As described above, the miniaturization of the zoom lens and the viewfinder system is achieved by miniaturization of the half prism HP and the optical system located behind it.

【0147】第13の実施の形態においても、前述の条
件式(1)を満たすことが、ズームレンズのコンパクト化
を達成する上で望ましく、また、前述の条件式(2)を満
たすことが、高い光学性能を保持しつつコンパクトで高
変倍比のズームレンズを実現する上で望ましい。
Also in the thirteenth embodiment, it is desirable that the conditional expression (1) described above is satisfied in order to achieve compactness of the zoom lens, and that the conditional expression (2) described above is satisfied. It is desirable to realize a compact zoom lens with high zoom ratio while maintaining high optical performance.

【0148】ハーフプリズムHP等の反射手段を第2群
Gr2と第4群Gr4との間に設けるためには、ハーフ
プリズムHP等の反射手段が入った状態で、次の条件式
(3b)を満たすことが望ましい。 0.25<T(2-4)/fW …(3b) 但し、 T(2-4):広角端での第2群の最も像側のレンズ面と第4
群の最も物体側のレンズ面との間隔 である。
In order to provide the reflecting means such as the half prism HP between the second group Gr2 and the fourth group Gr4, with the reflecting means such as the half prism HP included, the following conditional expression is satisfied.
It is desirable to satisfy (3b). 0.25 <T (2-4) / fW (3b) However, T (2-4): The lens surface closest to the image side of the second lens unit at the wide-angle end and the fourth lens surface.
It is the distance from the lens surface closest to the object in the group.

【0149】条件式(3b)の下限を超えると、第2群Gr
2と第4群Gr4との間隔T(2-4)が小さくなり過ぎるの
で、反射手段を第2群Gr2と第4群Gr4との間に配
置することが、鏡胴構成上困難となる。
If the lower limit of conditional expression (3b) is exceeded, the second lens unit Gr
Since the distance T (2-4) between the second lens unit 4 and the fourth lens unit Gr4 becomes too small, it is difficult to arrange the reflecting means between the second lens unit Gr2 and the fourth lens unit Gr4 due to the lens barrel structure.

【0150】また、第2群Gr2及び第4群Gr4は、
第12の実施の形態と同様、ズーム移動量に関して前述
の条件式(4b)を満たすことが望ましい。さらに、第2群
Gr2及び第5群Gr5が、ズーム移動量に関して次の
条件式(4c)を満たすことが望ましい。 0.5<M2/M5<0.95 …(4c) 但し、 M5:広角端から望遠端へのズーミングにおける第5群の
移動量 である。
The second group Gr2 and the fourth group Gr4 are
Similar to the twelfth embodiment, it is desirable that the conditional expression (4b) be satisfied with respect to the zoom movement amount. Further, it is desirable that the second group Gr2 and the fifth group Gr5 satisfy the following conditional expression (4c) with respect to the zoom movement amount. 0.5 <M2 / M5 <0.95 (4c) where M5 is the amount of movement of the fifth lens unit during zooming from the wide-angle end to the telephoto end.

【0151】条件式(4b),(4c)の上限を超えると、第2
群Gr2〜第4群Gr4,第5群Gr5のズーミングに
おける動きがほとんど同じになるため、3群ズームと同
等の効果しか得られなくなり、高変倍比を達成しようと
すると移動量の増加によって光学系が大型化してしま
う。条件式(4b),(4c)の下限を超えると、第2群Gr2
と第4群Gr4,第5群Gr5との移動量差が大きくな
るため、広角端において第2群Gr2と第4群Gr4,
第5群Gr5との間隔が広がってしまう。従って、第4
群Gr4に入射する軸上光束の高さが高くなり、球面収
差の補正が困難になるとともに、広角端における全長の
増大を招いてしまう。
When the upper limits of conditional expressions (4b) and (4c) are exceeded, the second
Since the movements in zooming of the groups Gr2 to Gr4 and Gr5 are almost the same, only the same effect as that of the third group zoom can be obtained. The system becomes large. If the lower limits of conditional expressions (4b) and (4c) are exceeded, the second lens unit Gr2
And the fourth group Gr4 and the fifth group Gr5 have a large movement amount difference, the second group Gr2 and the fourth group Gr4 at the wide-angle end.
The distance from the fifth lens unit Gr5 is increased. Therefore, the fourth
The height of the axial luminous flux incident on the group Gr4 becomes high, which makes it difficult to correct spherical aberration and causes an increase in the total length at the wide-angle end.

【0152】次に、各ズーム群ごとに構成上の特徴を説
明する。第1群Gr1及び第2群Gr2については、前
述した第1〜第10の実施の形態と同様であり、例え
ば、前述の条件式(5),(6),(7),(8),(9),(10),(1
1)を満たすのが望ましい。
Next, the structural features of each zoom group will be described. The first group Gr1 and the second group Gr2 are the same as those in the first to tenth embodiments described above, and, for example, the conditional expressions (5), (6), (7), (8), (9), (10), (1
It is desirable to satisfy 1).

【0153】第4群Gr4及び第5群Gr5について望
ましい構成を説明する。コンパクトで高い光学性能を有
するズームレンズを実現するために、第4群Gr4及び
第5群Gr5が次の条件式(12b),(13b)を満たすことが
望ましい。 0.05<D4,5/fW<0.40 …(12b) 0.01<D4,5/fT<0.08 …(13b) 但し、 D4,5:第4群及び第5群の光軸方向の厚さ(第4群の最
も物体側のレンズ面と第5群の最も像側のレンズ面との
軸上面間隔) である。
Desirable configurations of the fourth lens unit Gr4 and the fifth lens unit Gr5 will be described. In order to realize a compact and zoom lens having high optical performance, it is desirable that the fourth group Gr4 and the fifth group Gr5 satisfy the following conditional expressions (12b) and (13b). 0.05 <D4,5 / fW <0.40 (12b) 0.01 <D4,5 / fT <0.08 (13b) However, D4,5: Thickness of the fourth and fifth groups in the optical axis direction (fourth group) Is the axial upper surface distance between the lens surface closest to the object and the lens surface closest to the image side in the fifth lens unit).

【0154】条件式(12b),(13b)の上限を超える
と、全長が増大するとともに、バックフォーカスが短く
なるため後玉径(第6群Gr6の径)が増大してしまう。
条件式(12b),(13b)の下限を超えると、充分な収差補
正、特に色収差補正を行うことが困難になり、たとえ補
正ができたとしても、加工がほとんど不可能な光学系に
なってしまう。
When the upper limits of conditional expressions (12b) and (13b) are exceeded, the total length increases and the back focus becomes short, so that the rear lens diameter (the diameter of the sixth lens unit Gr6) increases.
If the lower limits of conditional expressions (12b) and (13b) are exceeded, it will be difficult to perform sufficient aberration correction, especially chromatic aberration correction. Even if correction is possible, the optical system will be almost impossible to process. I will end up.

【0155】第4群Gr4中に非球面を用いたり、第1
3の実施の形態のように第5群Gr5中に非球面を用い
れば、更に良好な光学性能が得られる。非球面は、0<y
<Ymaxの任意の光軸垂直方向高さyに対して、次の条件
式(14b)を満たすことが望ましい。 -0.01<φ4,5・(N'-N)・d{X(y)-X0(y)}/dy<0.003 …(14b) 但し、 φ4,5:第4群と第5群との合成パワー である。
If an aspherical surface is used in the fourth lens unit Gr4,
If an aspherical surface is used in the fifth lens unit Gr5 as in the third embodiment, better optical performance can be obtained. Aspherical surface is 0 <y
It is desirable that the following conditional expression (14b) be satisfied for any height y of <Ymax in the direction perpendicular to the optical axis. -0.01 <φ4,5 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.003… (14b) However, φ4,5: Composition of 4th and 5th group Power.

【0156】条件式(14b)の上限を超えると、ズーム全
域で球面収差がアンダー側へ倒れる傾向が著しくなると
ともに、広角側において内方性のコマ収差が発生する。
条件式(14b)の下限を超えると、ズーム全域で球面収差
がオーバー側へ倒れる傾向が著しくなるとともに、広角
側においては外方性のコマ収差が発生する。
If the upper limit of conditional expression (14b) is exceeded, the spherical aberration will tend to fall toward the under side over the entire zoom range, and inward coma will occur at the wide-angle side.
When the value goes below the lower limit of the conditional expression (14b), the spherical aberration tends to fall to the over side over the entire zoom range, and outward coma occurs on the wide angle side.

【0157】第4群Gr4,第5群Gr5中、非球面を
最も物体側のレンズ(望ましくはその物体側面)又は最も
像側のレンズ(望ましくはその像側面)に設けるのが望ま
しい。前者の構成によると、球面収差の補正が容易にな
る。一方、後者の構成によると、コマ収差の補正が容易
になる。
In the fourth group Gr4 and the fifth group Gr5, it is desirable to provide an aspherical surface on the most object side lens (preferably the object side surface) or the most image side lens (preferably the image side surface). According to the former configuration, it becomes easy to correct spherical aberration. On the other hand, the latter configuration facilitates correction of coma aberration.

【0158】第4群Gr4及び第5群Gr5は、次の条
件式(15b)を満たすことが望ましい。 0.1<f4,5/fT<0.5 …(15b) 但し、 f4,5:第4群と第5群との合成焦点距離 である。
It is desirable that the fourth lens unit Gr4 and the fifth lens unit Gr5 satisfy the following conditional expression (15b). 0.1 <f4,5 / fT <0.5 (15b) where f4,5 is the combined focal length of the fourth and fifth groups.

【0159】条件式(15b)の上限を超えると、第4群と
第5群との合成パワーが弱くなりすぎるため、広角端に
おける全長が増大するとともに、ズーミング時における
第4群Gr4及び第5群Gr5の移動量が増大して、望
遠端における全長の増大を招いてしまう。条件式(15b)
の下限を超えると、第4群と第5群との合成パワーが強
くなりすぎるため、ズーム全域で球面収差がアンダー側
に倒れる傾向が著しくなる。
If the upper limit of conditional expression (15b) is exceeded, the combined power of the fourth group and the fifth group becomes too weak, so the overall length at the wide-angle end increases, and the fourth group Gr4 and the fifth group at the time of zooming are increased. The movement amount of the group Gr5 increases, which causes an increase in the total length at the telephoto end. Conditional expression (15b)
If the lower limit of is exceeded, the combined power of the fourth group and the fifth group becomes too strong, so that the spherical aberration tends to fall to the under side over the entire zoom range.

【0160】次に、第6群Gr6の望ましい構成を説明
する。第6群Gr6は、第13の実施の形態のように、
最も物体側に正レンズ、最も像側に負レンズが配置され
た構成であるのが望ましい。このテレフォトタイプの構
成によって、バックフォーカスを必要最小限に短くする
ことができる。さらに望ましくは、物体側から順に正レ
ンズ・負レンズの2枚構成であるのがよく、この構成に
より第6群Gr6を光軸方向に更に薄くしてズームレン
ズのコンパクト化を図ることができる。
Next, a desirable structure of the sixth lens unit Gr6 will be described. The sixth group Gr6 is, as in the thirteenth embodiment,
It is desirable that the positive lens is arranged closest to the object side and the negative lens is arranged closest to the image side. With this telephoto type configuration, the back focus can be shortened to the necessary minimum. More preferably, it is preferable to have a two-lens structure including a positive lens and a negative lens in order from the object side. With this structure, the sixth lens unit Gr6 can be made thinner in the optical axis direction, and the zoom lens can be made compact.

【0161】第13の実施の形態のように第6群Gr6
中に非球面を用いれば、更に良好な光学性能が得られ
る。非球面は、0.5Ymax<y<Ymaxの任意の光軸垂直方向
高さyに対して、次の条件式(16b)を満たすことが望まし
い。 -0.05<φ6・(N'-N)・d{X(y)-X0(y)}/dy<0.01 …(16b) 但し、 φ6:第6群のパワー である。
The sixth group Gr6 as in the thirteenth embodiment
If an aspherical surface is used, better optical performance can be obtained. It is desirable that the aspherical surface satisfy the following conditional expression (16b) for any height y in the direction perpendicular to the optical axis, where 0.5Ymax <y <Ymax. -0.05 <φ6 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.01 (16b) where φ6 is the power of the sixth group.

【0162】条件式(16b)の上限を超えると、広角端か
ら中間焦点距離域において正の歪曲収差及び像面湾曲の
正偏位傾向が著しくなるとともに、望遠側において球面
収差がオーバー側に倒れてしまう。条件式(16b)の下限
を超えると、広角端から中間焦点距離域において負の歪
曲収差及び像面湾曲の負偏位傾向が著しくなるととも
に、望遠側において球面収差がアンダー側に倒れてしま
う。
When the upper limit of conditional expression (16b) is exceeded, the positive distortion and the positive deviation tendency of the field curvature become remarkable from the wide-angle end to the intermediate focal length range, and the spherical aberration falls to the over side on the telephoto side. Will end up. When the value goes below the lower limit of the conditional expression (16b), negative distortion aberration and negative excursion of field curvature become remarkable in the intermediate focal length range from the wide-angle end, and spherical aberration falls to the under side on the telephoto side.

【0163】上記非球面が設けられたレンズを両面非球
面レンズにするか、又は最も物体側面と最も像側面に非
球面を設けると、球面収差,歪曲収差,像面湾曲を更に
バランス良く補正することができる。つまり、一方の非
球面での球面収差・歪曲収差・像面湾曲の補正過不足分
を、もう一方の非球面で補正することが可能となる。こ
の際、いずれの非球面も上記条件式(16b)を満たすこと
が望ましい。
If the lens provided with the aspherical surface is a double-sided aspherical lens or if the aspherical surface is provided on the most object side surface and the most image side surface, spherical aberration, distortion, and field curvature can be corrected in a better balance. be able to. That is, it becomes possible to correct spherical aberration, distortion, and curvature of field on one aspherical surface by the other aspherical surface. At this time, it is desirable that all the aspherical surfaces satisfy the conditional expression (16b).

【0164】第6群Gr6は、次の条件式(17b)を満た
すことが望ましい。 0.1<|f6|/fT<0.4 …(17b) 但し、 f6:第6群の焦点距離 である。
It is desirable that the sixth lens unit Gr6 satisfy the following conditional expression (17b). 0.1 <| f6 | / fT <0.4 (17b) where f6 is the focal length of the sixth lens unit.

【0165】条件式(17b)の上限を超えると、第6群G
r6のパワーが弱くなりすぎるため、広角端における全
長が増大してしまう。条件式(17b)の下限を超えると、
第6群Gr6のパワーが強くなりすぎるため、正の歪曲
収差が著しく生じるとともに、望遠側において球面収差
がオーバー側に倒れる傾向が強くなる。
If the upper limit of conditional expression (17b) is exceeded, the sixth lens group G
Since the power of r6 becomes too weak, the total length at the wide-angle end increases. When the lower limit of conditional expression (17b) is exceeded,
Since the power of the sixth lens unit Gr6 becomes too strong, positive distortion is significantly generated, and the spherical aberration on the telephoto side tends to fall to the over side.

【0166】《正・負・正・負の4成分構成において、
第4成分がフローティング的なズーム移動を行う5群ズ
ームレンズ(第14の実施の形態)》第14の実施の形態
は、物体側より順に、正の第1群Gr1,負の第2群G
r2,正の第3群Gr3,正の第4群Gr4及び負の第
5群Gr5から成る5群構成のズームレンズであり、第
1群Gr1が第1成分、第2群Gr2が第2成分、第3
群Gr3が第3成分、第4群Gr4と第5群Gr5が第
4成分をそれぞれ構成している。そして、第2群Gr2
と第3群Gr3との間には、第2群Gr2通過後の光束
を反射させることにより光束分割を行うハーフプリズム
HPが設けられている。また、第1群Gr1〜第5群G
r5は、図31のレンズ構成図中の対応する矢印m1〜
m5で示すように、広角端[W]から望遠端[T]にかけて
のズーミングにおいてそれぞれ前方へ移動し、第1群G
r1と第2群Gr2との間隔が広がり、第2群Gr2と
第3群Gr3との間隔が狭まり、第3群Gr3と第4群
Gr4との間隔が狭まり、第4群Gr4と第5群Gr5
との間隔が広がる。
<< In a positive / negative / positive / negative four-component configuration,
Fifth group zoom lens in which fourth component performs floating zoom movement (fourteenth embodiment) >> The fourteenth embodiment is configured such that the positive first group Gr1 and the negative second group G are arranged in order from the object side.
r2, a positive third lens unit Gr3, a positive fourth lens unit Gr4, and a negative fifth lens unit Gr5. , Third
The group Gr3 constitutes the third component, and the fourth group Gr4 and the fifth group Gr5 constitute the fourth component, respectively. Then, the second group Gr2
A half prism HP is provided between the third lens unit Gr3 and the third lens unit Gr3 to split the light beam after reflecting the light beam that has passed through the second lens unit Gr2. Also, the first group Gr1 to the fifth group G
r5 is a corresponding arrow m1 in the lens configuration diagram of FIG.
As indicated by m5, each of the first group G moves forward in zooming from the wide-angle end [W] to the telephoto end [T].
The distance between r1 and the second group Gr2 is widened, the distance between the second group Gr2 and the third group Gr3 is narrowed, the distance between the third group Gr3 and the fourth group Gr4 is narrowed, and the fourth group Gr4 and the fifth group. Gr5
The distance between and increases.

【0167】第14の実施の形態において、各群は以下
のように構成されている。第1群Gr1は、物体側より
順に、像側に凹の負メニスカスレンズ及び物体側に凸の
正メニスカスレンズから成っており、その負メニスカス
レンズの像側の面は非球面である。第2群Gr2は、物
体側より順に、両凹の負レンズ及び物体側に凸の正メニ
スカスレンズから成っており、その負レンズの物体側の
面と正メニスカスレンズの像側の面とは非球面である。
第3群Gr3は、物体側より順に、絞り兼用のレンズシ
ャッターS1,像側に凹の負メニスカスレンズ,両凸の
正レンズ及び光束規制板S2から成っており、その正レ
ンズの像側の面は非球面である。第4群Gr4は、像側
に凸の正メニスカスレンズから成っており、その両面は
非球面である。第5群Gr5は、両凹の負レンズから成
っている。なお、絞り兼用のレンズシャッターS1と光
束規制板S2とは、設計上、互換性がある。
In the fourteenth embodiment, each group is constructed as follows. The first group Gr1 is composed of, in order from the object side, a negative meniscus lens concave to the image side and a positive meniscus lens convex to the object side, and the image side surface of the negative meniscus lens is an aspherical surface. The second group Gr2 is composed of, in order from the object side, a biconcave negative lens and a positive meniscus lens convex to the object side, and the object side surface of the negative lens and the image side surface of the positive meniscus lens are not It is a sphere.
The third group Gr3 is composed of, in order from the object side, a lens shutter S1 also serving as a diaphragm, a negative meniscus lens concave to the image side, a biconvex positive lens, and a light flux regulating plate S2, and the image side surface of the positive lens. Is an aspherical surface. The fourth group Gr4 is composed of a positive meniscus lens having a convex surface on the image side, and both surfaces thereof are aspherical surfaces. The fifth lens unit Gr5 is composed of a biconcave negative lens. The lens shutter S1 that also serves as the diaphragm and the light flux regulating plate S2 are compatible in design.

【0168】第14の実施の形態は、図31に示すよう
にズーミングにおいて第4群Gr4と第5群Gr5との
間隔d18が微小に変化する5群ズームレンズである。つ
まり、正・負・正・負の4成分ズーム構成において、第
4成分が正の第4群Gr4と負の第5群Gr5とに分割
されてフローティング的なズーム移動を行う構成となっ
ている。このフローティングにより望遠側での球面収差
及び像面の負方向への倒れを補正することができる。ま
た、このようにハーフプリズムHPより後方に位置する
ズーム群を、物体側から正・正・負(テレフォトタイプ)
で構成すると、ハーフプリズムHPより後方に位置する
ズーム群(即ち、第3群Gr3〜第5群Gr5)を光軸A
X方向に短くすることができる。
The fourteenth embodiment is a fifth group zoom lens in which the distance d18 between the fourth group Gr4 and the fifth group Gr5 slightly changes during zooming, as shown in FIG. That is, in the positive / negative / positive / negative four-component zoom configuration, the fourth component is divided into the positive fourth group Gr4 and the negative fifth group Gr5 to perform floating zoom movement. . This floating makes it possible to correct spherical aberration on the telephoto side and tilt of the image plane in the negative direction. In addition, the zoom group positioned behind the half prism HP in this way is positive / positive / negative (telephoto type) from the object side.
With the configuration, the zoom group (that is, the third group Gr3 to the fifth group Gr5) located behind the half prism HP is set to the optical axis A.
It can be shortened in the X direction.

【0169】第14の実施の形態に係るズームレンズ
は、第13の実施の形態と同様、ハーフプリズムHPよ
り後方にズーム群を3群有する構成となっているため、
ハーフプリズムHPより前方に位置するズーム群にかか
る収差補正上の負担は小さい。一般に、ファインダー系
は撮影系に比べて配置の制約が大きいが、上記のように
ハーフプリズムHPより前方に位置するズーム群にかか
る収差補正上の負担が小さくなると、ハーフプリズムH
Pでの光束分割によりファインダー系に光束を導く場合
には、ハーフプリズムHPより前方に位置するズーム群
をファインダーに適した構成にするのが容易になる。こ
のため、ファインダー系の配置の制約を小さくすること
が可能になる。
As in the thirteenth embodiment, the zoom lens according to the fourteenth embodiment has a configuration having three zoom groups behind the half prism HP.
The burden on the zoom group located in front of the half prism HP for aberration correction is small. In general, the finder system has a larger arrangement constraint than the photographing system, but when the burden on the zoom group located in front of the half prism HP on aberration correction becomes small as described above, the half prism H
When the light beam is guided to the finder system by the light beam splitting at P, it becomes easy to make the zoom group located in front of the half prism HP suitable for the finder. Therefore, it is possible to reduce restrictions on the layout of the finder system.

【0170】第14の実施の形態に係るズームレンズで
は、第1〜第10の実施の形態と同様、第2群Gr2通
過後の光束を反射させることにより光束分割を行うハー
フプリズムHPが、第2群Gr2と第3群Gr3との間
に設けられている。従って、この構成によると、ズーム
レンズに入射した光束はハーフプリズムHPによって2
つの光学的に同等な光束に分割されるため、パララック
スは発生しない。また、ハーフプリズムHPはズームレ
ンズの途中に設けられているため、バックフォーカスの
短縮が可能であるとともに、ハーフプリズムHP自身の
小型化も可能である。
In the zoom lens according to the fourteenth embodiment, as in the first to tenth embodiments, the half prism HP for splitting the light flux by reflecting the light flux after passing through the second lens unit Gr2 is provided with the first prism. It is provided between the second group Gr2 and the third group Gr3. Therefore, according to this configuration, the light flux incident on the zoom lens is converted into two rays by the half prism HP.
Parallax does not occur because it is split into two optically equivalent beams. Since the half prism HP is provided in the middle of the zoom lens, the back focus can be shortened and the half prism HP itself can be downsized.

【0171】さらに、第14の実施の形態のように、正
・負・正・負の4成分ズーム構成において、第4成分が
正の第4群Gr4と負の第5群Gr5とに分割されてフ
ローティング的なズーム移動を行う、実質的な正・負・
正・負(正・負)の4成分ズーム構成では、第1〜第10
の実施の形態と同様、第2群Gr2と第3群Gr3との
間で軸上・軸外光束が共に最も低い位置(即ち、光軸A
X付近)を通ることになるため、第2群Gr2と第3群
Gr3との間に設けられているハーフプリズムHPを径
方向(即ち、光軸AXに対して垂直方向)に更に小さくす
ることができる。ハーフプリズムHPは、径方向に小さ
くなれば光軸AX方向にも小さくなるため、このハーフ
プリズムHPの小型化によって第2群Gr2と第4群G
r4との間の実際の面間隔(即ち、第2群Gr2の最も
像側のレンズ面と第4群Gr4の最も物体側のレンズ面
との間隔)を小さくすることできる。従って、ズームレ
ンズ全長のコンパクト化を図ることが可能である。
Further, as in the fourteenth embodiment, in the positive / negative / positive / negative four-component zoom configuration, the fourth component is divided into the positive fourth lens unit Gr4 and the negative fifth lens unit Gr5. Performs a floating zoom movement that is substantially positive / negative /
In the positive / negative (positive / negative) four-component zoom configuration, the first to tenth
In the same manner as in the above embodiment, the position where the on-axis and off-axis light fluxes are both lowest between the second group Gr2 and the third group Gr3 (that is, the optical axis A
(Around X), the half prism HP provided between the second group Gr2 and the third group Gr3 should be further reduced in the radial direction (that is, the direction perpendicular to the optical axis AX). You can Since the half prism HP becomes smaller in the optical axis AX direction as it becomes smaller in the radial direction, the size reduction of the half prism HP results in the second group Gr2 and the fourth group G.
The actual surface distance to r4 (that is, the distance between the most image-side lens surface of the second group Gr2 and the most object-side lens surface of the fourth group Gr4) can be reduced. Therefore, it is possible to reduce the overall length of the zoom lens.

【0172】また、第1〜第13の実施の形態と同様、
第14の実施の形態では、ハーフプリズムHPがズーム
群間で光束を反射させることにより光束分割を行うた
め、1つのズーム群の途中で光束を反射させる構成より
も、鏡胴構成が簡単で、しかも、そのズーム群の光学性
能を維持するのが製造上容易である。また、第14の実
施の形態では、第1群Gr1が正のパワーを有している
ため、この第1群Gr1で軸上光束の高さを抑えること
により、効果的に収差の発生を抑えることができる。
Further, similar to the first to thirteenth embodiments,
In the fourteenth embodiment, since the half prism HP splits the light flux by reflecting the light flux between the zoom groups, the lens barrel configuration is simpler than the configuration in which the light flux is reflected in the middle of one zoom group. Moreover, maintaining the optical performance of the zoom group is easy in manufacturing. In addition, in the fourteenth embodiment, since the first group Gr1 has a positive power, by suppressing the height of the axial light flux in this first group Gr1, the occurrence of aberration is effectively suppressed. be able to.

【0173】第14の実施の形態に係るズームレンズで
は、第1〜第10の実施の形態と同様、ハーフプリズム
HPがズーミングにおいて第3群Gr3と一体に移動す
るため、ズームレンズのコンパクト化が可能である。前
述したように、実質的な正・負・正・負(正・負)の4成
分ズーム構成では、第3群Gr3付近で光束が最も細く
なる(つまり、集光する)。このため、ハーフプリズムH
Pの径の大きさ(即ち、光軸AXに対して垂直方向の大
きさ)は最も小さくて済み、その結果、光軸AX方向に
もハーフプリズムHPを小さくすることが可能になる。
このハーフプリズムHPの小型化によってスペース効率
が良くなるため、第2群Gr2と第3群Gr3との間の
実際の面間隔を小さくして、ズームレンズ全長のコンパ
クト化を図ることができるのである。
In the zoom lens according to the fourteenth embodiment, as in the first to tenth embodiments, the half prism HP moves integrally with the third lens unit Gr3 during zooming, so that the zoom lens can be made compact. It is possible. As described above, in the substantially positive / negative / positive / negative (positive / negative) four-component zoom configuration, the luminous flux becomes the thinnest (that is, converges) near the third group Gr3. Therefore, the half prism H
The size of the diameter of P (that is, the size in the direction perpendicular to the optical axis AX) is the smallest, and as a result, it is possible to make the half prism HP small also in the optical axis AX direction.
Since the space efficiency is improved by downsizing the half prism HP, the actual surface distance between the second lens unit Gr2 and the third lens unit Gr3 can be reduced, and the overall length of the zoom lens can be reduced. .

【0174】第14の実施の形態では、ハーフプリズム
HPより後方に絞り兼用のレンズシャッターS1が設け
られているため、光束径はハーフプリズムHPの前側に
隣り合って位置する第2群Gr2に近いほど大きくな
る。一方、第14の実施の形態では、ズーミングにおい
て、ハーフプリズムHPがその後ろ側に隣り合って位置
するズーム群(即ち、第3群Gr3)と一体に移動するた
め、第3群Gr3とハーフプリズムHPとの間隔は変化
せず、第2群Gr2とハーフプリズムHPとの間隔は変
化する。従って、ハーフプリズムHPがカバーすべき光
束径は小さくて済むため、ハーフプリズムHPの小型化
が可能である。ハーフプリズムHPの小型化により、ズ
ーミングのための駆動機構にかかる重量等の負担が少な
くて済むため、この構成は鏡胴構成上有利である。
In the fourteenth embodiment, since the lens shutter S1 that also serves as the diaphragm is provided behind the half prism HP, the light beam diameter is close to that of the second group Gr2 located adjacent to the front side of the half prism HP. The bigger it gets. On the other hand, in the fourteenth embodiment, during zooming, the half prism HP moves integrally with the zoom group (that is, the third group Gr3) positioned adjacent to the rear side of the half prism HP, so that the third group Gr3 and the half prism are moved together. The distance from HP does not change, and the distance between the second group Gr2 and the half prism HP changes. Therefore, the beam diameter to be covered by the half prism HP can be small, and the half prism HP can be downsized. This structure is advantageous in terms of the lens barrel structure because the size of the half prism HP can be reduced so that the weight of the driving mechanism for zooming can be reduced.

【0175】第14の実施の形態に係るズームレンズ
は、ハーフプリズムHPの直前に隣り合って位置するズ
ーム群(即ち、第2群Gr2)が負のパワーを有している
ため、ハーフプリズムHPに入射する軸外光束は軸上光
束に対して小さい角度を成すことになる(つまり、アフ
ォーカルに近づく。)。従って、ハーフプリズムHPが
カバーすべき光束径は小さくて済むため、ハーフプリズ
ムHPの小型化が可能である。ハーフプリズムHPの小
型化により、ズーミングのための駆動機構にかかる重量
等の負担が少なくて済むため、この構成は鏡胴構成上有
利である。さらに、光軸AXに対してアフォーカルに近
い軸外光束をハーフプリズムHPで反射させても反射後
の軸外光束はあまり広がらないため、ハーフプリズムH
Pの後方に位置する光学系(即ち、ファインダー系と、
撮影系のうち反射手段の後方に位置する部分)の径も小
さくて済む。以上のように、ハーフプリズムHP及びそ
の後方に位置する光学系の小型化によって、ズームレン
ズ及びファインダー系の小型化が達成される。
In the zoom lens according to the fourteenth embodiment, since the zoom group (that is, the second group Gr2) positioned immediately before the half prism HP has a negative power, the half prism HP The off-axis light beam incident on forms a small angle with the on-axis light beam (that is, approaches an afocal). Therefore, the beam diameter to be covered by the half prism HP can be small, and the half prism HP can be downsized. This structure is advantageous in terms of the lens barrel structure because the size of the half prism HP can be reduced so that the weight of the driving mechanism for zooming can be reduced. Furthermore, even if an off-axis light beam that is afocal with respect to the optical axis AX is reflected by the half prism HP, the off-axis light beam after reflection does not spread so much.
An optical system located behind P (that is, a finder system,
The diameter of the portion of the imaging system located behind the reflecting means) can be small. As described above, the miniaturization of the zoom lens and the viewfinder system is achieved by miniaturization of the half prism HP and the optical system located behind it.

【0176】第14の実施の形態においても、前述の条
件式(1)を満たすことが、ズームレンズのコンパクト化
を達成する上で望ましく、また、前述の条件式(2)を満
たすことが、高い光学性能を保持しつつコンパクトで高
変倍比のズームレンズを実現する上で望ましい。
Also in the fourteenth embodiment, it is desirable that the conditional expression (1) described above is satisfied in order to achieve the compactness of the zoom lens, and that the conditional expression (2) described above is satisfied. It is desirable to realize a compact zoom lens with high zoom ratio while maintaining high optical performance.

【0177】ハーフプリズムHPのような反射手段を第
2群Gr2と第3群Gr3との間に設けるためには、第
1〜第10の実施の形態と同様、前述の条件式(3)を満
たすことが望ましい。また、第2群Gr2及び第3群G
r3は、第1〜第10の実施の形態と同様、ズーム移動
量に関して前述の条件式(4)を満たすことが望ましい。
In order to provide the reflecting means such as the half prism HP between the second group Gr2 and the third group Gr3, the above-mentioned conditional expression (3) is applied as in the first to tenth embodiments. It is desirable to meet. In addition, the second group Gr2 and the third group G
As with the first to tenth embodiments, it is desirable that r3 satisfy the above-mentioned conditional expression (4) regarding the zoom movement amount.

【0178】次に、各ズーム群ごとに構成上の特徴を説
明する。第1群Gr1〜第3群Gr3については、前述
した第1〜第10の実施の形態と同様であり、例えば、
前述の条件式(5),(6),(7),(8),(9),(10),(11),
(12),(13),(14),(15)を満たすのが望ましい。
The structural features of each zoom group will be described below. The first group Gr1 to the third group Gr3 are the same as those in the above-described first to tenth embodiments.
The above conditional expressions (5), (6), (7), (8), (9), (10), (11),
It is desirable to satisfy (12), (13), (14) and (15).

【0179】第4群Gr4及び第5群Gr5について望
ましい構成を説明する。第4群Gr4は正のパワーを有
し、第5は負のパワーを有するのが望ましい。このテレ
フォトタイプの構成によって、バックフォーカスを必要
最小限に短くすることができる。さらに望ましくは、第
14の実施の形態のように、第4群Gr4が1枚の正レ
ンズから成り第5が1枚の負レンズから成るのがよく、
この構成により第4群Gr4及び第5群Gr5を光軸方
向に更に薄くしてズームレンズのコンパクト化を図るこ
とができる。
Desirable configurations of the fourth lens unit Gr4 and the fifth lens unit Gr5 will be described. It is desirable that the fourth group Gr4 have a positive power and the fifth group have a negative power. With this telephoto type configuration, the back focus can be shortened to the necessary minimum. More desirably, as in the fourteenth embodiment, it is preferable that the fourth lens unit Gr4 be composed of one positive lens and the fifth lens be composed of one negative lens.
With this configuration, the fourth group Gr4 and the fifth group Gr5 can be further thinned in the optical axis direction, and the zoom lens can be made compact.

【0180】第14の実施の形態のように第4群Gr4
中に非球面を用いたり、第5群Gr5中非球面を用いれ
ば、更に良好な光学性能が得られる。非球面は、0.5Yma
x<y<Ymaxの任意の光軸垂直方向高さyに対して、次の
条件式(16c)を満たすことが望ましい。 -0.05<φ4,5・(N'-N)・d{X(y)-X0(y)}/dy<0.01 …(16c) 但し、 φ4,5:第4群と第5群との合成パワー である。
As in the fourteenth embodiment, the fourth lens unit Gr4
If an aspherical surface is used or an aspherical surface in the fifth lens unit Gr5 is used, even better optical performance can be obtained. Aspherical surface is 0.5Yma
It is desirable that the following conditional expression (16c) be satisfied for any height y in the direction perpendicular to the optical axis, where x <y <Ymax. -0.05 <φ4,5 ・ (N'-N) ・ d {X (y) -X0 (y)} / dy <0.01 (16c) However, φ4,5: Composition of 4th group and 5th group Power.

【0181】条件式(16c)の上限を超えると、広角端か
ら中間焦点距離域において正の歪曲収差及び像面湾曲の
正偏位傾向が著しくなるとともに、望遠側において球面
収差がオーバー側に倒れてしまう。条件式(16c)の下限
を超えると、広角端から中間焦点距離域において負の歪
曲収差及び像面湾曲の負偏位傾向が著しくなるととも
に、望遠側において球面収差がアンダー側に倒れてしま
う。
When the upper limit of conditional expression (16c) is exceeded, positive distortion and positive deviation of the field curvature become remarkable from the wide-angle end to the intermediate focal length range, and spherical aberration falls to the over side on the telephoto side. Will end up. When the value goes below the lower limit of the conditional expression (16c), negative distortion aberration and negative excursion of field curvature become remarkable in the intermediate focal length range from the wide-angle end, and spherical aberration falls to the under side on the telephoto side.

【0182】上記非球面が設けられたレンズを両面非球
面レンズにするか、又は最も物体側面と最も像側面に非
球面を設けると、球面収差,歪曲収差,像面湾曲を更に
バランス良く補正することができる。つまり、一方の非
球面での球面収差・歪曲収差・像面湾曲の補正過不足分
を、もう一方の非球面で補正することが可能となる。こ
の際、いずれの非球面も前記条件式(16),(16c)を満た
すことが望ましい。
If a double-sided aspherical lens is used as the lens provided with the aspherical surface or an aspherical surface is provided on the most object side surface and the most image side surface, spherical aberration, distortion, and field curvature can be corrected in a better balance. be able to. That is, it becomes possible to correct spherical aberration, distortion, and curvature of field on one aspherical surface by the other aspherical surface. At this time, it is desirable that all the aspherical surfaces satisfy the conditional expressions (16) and (16c).

【0183】第4群Gr4及び第5群Gr5は、次の条
件式(17c)を満たすことが望ましい。 0.1<|f4,5|/fT<0.4 …(17c) 但し、 f4,5:第4群と第5群との合成焦点距離 である。
It is desirable that the fourth lens unit Gr4 and the fifth lens unit Gr5 satisfy the following conditional expression (17c). 0.1 <| f4,5 | / fT <0.4 (17c) where f4,5 is the combined focal length of the fourth and fifth groups.

【0184】条件式(17c)の上限を超えると、第4群G
r4と第5群Gr5との合成パワーが弱くなりすぎるた
め、広角端における全長が増大してしまう。条件式(17
c)の下限を超えると、第4群Gr4と第5群Gr5との
合成パワーが強くなりすぎるため、正の歪曲収差が著し
く生じるとともに、望遠側において球面収差がオーバー
側に倒れる傾向が強くなる。
If the upper limit of conditional expression (17c) is exceeded, the fourth group G
Since the combined power of r4 and the fifth lens unit Gr5 becomes too weak, the total length at the wide-angle end increases. Conditional expression (17
When the value goes below the lower limit of c), the combined power of the fourth group Gr4 and the fifth group Gr5 becomes too strong, so that positive distortion occurs remarkably, and the spherical aberration on the telephoto side tends to fall to the over side. .

【0185】[0185]

【実施例】以下、本発明を実施したズームレンズの構成
を、コンストラクションデータ,収差性能等を挙げて更
に具体的に説明する。以下に挙げる実施例1〜14は、
前述した第1〜第14の実施の形態にそれぞれ対応して
おり、第1〜第14の実施の形態を表す図は、対応する
実施例1〜14のレンズ構成をそれぞれ示している。
EXAMPLES The structure of the zoom lens embodying the present invention will be described more specifically below with reference to construction data, aberration performance, and the like. Examples 1 to 14 listed below are
The drawings correspond to the above-described first to fourteenth embodiments, respectively, and the drawings showing the first to fourteenth embodiments respectively show the corresponding lens configurations of the first to fourteenth embodiments.

【0186】以下に挙げる各実施例のコンストラクショ
ンデータにおいて、ri(i=1,2,3,...)は物体側から数え
てi番目の面の曲率半径、di(i=1,2,3,...)は物体側から
数えてi番目の軸上面間隔を示しており、Ni(i=1,2,
3,...),νi(i=1,2,3,...)は物体側から数えてi番目のレ
ンズのd線に対する屈折率(Nd),アッベ数(νd)を示
している。コンストラクションデータ中、ズーミングに
より変化する軸上面間隔は、無限遠撮影状態における広
角端[W]〜ミドル(中間焦点距離状態)[M]〜望遠端[T]
での各群間の実際の面間隔であり、各状態に対応する全
系の焦点距離f及びFナンバーFNOを併せて示す。
In the construction data of each example given below, ri (i = 1,2,3, ...) is the radius of curvature of the i-th surface counted from the object side, di (i = 1,2, ... (3, ...) indicates the i-th axial upper surface distance counted from the object side, and Ni (i = 1,2,
3, ...), νi (i = 1,2,3, ...) indicates the refractive index (Nd) and Abbe number (νd) of the i-th lens from the object side for d-line. . In the construction data, the distance between the upper surfaces of the shafts that changes due to zooming is the wide-angle end [W] in the infinity shooting state-middle (intermediate focal length state) [M] -telephoto end [T].
It is the actual surface distance between the respective groups, and the focal length f and F number FNO of the entire system corresponding to each state are also shown.

【0187】また、曲率半径riに*印を付した面は、非
球面で構成された面であることを示し、非球面の面形状
を表わす前記式(A)で定義される。非球面に関する条件
式(6),(6a);(10),(10a),(10b);(14),(14a),(14b);(16),
(16a),(16b),(16c)の対応値を、各実施例のコンストラ
クションデータと併せて示す。なお、ズーミングにより
パワーが変化する場合には、広角端[W]と望遠端[T]につ
いての値を示す。また、表1〜表4に、各実施例につい
てのその他の条件式の対応値を示す。さらに、表5に、
実施例1,実施例3及び実施例4の無限遠撮影状態(D=
∞)における広角端[W]からミドル[M],望遠端[T]に
かけての各群のズーム移動量を示し、表6に、実施例5
〜実施例8の広角端[W]における最近接撮影(撮影距離
D=5m)時のフォーカス移動量(繰り出し量)を示す。
A surface with a radius of curvature ri marked with * indicates that it is an aspherical surface, and is defined by the above equation (A) representing the surface shape of the aspherical surface. Conditional expressions (6), (6a); (10), (10a), (10b); (14), (14a), (14b); (16),
Corresponding values of (16a), (16b), and (16c) are shown together with the construction data of each example. When the power changes due to zooming, the values at the wide-angle end [W] and the telephoto end [T] are shown. Tables 1 to 4 show corresponding values of other conditional expressions for each example. Furthermore, in Table 5,
Infinity shooting condition (D =) of the first, third and fourth embodiments
The zoom movement amount of each group from the wide-angle end [W] to the middle [M] and the telephoto end [T] at ∞) is shown in Table 6 and Example 5 is shown.
8 shows the focus movement amount (extending amount) at the time of the closest shooting (shooting distance D = 5 m) at the wide-angle end [W] in Example 8.

【0188】《実施例1》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 31.742 d1 1.600 N1 1.84666 ν1 23.82 r2* 24.282 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 490.045 d4 2.742〜18.742〜37.742 r5* -50.651 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.500 N4 1.78472 ν4 25.75 r8* 145.647 d8 8.300〜5.723〜0.489 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.200 r11 ∞(絞り) d11 0.500 r12 24.201 d12 1.735 N6 1.84666 ν6 23.82 r13 14.492 d13 0.300 r14 14.660 d14 4.700 N7 1.51728 ν7 69.43 r15* -20.500 d15 0.200 r16 ∞(光束規制板) d16 23.394〜10.744〜2.500 r17* -52.987 d17 4.100 N8 1.84666 ν8 23.82 r18* -23.222 d18 3.300 r19 -13.947 d19 1.302 N9 1.74400 ν9 44.93 r20 212.239 Σd = 75.272〜76.045〜81.568Example 1 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axis upper surface spacing] [refractive index] [Abbe number] r1 31.742 d1 1.600 N1 1.84666 ν1 23.82 r2 * 24.282 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 490.045 d4 2.742〜18.742〜37.742 r5 * -50.651 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.500 N4 1.78472 ν4 25.75 r8 * 89 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.200 r11 ∞ (aperture) d11 0.500 r12 24.201 d12 1.735 N6 1.84666 ν6 23.82 r13 14.492 d13 0.300 r14 14.660 d14 4.700 N7 1.51728 ν7 69.43 r15 * -20.500 d15 0.200 r16 plate ) d16 23.394 ~ 10.744 ~ 2.500 r17 * -52.987 d17 4.100 N8 1.84666 ν8 23.82 r18 * -23.222 d18 3.300 r19 -13.947 d19 1.302 N9 1.74400 ν9 44.93 r20 212.239 Σd = 75.272 ~ 76.045 ~ 81.568

【0189】[非球面係数] r2 : ε= 1.0000 A4=-0.85013×10-6 A6= 0.32298×10-8 A8=-0.54523×10-10 A10= 0.27043×10-12 A12=-0.56376×10-15 r5 : ε= 1.0000 A4= 0.18895×10-4 A6= 0.48637×10-7 A8= 0.13779×10-9 A10=-0.18314×10-11 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.33176×10-4 A6= 0.53118×10-7 A8= 0.28185×10-8 A10=-0.10321×10-10 A12=-0.75073×10-13 r15: ε= 1.0000 A4= 0.95143×10-5 A6= 0.53310×10-6 A8=-0.16704×10-7 A10= 0.23059×10-9 A12=-0.26914×10-13 r17: ε= 1.0000 A4= 0.28288×10-8 A6=-0.56729×10-7 A8= 0.49027×10-8 A10=-0.26465×10-10 A12=-0.84998×10-14 r18: ε= 1.0000 A4=-0.19642×10-4 A6=-0.12920×10-6 A8= 0.27558×10-8 A10= 0.67847×10-11 A12=-0.14025×10-12 [0189] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.85013 × 10 -6 A6 = 0.32298 × 10 -8 A8 = -0.54523 × 10 -10 A10 = 0.27043 × 10 -12 A12 = -0.56376 × 10 - 15 r5: ε = 1.0000 A4 = 0.18895 × 10 -4 A6 = 0.48637 × 10 -7 A8 = 0.13779 × 10 -9 A10 = -0.18314 × 10 -11 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.33176 × 10 -4 A6 = 0.53118 × 10 -7 A8 = 0.28185 × 10 -8 A10 = -0.10321 × 10 -10 A12 = -0.75073 × 10 -13 r15: ε = 1.0000 A4 = 0.95143 × 10 -5 A6 = 0.53310 X 10 -6 A8 = -0.16704 x 10 -7 A10 = 0.23059 x 10 -9 A12 = -0.26914 x 10 -13 r17: ε = 1.0000 A4 = 0.28288 x 10 -8 A6 = -0.56729 x 10 -7 A8 = 0.49027 × 10 -8 A10 = -0.26465 × 10 -10 A12 = -0.84998 × 10 -14 r18: ε = 1.0000 A4 = -0.19642 × 10 -4 A6 = -0.12920 × 10 -6 A8 = 0.27558 × 10 -8 A10 = 0.67847 × 10 -11 A12 = -0.14025 × 10 -12

【0190】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6715×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5239×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1718×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4013×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7947×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1442×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2475×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4067×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6504×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1052×10-3 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.6715 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5239 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1718 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.4013 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.7947 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1442 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.2475 × 10 -4 y = 10.6400 ... φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4067 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.6504 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.1052 × 10 -3

【0191】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1889×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1532×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5292×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1296×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2634×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4757×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7875×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1209×10-2 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1717×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2200×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1889×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1532 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5292 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1296 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2634 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4757 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7875 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1209 × 10 -2 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1717 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2200 × 10 -2

【0192】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1635×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1317×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4512×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1099×10-3 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2244×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4132×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7111×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1161×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1797×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2603×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1635 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1317 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4512 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.1099 × 10 -3 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2244 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4132 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.7111 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1161 × 10 -2 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1797 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2603 × 10 -2

【0193】 [条件式(14)の対応値(第3群Gr3中のr15の非球面)] y= 0.6349 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1895×10-6 y= 1.2698 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1653×10-5 y= 1.9047 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6246×10-5 y= 2.5396 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1657×10-4 y= 3.1744 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3558×10-4 y= 3.8093 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6595×10-4 y= 4.4442 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1104×10-3 y= 5.0791 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1754×10-3 y= 5.7140 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2808×10-3 y= 6.3489 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4820×10−3 [Corresponding Value of Conditional Expression (14) (Aspherical Surface of r15 in Third Group Gr3)] y = 0.6349 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1895×10 -6 y = 1.2698… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1653 × 10 -5 y = 1.9047… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6246 × 10 -5 y = 2.5396… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1657 × 10 -4 y = 3.1744… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3558 × 10 -4 y = 3.8093… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6595 × 10 -4 y = 4.4442… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.1104 × 10 -3 y = 5.0791… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1754 × 10 -3 y = 5.7140… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2808 × 10 -3 y = 6.3489… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.4820 × 10 -3

【0194】 [条件式(16)の対応値(第4群Gr4中のr17の非球面)] y= 1.1200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1395×10-7 y= 2.2400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2338×10-6 y= 3.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8343×10-6 y= 4.4800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1718×10-4 y= 5.6000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9666×10-4 y= 6.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3386×10-3 y= 7.8400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8687×10-3 y= 8.9600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1699×10-2 y=10.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2349×10-2 y=11.2000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1056×10-2 [Corresponding Value of Conditional Expression (16) (Aspherical Surface of r17 in Fourth Group Gr4)] y = 1.1200 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1395 × 10 -7 y = 2.2400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2338 × 10 -6 y = 3.3600… φ4 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8343 × 10 -6 y = 4.4800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1718 × 10 -4 y = 5.6000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9666 × 10 -4 y = 6.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3386 × 10 -3 y = 7.8400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8687 × 10 -3 y = 8.9600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1699 × 10 -2 y = 10.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2349 × 10 -2 y = 11.2000… φ4 ・ (N'-N)・ D {(X (y) -X0 (y)} / dy = -0.1056 × 10 -2

【0195】 [条件式(16)の対応値(第4群Gr4中のr18の非球面)] y= 1.1800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3664×10-5 y= 2.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3026×10-4 y= 3.5400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1053×10-3 y= 4.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2491×10-3 y= 5.9000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4513×10-3 y= 7.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6373×10-3 y= 8.2600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6907×10-3 y= 9.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7233×10-3 y=10.6200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2031×10-2 y=11.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9598×10-2 [Corresponding Value of Conditional Expression (16) (aspherical surface of r18 in the fourth group Gr4)] y = 1.1800 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.3664×10 -5 y = 2.3600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3026 × 10 -4 y = 3.5400… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1053 × 10 -3 y = 4.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2491 × 10 -3 y = 5.9000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4513 × 10 -3 y = 7.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6373 × 10 -3 y = 8.2600… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.6907 × 10 -3 y = 9.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.7233 × 10 -3 y = 10.6200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2031 × 10 -2 y = 11.8000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.9598 × 10 -2

【0196】《実施例2》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 31.780 d1 1.800 N1 1.84666 ν1 23.82 r2* 24.351 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 451.955 d4 2.742〜18.742〜37.742 r5* -52.414 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r8* 124.047 d8 8.600〜6.206〜1.452 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.400 r11 ∞(絞り) d11 0.500 r12 23.498 d12 1.735 N6 1.84666 ν6 23.82 r13 14.305 d13 0.300 r14 14.576 d14 4.700 N7 1.51728 ν7 69.43 r15* -20.905 d15 0.200 r16 ∞(光束規制板) d16 23.544〜10.823〜2.500 r17* -57.077 d17 4.300 N8 1.84666 ν8 23.82 r18* -23.984 d18 3.300 r19 -14.043 d19 1.302 N9 1.74400 ν9 44.93 r20 198.656 Σd = 76.423〜77.308〜83.291Example 2 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axis upper surface spacing] [refractive index] [Abbe number] r1 31.780 d1 1.800 N1 1.84666 ν1 23.82 r2 * 24.351 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 451.955 d4 2.742 ~ 18.742 ~ 37.742 r5 * -52.414 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 n4 1.78472 ν4 25.75 r8600 ~ 94.0 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.400 r11 ∞ (aperture) d11 0.500 r12 23.498 d12 1.735 N6 1.84666 ν6 23.82 r13 14.305 d13 0.300 r14 14.576 d14 4.700 N7 1.51728 ν7 69.43 r15 * -20.905 d15 0.200 r16 plate ) d16 23.544 ~ 10.823 ~ 2.500 r17 * -57.077 d17 4.300 N8 1.84666 ν8 23.82 r18 * -23.984 d18 3.300 r19 -14.043 d19 1.302 N9 1.74400 ν9 44.93 r20 198.656 Σd = 76.423 ~ 77.308 ~ 83.291

【0197】[非球面係数] r2 : ε= 1.0000 A4=-0.88023×10-6 A6= 0.51386×10-8 A8=-0.81296×10-10 A10= 0.44096×10-12 A12=-0.94660×10-15 r5 : ε= 1.0000 A4= 0.17967×10-4 A6= 0.58381×10-7 A8= 0.66235×10-11 A10=-0.12325×10-11 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.31483×10-4 A6= 0.81801×10-7 A8= 0.24816×10-8 A10=-0.11818×10-10 A12=-0.47581×10-13 r15: ε= 1.0000 A4= 0.94165×10-5 A6= 0.49688×10-6 A8=-0.16717×10-7 A10= 0.23099×10-9 A12=-0.24779×10-13 r17: ε= 1.0000 A4= 0.68475×10-6 A6=-0.71551×10-7 A8= 0.47575×10-8 A10=-0.26013×10-10 A12=-0.35515×10-14 r18: ε= 1.0000 A4=-0.19289×10-4 A6=-0.14117×10-6 A8= 0.25896×10-8 A10= 0.71357×10-11 A12=-0.13396×10-12 [0197] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.88023 × 10 -6 A6 = 0.51386 × 10 -8 A8 = -0.81296 × 10 -10 A10 = 0.44096 × 10 -12 A12 = -0.94660 × 10 - 15 r5: ε = 1.0000 A4 = 0.17967 × 10 -4 A6 = 0.58381 × 10 -7 A8 = 0.66235 × 10 -11 A10 = -0.12325 × 10 -11 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.31483 × 10 -4 A6 = 0.81801 × 10 -7 A8 = 0.24816 × 10 -8 A10 = -0.11818 × 10 -10 A12 = -0.47581 × 10 -13 r15: ε = 1.0000 A4 = 0.94165 × 10 -5 A6 = 0.49688 × 10 -6 A8 = -0.16717 × 10 -7 A10 = 0.23099 × 10 -9 A12 = -0.24779 × 10 -13 r17: ε = 1.0000 A4 = 0.68475 × 10 -6 A6 = -0.71551 × 10 -7 A8 = 0.47575 × 10 -8 A10 = -0.26013 × 10 -10 A12 = -0.35515 × 10 -14 r18: ε = 1.0000 A4 = -0.19289 × 10 -4 A6 = -0.14 117 × 10 -6 A8 = 0.25896 × 10 -8 A10 = 0.71357 x 10 -11 A12 = -0.13396 x 10 -12

【0198】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6936×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5334×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1716×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3938×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7728×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1401×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2404×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3925×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6228×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1026×10-3 [Corresponding Value of Conditional Expression (6) (Aspherical Surface of r2 in First Group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.6936 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5334 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1716 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.3938 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.7728 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1401 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.2404 × 10 -4 y = 10.6400… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3925 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.6228 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y ( ) -X0 (y)} / dy = 0.1026 × 10 -3

【0199】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1836×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1494×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5184×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1275×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2602×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4710×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7807×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1200×10-2 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1707×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2207×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1836×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1494 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5184 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1275 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2602 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4710 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7807 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1200 × 10 -2 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1707 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2207 × 10 -2

【0200】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1586×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1282×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4413×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1081×10-3 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2220×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4105×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7078×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1155×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1788×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2597×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1586 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1282 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4413 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.1081 × 10 -3 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2220 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4105 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.7078 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1155 × 10 -2 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1788 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2597 × 10 -2

【0201】 [条件式(14)の対応値(第3群Gr3中のr15の非球面)] y= 0.5755 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1387×10-6 y= 1.1510 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1188×10-5 y= 1.7265 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4402×10-5 y= 2.3020 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1150×10-4 y= 2.8775 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2445×10-4 y= 3.4530 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4505×10-4 y= 4.0285 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7469×10-4 y= 4.6040 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1152×10-3 y= 5.1795 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1723×10-3 y= 5.7550 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2629×10-3 [Corresponding Value of Conditional Expression (14) (Aspherical Surface of r15 in Third Group Gr3)] y = 0.5755 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1387×10 -6 y = 1.1510… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1188 × 10 -5 y = 1.7265… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4402 × 10 -5 y = 2.3020… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1150 × 10 -4 y = 2.8775… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2445 × 10 -4 y = 3.4530… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4505 × 10 -4 y = 4.0285… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7469 × 10 -4 y = 4.6040… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1152 × 10 -3 y = 5.1795… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1723 × 10 -3 y = 5.7550… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2629 × 10 -3

【0202】 [条件式(16)の対応値(第4群Gr4中のr17の非球面)] y= 1.1100 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8669×10-7 y= 2.2200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4639×10-6 y= 3.3300 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2378×10-5 y= 4.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1729×10-4 y= 5.5500 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8596×10-4 y= 6.6600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2949×10-3 y= 7.7700 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7572×10-3 y= 8.8800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1495×10-2 y= 9.9900 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2123×10-2 y=11.1000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1195×10-2 [Corresponding value of conditional expression (16) (aspherical surface of r17 in the fourth group Gr4)] y = 1.1100 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.8669×10 -7 y = 2.2200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4639 × 10 -6 y = 3.3300… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2378 × 10 -5 y = 4.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1729 × 10 -4 y = 5.5500… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8596 × 10 -4 y = 6.6600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2949 × 10 -3 y = 7.7700… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7572 × 10 -3 y = 8.8800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1495 × 10 -2 y = 9.9900… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2123 × 10 -2 y = 11.1000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1195 × 10 -2

【0203】 [条件式(16)の対応値(第4群Gr4中のr18の非球面)] y= 1.1800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3596×10-5 y= 2.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2985×10-4 y= 3.5400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1047×10-3 y= 4.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2509×10-3 y= 5.9000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4644×10-3 y= 7.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6818×10-3 y= 8.2600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7985×10-3 y= 9.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9172×10-3 y=10.6200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2240×10-2 y=11.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9419×10-2 [Corresponding value of conditional expression (16) (aspherical surface of r18 in the fourth group Gr4)] y = 1.1800 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.3596×10 -5 y = 2.3600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2985 × 10 -4 y = 3.5400… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1047 × 10 -3 y = 4.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2509 × 10 -3 y = 5.9000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4644 × 10 -3 y = 7.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6818 × 10 -3 y = 8.2600… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7985 × 10 -3 y = 9.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.9172 × 10 -3 y = 10.6200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2240 × 10 -2 y = 11.8000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.9419 × 10 -2

【0204】《実施例3》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.80 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 34.212 d1 1.600 N1 1.84666 ν1 23.82 r2* 25.250 d2 0.700 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 1260.906 d4 4.442〜19.863〜31.218 r5* -52.046 d5 1.400 N3 1.80500 ν3 40.97 r6 13.245 d6 0.600 r7 13.812 d7 4.500 N4 1.78472 ν4 25.75 r8* 120.877 d8 7.400〜5.600〜1.900 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.200 r11 ∞(絞り) d11 0.500 r12 24.346 d12 1.735 N6 1.84666 ν6 23.82 r13 14.575 d13 0.300 r14 14.881 d14 4.700 N7 1.51728 ν7 69.43 r15* -20.102 d15 0.200 r16 ∞(光束規制板) d16 23.776〜10.154〜2.500 r17* -44.759 d17 4.000 N8 1.84666 ν8 23.82 r18* -23.675 d18 3.600 r19 -14.620 d19 1.302 N9 1.67003 ν9 47.15 r20 125.845 Σd = 76.954〜76.955〜76.955Example 3 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.80 [curvature radius] [axial upper surface spacing] [refractive index] [Abbe number] r1 34.212 d1 1.600 N1 1.84666 ν1 23.82 r2 * 25.250 d2 0.700 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 1260.906 d4 4.442〜19.863〜31.218 r5 * -52.046 d5 1.400 N3 1.80500 ν3 40.97 r6 13.245 d6 0.600 r7 13.812 d7 4.500 N4 1.78472 ν4 25.75 r8 * 900.877 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.200 r11 ∞ (aperture) d11 0.500 r12 24.346 d12 1.735 N6 1.84666 ν6 23.82 r13 14.575 d13 0.300 r14 14.881 d14 4.700 N7 1.51728 ν7 69.43 r15 * -20.102 d15 0.200 r16 regulation ) d16 23.776 ~ 10.154 ~ 2.500 r17 * -44.759 d17 4.000 N8 1.84666 ν8 23.82 r18 * -23.675 d18 3.600 r19 -14.620 d19 1.302 N9 1.67003 ν9 47.15 r20 125.845 Σd = 76.954 ~ 76.955 ~ 76.955

【0205】[非球面係数] r2 : ε= 1.0000 A4=-0.72513×10-6 A6= 0.27339×10-8 A8=-0.43931×10-10 A10= 0.20537×10-12 A12=-0.40923×10-15 r5 : ε= 1.0000 A4= 0.15645×10-4 A6= 0.90716×10-7 A8=-0.12069×10-9 A10=-0.18612×10-11 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.32037×10-4 A6= 0.12256×10-6 A8= 0.28467×10-8 A10=-0.12153×10-10 A12=-0.11544×10-12 r15: ε= 1.0000 A4= 0.56687×10-5 A6= 0.67729×10-6 A8=-0.17843×10-7 A10= 0.20784×10-9 A12=-0.22445×10-12 r17: ε= 1.0000 A4=-0.21161×10-5 A6=-0.96065×10-7 A8= 0.53593×10-8 A10=-0.23460×10-10 A12=-0.10282×10-13 r18: ε= 1.0000 A4=-0.15685×10-4 A6=-0.13645×10-6 A8= 0.22253×10-8 A10= 0.15154×10-10A12=−0.13329×10-12 [0205] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.72513 × 10 -6 A6 = 0.27339 × 10 -8 A8 = -0.43931 × 10 -10 A10 = 0.20537 × 10 -12 A12 = -0.40923 × 10 - 15 r5: ε = 1.0000 A4 = 0.15645 × 10 -4 A6 = 0.90716 × 10 -7 A8 = -0.12069 × 10 -9 A10 = -0.18612 × 10 -11 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.32037 × 10 -4 A6 = 0.12256 × 10 -6 A8 = 0.28467 × 10 -8 A10 = -0.12153 × 10 -10 A12 = -0.11544 × 10 -12 r15: ε = 1.0000 A4 = 0.56687 × 10 -5 A6 = 0.67729 × 10 -6 A8 = -0.17843 × 10 -7 A10 = 0.20784 × 10 -9 A12 = -0.22445 × 10 -12 r17: ε = 1.0000 A4 = -0.21161 × 10 -5 A6 = -0.96065 × 10 -7 A8 = 0.53593 × 10 -8 A10 = -0.23460 × 10 -10 A12 = -0.10282 × 10 -13 r18: ε = 1.0000 A4 = -0.15685 × 10 -4 A6 = -0.13645 × 10 -6 A8 = 0.22253 × 10 -8 A10 = 0.15154 × 10 -10 A12 = -0.13329 × 10 -12

【0206】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5728×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4468×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1465×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3413×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6738×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1219×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2092×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3445×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5515×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.8846×10-4 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.5728 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4468 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1465 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.3413 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.6738 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1219 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.2092 × 10 -4 y = 10.6400… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3445 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5515 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y ( ) -X0 (y)} / dy = 0.8846 × 10 -4

【0207】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1582×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1304×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4612×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1160×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2420×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4460×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7461×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1141×10-2 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1579×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1895×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1582×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1304 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4612 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1160 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2420 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4460 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7461 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1141 × 10 -2 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1579 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1895 × 10 -2

【0208】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1596×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1296×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4493×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1112×10-3 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2313×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4336×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7569×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1243×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1910×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2680×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1596 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1296 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4493 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.1112 × 10 -3 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2313 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4336 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.7569 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1243 × 10 -2 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1910 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2680 × 10 -2

【0209】 [条件式(14)の対応値(第3群Gr3中のr15の非球面)] y= 0.6723 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1405×10-6 y= 1.3446 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1357×10-5 y= 2.0170 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5729×10-5 y= 2.6893 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1666×10-4 y= 3.3616 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3824×10-4 y= 4.0339 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7408×10-4 y= 4.7062 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1271×10-3 y= 5.3785 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2033×10-3 y= 6.0509 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3233×10-3 y= 6.7232 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5475×10-3 [Corresponding value of conditional expression (14) (aspherical surface of r15 in the third group Gr3)] y = 0.6723 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1405×10 -6 y = 1.3446… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1357 × 10 -5 y = 2.0170… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5729 × 10 -5 y = 2.6893… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1666 × 10 -4 y = 3.3616… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3824 × 10 -4 y = 4.0339… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.7408 × 10 -4 y = 4.7062… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.1271 × 10 -3 y = 5.3785… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.2033 × 10 -3 y = 6.0509… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3233 × 10 -3 y = 6.7232… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.5475 × 10 -3

【0210】 [条件式(16)の対応値(第4群Gr4中のr17の非球面)] y= 1.1600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3836×10-6 y= 2.3200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3470×10-5 y= 3.4800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1082×10-4 y= 4.6400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.9023×10-5 y= 5.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6057×10-4 y= 6.9600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3334×10-3 y= 8.1200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1010×10-2 y= 9.2800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2213×10-2 y=10.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3567×10-2 y=11.6000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3276×10-2 [Corresponding value of conditional expression (16) (aspherical surface of r17 in the fourth group Gr4)] y = 1.1600 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.3836 × 10 -6 y = 2.3200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3470 × 10 -5 y = 3.4800… φ4 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1082 × 10 -4 y = 4.6400… φ4 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.9023 × 10 -5 y = 5.8000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6057 × 10 -4 y = 6.9600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3334 × 10 -3 y = 8.1200… φ4 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = -0.1010 × 10 -2 y = 9.2800 ... φ4 · (N'-N) · d {(X (y) -X0 (y)} / dy = -0.2213 × 10 - 2 y = 10.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3567 × 10 -2 y = 11.6000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3276 × 10 -2

【0211】 [条件式(16)の対応値(第4群Gr4中のr18の非球面)] y= 1.2000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2960×10-5 y= 2.4000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2478×10-4 y= 3.6000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8768×10-4 y= 4.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2098×10-3 y= 6.0000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3751×10-3 y= 7.2000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4783×10-3 y= 8.4000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2906×10-3 y= 9.6000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3856×10-3 y=10.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.9593×10-3 y=12.0000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2165×10-2 [Corresponding Value of Conditional Expression (16) (Aspherical Surface of r18 in Fourth Group Gr4)] y = 1.2000 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.2960×10 -5 y = 2.4000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2478 × 10 -4 y = 3.6000… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8768 × 10 -4 y = 4.8000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2098 × 10 -3 y = 6.0000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3751 × 10 -3 y = 7.2000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4783 × 10 -3 y = 8.4000… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.2906 × 10 -3 y = 9.6000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3856 × 10 -3 y = 10.8000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.9593 × 10 -3 y = 12.0000… φ4 ・ (N'-N)・ D {(X (y) -X0 (y)} / dy = -0.2165 × 10 -2

【0212】《実施例4》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.80 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 33.989 d1 1.600 N1 1.84666 ν1 23.82 r2* 25.220 d2 0.700 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 957.258 d4 4.442〜20.099〜31.631 r5* -49.231 d5 1.400 N3 1.80500 ν3 40.97 r6 13.245 d6 0.500 r7 13.812 d7 4.500 N4 1.78472 ν4 25.75 r8* 147.273 d8 7.000〜5.200〜1.500 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.200 r11 ∞(絞り) d11 0.500 r12 24.323 d12 1.735 N6 1.84666 ν6 23.82 r13 14.525 d13 0.300 r14 14.914 d14 4.700 N7 1.51728 ν7 69.43 r15* -19.925 d15 0.200 r16 ∞(光束規制板) d16 24.189〜10.333〜2.500 r17* -42.343 d17 4.000 N8 1.84666 ν8 23.82 r18* -23.268 d18 3.600 r19 -14.642 d19 1.302 N9 1.67003 ν9 47.15 r20 145.338 Σd = 76.868〜76.868〜76.868Example 4 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.80 [radius of curvature] [axis upper surface spacing] [refractive index] [Abbe number] r1 33.989 d1 1.600 N1 1.84666 ν1 23.82 r2 * 25.220 d2 0.700 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 957.258 d4 4.442 ~ 20.099 ~ 31.631 r5 * -49.231 d5 1.400 N3 1.80500 ν3 40.97 r6 13.245 d6 0.500 r7 13.812 d7 4.500 N8 1.78472 ν4 25.75 r8 * 147.147 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.200 r11 ∞ (diaphragm) d11 0.500 r12 24.323 d12 1.735 N6 1.84666 ν6 23.82 r13 14.525 d13 0.300 r14 14.914 d14 4.700 N7 1.51728 ν7 69.43 r15 * -19.925 d15 0.200 r16 plate ) d16 24.189 ~ 10.333 ~ 2.500 r17 * -42.343 d17 4.000 N8 1.84666 ν8 23.82 r18 * -23.268 d18 3.600 r19 -14.642 d19 1.302 N9 1.67003 ν9 47.15 r20 145.338 Σd = 76.868 ~ 76.868 ~ 76.868

【0213】[非球面係数] r2 : ε= 1.0000 A4=-0.73453×10-6 A6= 0.41169×10-8 A8=-0.67955×10-10 A10= 0.37799×10-12 A12=-0.83384×10-15 r5 : ε= 1.0000 A4= 0.15343×10-4 A6= 0.77008×10-7 A8= 0.60256×10-10 A10=-0.28371×10-11 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.30088×10-4 A6= 0.11694×10-6 A8= 0.27404×10-8 A10=-0.12391×10-10 A12=-0.11980×10-12 r15: ε= 1.0000 A4= 0.42446×10-5 A6= 0.67465×10-6 A8=-0.18019×10-7 A10= 0.20833×10-9 A12=-0.21206×10-12 r17: ε= 1.0000 A4=-0.24741×10-5 A6=-0.83493×10-7 A8= 0.55732×10-8 A10=-0.25775×10-10 A12=-0.11310×10-14 r18: ε= 1.0000 A4=-0.15950×10-4 A6=-0.11930×10-6 A8= 0.21416×10-8 A10= 0.15488×10-10 A12=-0.13287×10-12 [0213] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.73453 × 10 -6 A6 = 0.41169 × 10 -8 A8 = -0.67955 × 10 -10 A10 = 0.37799 × 10 -12 A12 = -0.83384 × 10 - 15 r5: ε = 1.0000 A4 = 0.15343 × 10 -4 A6 = 0.77008 × 10 -7 A8 = 0.60256 × 10 -10 A10 = -0.28371 × 10 -11 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.30088 × 10 -4 A6 = 0.11694 × 10 -6 A8 = 0.27404 × 10 -8 A10 = -0.12391 × 10 -10 A12 = -0.11980 × 10 -12 r15: ε = 1.0000 A4 = 0.42446 × 10 -5 A6 = 0.67465 × 10 -6 A8 = -0.180 19 × 10 -7 A10 = 0.20833 × 10 -9 A12 = -0.21206 × 10 -12 r17: ε = 1.0000 A4 = -0.24741 × 10 -5 A6 = -0.83493 × 10 -7 A8 = 0.55732 × 10 -8 A10 = -0.25775 × 10 -10 A12 = -0.113 10 × 10 -14 r18: ε = 1.0000 A4 = -0.15950 × 10 -4 A6 = -0.11930 × 10 -6 A8 = 0.21416 × 10 -8 A10 = 0.15488 × 10 -10 A12 = -0.13287 × 10 -12

【0214】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5774×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4449×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1436×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3312×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6531×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1188×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2041×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3337×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5317×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.8881×10-4 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.5774 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4449 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1436 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.3312 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.6531 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1188 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.2041 × 10 -4 y = 10.6400… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3337 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5317 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y ( ) -X0 (y)} / dy = 0.8881 × 10 -4

【0215】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1549×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1273×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4481×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1123×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2338×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4306×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7202×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1098×10-2 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1498×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1722×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1549×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1273 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4481 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1123 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2338 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4306 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7202 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1098 × 10 -2 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1498 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1722 × 10 -2

【0216】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1499×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1217×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4223×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1046×10-3 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2177×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4084×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7125×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1167×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1780×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2457×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1499 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1217 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4223 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.1046 × 10 -3 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2177 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4084 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.7125 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1167 × 10 -2 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1780 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2457 × 10 -2

【0217】 [条件式(14)の対応値(第3群Gr3中のr15の非球面)] y= 0.6723 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1077×10-6 y= 1.3446 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1094×10-5 y= 2.0170 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4833×10-5 y= 2.6893 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1450×10-4 y= 3.3616 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3391×10-4 y= 4.0339 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6627×10-4 y= 4.7062 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1140×10-3 y= 5.3785 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1824×10-3 y= 6.0509 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2912×10-3 y= 6.7232 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5003×10-3 [Corresponding value of conditional expression (14) (aspherical surface of r15 in the third group Gr3)] y = 0.6723 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1077×10 -6 y = 1.3446… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1094 × 10 -5 y = 2.0170… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4833 × 10 -5 y = 2.6893… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1450 × 10 -4 y = 3.3616… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3391 × 10 -4 y = 4.0339… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6627 × 10 -4 y = 4.7062… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.1140 × 10 -3 y = 5.3785… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1824 × 10 -3 y = 6.0509… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2912 × 10 -3 y = 6.7232… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.5003 × 10 -3

【0218】 [条件式(16)の対応値(第4群Gr4中のr17の非球面)] y= 1.1600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4356×10-6 y= 2.3200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3768×10-5 y= 3.4800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1108×10-4 y= 4.6400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6884×10-5 y= 5.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7203×10-4 y= 6.9600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3685×10-3 y= 8.1200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1093×10-2 y= 9.2800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2387×10-2 y=10.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3921×10-2 y=11.6000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4051×10-2 [Corresponding value of conditional expression (16) (aspherical surface of r17 in the fourth group Gr4)] y = 1.1600 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.4356 × 10 -6 y = 2.3200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3768 × 10 -5 y = 3.4800… φ4 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1108 × 10 -4 y = 4.6400… φ4 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.6884 × 10 -5 y = 5.8000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.7203 × 10 -4 y = 6.9600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3685 × 10 -3 y = 8.1200… φ4 ・ (N'-N) ・ d {(X (y ( ) -X0 (y)} / dy = -0.1093 × 10 -2 y = 9.2800 ... φ4 · (N'-N) · d {(X (y) -X0 (y)} / dy = -0.2387 × 10 - 2 y = 10.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3921 × 10 -2 y = 11.6000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4051 × 10 -2

【0219】 [条件式(16)の対応値(第4群Gr4中のr18の非球面)] y= 1.2000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2979×10-5 y= 2.4000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2476×10-4 y= 3.6000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8677×10-4 y= 4.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2052×10-3 y= 6.0000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3610×10-3 y= 7.2000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4449×10-3 y= 8.4000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2227×10-3 y= 9.6000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5168×10-3 y=10.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1222×10-2 y=12.0000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1596×10-2 [Corresponding value of conditional expression (16) (aspherical surface of r18 in the fourth group Gr4)] y = 1.2000 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.2979×10 -5 y = 2.4000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2476 × 10 -4 y = 3.6000… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8677 × 10 -4 y = 4.8000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2052 × 10 -3 y = 6.0000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3610 × 10 -3 y = 7.2000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4449 × 10 -3 y = 8.4000… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.2227 × 10 -3 y = 9.6000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5168 × 10 -3 y = 10.8000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1222 × 10 -2 y = 12.0000… φ4 ・ (N'-N)・ D {(X (y) -X0 (y)} / dy = -0.1596 × 10 -2

【0220】《実施例5》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 32.314 d1 2.500 N1 1.84666 ν1 23.82 r2* 24.370 d2 0.500 r3 27.548 d3 4.803 N2 1.51680 ν2 64.20 r4 640.381 d4 3.240〜19.240〜36.240 r5* -53.447 d5 1.700 N3 1.80700 ν3 39.79 r6 13.245 d6 0.400 r7 13.812 d7 4.500 N4 1.78472 ν4 25.75 r8* 83.179 d8 9.000〜6.867〜1.388 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.700 r11 ∞(絞り) d11 0.500 r12 21.427 d12 1.735 N6 1.84666 ν6 23.82 r13 13.712 d13 0.300 r14 14.360 d14 4.700 N7 1.51728 ν7 69.43 r15* -21.848 d15 0.200 r16 ∞(光束規制板) d16 24.339〜10.741〜2.500 r17* -91.233 d17 4.500 N8 1.84666 ν8 23.82 r18* -26.641 d18 3.500 r19 -14.378 d19 1.200 N9 1.74400 ν9 44.93 r20 130.803 Σd = 79.312〜79.586〜82.866Example 5 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axis upper surface interval] [refractive index] [Abbe number] r1 32.314 d1 2.500 N1 1.84666 ν1 23.82 r2 * 24.370 d2 0.500 r3 27.548 d3 4.803 N2 1.51680 ν2 64.20 r4 640.381 d4 3.240〜19.240〜36.240 r5 * -53.447 d5 1.700 N3 1.80700 ν3 39.79 r6 13.245 d6 0.400 r7 13.812 d7 4.500 n4 1.78472 ν4 25.75 r8 * 8 9.79 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.700 r11 ∞ (aperture) d11 0.500 r12 21.427 d12 1.735 N6 1.84666 ν6 23.82 r13 13.712 d13 0.300 r14 14.360 d14 4.700 N7 1.51728 ν7 69.43 r15 * -21.848 d15 0.200 r16 plate ) d16 24.339 ~ 10.741 ~ 2.500 r17 * -91.233 d17 4.500 N8 1.84666 ν8 23.82 r18 * -26.641 d18 3.500 r19 -14.378 d19 1.200 N9 1.74400 ν9 44.93 r20 130.803 Σd = 79.312 ~ 79.586 ~ 82.866

【0221】[非球面係数] r2 : ε= 1.0000 A4=-0.10486×10-5 A6= 0.13352×10-7 A8=-0.20956×10-9 A10= 0.12744×10-11 A12=-0.28614×10-14 r5 : ε= 1.0000 A4= 0.15438×10-4 A6=-0.85441×10-8 A8= 0.38520×10-9 A10=-0.17754×10-11 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.27189×10-4 A6= 0.10225×10-7 A8= 0.22886×10-8 A10=-0.11306×10-10 A12=-0.29531×10-13 r15: ε= 1.0000 A4= 0.93563×10-5 A6= 0.41482×10-6 A8=-0.17017×10-7 A10= 0.22823×10-9 A12=-0.46080×10-13 r17: ε= 1.0000 A4= 0.60640×10-5 A6=-0.10928×10-6 A8= 0.35619×10-8 A10=-0.17088×10-10 A12=-0.99510×10-14 r18: ε= 1.0000 A4=-0.16264×10-4 A6=-0.13371×10-6 A8= 0.18474×10-8 A10= 0.56204×10-11 A12=-0.99199×10-13 [0221] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.10486 × 10 -5 A6 = 0.13352 × 10 -7 A8 = -0.20956 × 10 -9 A10 = 0.12744 × 10 -11 A12 = -0.28614 × 10 - 14 r5: ε = 1.0000 A4 = 0.15438 × 10 -4 A6 = -0.85441 × 10 -8 A8 = 0.38520 × 10 -9 A10 = -0.17754 × 10 -11 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.27189 × 10 -4 A6 = 0.10225 × 10 -7 A8 = 0.22886 × 10 -8 A10 = -0.11306 × 10 -10 A12 = -0.29531 × 10 -13 r15: ε = 1.0000 A4 = 0.93563 × 10 -5 A6 = 0.41482 × 10 -6 A8 = -0.17017 × 10 -7 A10 = 0.22823 × 10 -9 A12 = -0.46080 × 10 -13 r17: ε = 1.0000 A4 = 0.60640 × 10 -5 A6 = -0.10928 × 10 -6 A8 = 0.35619 × 10 -8 A10 = -0.17088 × 10 -10 A12 = -0.99510 × 10 -14 r18: ε = 1.0000 A4 = -0.16264 × 10 -4 A6 = -0.13371 × 10 -6 A8 = 0.18474 × 10 -8 A10 = 0.56204 × 10 -11 A12 = -0.99199 × 10 -13

【0222】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.8164×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5967×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1790×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3867×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7443×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1376×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2405×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3875×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6044×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1120×10-3 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.8164 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5967 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1790 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.3867 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.7443 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1376 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.2405 × 10 -4 y = 10.6400… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3875 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.6044 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.1120 × 10 -3

【0223】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1793×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1431×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4827×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1149×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2268×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3997×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6510×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9929×10-3 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1412×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1822×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1793×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1431 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4827 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1149 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2268 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3997 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.6510 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.9929 × 10 -3 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1412 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1822 × 10 -2

【0224】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1563×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1254×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4266×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1029×10-3 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2077×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3771×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6395×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1029×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1574×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2264×10−2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1563 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1254 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4266 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.1029 × 10 -3 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2077 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3771 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.6395 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1029 × 10 -2 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1574 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2264 × 10 −2

【0225】 [条件式(14)の対応値(第3群Gr3中のr15の非球面)] y= 0.6349 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1871×10-6 y= 1.2698 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1602×10-5 y= 1.9047 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5889×10-5 y= 2.5396 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1510×10-4 y= 3.1744 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3106×10-4 y= 3.8093 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5453×10-4 y= 4.4442 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8518×10-4 y= 5.0791 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1246×10-3 y= 5.7140 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1860×10-3 y= 6.3489 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3146×10-3 [Corresponding Value of Conditional Expression (14) (Aspherical Surface of r15 in Third Group Gr3)] y = 0.6349 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1871×10 -6 y = 1.2698… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1602 × 10 -5 y = 1.9047… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5889 × 10 -5 y = 2.5396… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1510 × 10 -4 y = 3.1744… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3106 × 10 -4 y = 3.8093… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5453 × 10 -4 y = 4.4442… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8518 × 10 -4 y = 5.0791… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1246 × 10 -3 y = 5.7140… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1860 × 10 -3 y = 6.3489… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.3146 × 10 -3

【0226】 [条件式(16)の対応値(第4群Gr4中のr17の非球面)] y= 1.1200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8643×10-6 y= 2.2400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6379×10-5 y= 3.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2011×10-4 y= 4.4800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4989×10-4 y= 5.6000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1212×10-3 y= 6.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2904×10-3 y= 7.8400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6342×10-3 y= 8.9600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1167×10-2 y=10.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1606×10-2 y=11.2000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8664×10-3 [Corresponding value of conditional expression (16) (aspherical surface of r17 in the fourth group Gr4)] y = 1.1200 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.8643×10 -6 y = 2.2400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6379 × 10 -5 y = 3.3600… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2011 × 10 -4 y = 4.4800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4989 × 10 -4 y = 5.6000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1212 × 10 -3 y = 6.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2904 × 10 -3 y = 7.8400… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.6342 × 10 -3 y = 8.9600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1167 × 10 -2 y = 10.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1606 × 10 -2 y = 11.2000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.8664 × 10 -3

【0227】 [条件式(16)の対応値(第4群Gr4中のr18の非球面)] y= 1.1800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2847×10-5 y= 2.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2378×10-4 y= 3.5400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8451×10-4 y= 4.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2074×10-3 y= 5.9000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4006×10-3 y= 7.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6376×10-3 y= 8.2600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8703×10-3 y= 9.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1201×10-2 y=10.6200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2496×10-2 y=11.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8005×10-2 [Corresponding value of conditional expression (16) (aspherical surface of r18 in the fourth group Gr4)] y = 1.1800 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.2847×10 -5 y = 2.3600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2378 × 10 -4 y = 3.5400… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8451 × 10 -4 y = 4.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2074 × 10 -3 y = 5.9000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4006 × 10 -3 y = 7.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6376 × 10 -3 y = 8.2600… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8703 × 10 -3 y = 9.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1201 × 10 -2 y = 10.6200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2496 × 10 -2 y = 11.8000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.8005 × 10 -2

【0228】《実施例6》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 31.822 d1 2.000 N1 1.84666 ν1 23.82 r2* 24.038 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 714.291 d4 1.500〜17.500〜36.500 r5* -53.899 d5 1.600 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r8* 111.088 d8 8.500〜6.065〜0.995 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.200 r11 ∞(絞り) d11 0.500 r12 22.991 d12 1.735 N6 1.84666 ν6 23.82 r13 14.003 d13 0.300 r14 14.451 d14 4.700 N7 1.51728 ν7 69.43 r15* -21.067 d15 0.200 r16 ∞(光束規制板) d16 23.869〜10.875〜2.700 r17* -80.435 d17 4.400 N8 1.84666 ν8 23.82 r18* -25.446 d18 3.300 r19 -14.082 d19 1.302 N9 1.74400 ν9 44.93 r20 119.136 Σd = 75.706〜76.277〜82.632Example 6 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axis upper surface spacing] [refractive index] [Abbe number] r1 31.822 d1 2.000 N1 1.84666 ν1 23.82 r2 * 24.038 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 714.291 d4 1.500〜17.500〜36.500 r5 * -53.899 d5 1.600 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r8 * 91.0888 1110 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.200 r11 ∞ (aperture) d11 0.500 r12 22.991 d12 1.735 N6 1.84666 ν6 23.82 r13 14.003 d13 0.300 r14 14.451 d14 4.700 N7 1.51728 ν7 69.43 r15 * -21.067 d15 0.200 r16 plate ) d16 23.869 to 10.875 to 2.700 r17 * -80.435 d17 4.400 N8 1.84666 ν8 23.82 r18 * -25.446 d18 3.300 r19 -14.082 d19 1.302 N9 1.74400 ν9 44.93 r20 119.136 Σd = 75.706 to 76.277 to 82.632

【0229】[非球面係数] r2 : ε= 1.0000 A4=-0.95844×10-6 A6= 0.43500×10-8 A8=-0.75930×10-10 A10= 0.40266×10-12 A12=-0.88228×10-15 r5 : ε= 1.0000 A4= 0.15591×10-4 A6= 0.46875×10-7 A8=-0.93570×10-11 A10=-0.85301×10-12 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.30441×10-4 A6= 0.58747×10-7 A8= 0.23924×10-8 A10=-0.12474×10-10 A12=-0.29758×10-13 r15: ε= 1.0000 A4= 0.73939×10-5 A6= 0.45904×10-6 A8=-0.16826×10-7 A10= 0.23028×10-9 A12=-0.30030×10-13 r17: ε= 1.0000 A4= 0.49253×10-5 A6=-0.10596×10-6 A8= 0.43371×10-8 A10=-0.22541×10-10 A12=-0.11971×10-13 r18: ε= 1.0000 A4=-0.18625×10-4 A6=-0.11558×10-6 A8= 0.19965×10-8 A10= 0.70729×10-11 A12=-0.12821×10-12 [0229] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.95844 × 10 -6 A6 = 0.43500 × 10 -8 A8 = -0.75930 × 10 -10 A10 = 0.40266 × 10 -12 A12 = -0.88228 × 10 - 15 r5: ε = 1.0000 A4 = 0.15591 × 10 -4 A6 = 0.46875 × 10 -7 A8 = -0.93570 × 10 -11 A10 = -0.85301 × 10 -12 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.30441 × 10 -4 A6 = 0.58747 × 10 -7 A8 = 0.23924 × 10 -8 A10 = -0.12474 × 10 -10 A12 = -0.29758 × 10 -13 r15: ε = 1.0000 A4 = 0.73939 × 10 -5 A6 = 0.45904 × 10 -6 A8 = -0.16826 × 10 -7 A10 = 0.23028 × 10 -9 A12 = -0.30030 × 10 -13 r17: ε = 1.0000 A4 = 0.49253 × 10 -5 A6 = -0.10596 × 10 -6 A8 = 0.43371 × 10 -8 A10 = -0.22541 × 10 -10 A12 = -0.11971 × 10 -13 r18: ε = 1.0000 A4 = -0.18625 × 10 -4 A6 = -0.11558 × 10 -6 A8 = 0.19965 × 10 -8 A10 = 0.70729 x 10 -11 A12 = -0.12821 x 10 -12

【0230】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7556×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5867×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1915×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4463×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.8872×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1623×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2811×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4656×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7533×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1257×10-3 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.7556 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5867 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1915 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.4463 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.8872 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1623 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.2811 × 10 -4 y = 10.6400… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4656 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.7533 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y ( ) -X0 (y)} / dy = 0.1257 × 10 -3

【0231】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1618×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1315×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4555×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1117×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2272×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4097×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6766×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1037×10-2 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1473×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1904×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1618×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1315 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4555 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1117 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2272 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4097 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.6766 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1037 × 10 -2 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1473 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1904 × 10 -2

【0232】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1558×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1256×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4308×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1051×10-3 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2144×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3939×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6747×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1095×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1689×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2454×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1558 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1256 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4308 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.1051 × 10 -3 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2144 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3939 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.6747 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1095 × 10 -2 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1689 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2454 × 10 -2

【0233】 [条件式(14)の対応値(第3群Gr3中のr15の非球面)] y= 0.5904 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1173×10-6 y= 1.1807 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1019×10-5 y= 1.7711 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3834×10-5 y= 2.3614 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1012×10-4 y= 2.9518 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2155×10-4 y= 3.5421 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3940×10-4 y= 4.1325 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6430×10-4 y= 4.7228 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9738×10-4 y= 5.3132 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1446×10-3 y= 5.9035 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2267×10-3 [Corresponding value of conditional expression (14) (aspherical surface of r15 in the third group Gr3)] y = 0.5904 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1173×10 -6 y = 1.1807… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1019 × 10 -5 y = 1.7711… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3834 × 10 -5 y = 2.3614… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.10 12 × 10 -4 y = 2.9518… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2155 × 10 -4 y = 3.5421… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3940 × 10 -4 y = 4.1325… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.6430 × 10 -4 y = 4.7228… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.9738 × 10 -4 y = 5.3132… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1446 × 10 -3 y = 5.9035… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2267 × 10 -3

【0234】 [条件式(16)の対応値(第4群Gr4中のr17の非球面)] y= 1.1100 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7140×10-6 y= 2.2200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5234×10-5 y= 3.3300 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1688×10-4 y= 4.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4554×10-4 y= 5.5500 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1238×10-3 y= 6.6600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3214×10-3 y= 7.7700 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7265×10-3 y= 8.8800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1334×10-2 y= 9.9900 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1743×10-2 y=11.1000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5032×10-3 [Corresponding value of conditional expression (16) (aspherical surface of r17 in the fourth group Gr4)] y = 1.1100 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.7140×10 -6 y = 2.2200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5234 × 10 -5 y = 3.3300… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1688 × 10 -4 y = 4.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4554 × 10 -4 y = 5.5500… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1238 × 10 -3 y = 6.6600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3214 × 10 -3 y = 7.7700… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7265 × 10 -3 y = 8.8800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1334 × 10 -2 y = 9.9900… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1743 × 10 -2 y = 11.1000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.5032 × 10 -3

【0235】 [条件式(16)の対応値(第4群Gr4中のr18の非球面)] y= 1.1800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3411×10-5 y= 2.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2816×10-4 y= 3.5400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9838×10-4 y= 4.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2362×10-3 y= 5.9000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4441×10-3 y= 7.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6831×10-3 y= 8.2600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9048×10-3 y= 9.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1307×10-2 y=10.6200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3198×10-2 y=11.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1125×10-1 [Corresponding value of conditional expression (16) (aspherical surface of r18 in the fourth group Gr4)] y = 1.1800 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.3411×10 -5 y = 2.3600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2816 × 10 -4 y = 3.5400… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9838 × 10 -4 y = 4.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2362 × 10 -3 y = 5.9000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4441 × 10 -3 y = 7.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6831 × 10 -3 y = 8.2600… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.9048 × 10 -3 y = 9.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1307 × 10 -2 y = 10.6200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3198 × 10 -2 y = 11.8000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1125 × 10 -1

【0236】《実施例7》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 32.525 d1 2.500 N1 1.84666 ν1 23.82 r2* 24.445 d2 0.500 r3 27.548 d3 4.803 N2 1.51680 ν2 64.20 r4 705.373 d4 3.240〜19.240〜36.240 r5* -53.635 d5 1.700 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.500 N4 1.78472 ν4 25.75 r8* 79.869 d8 9.000〜6.712〜1.137 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.700 r11 ∞(絞り) d11 0.500 r12 21.462 d12 1.735 N6 1.84666 ν6 23.82 r13 13.705 d13 0.300 r14 14.306 d14 4.700 N7 1.51728 ν7 69.43 r15* -21.883 d15 0.200 r16 ∞(光束規制板) d16 24.110〜10.676〜2.500 r17* -93.734 d17 4.500 N8 1.84666 ν8 23.82 r18* -26.808 d18 3.500 r19 -14.422 d19 1.200 N9 1.74400 ν9 44.93 r20 125.570 Σd = 79.189〜79.466〜82.715Example 7 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axis upper surface spacing] [refractive index] [Abbe number] r1 32.525 d1 2.500 N1 1.84666 ν1 23.82 r2 * 24.445 d2 0.500 r3 27.548 d3 4.803 N2 1.51680 ν2 64.20 r4 705.373 d4 3.240 ~ 19.240 ~ 36.240 r5 * -53.635 d5 1.700 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.500 n4 1.78472 ν4 25.75 r8 * 79.869 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.700 r11 ∞ (aperture) d11 0.500 r12 21.462 d12 1.735 N6 1.84666 ν6 23.82 r13 13.705 d13 0.300 r14 14.306 d14 4.700 N7 1.51728 ν7 69.43 r15 * -21.883 d15 0.200 r16 ) d16 24.11 to 10.676 to 2.500 r17 * -93.734 d17 4.500 N8 1.84666 ν8 23.82 r18 * -26.808 d18 3.500 r19 -14.422 d19 1.200 N9 1.74400 ν9 44.93 r20 125.570 Σd = 79.189 to 79.466 to 82.715

【0237】[非球面係数] r2 : ε= 1.0000 A4=-0.93771×10-6 A6= 0.98042×10-8 A8=-0.15774×10-9 A10= 0.95526×10-12 A12=-0.21664×10-14 r5 : ε= 1.0000 A4= 0.16117×10-4 A6=-0.82379×10-8 A8= 0.47967×10-9 A10=-0.23226×10-11 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.28766×10-4 A6= 0.31932×10-7 A8= 0.23659×10-8 A10=-0.11119×10-10 A12=-0.30194×10-13 r15: ε= 1.0000 A4= 0.10069×10-4 A6= 0.42316×10-6 A8=-0.16964×10-7 A10= 0.22839×10-9 A12=-0.46096×10-13 r17: ε= 1.0000 A4= 0.61828×10-5 A6=-0.11148×10-6 A8= 0.34762×10-8 A10=-0.16648×10-10 A12=-0.42342×10-14 r18: ε= 1.0000 A4=-0.15908×10-4 A6=-0.13729×10-6 A8= 0.17717×10-8 A10= 0.56731×10-11 A12=-0.91010×10-13 [0237] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.93771 × 10 -6 A6 = 0.98042 × 10 -8 A8 = -0.15774 × 10 -9 A10 = 0.95526 × 10 -12 A12 = -0.21664 × 10 - 14 r5: ε = 1.0000 A4 = 0.16117 × 10 -4 A6 = -0.82379 × 10 -8 A8 = 0.47967 × 10 -9 A10 = -0.23226 × 10 -11 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.28766 × 10 -4 A6 = 0.31932 × 10 -7 A8 = 0.23659 × 10 -8 A10 = -0.11119 × 10 -10 A12 = -0.30194 × 10 -13 r15: ε = 1.0000 A4 = 0.10069 × 10 -4 A6 = 0.42316 × 10 -6 A8 = -0.16964 × 10 -7 A10 = 0.22839 × 10 -9 A12 = -0.46096 × 10 -13 r17: ε = 1.0000 A4 = 0.61828 × 10 -5 A6 = -0.11148 × 10 -6 A8 = 0.34762 × 10 -8 A10 = -0.16648 × 10 -10 A12 = -0.42342 × 10 -14 r18: ε = 1.0000 A4 = -0.15908 × 10 -4 A6 = -0.13729 × 10 -6 A8 = 0.17717 × 10 -8 A10 = 0.56731 × 10 -11 A12 = -0.91010 × 10 -13

【0238】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7344×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5463×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1682×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3730×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7269×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1340×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2332×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3785×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5993×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1088×10-3 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.7344 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5463 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1682 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.3730 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.7269 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1340 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.2332 × 10 -4 y = 10.6400… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3785 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5993 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.1088 × 10 -3

【0239】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5173×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4132×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1395×10-3 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3328×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6600×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1170×10-2 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1918×10-2 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2942×10-2 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4196×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5392×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.5173×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4132 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1395 × 10 -3 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3328 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6600 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1170 × 10 -2 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.1918 × 10 -2 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.2942 × 10 -2 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4196 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.5392 × 10 -2

【0240】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2881×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2317×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7914×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1920×10-3 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3897×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7124×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1217×10-2 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1973×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3048×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4449×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.288 1 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2317 × 10 -4 y = 2.6100… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.7914 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1920 × 10 -3 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3897 × 10 -3 y = 5.2200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.7124 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.1217 × 10 -2 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1973 × 10 -2 y = 7.8300… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3048 × 10 -2 y = 8.7000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.4449 × 10 -2

【0241】 [条件式(14)の対応値(第3群Gr3中のr15の非球面)] y= 0.6349 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2011×10-6 y= 1.2698 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1716×10-5 y= 1.9047 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6288×10-5 y= 2.5396 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1609×10-4 y= 3.1744 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3313×10-4 y= 3.8093 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5839×10-4 y= 4.4442 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9189×10-4 y= 5.0791 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1357×10-3 y= 5.7140 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2037×10-3 y= 6.3489 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3421×10-3 [Corresponding Value of Conditional Expression (14) (Aspherical Surface of r15 in Third Group Gr3)] y = 0.6349 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.2011×10 -6 y = 1.2698… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1716 × 10 -5 y = 1.9047… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6288 × 10 -5 y = 2.5396… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1609 × 10 -4 y = 3.1744… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3313 × 10 -4 y = 3.8093… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5839 × 10 -4 y = 4.4442… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.9189 × 10 -4 y = 5.0791… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1357 × 10 -3 y = 5.7140… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2037 × 10 -3 y = 6.3489… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.3421 × 10 -3

【0242】 [条件式(16)の対応値(第4群Gr4中のr17の非球面)] y= 1.1200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8814×10-6 y= 2.2400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6497×10-5 y= 3.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2037×10-4 y= 4.4800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4985×10-4 y= 5.6000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1193×10-3 y= 6.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2839×10-3 y= 7.8400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6227×10-3 y= 8.9600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1169×10-2 y=10.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1713×10-2 y=11.2000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1371×10-2 [Corresponding value of conditional expression (16) (aspherical surface of r17 in the fourth group Gr4)] y = 1.1200 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.8814×10 -6 y = 2.2400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6497 × 10 -5 y = 3.3600… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2037 × 10 -4 y = 4.4800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4985 × 10 -4 y = 5.6000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1193 × 10 -3 y = 6.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2839 × 10 -3 y = 7.8400… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.6227 × 10 -3 y = 8.9600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1169 × 10 -2 y = 10.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1713 × 10 -2 y = 11.2000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1371 × 10 -2

【0243】 [条件式(16)の対応値(第4群Gr4中のr18の非球面)] y= 1.1800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2788×10-5 y= 2.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2335×10-4 y= 3.5400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8330×10-4 y= 4.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2056×10-3 y= 5.9000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4002×10-3 y= 7.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6424×10-3 y= 8.2600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8789×10-3 y= 9.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1173×10-2 y=10.6200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2247×10-2 y=11.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6929×10-2 [Corresponding value of conditional expression (16) (aspherical surface of r18 in the fourth group Gr4)] y = 1.1800 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.2788×10 -5 y = 2.3600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2335 × 10 -4 y = 3.5400… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8330 × 10 -4 y = 4.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2056 × 10 -3 y = 5.9000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4002 × 10 -3 y = 7.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6424 × 10 -3 y = 8.2600… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8789 × 10 -3 y = 9.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1173 × 10 -2 y = 10.6200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2247 × 10 -2 y = 11.8000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.6929 × 10 -2

【0244】《実施例8》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 32.044 d1 2.000 N1 1.84666 ν1 23.82 r2* 24.268 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 595.249 d4 2.000〜18.000〜37.000 r5* -53.559 d5 1.500 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r8* 112.354 d8 8.300〜6.072〜1.156 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.200 r11 ∞(絞り) d11 0.500 r12 23.170 d12 1.735 N6 1.84666 ν6 23.82 r13 14.086 d13 0.300 r14 14.529 d14 4.700 N7 1.51728 ν7 69.43 r15* -20.959 d15 0.200 r16 ∞(光束規制板) d16 24.215〜10.993〜2.500 r17* -73.362 d17 4.400 N8 1.84666 ν8 23.82 r18* -25.000 d18 3.300 r19 -14.037 d19 1.302 N9 1.74400 ν9 44.93 r20 137.571 Σd = 76.252〜76.802〜82.393Example 8 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axis upper surface spacing] [refractive index] [Abbe number] r1 32.044 d1 2.000 N1 1.84666 ν1 23.82 r2 * 24.268 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 595.249 d4 2.000 ~ 18.000 ~ 37.000 r5 * -53.559 d5 1.500 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 n4 1.78472 ν4 25.75 r8 * 9 112.354 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.200 r11 ∞ (aperture) d11 0.500 r12 23.170 d12 1.735 N6 1.84666 ν6 23.82 r13 14.086 d13 0.300 r14 14.529 d14 4.700 N7 1.51728 ν7 69.43 r15 * -20.959 d15 0.200 r regulation ) d16 24.215 ~ 10.993 ~ 2.500 r17 * -73.362 d17 4.400 N8 1.84666 ν8 23.82 r18 * -25.000 d18 3.300 r19 -14.037 d19 1.302 N9 1.74400 ν9 44.93 r20 137.571 Σd = 76.252 ~ 76.802 ~ 82.393

【0245】[非球面係数] r2 : ε= 1.0000 A4=-0.87731×10-6 A6= 0.41058×10-8 A8=-0.66650×10-10 A10= 0.33563×10-12 A12=-0.69904×10-15 r5 : ε= 1.0000 A4= 0.18292×10-4 A6= 0.32136×10-7 A8= 0.40496×10-10 A10=-0.89038×10-12 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.33547×10-4 A6= 0.44905×10-7 A8= 0.23663×10-8 A10=-0.11858×10-10 A12=-0.27406×10-13 r15: ε= 1.0000 A4= 0.64880×10-5 A6= 0.46968×10-6 A8=-0.16718×10-7 A10= 0.23128×10-9 A12=-0.23623×10-13 r17: ε= 1.0000 A4= 0.36354×10-5 A6=-0.96702×10-7 A8= 0.44527×10-8 A10=-0.23713×10-10 A12=-0.66305×10-14 r18: ε= 1.0000 A4=-0.18864×10-4 A6=-0.12379×10-6 A8= 0.21540×10-8 A10= 0.76630×10-11 A12=-0.13383×10-12 [0245] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.87731 × 10 -6 A6 = 0.41058 × 10 -8 A8 = -0.66650 × 10 -10 A10 = 0.33563 × 10 -12 A12 = -0.69904 × 10 - 15 r5: ε = 1.0000 A4 = 0.18292 × 10 -4 A6 = 0.32136 × 10 -7 A8 = 0.40496 × 10 -10 A10 = -0.89038 × 10 -12 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.33547 × 10 -4 A6 = 0.44905 × 10 -7 A8 = 0.23663 × 10 -8 A10 = -0.11858 × 10 -10 A12 = -0.27406 × 10 -13 r15: ε = 1.0000 A4 = 0.64880 × 10 -5 A6 = 0.46968 × 10 -6 A8 = -0.16718 × 10 -7 A10 = 0.23128 × 10 -9 A12 = -0.23623 × 10 -13 r17: ε = 1.0000 A4 = 0.36354 × 10 -5 A6 = -0.96702 × 10 -7 A8 = 0.44527 × 10 -8 A10 = -0.237 13 × 10 -10 A12 = -0.66305 × 10 -14 r18: ε = 1.0000 A4 = -0.18864 × 10 -4 A6 = -0.12379 × 10 -6 A8 = 0.21540 × 10 -8 A10 = 0.76630 × 10 -11 A12 = -0.13383 × 10 -12

【0246】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6913×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5360×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1744×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4043×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7986×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1453×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2508×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4147×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6670×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1091×10-3 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.6913 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5360 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1744 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.4043 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.7986 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1453 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.2508 × 10 -4 y = 10.6400 ... φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4147 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.6670 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.1091 × 10 -3

【0247】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1895×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1530×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5245×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1270×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2547×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4527×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7380×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1119×10-2 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1579×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2041×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1895×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1530 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5245 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1270 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2547 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4527 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7380 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1119 × 10 -2 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1579 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2041 × 10 -2

【0248】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1715×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1380×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4717×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1144×10-3 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2317×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4218×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7160×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1153×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1767×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2563×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1715 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1380 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4717 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.1144 × 10 -3 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2317 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4218 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.7160 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1153 × 10 -2 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1767 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2563 × 10 -2

【0249】 [条件式(14)の対応値(第3群Gr3中のr15の非球面)] y= 0.5830 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9953×10-7 y= 1.1660 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8746×10-6 y= 1.7490 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3336×10-5 y= 2.3321 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8928×10-5 y= 2.9151 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1927×10-4 y= 3.4981 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3568×10-4 y= 4.0811 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5896×10-4 y= 4.6641 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9040×10-4 y= 5.2471 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1356×10-3 y= 5.8302 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2134×10-3 [Corresponding Value of Conditional Expression (14) (Aspherical Surface of r15 in Third Group Gr3)] y = 0.5830 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.9953×10 -7 y = 1.1660… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8746 × 10 -6 y = 1.7490… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3336 × 10 -5 y = 2.3321… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8928 × 10 -5 y = 2.9151… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1927 × 10 -4 y = 3.4981… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3568 × 10 -4 y = 4.0811… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.5896 × 10 -4 y = 4.6641… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.9040 × 10 -4 y = 5.2471… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1356 × 10 -3 y = 5.8302… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2134 × 10 -3

【0250】 [条件式(16)の対応値(第4群Gr4中のr17の非球面)] y= 1.1100 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5205×10-6 y= 2.2200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3756×10-5 y= 3.3300 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1232×10-4 y= 4.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3628×10-4 y= 5.5500 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1100×10-3 y= 6.6600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3069×10-3 y= 7.7700 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7218×10-3 y= 8.8800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1362×10-2 y= 9.9900 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1854×10-2 y=11.1000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8232×10-3 [Corresponding value of conditional expression (16) (aspherical surface of r17 in the fourth group Gr4)] y = 1.1100 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.5205×10 -6 y = 2.2200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3756 × 10 -5 y = 3.3300… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1232 × 10 -4 y = 4.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3628 × 10 -4 y = 5.5500… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1100 × 10 -3 y = 6.6600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3069 × 10 -3 y = 7.7700… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7218 × 10 -3 y = 8.8800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1362 × 10 -2 y = 9.9900… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1854 × 10 -2 y = 11.1000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.8232 × 10 -3

【0251】 [条件式(16)の対応値(第4群Gr4中のr18の非球面)] y= 1.1800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3445×10-5 y= 2.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2849×10-4 y= 3.5400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9968×10-4 y= 4.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2393×10-3 y= 5.9000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4480×10-3 y= 7.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6800×10-3 y= 8.2600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8712×10-3 y= 9.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1196×10-2 y=10.6200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2954×10-2 y=11.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1088×10-1 [Corresponding value of conditional expression (16) (aspherical surface of r18 in the fourth group Gr4)] y = 1.1800 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.3445×10 -5 y = 2.3600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2849 × 10 -4 y = 3.5400… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9968 × 10 -4 y = 4.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2393 × 10 -3 y = 5.9000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4480 × 10 -3 y = 7.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6800 × 10 -3 y = 8.2600… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8712 × 10 -3 y = 9.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1196 × 10 -2 y = 10.6200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2954 × 10 -2 y = 11.8000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1088 × 10 -1

【0252】《実施例9》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 31.928 d1 1.800 N1 1.84666 ν1 23.82 r2* 24.683 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 356.491 d4 2.742〜18.742〜37.742 r5* -55.734 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r8* 109.536 d8 19.600〜16.546〜12.185 r9 ∞(絞り) d9 0.500 r10 23.049 d10 1.735 N5 1.84666 ν5 23.82 r11 14.235 d11 0.300 r12 14.420 d12 4.700 N6 1.51728 ν6 69.43 r13* -21.587 d13 0.200 r14 ∞(光束規制板) d14 22.237〜10.475〜2.500 r15* -56.164 d15 4.300 N7 1.84666 ν7 23.82 r16* -24.443 d16 3.300 r17 -14.078 d17 1.302 N8 1.74400 ν8 44.93 r18 227.830 Σd = 74.716〜75.900〜82.564Example 9 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axial upper surface spacing] [refractive index] [Abbe number] r1 31.928 d1 1.800 N1 1.84666 ν1 23.82 r2 * 24.683 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 356.491 d4 2.742 ~ 18.742 ~ 37.742 r5 * -55.734 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r8600.19. ∞ (Aperture) d9 0.500 r10 23.049 d10 1.735 N5 1.84666 ν5 23.82 r11 14.235 d11 0.300 r12 14.420 d12 4.700 N6 1.51728 ν6 69.43 r13 * -21.587 d13 0.200 r14 ∞ (Luminous flux control plate) d14 22.237 ~ 10.475 ~ 2.500 r15 * -56.164 4.300 N7 1.84666 ν7 23.82 r16 * -24.443 d16 3.300 r17 -14.078 d17 1.302 N8 1.74400 ν8 44.93 r18 227.830 Σd = 74.716 ~ 75.900 ~ 82.564

【0253】[非球面係数] r2 : ε= 1.0000 A4=-0.10387×10-5 A6= 0.14003×10-7 A8=-0.19371×10-9 A10= 0.10911×10-11 A12=-0.22935×10-14 r5 : ε= 1.0000 A4= 0.22111×10-4 A6= 0.71361×10-7 A8=-0.19282×10-9 A10= 0.12651×10-12 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.34892×10-4 A6= 0.90608×10-7 A8= 0.21963×10-8 A10=-0.11066×10-10 A12= 0.28057×10-14 r13: ε= 1.0000 A4= 0.11678×10-4 A6= 0.47826×10-6 A8=-0.16743×10-7 A10= 0.23096×10-9 A12=-0.25236×10-13 r15: ε= 1.0000 A4= 0.15706×10-5 A6=-0.87296×10-7 A8= 0.45867×10-8 A10=-0.25741×10-10 A12=-0.81964×10-15 r16: ε= 1.0000 A4=-0.19052×10-4 A6=-0.14488×10-6 A8= 0.24153×10-8 A10= 0.75600×10-11 A12=-0.12536×10−12 [0253] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.10387 × 10 -5 A6 = 0.14003 × 10 -7 A8 = -0.19371 × 10 -9 A10 = 0.10911 × 10 -11 A12 = -0.22935 × 10 - 14 r5: ε = 1.0000 A4 = 0.221 11 × 10 -4 A6 = 0.71361 × 10 -7 A8 = -0.19282 × 10 -9 A10 = 0.12651 × 10 -12 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.34892 × 10 -4 A6 = 0.90608 × 10 -7 A8 = 0.21963 × 10 -8 A10 = -0.11066 × 10 -10 A12 = 0.28057 × 10 -14 r13: ε = 1.0000 A4 = 0.11678 × 10 -4 A6 = 0.47826 × 10 -6 A8 = -0.16743 × 10 -7 A10 = 0.23096 × 10 -9 A12 = -0.25236 × 10 -13 r15: ε = 1.0000 A4 = 0.15706 × 10 -5 A6 = -0.87296 × 10 -7 A8 = 0.45867 × 10 -8 A10 = -0.25741 × 10 -10 A12 = -0.81964 × 10 -15 r16: ε = 1.0000 A4 = -0.19052 × 10 -4 A6 = -0.14488 × 10 -6 A8 = 0.24153 × 10 -8 A10 = 0.75600 × 10 -11 A12 = -0.12536 × 10 -12

【0254】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.8054×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5838×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1717×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3583×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6605×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1181×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2041×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3283×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5028×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.8707×10-4 [Corresponding Value of Conditional Expression (6) (Aspherical Surface of r2 in First Group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.8054 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5838 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1717 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.3583 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.6605 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1181 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.2041 × 10 -4 y = 10.6400… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3283 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5028 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.8707 × 10 -4

【0255】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2259×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1838×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6366×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1561×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3168×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5701×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9408×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1450×10-2 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2104×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2870×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.2259×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1838 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6366 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1561 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3168 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5701 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.9408 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1450 × 10 -2 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2 104 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2870 × 10 -2

【0256】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1758×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1420×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4884×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1194×10-3 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2439×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4481×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7680×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1252×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1958×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2945×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1758 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1420 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4884 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.1194 × 10 -3 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2439 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4481 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.7680 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1252 × 10 -2 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1958 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y ( ) -X0 (y)} / dy = 0.2945 × 10 -2

【0257】 [条件式(14)の対応値(第3群Gr3中のr13の非球面)] y= 0.5785 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1737×10-6 y= 1.1569 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1467×10-5 y= 1.7354 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5334×10-5 y= 2.3138 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1367×10-4 y= 2.8923 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2856×10-4 y= 3.4707 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5186×10-4 y= 4.0492 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8490×10-4 y= 4.6276 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1294×10-3 y= 5.2061 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1911×10-3 y= 5.7846 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2876×10-3 [Corresponding Value of Conditional Expression (14) (Aspherical Surface of r13 in Third Group Gr3)] y = 0.5785 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1737×10 -6 y = 1.1569… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1467 × 10 -5 y = 1.7354… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5334 × 10 -5 y = 2.3138… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1367 × 10 -4 y = 2.8923… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2856 × 10 -4 y = 3.4707… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5186 × 10 -4 y = 4.0492… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8490 × 10 -4 y = 4.6276… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1294 × 10 -3 y = 5.2061… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1911 × 10 -3 y = 5.7846… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2876 × 10 -3

【0258】 [条件式(16)の対応値(第4群Gr4中のr15の非球面)] y= 1.1100 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2210×10-6 y= 2.2200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1417×10-5 y= 3.3300 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4859×10-5 y= 4.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2048×10-4 y= 5.5500 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8460×10-4 y= 6.6600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2746×10-3 y= 7.7700 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6876×10-3 y= 8.8800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1323×10-2 y= 9.9900 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1773×10-2 y=11.1000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5842×10-3 [Corresponding value of conditional expression (16) (aspherical surface of r15 in the fourth group Gr4)] y = 1.1100 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.2210×10 -6 y = 2.2200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1417 × 10 -5 y = 3.3300… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4859 × 10 -5 y = 4.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2048 × 10 -4 y = 5.5500… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8460 × 10 -4 y = 6.6600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2746 × 10 -3 y = 7.7700… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.6876 × 10 -3 y = 8.8800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1323 × 10 -2 y = 9.9900… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1773 × 10 -2 y = 11.1000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.5842 × 10 -3

【0259】 [条件式(16)の対応値(第4群Gr4中のr16の非球面)] y= 1.1800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3609×10-5 y= 2.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3002×10-4 y= 3.5400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1057×10-3 y= 4.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2553×10-3 y= 5.9000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4785×10-3 y= 7.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7174×10-3 y= 8.2600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8665×10-3 y= 9.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9934×10-3 y=10.6200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2156×10-2 y=11.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8582×10-2 [Corresponding value of conditional expression (16) (aspherical surface of r16 in the fourth group Gr4)] y = 1.1800 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.3609×10 -5 y = 2.3600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3002 × 10 -4 y = 3.5400… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1057 × 10 -3 y = 4.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2553 × 10 -3 y = 5.9000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4785 × 10 -3 y = 7.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.7174 × 10 -3 y = 8.2600… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8665 × 10 -3 y = 9.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.9934 × 10 -3 y = 10.6200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2156 × 10 -2 y = 11.8000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.8582 × 10 -2

【0260】《実施例10》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 31.780 d1 1.800 N1 1.84666 ν1 23.82 r2* 24.351 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 451.955 d4 2.742〜18.742〜37.742 r5* -52.414 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r8* 124.047 d8 0.300 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 8.700〜6.306〜1.552 r11 ∞(絞り) d11 0.500 r12 23.498 d12 1.735 N6 1.84666 ν6 23.82 r13 14.305 d13 0.300 r14 14.576 d14 4.700 N7 1.51728 ν7 69.43 r15* -20.905 d15 0.200 r16 ∞(光束規制板) d16 23.544〜10.823〜2.500 r17* -57.077 d17 4.300 N8 1.84666 ν8 23.82 r18* -23.984 d18 3.300 r19 -14.043 d19 1.302 N9 1.74400 ν9 44.93 r20 198.656 Σd = 76.423〜77.308〜83.231Example 10 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axis upper surface spacing] [refractive index] [Abbe number] r1 31.780 d1 1.800 N1 1.84666 ν1 23.82 r2 * 24.351 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 451.955 d4 2.742 〜 18.742 〜 37.742 r5 * -52.414 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 r4 * * * * * * * * * * * 1.51680 ν5 64.20 r10 ∞ d10 8.700 ~ 6.306 ~ 1.552 r11 ∞ (aperture) d11 0.500 r12 23.498 d12 1.735 N6 1.84666 ν6 23.82 r13 14.305 d13 0.300 r14 14.576 d14 4.700 N7 1.51728 ν7 69.43 r15 * -20.905 d15 0.200 r16 ∞ (iris) ) d16 23.544 ~ 10.823 ~ 2.500 r17 * -57.077 d17 4.300 N8 1.84666 ν8 23.82 r18 * -23.984 d18 3.300 r19 -14.043 d19 1.302 N9 1.74400 ν9 44.93 r20 198.656 Σd = 76.423 ~ 77.308 ~ 83.231

【0261】[非球面係数] r2 : ε= 1.0000 A4=-0.10387×10-5 A6= 0.14003×10-7 A8=-0.19371×10-9 A10= 0.10911×10-11 A12=-0.22935×10-14 r5 : ε= 1.0000 A4= 0.22111×10-4 A6= 0.71361×10-7 A8=-0.19282×10-9 A10= 0.12651×10-12 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.34892×10-4 A6= 0.90608×10-7 A8= 0.21963×10-8 A10=-0.11066×10-10 A12= 0.28057×10-14 r15: ε= 1.0000 A4= 0.11678×10-4 A6= 0.47826×10-6 A8=-0.16743×10-7 A10= 0.23096×10-9 A12=-0.25236×10-13 r17: ε= 1.0000 A4= 0.15706×10-5 A6=-0.87296×10-7 A8= 0.45867×10-8 A10=-0.25741×10-10 A12=-0.81964×10-15 r18: ε= 1.0000 A4=-0.19052×10-4 A6=-0.14488×10-6 A8= 0.24153×10-8 A10= 0.75600×10-11 A12=-0.12536×10-12 [0261] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.10387 × 10 -5 A6 = 0.14003 × 10 -7 A8 = -0.19371 × 10 -9 A10 = 0.10911 × 10 -11 A12 = -0.22935 × 10 - 14 r5: ε = 1.0000 A4 = 0.221 11 × 10 -4 A6 = 0.71361 × 10 -7 A8 = -0.19282 × 10 -9 A10 = 0.12651 × 10 -12 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.34892 × 10 -4 A6 = 0.90608 × 10 -7 A8 = 0.21963 × 10 -8 A10 = -0.11066 × 10 -10 A12 = 0.28057 × 10 -14 r15: ε = 1.0000 A4 = 0.11678 × 10 -4 A6 = 0.47826 × 10 -6 A8 = -0.16743 × 10 -7 A10 = 0.23096 × 10 -9 A12 = -0.25236 × 10 -13 r17: ε = 1.0000 A4 = 0.15706 × 10 -5 A6 = -0.87296 × 10 -7 A8 = 0.45867 × 10 -8 A10 = -0.25741 × 10 -10 A12 = -0.81964 × 10 -15 r18: ε = 1.0000 A4 = -0.19052 × 10 -4 A6 = -0.14488 × 10 -6 A8 = 0.24153 × 10 -8 A10 = 0.75600 × 10 -11 A12 = -0.12536 × 10 -12

【0262】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6936×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5334×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1716×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3938×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7728×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1401×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2404×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3925×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6228×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1026×10-3 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.6936 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5334 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1716 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.3938 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.7728 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1401 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.2404 × 10 -4 y = 10.6400… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3925 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.6228 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y ( ) -X0 (y)} / dy = 0.1026 × 10 -3

【0263】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1836×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1494×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5184×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1275×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2602×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4710×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7807×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1200×10-2 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1707×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2207×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1836×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1494 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5184 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1275 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2602 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4710 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7807 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1200 × 10 -2 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1707 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2207 × 10 -2

【0264】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1586×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1282×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4413×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1081×10-3 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2220×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4105×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7078×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1155×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1788×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2597×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1586 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1282 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4413 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.1081 × 10 -3 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2220 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4105 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.7078 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1155 × 10 -2 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1788 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2597 × 10 -2

【0265】 [条件式(14)の対応値(第3群Gr3中のr15の非球面)] y= 0.5755 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1387×10-6 y= 1.1510 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1188×10-5 y= 1.7265 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4402×10-5 y= 2.3020 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1150×10-4 y= 2.8775 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2445×10-4 y= 3.4530 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4505×10-4 y= 4.0285 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7469×10-4 y= 4.6040 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1152×10-3 y= 5.1795 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1723×10-3 y= 5.7550 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2629×10−3 [Corresponding Value of Conditional Expression (14) (Aspherical Surface of r15 in Third Group Gr3)] y = 0.5755 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1387×10 -6 y = 1.1510… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1188 × 10 -5 y = 1.7265… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4402 × 10 -5 y = 2.3020… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1150 × 10 -4 y = 2.8775… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2445 × 10 -4 y = 3.4530… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4505 × 10 -4 y = 4.0285… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7469 × 10 -4 y = 4.6040… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1152 × 10 -3 y = 5.1795… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1723 × 10 -3 y = 5.7550… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2629 × 10 -3

【0266】 [条件式(16)の対応値(第4群Gr4中のr17の非球面)] y= 1.1100 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8669×10-7 y= 2.2200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4639×10-6 y= 3.3300 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2378×10-5 y= 4.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1729×10-4 y= 5.5500 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8596×10-4 y= 6.6600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2949×10-3 y= 7.7700 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7572×10-3 y= 8.8800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1495×10-2 y= 9.9900 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2123×10-2 y=11.1000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1195×10-2 [Corresponding Value of Conditional Expression (16) (Aspherical Surface of r17 in Fourth Group Gr4)] y = 1.1100 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.8669×10 -7 y = 2.2200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4639 × 10 -6 y = 3.3300… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2378 × 10 -5 y = 4.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1729 × 10 -4 y = 5.5500… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8596 × 10 -4 y = 6.6600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2949 × 10 -3 y = 7.7700… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7572 × 10 -3 y = 8.8800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1495 × 10 -2 y = 9.9900… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2123 × 10 -2 y = 11.1000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1195 × 10 -2

【0267】 [条件式(16)の対応値(第4群Gr4中のr18の非球面)] y= 1.1800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3596×10-5 y= 2.3600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2985×10-4 y= 3.5400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1047×10-3 y= 4.7200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2509×10-3 y= 5.9000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4644×10-3 y= 7.0800 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6818×10-3 y= 8.2600 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7985×10-3 y= 9.4400 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9172×10-3 y=10.6200 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2240×10-2 y=11.8000 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9419×10-2 [Corresponding Value of Conditional Expression (16) (Aspherical Surface of r18 in Fourth Group Gr4)] y = 1.1800 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.3596×10 -5 y = 2.3600… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2985 × 10 -4 y = 3.5400… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1047 × 10 -3 y = 4.7200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2509 × 10 -3 y = 5.9000… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4644 × 10 -3 y = 7.0800… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6818 × 10 -3 y = 8.2600… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7985 × 10 -3 y = 9.4400… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.9172 × 10 -3 y = 10.6200… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2240 × 10 -2 y = 11.8000… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.9419 × 10 -2

【0268】《実施例11》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 32.200 d1 1.800 N1 1.84666 ν1 23.82 r2* 24.809 d2 0.500〜0.350〜0.300 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 423.969 d4 2.742〜18.742〜37.742 r5* -52.344 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r8* 124.418 d8 8.600〜6.588〜2.643 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.400 r11 ∞(絞り) d11 0.700 r12 23.200 d12 1.735 N6 1.84666 ν6 23.82 r13 14.228 d13 0.300 r14 14.509 d14 4.700 N7 1.51728 ν7 69.43 r15* -21.167 d15 0.200 r16 ∞(光束規制板) d16 23.562〜10.932〜2.500 r17* -53.948 d17 4.300 N8 1.84666 ν8 23.82 r18* -24.109 d18 3.300 r19 -14.105 d19 1.302 N9 1.74400 ν9 44.93 r20 227.438 Σd = 76.641〜77.85〜84.423Example 11 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axis upper surface spacing] [refractive index] [Abbe number] r1 32.200 d1 1.800 N1 1.84666 ν1 23.82 r2 * 24.809 d2 0.500 ~ 0.350 ~ 0.300 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 423.969 d4 2.742 ~ 18.742 ~ 37.742 r5 * -52.344 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 N4 1.78472 * 600 24.75 r8. 6.588 to 2.643 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.400 r11 ∞ (aperture) d11 0.700 r12 23.200 d12 1.735 N6 1.84666 ν6 23.82 r13 14.228 d13 0.300 r14 14.509 d14 4.700 N7 1.51728 ν7 69.43 r15 * 00-21.167 (Luminous flux control plate) d16 23.562 ~ 10.932 ~ 2.500 r17 * -53.948 d17 4.300 N8 1.84666 ν8 23.82 r18 * -24.109 d18 3.300 r19 -14.105 d19 1.302 N9 1.74400 ν9 44.93 r20 227.438 Σd = 76.641 ~ 77.85 ~ 84.423

【0269】[非球面係数] r2 : ε= 1.0000 A4=-0.41997×10-6 A6=-0.42211×10-8 A8= 0.39331×10-10 A10=-0.21650×10-12 A12= 0.35858×10-15 r5 : ε= 1.0000 A4= 0.20297×10-4 A6= 0.55042×10-7 A8= 0.47109×10-11 A10=-0.12667×10-11 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.32154×10-4 A6= 0.10919×10-6 A8= 0.23480×10-8 A10=-0.12936×10-10 A12=-0.43940×10-13 r15: ε= 1.0000 A4= 0.97282×10-5 A6= 0.49559×10-6 A8=-0.16909×10-7 A10= 0.22867×10-9 A12=-0.40309×10-13 r17: ε= 1.0000 A4= 0.11634×10-5 A6=-0.86594×10-7 A8= 0.46093×10-8 A10=-0.24384×10-10 A12=-0.35299×10-14 r18: ε= 1.0000 A4=-0.19011×10-4 A6=-0.14546×10-6 A8= 0.25440×10-8 A10= 0.68368×10-11 A12=-0.12457×10-12 [0269] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.41997 × 10 -6 A6 = -0.42211 × 10 -8 A8 = 0.39331 × 10 -10 A10 = -0.21650 × 10 -12 A12 = 0.35858 × 10 - 15 r5: ε = 1.0000 A4 = 0.20297 × 10 -4 A6 = 0.550 42 × 10 -7 A8 = 0.47109 × 10 -11 A10 = -0.12667 × 10 -11 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.32154 × 10 -4 A6 = 0.10919 × 10 -6 A8 = 0.23480 × 10 -8 A10 = -0.12936 × 10 -10 A12 = -0.439 40 × 10 -13 r15: ε = 1.0000 A4 = 0.97282 × 10 -5 A6 = 0.49559 X 10 -6 A8 = -0.16909 x 10 -7 A10 = 0.22867 x 10 -9 A12 = -0.40309 x 10 -13 r17: ε = 1.0000 A4 = 0.11634 x 10 -5 A6 = -0.86594 x 10 -7 A8 = 0.46093 × 10 -8 A10 = -0.24384 × 10 -10 A12 = -0.35299 × 10 -14 r18: ε = 1.0000 A4 = -0.19011 × 10 -4 A6 = -0.14546 × 10 -6 A8 = 0.25440 × 10 -8 A10 = 0.68368 × 10 -11 A12 = -0.12457 × 10 -12

【0270】 [条件式(6a)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 …[W]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3516×10-7 …[T]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3507×10-7 y= 2.6600 …[W]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3009×10-6 …[T]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3002×10-6 y= 3.9900 …[W]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1108×10-5 …[T]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1105×10-5 y= 5.3200 …[W]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2860×10-5 …[T]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2853×10-5 y= 6.6500 …[W]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6005×10-5 …[T]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5991×10-5 y= 7.9800 …[W]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1104×10-4 …[T]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1101×10-4 y= 9.3100 …[W]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1874×10-4 …[T]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1869×10-4 y=10.6400 …[W]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3080×10-4 …[T]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3072×10-4 y=11.9700 …[W]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5061×10-4 …[T]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5049×10-4 y=13.3000 …[W]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.8331×10-4 …[T]… φ1,2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.8311×10-4 [Corresponding value of conditional expression (6a) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 [W] ... φ1,2 · (N′-N) · d {(X (y ( ) -X0 (y)} / dy = 0.3516 × 10 -7 … [T]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3507 × 10 -7 y = 2.6600… [W]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3009 × 10 -6 … [T]… φ1,2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3002 × 10 -6 y = 3.9900… [W]… φ1,2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = 0.1108 × 10 -5 … [T]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1105 × 10 -5 y = 5.3200… [W]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2860 × 10 -5 … [T] … Φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2853 × 10 -5 y = 6.6500… [W]… φ1,2 ・ (N'-N ) ・ D {(X (y) -X0 (y)} / dy = 0.6005 × 10 -5 … [T]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y )} / dy = 0.5991 × 10 -5 y = 7.9800… [W]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1104 × 10 -4 … [T]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1101 × 10 -4 y = 9.3100… [W]… φ1,2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1874 × 10 -4 … [T]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1869 × 10 -4 y = 1 0.6400… [W]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3080 × 10 -4 … [T]… φ1,2 ・ (N ' -N) ・ d {(X (y) -X0 (y)} / dy = 0.3072 × 10 -4 y = 11.9700… [W]… φ1,2 ・ (N'-N) ・ d {(X (y ( ) -X0 (y)} / dy = 0.5061 × 10 -4 … [T]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5049 × 10 -4 y = 13.3000… [W]… φ1,2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.8331 × 10 -4 … [T]… φ1,2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.8311 × 10 -4

【0271】 [条件式(10a)の対応値(第3群Gr3中のr5の非球面)] y= 1.0900 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2072×10-5 y= 2.1800 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1681×10-4 y= 3.2700 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5808×10-4 y= 4.3600 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1420×10-3 y= 5.4500 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2878×10-3 y= 6.5400 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5172×10-3 y= 7.6300 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8507×10-3 y= 8.7200 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1298×10-2 y= 9.8100 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1836×10-2 y=10.9000 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2363×10-2 [Corresponding Value of Conditional Expression (10a) (Aspherical Surface of r5 in Third Group Gr3)] y = 1.0900 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.2072×10 -5 y = 2.1800… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1681 × 10 -4 y = 3.2700… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5808 × 10 -4 y = 4.3600… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1420 × 10 -3 y = 5.4500… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2878 × 10 -3 y = 6.5400… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5172 × 10 -3 y = 7.6300… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8507 × 10 -3 y = 8.7200… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1298 × 10 -2 y = 9.8100… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1836 × 10 -2 y = 10.9000… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2363 × 10 -2

【0272】 [条件式(10a)の対応値(第3群Gr3中のr8の非球面)] y= 0.8700 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1621×10-5 y= 1.7400 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1314×10-4 y= 2.6100 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4540×10-4 y= 3.4800 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1118×10-3 y= 4.3500 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2304×10-3 y= 5.2200 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4272×10-3 y= 6.0900 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7372×10-3 y= 6.9600 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1201×10-2 y= 7.8300 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1850×10-2 y= 8.7000 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2667×10-2 [Corresponding value of conditional expression (10a) (aspherical surface of r8 in the third group Gr3)] y = 0.8700 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1621 × 10 -5 y = 1.7400… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1314 × 10 -4 y = 2.6100… φ3 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4540 × 10 -4 y = 3.4800… φ3 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.1118 × 10 -3 y = 4.3500… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2304 × 10 -3 y = 5.2200… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4272 × 10 -3 y = 6.0900… φ3 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.7372 × 10 -3 y = 6.9600… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1201 × 10 -2 y = 7.8300 … Φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1850 × 10 -2 y = 8.7000… φ3 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2667 × 10 -2

【0273】 [条件式(14a)の対応値(第4群Gr4中のr15の非球面)] y= 0.5755 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1431×10-6 y= 1.1510 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1224×10-5 y= 1.7265 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4519×10-5 y= 2.3020 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1176×10-4 y= 2.8775 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2492×10-4 y= 3.4530 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4574×10-4 y= 4.0285 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7544×10-4 y= 4.6040 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1155×10-3 y= 5.1795 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1707×10-3 y= 5.7550 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2566×10-3 [Corresponding Value of Conditional Expression (14a) (Aspherical Surface of r15 in Fourth Group Gr4)] y = 0.5755 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1431×10 -6 y = 1.1510… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1224 × 10 -5 y = 1.7265… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4519 × 10 -5 y = 2.3020… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1176 × 10 -4 y = 2.8775… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2492 × 10 -4 y = 3.4530… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4574 × 10 -4 y = 4.0285… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7544 × 10 -4 y = 4.6040… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1155 × 10 -3 y = 5.1795… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1707 × 10 -3 y = 5.7550… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2566 × 10 -3

【0274】 [条件式(16a)の対応値(第5群Gr5中のr17の非球面)] y= 1.1100 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1583×10-6 y= 2.2200 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9213×10-6 y= 3.3300 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3250×10-5 y= 4.4400 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1710×10-4 y= 5.5500 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8012×10-4 y= 6.6600 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2749×10-3 y= 7.7700 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7136×10-3 y= 8.8800 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1430×10-2 y= 9.9900 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2085×10-2 y=11.1000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1346×10-2 [Corresponding Value of Conditional Expression (16a) (Aspherical Surface of r17 in Fifth Group Gr5)] y = 1.1100 ... φ5 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1583×10 -6 y = 2.2200… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9213 × 10 -6 y = 3.3300… φ5・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3250 × 10 -5 y = 4.4400… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1710 × 10 -4 y = 5.5500… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8012 × 10 -4 y = 6.6600… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2749 × 10 -3 y = 7.7700… φ5 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7136 × 10 -3 y = 8.8800… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1430 × 10 -2 y = 9.9900… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2085 × 10 -2 y = 11.1000… φ5 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1346 × 10 -2

【0275】 [条件式(16a)の対応値(第5群Gr5中のr18の非球面)] y= 1.1800 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3610×10-5 y= 2.3600 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3002×10-4 y= 3.5400 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1056×10-3 y= 4.7200 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2543×10-3 y= 5.9000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4737×10-3 y= 7.0800 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7016×10-3 y= 8.2600 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8262×10-3 y= 9.4400 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9116×10-3 y=10.6200 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2024×10-2 y=11.8000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8430×10-2 [Corresponding Value of Conditional Expression (16a) (Aspherical Surface of r18 in Fifth Group Gr5)] y = 1.1800 ... φ5 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.3610×10 -5 y = 2.3600… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3002 × 10 -4 y = 3.5400… φ5・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1056 × 10 -3 y = 4.7200… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2543 × 10 -3 y = 5.9000… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4737 × 10 -3 y = 7.0800… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.7016 × 10 -3 y = 8.2600… φ5 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8262 × 10 -3 y = 9.4400… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.9116 × 10 -3 y = 10.6200… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2024 × 10 -2 y = 11.8000… φ5 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.8430 × 10 -2

【0276】《実施例12》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 31.001 d1 1.800 N1 1.84666 ν1 23.82 r2* 23.751 d2 0.600 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 531.019 d4 2.742〜18.842〜35.942 r5* -59.876 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.600〜0.500〜0.400 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r8* 93.114 d8 9.000〜6.415〜0.343 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.500 r11 ∞(絞り) d11 0.500 r12 23.160 d12 1.735 N6 1.84666 ν6 23.82 r13 14.006 d13 0.300 r14 14.462 d14 4.700 N7 1.51728 ν7 69.43 r15* -20.569 d15 0.200 r16 ∞(光束規制板) d16 22.402〜10.110〜2.500 r17* -72.545 d17 4.500 N8 1.84666 ν8 23.82 r18* -23.840 d18 3.300 r19 -13.713 d19 1.302 N9 1.74400 ν9 44.93 r20 119.969 Σd = 76.181〜77.304〜80.623Example 12 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axial upper surface spacing] [refractive index] [Abbe number] r1 31.001 d1 1.800 N1 1.84666 ν1 23.82 r2 * 23.751 d2 0.600 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 531.019 d4 2.742 to 18.842 to 35.942 r5 * -59.876 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.600 to 0.500 to 0.400 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r 6.415 to 0.343 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.500 r11 ∞ (diaphragm) d11 0.500 r12 23.160 d12 1.735 N6 1.84666 ν6 23.82 r13 14.006 d13 0.300 r14 14.462 d14 4.700 N7 1.51728 ν7 69.43 r15 0.2 -20.569 d (Luminous flux control plate) d16 22.402 to 10.110 to 2.500 r17 * -72.545 d17 4.500 N8 1.84666 ν8 23.82 r18 * -23.840 d18 3.300 r19 -13.713 d19 1.302 N9 1.74400 ν9 44.93 r20 119.969 Σd = 76.181 to 77.304 to 80.623

【0277】[非球面係数] r2 : ε= 1.0000 A4=-0.12006×10-5 A6= 0.10019×10-7 A8=-0.15432×10-9 A10= 0.87068×10-12 A12=-0.18822×10-14 r5 : ε= 1.0000 A4= 0.11981×10-4 A6= 0.95862×10-7 A8=-0.35274×10-9 A10= 0.40000×10-12 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.26958×10-4 A6= 0.12717×10-6 A8= 0.21752×10-8 A10=-0.12868×10-10 A12=-0.75334×10-14 r15: ε= 1.0000 A4= 0.11975×10-4 A6= 0.44166×10-6 A8=-0.16895×10-7 A10= 0.23014×10-9 A12=-0.30346×10-13 r17: ε= 1.0000 A4= 0.43308×10-5 A6=-0.43065×10-7 A8= 0.46900×10-8 A10=-0.28395×10-10 A12= 0.27650×10-14 r18: ε= 1.0000 A4=-0.21928×10-4 A6=-0.10845×10-6 A8= 0.27548×10-8 A10= 0.33400×10-11 A12=-0.13394×10-12 [0277] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.12006 × 10 -5 A6 = 0.10019 × 10 -7 A8 = -0.15432 × 10 -9 A10 = 0.87068 × 10 -12 A12 = -0.18822 × 10 - 14 r5: ε = 1.0000 A4 = 0.11981 × 10 -4 A6 = 0.95862 × 10 -7 A8 = -0.35274 × 10 -9 A10 = 0.40000 × 10 -12 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.26958 × 10 -4 A6 = 0.12717 × 10 -6 A8 = 0.21752 × 10 -8 A10 = -0.12868 × 10 -10 A12 = -0.75334 × 10 -14 r15: ε = 1.0000 A4 = 0.11975 × 10 -4 A6 = 0.44166 X 10 -6 A8 = -0.16895 x 10 -7 A10 = 0.23014 x 10 -9 A12 = -0.30346 x 10 -13 r17: ε = 1.0000 A4 = 0.43308 x 10 -5 A6 = -0.43065 x 10 -7 A8 = 0.46900 × 10 -8 A10 = -0.28395 × 10 -10 A12 = 0.27650 × 10 -14 r18: ε = 1.0000 A4 = -0.21928 × 10 -4 A6 = -0.10845 × 10 -6 A8 = 0.27548 × 10 -8 A10 = 0.33400 × 10 -11 A12 = -0.13394 × 10 -12

【0278】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.9399×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7097×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2227×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5000×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.9728×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1773×10-4 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3068×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5014×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7935×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1344×10-3 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.9399 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.7097 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2227 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.5000 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.9728 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1773 × 10 -4 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.3068 × 10 -4 y = 10.6400 ... φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5014 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.7935 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.1344 × 10 -3

【0279】 [条件式(10b)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1234×10-5 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1272×10-5 y= 2.1800 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1028×10-4 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1059×10-4 y= 3.2700 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3686×10-4 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3799×10-4 y= 4.3600 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9404×10-4 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9692×10-4 y= 5.4500 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1987×10-3 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2048×10-3 y= 6.5400 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3706×10-3 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3820×10-3 y= 7.6300 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6293×10-3 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6486×10-3 y= 8.7200 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9880×10-3 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1018×10-2 y= 9.8100 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1441×10-2 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1485×10-2 y=10.9000 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1942×10-2 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2001×10-2 [Corresponding Value of Conditional Expression (10b) (Aspherical Surface of r5 in Second Group Gr2)] y = 1.0900 ... [W] ... φ2,3 · (N′-N) · d {(X (y ) -X0 (y)} / dy = -0.1234 × 10 -5 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1272 × 10 -5 y = 2.1800… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1028 × 10 -4 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1059 × 10 -4 y = 3.2700… [W]… φ2,3 ・ (N'-N ) ・ D {(X (y) -X0 (y)} / dy = -0.3686 × 10 -4 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = -0.3799 × 10 -4 y = 4.3600… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9404 × 10 -4 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9692 × 10 -4 y = 5.4500… [W]… φ2 , 3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1987 × 10 -3 … [T]… φ2,3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.2048 × 10 -3 y = 6.5400… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y )} / dy = -0.3706 × 10 -3 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3820 × 10 -3 y = 7.6300… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6293 × 10 -3 … [T]… φ2,3 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6486 × 10 -3 y = 8.7200… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9880 × 10 -3 … [T]… φ2,3 ・ (N '-N) ・ d {(X (y) -X0 (y)} / dy = -0.1018 × 10 -2 y = 9.8100… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1441 × 10 -2 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1485 × 10 -2 y = 10.9000… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1942 × 10 -2 … [T ]… Φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2001 × 10 -2

【0280】 [条件式(10b)の対応値(第3群Gr3中のr8の非球面)] y= 0.8700 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1361×10-5 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1403×10-5 y= 1.7400 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1108×10-4 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1142×10-4 y= 2.6100 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3858×10-4 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3976×10-4 y= 3.4800 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.9595×10-4 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.9889×10-4 y= 4.3500 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2003×10-3 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2064×10-3 y= 5.2200 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3767×10-3 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3883×10-3 y= 6.0900 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6604×10-3 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6806×10-3 y= 6.9600 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1096×10-2 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1130×10-2 y= 7.8300 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1731×10-2 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1784×10-2 y= 8.7000 …[W]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2593×10-2 …[T]… φ2,3・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2673×10-2 [Corresponding value of conditional expression (10b) (aspherical surface of r8 in the third group Gr3)] y = 0.8700 ... [W] ... φ2,3 · (N′-N) · d {(X (y ) -X0 (y)} / dy = 0.1361 × 10 -5 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1403 × 10 -5 y = 1.7400… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1108 × 10 -4 … [T]… φ2,3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1142 × 10 -4 y = 2.6100… [W]… φ2,3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = 0.3858 × 10 -4 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3976 × 10 -4 y = 3.4800… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.9595 × 10 -4 … [T] … Φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.9889 × 10 -4 y = 4.3500… [W]… φ2,3 ・ (N'-N ) ・ D {(X (y) -X0 (y)} / dy = 0.2003 × 10 -3 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y )} / dy = 0.2064 × 10 -3 y = 5.2200… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3767 × 10 -3 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3883 × 10 -3 y = 6.0900… [W]… φ2,3 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.6604 × 10 -3 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.6806 × 10 -3 y = 6.9600… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1096 × 10 -2 … [T]… φ2,3 ・ (N ' -N) ・ d {(X (y) -X0 (y)} / dy = 0.1130 × 10 -2 y = 7.8300… [W]… φ2,3 ・ (N'-N) ・ d {(X (y ( ) -X0 (y)} / dy = 0.1731 × 10 -2 … [T]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1784 × 10 -2 y = 8.7000… [W]… φ2,3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2593 × 10 -2 … [T]… φ2,3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2673 × 10 -2

【0281】 [条件式(14a)の対応値(第4群Gr4中のr15の非球面)] y= 0.5948 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1934×10-6 y= 1.1895 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1628×10-5 y= 1.7843 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5887×10-5 y= 2.3790 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1495×10-4 y= 2.9738 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3088×10-4 y= 3.5685 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5517×10-4 y= 4.1633 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8856×10-4 y= 4.7581 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1323×10-3 y= 5.3528 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1928×10-3 y= 5.9476 … φ4・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2924×10-3 [Corresponding Value of Conditional Expression (14a) (Aspherical Surface of r15 in Fourth Group Gr4)] y = 0.5948 ... φ4 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1934×10 -6 y = 1.1895… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1628 × 10 -5 y = 1.7843… φ4・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5887 × 10 -5 y = 2.3790… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1495 × 10 -4 y = 2.9738… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3088 × 10 -4 y = 3.5685… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5517 × 10 -4 y = 4.1633… φ4 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8856 × 10 -4 y = 4.7581… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1323 × 10 -3 y = 5.3528… φ4 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1928 × 10 -3 y = 5.9476… φ4 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2924 × 10 -3

【0282】 [条件式(16a)の対応値(第5群Gr5中のr17の非球面)] y= 1.1000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6247×10-6 y= 2.2000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4955×10-5 y= 3.3000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1838×10-4 y= 4.4000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5700×10-4 y= 5.5000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1648×10-3 y= 6.6000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4263×10-3 y= 7.7000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9434×10-3 y= 8.8000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1718×10-2 y= 9.9000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2352×10-2 y=11.0000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1445×10-2 [Corresponding value of conditional expression (16a) (aspherical surface of r17 in fifth group Gr5)] y = 1.1000 ... φ5 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.6247×10 -6 y = 2.2000… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4955 × 10 -5 y = 3.3000… φ5・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1838 × 10 -4 y = 4.4000… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5700 × 10 -4 y = 5.5000… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1648 × 10 -3 y = 6.6000… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4263 × 10 -3 y = 7.7000… φ5 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.9434 × 10 -3 y = 8.8000… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1718 × 10 -2 y = 9.9000… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2352 × 10 -2 y = 11.0000… φ5 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1445 × 10 -2

【0283】 [条件式(16a)の対応値(第5群Gr5中のr18の非球面)] y= 1.1800 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4003×10-5 y= 2.3600 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3277×10-4 y= 3.5400 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1127×10-3 y= 4.7200 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2641×10-3 y= 5.9000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4780×10-3 y= 7.0800 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6920×10-3 y= 8.2600 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8330×10-3 y= 9.4400 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1120×10-2 y=10.6200 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3061×10-2 y=11.8000 … φ5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1198×10-1 [Corresponding value of conditional expression (16a) (aspherical surface of r18 in the fifth group Gr5)] y = 1.1800 ... φ5 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.4003×10 -5 y = 2.3600… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3277 × 10 -4 y = 3.5400… φ5・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1127 × 10 -3 y = 4.7200… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2641 × 10 -3 y = 5.9000… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4780 × 10 -3 y = 7.0800… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6920 × 10 -3 y = 8.2600… φ5 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8330 × 10 -3 y = 9.4400… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1120 × 10 -2 y = 10.6200… φ5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3061 × 10 -2 y = 11.8000… φ5 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1198 × 10 -1

【0284】《実施例13》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 33.415 d1 1.800 N1 1.84666 ν1 23.82 r2* 25.158 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 578.590 d4 2.742〜18.742〜37.742 r5* -55.376 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 N4 1.78472 ν4 25.75 r8* 110.866 d8 8.600〜6.252〜1.485 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.400 r11 ∞(絞り) d11 0.500〜0.300〜0.250 r12 23.437 d12 1.735 N6 1.84666 ν6 23.82 r13 14.481 d13 0.300〜0.500〜0.550 r14 14.504 d14 4.700 N7 1.51728 ν7 69.43 r15* -21.733 d15 0.200 r16 ∞(光束規制板) d16 23.601〜10.686〜2.500 r17* -57.319 d17 4.300 N8 1.84666 ν8 23.82 r18* -23.866 d18 3.300 r19 -14.152 d19 1.302 N9 1.74400 ν9 44.93 r20 148.087 Σd = 76.480〜77.216〜83.264Example 13 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axis upper surface spacing] [refractive index] [Abbe number] r1 33.415 d1 1.800 N1 1.84666 ν1 23.82 r2 * 25.158 d2 0.500 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 578.590 d4 2.742 ~ 18.742 ~ 37.742 r5 * -55.376 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.600 r4 * * * * * * * * * * * * ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.400 r11 ∞ (aperture) d11 0.500 ~ 0.300 ~ 0.250 r12 23.437 d12 1.735 N6 1.84666 ν6 23.82 r13 14.481 d13 0.300 ~ 0.500 ~ 0.550 r14 14.504 d14 4.700 N7 1.51728 ν7 69.43 r d15 0.200 r16 ∞ (Luminous flux control plate) d16 23.601 to 10.686 to 2.500 r17 * -57.319 d17 4.300 N8 1.84666 ν8 23.82 r18 * -23.866 d18 3.300 r19 -14.152 d19 1.302 N9 1.74400 ν9 44.93 r20 148.087 Σd = 76.480 to 77.216

【0285】[非球面係数] r2 : ε= 1.0000 A4=-0.66593×10-6 A6= 0.53240×10-8 A8=-0.76318×10-10 A10= 0.40487×10-12 A12=-0.83815×10-15 r5 : ε= 1.0000 A4= 0.16315×10-4 A6= 0.54717×10-7 A8=-0.37022×10-9 A10= 0.65664×10-12 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.28423×10-4 A6= 0.72185×10-7 A8= 0.17395×10-8 A10=-0.14348×10-10 A12= 0.70147×10-14 r15: ε= 1.0000 A4= 0.14476×10-4 A6= 0.50487×10-6 A8=-0.16441×10-7 A10= 0.23260×10-9 A12=-0.17869×10-13 r17: ε= 1.0000 A4= 0.16063×10-5 A6=-0.45520×10-7 A8= 0.49220×10-8 A10=-0.27445×10-10 A12=-0.39059×10-13 r18: ε= 1.0000 A4=-0.17364×10-4 A6=-0.32086×10-7 A8= 0.27130×10-8 A10=-0.15467×10-11 A12=-0.12397×10-12 [0285] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.66593 × 10 -6 A6 = 0.53240 × 10 -8 A8 = -0.76318 × 10 -10 A10 = 0.40487 × 10 -12 A12 = -0.83815 × 10 - 15 r5: ε = 1.0000 A4 = 0.16315 × 10 -4 A6 = 0.54717 × 10 -7 A8 = -0.37022 × 10 -9 A10 = 0.65664 × 10 -12 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.28423 × 10 -4 A6 = 0.72185 × 10 -7 A8 = 0.17395 × 10 -8 A10 = -0.14348 × 10 -10 A12 = 0.70147 × 10 -14 r15: ε = 1.0000 A4 = 0.14476 × 10 -4 A6 = 0.50487 × 10 -6 A8 = -0.16441 × 10 -7 A10 = 0.23260 × 10 -9 A12 = -0.17869 × 10 -13 r17: ε = 1.0000 A4 = 0.16063 × 10 -5 A6 = -0.45520 × 10 -7 A8 = 0.49220 × 10 -8 A10 = -0.27445 × 10 -10 A12 = -0.39059 × 10 -13 r18: ε = 1.0000 A4 = -0.17364 × 10 -4 A6 = -0.32086 × 10 -7 A8 = 0.27130 × 10 -8 A10 =- 0.15467 × 10 -11 A12 = -0.12397 × 10 -12

【0286】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5218×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3947×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1239×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2769×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.5333×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.9612×10-5 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1655×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2713×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4302×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.7110×10-4 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.5218 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3947 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1239 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.2769 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.5333 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.9612 × 10 -5 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.1655 × 10 -4 y = 10.6400 ... φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2713 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4302 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y ( ) -X0 (y)} / dy = 0.7110 × 10 -4

【0287】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1667×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1356×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4693×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1145×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2303×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4075×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6554×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9735×10-3 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1340×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1696×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1667×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1356 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4693 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1145 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2303 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4075 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.6554 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.9735 × 10 -3 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1340 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1696 × 10 -2

【0288】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1432×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1157×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3975×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.9702×10-4 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1976×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3607×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6105×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.9739×10-3 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1471×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2094×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1432 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1157 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3975 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.9702 × 10 -4 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1976 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3607 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.6105 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.9739 × 10 -3 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1471 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2094 × 10 -2

【0289】 [条件式(14b)の対応値(第5群Gr5中のr15の非球面)] y= 0.5876 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2252×10-6 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2270×10-6 y= 1.1753 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1890×10-5 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1905×10-5 y= 1.7629 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6821×10-5 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6875×10-5 y= 2.3506 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1737×10-4 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1750×10-4 y= 2.9382 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3618×10-4 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3647×10-4 y= 3.5258 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6578×10-4 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6630×10-4 y= 4.1135 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1085×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1093×10-3 y= 4.7011 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1676×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1689×10-3 y= 5.2887 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2521×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2541×10-3 y= 5.8764 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3865×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3895×10-3 [Corresponding Value of Conditional Expression (14b) (Aspherical Surface of r15 in Fifth Group Gr5)] y = 0.5876 ... [W] ... φ4,5 · (N′-N) · d {(X (y ( ) -X0 (y)} / dy = -0.2252 × 10 -6 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2270 × 10 -6 y = 1.1753… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1890 × 10 -5 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1905 × 10 -5 y = 1.7629… [W]… φ4,5 ・ (N'-N ) ・ D {(X (y) -X0 (y)} / dy = -0.6821 × 10 -5 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = -0.6875 × 10 -5 y = 2.3506… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1737 × 10 -4 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1750 × 10 -4 y = 2.9382… [W]… φ4 , 5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3618 × 10 -4 … [T]… φ4,5 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.3647 × 10 -4 y = 3.5258… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y )} / dy = -0.6578 × 10 -4 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6630 × 10 -4 y = 4.1135… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1085 × 10 -3 … [T]… φ4,5 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1093 × 10 -3 y = 4.7011… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1676 × 10 -3 … [T]… φ4,5 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1689 × 10 -3 y = 5.2887… [W]… φ4,5 ・ (N'-N) ・ d {( X (y) -X0 (y)} / dy = -0.2521 × 10 -3 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2541 × 10 -3 y = 5.8764… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3865 × 10 -3 … [ T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3895 × 10 -3

【0290】 [条件式(16b)の対応値(第6群Gr6中のr17の非球面)] y= 1.1100 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2391×10-6 y= 2.2200 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1868×10-5 y= 3.3300 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8252×10-5 y= 4.4400 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3528×10-4 y= 5.5500 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1309×10-3 y= 6.6600 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3866×10-3 y= 7.7700 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8917×10-3 y= 8.8800 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1534×10-2 y= 9.9900 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1476×10-2 y=11.1000 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1977×10-2 [Corresponding value of conditional expression (16b) (aspherical surface of r17 in the sixth group Gr6)] y = 1.1100 ... φ6 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.2391×10 -6 y = 2.2200… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1868 × 10 -5 y = 3.3300… φ6・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8252 × 10 -5 y = 4.4400… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3528 × 10 -4 y = 5.5500… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1309 × 10 -3 y = 6.6600… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3866 × 10 -3 y = 7.7700… φ6 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.8917 × 10 -3 y = 8.8800… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1534 × 10 -2 y = 9.9900… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1476 × 10 -2 y = 11.1000… φ6 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = 0.1977 × 10 -2

【0291】 [条件式(16b)の対応値(第6群Gr6中のr18の非球面)] y= 1.1800 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3256×10-5 y= 2.3600 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2612×10-4 y= 3.5400 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.8646×10-4 y= 4.7200 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1899×10-3 y= 5.9000 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3078×10-3 y= 7.0800 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3625×10-3 y= 8.2600 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2998×10-3 y= 9.4400 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4550×10-3 y=10.6200 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2657×10-2 y=11.8000 … φ6・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1292×10-1 [Corresponding Value of Conditional Expression (16b) (Aspherical Surface of r18 in Sixth Group Gr6)] y = 1.1800 ... φ6 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.3256×10 -5 y = 2.3600… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2612 × 10 -4 y = 3.5400… φ6・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.8646 × 10 -4 y = 4.7200… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1899 × 10 -3 y = 5.9000… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3078 × 10 -3 y = 7.0800… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3625 × 10 -3 y = 8.2600… φ6 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.2998 × 10 -3 y = 9.4400… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.4550 × 10 -3 y = 10.6200… φ6 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2657 × 10 -2 y = 11.8000… φ6 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.1292 × 10 -1

【0292】《実施例14》 f=39.1〜87.3〜178.0 FNO=4.12〜7.00〜9.50 [曲率半径] [軸上面間隔] [屈折率] [アッベ数] r1 33.610 d1 2.000 N1 1.84666 ν1 23.82 r2* 25.100 d2 0.400 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 753.614 d4 2.742〜16.742〜33.742 r5* -52.743 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.800 N4 1.78472 ν4 25.75 r8* 122.571 d8 9.100〜6.998〜0.481 r9 ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.400 r11 ∞(絞り) d11 0.500 r12 22.313 d12 1.000 N6 1.84666 ν6 23.82 r13 14.288 d13 0.300 r14 14.606 d14 4.700 N7 1.51728 ν7 69.43 r15* -22.509 d15 0.200 r16 ∞(光束規制板) d16 24.470〜10.857〜2.500 r17* -54.612 d17 3.800 N8 1.84666 ν8 23.82 r18* -25.402 d18 3.200〜3.700〜4.100 r19 -14.306 d19 1.302 N9 1.74400 ν9 44.93 r20 343.832 Σd = 76.814〜75.599〜78.124Example 14 f = 39.1 to 87.3 to 178.0 FNO = 4.12 to 7.00 to 9.50 [curvature radius] [axis upper surface spacing] [refractive index] [Abbe number] r1 33.610 d1 2.000 N1 1.84666 ν1 23.82 r2 * 25.100 d2 0.400 r3 27.548 d3 5.000 N2 1.51680 ν2 64.20 r4 753.614 d4 2.742 ~ 16.742 ~ 33.742 r5 * -52.743 d5 1.400 N3 1.80700 ν3 39.79 r6 13.245 d6 0.500 r7 13.812 d7 4.800 N4 1.78472 ν4 25.75 r8100 ~ 92.971 d ∞ d9 11.000 N5 1.51680 ν5 64.20 r10 ∞ d10 0.400 r11 ∞ (aperture) d11 0.500 r12 22.313 d12 1.000 N6 1.84666 ν6 23.82 r13 14.288 d13 0.300 r14 14.606 d14 4.700 N7 1.51728 ν7 69.43 r15 * -22.509 d15 0.200 r16 plate ) d16 24.47 to 10.857 to 2.500 r17 * -54.612 d17 3.800 N8 1.84666 ν8 23.82 r18 * -25.402 d18 3.200 to 3.700 to 4.100 r19 -14.306 d19 1.302 N9 1.74400 ν9 44.93 r20 343.832 Σd = 76.814 to 75.599 to 78.124

【0293】[非球面係数] r2 : ε= 1.0000 A4=-0.54576×10-6 A6= 0.36121×10-8 A8=-0.54180×10-10 A10= 0.28687×10-12 A12=-0.61819×10-15 r5 : ε= 1.0000 A4= 0.15595×10-4 A6= 0.10752×10-6 A8=-0.62298×10-9 A10= 0.13699×10-11 A12=-0.27882×10-14 r8 : ε= 1.0000 A4= 0.26334×10-4 A6= 0.16845×10-6 A8= 0.14229×10-8 A10=-0.16403×10-10 A12= 0.40194×10-13 r15: ε= 1.0000 A4= 0.89173×10-5 A6= 0.49406×10-6 A8=-0.17305×10-7 A10= 0.22222×10-9 A12=-0.91183×10-13 r17: ε= 1.0000 A4= 0.16014×10-5 A6=-0.14312×10-6 A8= 0.46824×10-8 A10=-0.25385×10-10 A12=-0.28051×10-13 r18: ε= 1.0000 A4=-0.16857×10-4 A6=-0.12711×10-6 A8= 0.21265×10-8 A10= 0.41439×10-11 A12=-0.12654×10-12 [0293] [aspherical coefficients] r2: ε = 1.0000 A4 = -0.54576 × 10 -6 A6 = 0.36121 × 10 -8 A8 = -0.54180 × 10 -10 A10 = 0.28687 × 10 -12 A12 = -0.61819 × 10 - 15 r5: ε = 1.0000 A4 = 0.15595 × 10 -4 A6 = 0.10752 × 10 -6 A8 = -0.62298 × 10 -9 A10 = 0.13699 × 10 -11 A12 = -0.27882 × 10 -14 r8: ε = 1.0000 A4 = 0.26334 × 10 -4 A6 = 0.16845 × 10 -6 A8 = 0.14229 × 10 -8 A10 = -0.16403 × 10 -10 A12 = 0.40194 × 10 -13 r15: ε = 1.0000 A4 = 0.89173 × 10 -5 A6 = 0.49406 × 10 -6 A8 = -0.17305 × 10 -7 A10 = 0.22222 × 10 -9 A12 = -0.91183 × 10 -13 r17: ε = 1.0000 A4 = 0.16014 × 10 -5 A6 = -0.14312 × 10 -6 A8 = 0.46824 × 10 -8 A10 = -0.25385 × 10 -10 A12 = -0.28051 × 10 -13 r18: ε = 1.0000 A4 = -0.16857 × 10 -4 A6 = -0.12711 × 10 -6 A8 = 0.21265 × 10 -8 A10 = 0.41439 × 10 -11 A12 = -0.12654 × 10 -12

【0294】 [条件式(6)の対応値(第1群Gr1中のr2の非球面)] y= 1.3300 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4292×10-7 y= 2.6600 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3280×10-6 y= 3.9900 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1046×10-5 y= 5.3200 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2376×10-5 y= 6.6500 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.4631×10-5 y= 7.9800 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.8388×10-5 y= 9.3100 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1448×10-4 y=10.6400 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2397×10-4 y=11.9700 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3884×10-4 y=13.3000 … φ1・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6593×10-4 [Corresponding value of conditional expression (6) (aspherical surface of r2 in the first group Gr1)] y = 1.3300 ... φ1 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.4292 × 10 -7 y = 2.6600… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3280 × 10 -6 y = 3.9900… φ1 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1046 × 10 -5 y = 5.3200… φ1 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.2376 × 10 -5 y = 6.6500… φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.4631 × 10 -5 y = 7.9800… φ1・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.8388 × 10 -5 y = 9.3100… φ1 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.1448 × 10 -4 y = 10.6400 ... φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2397 × 10 -4 y = 11.9700 … Φ1 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3884 × 10 -4 y = 13.3000… φ1 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.6593 × 10 -4

【0295】 [条件式(10)の対応値(第2群Gr2中のr5の非球面)] y= 1.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1603×10-5 y= 2.1800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1327×10-4 y= 3.2700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4712×10-4 y= 4.3600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1185×10-3 y= 5.4500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2460×10-3 y= 6.5400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4488×10-3 y= 7.6300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.7436×10-3 y= 8.7200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1138×10-2 y= 9.8100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1623×10-2 y=10.9000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2158×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r5 in the second group Gr2)] y = 1.0900 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1603×10 -5 y = 2.1800… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1327 × 10 -4 y = 3.2700… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4712 × 10 -4 y = 4.3600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1185 × 10 -3 y = 5.4500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2460 × 10 -3 y = 6.5400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4488 × 10 -3 y = 7.6300… φ2 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.7436 × 10 -3 y = 8.7200… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1138 × 10 -2 y = 9.8100… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1623 × 10 -2 y = 10.9000… φ2 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.2158 × 10 -2

【0296】 [条件式(10)の対応値(第2群Gr2中のr8の非球面)] y= 0.8700 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1332×10-5 y= 1.7400 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1090×10-4 y= 2.6100 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3821×10-4 y= 3.4800 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.9560×10-4 y= 4.3500 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2001×10-3 y= 5.2200 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3750×10-3 y= 6.0900 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.6505×10-3 y= 6.9600 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1061×10-2 y= 7.8300 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.1640×10-2 y= 8.7000 … φ2・(N'-N)・d{(X(y)-X0(y)}/dy= 0.2408×10-2 [Corresponding value of conditional expression (10) (aspherical surface of r8 in the second group Gr2)] y = 0.8700 ... φ2 · (N′-N) · d {(X (y) -X0 (y) } / dy = 0.1332 × 10 -5 y = 1.7400… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1090 × 10 -4 y = 2.6100… φ2 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3821 × 10 -4 y = 3.4800… φ2 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = 0.9560 × 10 -4 y = 4.3500… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.2001 × 10 -3 y = 5.2200… φ2・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3750 × 10 -3 y = 6.0900… φ2 ・ (N'-N) ・ d {(X (y)- X0 (y)} / dy = 0.6505 × 10 -3 y = 6.9600… φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1061 × 10 -2 y = 7.8300 … Φ2 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.1640 × 10 -2 y = 8.7000… φ2 ・ (N'-N) ・ d {(X (y (y ) -X0 (y)} / dy = 0.2408 × 10 -2

【0297】 [条件式(14)の対応値(第3群Gr3中のr15の非球面)] y= 0.6279 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1716×10-6 y= 1.2558 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1492×10-5 y= 1.8837 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5606×10-5 y= 2.5116 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1474×10-4 y= 3.1395 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3120×10-4 y= 3.7674 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5655×10-4 y= 4.3953 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9135×10-4 y= 5.0232 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1374×10-3 y= 5.6511 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2052×10-3 y= 6.2790 … φ3・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3304×10-3 [Corresponding Value of Conditional Expression (14) (Aspherical Surface of r15 in Third Group Gr3)] y = 0.6279 ... φ3 · (N′-N) · d {(X (y) -X0 (y) } /dy=-0.1716×10 -6 y = 1.2558… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1492 × 10 -5 y = 1.8837… φ3・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5606 × 10 -5 y = 2.5116… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1474 × 10 -4 y = 3.1395… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3120 × 10 -4 y = 3.7674… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5655 × 10 -4 y = 4.3953… φ3 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.9135 × 10 -4 y = 5.0232… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy =- 0.1374 × 10 -3 y = 5.6511… φ3 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2052 × 10 -3 y = 6.2790… φ3 ・ (N'- N) ・ d {(X (y) -X0 (y)} / dy = -0.3304 × 10 -3

【0298】 [条件式(16c)の対応値(第4群Gr4中のr17の非球面)] y= 1.1100 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2114×10-6 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2056×10-6 y= 2.2200 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9555×10-6 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9294×10-6 y= 3.3300 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1203×10-5 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1170×10-5 y= 4.4400 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.5107×10-5 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4968×10-5 y= 5.5500 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3802×10-4 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3698×10-4 y= 6.6600 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1568×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1526×10-3 y= 7.7700 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4128×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4016×10-3 y= 8.8800 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6837×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4016×10-3 y= 9.9900 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2305×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2242×10-3 y=11.1000 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3251×10-2 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy= 0.3163×10-2 [Corresponding value of conditional expression (16c) (aspherical surface of r17 in the fourth group Gr4)] y = 1.1100 ... [W] ... φ4,5 · (N′-N) · d {(X (y ( ) -X0 (y)} / dy = -0.2114 × 10 -6 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2056 × 10 -6 y = 2.2200… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9555 × 10 -6 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9294 × 10 -6 y = 3.3300… [W]… φ4,5 ・ (N'-N ) ・ D {(X (y) -X0 (y)} / dy = -0.1203 × 10 -5 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = -0.1170 × 10 -5 y = 4.4400… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.5107 × 10 -5 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4968 × 10 -5 y = 5.5500… [W]… φ4 , 5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3802 × 10 -4 … [T]… φ4,5 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.3698 × 10 -4 y = 6.6600… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y )} / dy = -0.1568 × 10 -3 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1526 × 10 -3 y = 7.7700… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4128 × 10 -3 … [T]… φ4,5 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4016 × 10 -3 y = 8.8800… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6837 × 10 -3 … [T]… φ4,5 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4016 × 10 -3 y = 9.9900… [W]… φ4,5 ・ (N'-N) ・ d {( X (y) -X0 (y)} / dy = -0.2305 × 10 -3 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2242 × 10 -3 y = 11.1000… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3251 × 10 -2 … [T ]… Φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = 0.3163 × 10 -2

【0299】 [条件式(16c)の対応値(第4群Gr4中のr18の非球面)] y= 1.1800 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3217×10-5 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.3129×10-5 y= 2.3600 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2675×10-4 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2602×10-4 y= 3.5400 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9424×10-4 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9167×10-4 y= 4.7200 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2283×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.2220×10-3 y= 5.9000 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4338×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4220×10-3 y= 7.0800 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6830×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.6643×10-3 y= 8.2600 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9674×10-3 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.9410×10-3 y= 9.4400 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1606×10-2 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1562×10-2 y=10.6200 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4224×10-2 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4109×10-2 y=11.8000 …[W]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.1423×10-1 …[T]… φ4,5・(N'-N)・d{(X(y)-X0(y)}/dy=-0.4109×10-2 [Corresponding value of conditional expression (16c) (aspherical surface of r18 in the fourth group Gr4)] y = 1.1800 ... [W] ... φ4,5 · (N′-N) · d {(X (y ( ) -X0 (y)} / dy = -0.3217 × 10 -5 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.3129 × 10 -5 y = 2.3600… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2675 × 10 -4 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2602 × 10 -4 y = 3.5400… [W]… φ4,5 ・ (N'-N ) ・ D {(X (y) -X0 (y)} / dy = -0.9424 × 10 -4 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 ( y)} / dy = -0.9167 × 10 -4 y = 4.7200… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2283 × 10 -3 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.2220 × 10 -3 y = 5.9000… [W]… φ4 , 5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4338 × 10 -3 … [T]… φ4,5 ・ (N'-N) ・ d { (X (y) -X0 (y)} / dy = -0.4220 × 10 -3 y = 7.0800… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y )} / dy = -0.6830 × 10 -3 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.6643 × 10 -3 y = 8.2600… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9674 × 10 -3 … [T]… φ4,5 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.9410 × 10 -3 y = 9.4400… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1606 × 10 -2 … [T]… φ4,5 ・ ( N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1562 × 10 -2 y = 10.6200… [W]… φ4,5 ・ (N'-N) ・ d {( X (y) -X0 (y)} / dy = -0.4224 × 10 -2 … [T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4109 × 10 -2 y = 11.8000… [W]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.1423 × 10 -1 … [ T]… φ4,5 ・ (N'-N) ・ d {(X (y) -X0 (y)} / dy = -0.4109 × 10 -2

【0300】[0300]

【表1】 [Table 1]

【0301】[0301]

【表2】 [Table 2]

【0302】[0302]

【表3】 [Table 3]

【0303】[0303]

【表4】 [Table 4]

【0304】[0304]

【表5】 [Table 5]

【0305】[0305]

【表6】 [Table 6]

【0306】図2,図4,図6,図8,図10,図1
3,図16,図19,図22,図24,図26,図2
8,図30,図32は、上記実施例1〜実施例14にそ
れぞれ対応する無限遠撮影状態における収差図であり、
広角端[W]、ミドル[M]、望遠端[T]での諸収差を示し
ている。また、図11,図14,図17,図20は、実
施例5〜実施例8にそれぞれ対応する広角端における最
近接撮影状態[W(D=5m)]での収差図である。各収差
図中、実線(d)はd線に対する収差、一点鎖線(g)はg
線に対する収差、二点鎖線(c)はc線に対する収差、破
線(SC)は正弦条件を表わしており、破線(DM)と実線
(DS)はメリディオナル面とサジタル面での非点収差を
それぞれ表わしている。
2, FIG. 4, FIG. 6, FIG. 8, FIG.
3, FIG. 16, FIG. 19, FIG. 22, FIG. 24, FIG. 26, FIG.
8, FIG. 30, and FIG. 32 are aberration diagrams in the infinity imaging state corresponding to the above Examples 1 to 14, respectively.
The various aberrations at the wide-angle end [W], the middle [M], and the telephoto end [T] are shown. 11, FIG. 14, FIG. 17, and FIG. 20 are aberration charts in the closest photographing state [W (D = 5 m)] at the wide-angle end corresponding to Examples 5 to 8, respectively. In each aberration diagram, the solid line (d) is the aberration for the d-line, and the dashed line (g) is g
Aberrations with respect to a line, a two-dot chain line (c) shows an aberration with respect to a c-line, and a broken line (SC) shows a sine condition. A broken line (DM) and a solid line
(DS) represents astigmatism on the meridional surface and the sagittal surface, respectively.

【0307】[0307]

【発明の効果】以上説明したように本発明によると、パ
ララックスが発生せず、しかも鏡胴構成を複雑化するこ
とがない、コンパクトで高い光学性能を有するズームレ
ンズを実現することができる。そして、本発明に係るズ
ームレンズを用いれば、カメラの小型化を図ることがで
きる。
As described above, according to the present invention, it is possible to realize a compact zoom lens having high optical performance without causing parallax and complicating the lens barrel structure. Then, by using the zoom lens according to the present invention, the camera can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施の形態及び実施例1を示すレンズ構
成図。
FIG. 1 is a lens configuration diagram showing a first embodiment and a first example.

【図2】実施例1の無限遠撮影状態における収差図。FIG. 2 is an aberration diagram of Example 1 in an infinite photographing state.

【図3】第2の実施の形態及び実施例2を示すレンズ構
成図。
FIG. 3 is a lens configuration diagram showing a second embodiment and a second example.

【図4】実施例2の無限遠撮影状態における収差図。FIG. 4 is an aberration diagram of Example 2 in the infinity imaging state.

【図5】第3の実施の形態及び実施例3を示すレンズ構
成図。
FIG. 5 is a lens configuration diagram showing a third embodiment and a third example.

【図6】実施例3の無限遠撮影状態における収差図。FIG. 6 is an aberration diagram of Example 3 in an infinite photographing state.

【図7】第4の実施の形態及び実施例4を示すレンズ構
成図。
FIG. 7 is a lens configuration diagram showing a fourth embodiment and a fourth example.

【図8】実施例4の無限遠撮影状態における収差図。8A and 8B are aberration diagrams of Example 4 in the infinity imaging state.

【図9】第5の実施の形態及び実施例5を示すレンズ構
成図。
FIG. 9 is a lens configuration diagram showing a fifth embodiment and a fifth example.

【図10】実施例5の無限遠撮影状態における収差図。FIG. 10 is an aberration diagram of Example 5 in the infinity imaging state.

【図11】実施例5の近接撮影状態における収差図。FIG. 11 is an aberration diagram of Example 5 in a close-up shooting state.

【図12】第6の実施の形態及び実施例6を示すレンズ
構成図。
FIG. 12 is a lens configuration diagram showing a sixth embodiment and a sixth example.

【図13】実施例6の無限遠撮影状態における収差図。FIG. 13 is an aberration diagram of Example 6 in the infinity imaging state.

【図14】実施例6の近接撮影状態における収差図。FIG. 14 is an aberration diagram of Example 6 in a close-up shooting state.

【図15】第7の実施の形態及び実施例7を示すレンズ
構成図。
FIG. 15 is a lens configuration diagram showing a seventh embodiment and a seventh example.

【図16】実施例7の無限遠撮影状態における収差図。16 is an aberration diagram of Example 7 in the infinity imaging state. FIG.

【図17】実施例7の近接撮影状態における収差図。FIG. 17 is an aberration diagram of Example 7 in a close-up shooting state.

【図18】第8の実施の形態及び実施例8を示すレンズ
構成図。
FIG. 18 is a lens configuration diagram showing an eighth embodiment and an example 8.

【図19】実施例8の無限遠撮影状態における収差図。FIG. 19 is an aberration diagram of Example 8 in the infinity imaging state.

【図20】実施例8の近接撮影状態における収差図。FIG. 20 is an aberration diagram of Example 8 in a close-up shooting state.

【図21】第9の実施の形態及び実施例9を示すレンズ
構成図。
FIG. 21 is a lens configuration diagram showing a ninth embodiment and a ninth example.

【図22】実施例9の無限遠撮影状態における収差図。FIG. 22 is an aberration diagram of Example 9 in the infinity imaging state.

【図23】第10の実施の形態及び実施例10を示すレ
ンズ構成図。
FIG. 23 is a lens configuration diagram showing a tenth embodiment and a tenth example.

【図24】実施例10の無限遠撮影状態における収差
図。
FIG. 24 is an aberration diagram for Example 10 in infinity imaging.

【図25】第11の実施の形態及び実施例11を示すレ
ンズ構成図。
FIG. 25 is a lens configuration diagram showing an eleventh embodiment and an eleventh embodiment.

【図26】実施例11の無限遠撮影状態における収差
図。
FIG. 26 is an aberration diagram of Example 11 in the infinity imaging state.

【図27】第12の実施の形態及び実施例12を示すレ
ンズ構成図。
FIG. 27 is a lens configuration diagram showing a twelfth embodiment and a twelfth embodiment.

【図28】実施例12の無限遠撮影状態における収差
図。
FIG. 28 is an aberration diagram of Example 12 in the infinity imaging state.

【図29】第13の実施の形態及び実施例13を示すレ
ンズ構成図。
FIG. 29 is a lens configuration diagram showing a thirteenth embodiment and a thirteenth embodiment.

【図30】実施例13の無限遠撮影状態における収差
図。
FIG. 30 is an aberration diagram of Example 13 in the infinity imaging state.

【図31】第14の実施の形態及び実施例14を示すレ
ンズ構成図。
FIG. 31 is a lens configuration diagram showing a fourteenth embodiment and a fourteenth embodiment.

【図32】実施例14の無限遠撮影状態における収差
図。
FIG. 32 is an aberration diagram of Example 14 in the infinity imaging state.

【符号の説明】[Explanation of symbols]

Gr1 …第1群 Gr2 …第2群 Gr3 …第3群 Gr4 …第4群 Gr5 …第5群 Gr6 …第6群 HP …ハーフプリズム PM …ペリクルミラー Gr1 ... 1st group Gr2 ... 2nd group Gr3 ... 3rd group Gr4 ... 4th group Gr5 ... 5th group Gr6 ... 6th group HP ... Half prism PM ... Pellicle mirror

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数のズーム群から成り、このズーム群
間で光束を反射させることにより光束分割又は光路切替
を行う反射手段を備えたズームレンズであって、 前記反射手段より後方に絞り及びレンズシャッターを有
し、 ズーミングにおいて、前記反射手段がその後ろ側に隣り
合って位置するズーム群と一体に移動することを特徴と
するズームレンズ。
1. A zoom lens comprising a plurality of zoom groups, wherein the zoom lens is provided with a reflecting means for dividing a light flux or switching an optical path by reflecting the light flux between the zoom groups, wherein a diaphragm and a lens are provided behind the reflecting means. A zoom lens including a shutter, wherein the reflecting means moves integrally with a zoom group positioned adjacent to the rear side of the reflecting means during zooming.
JP8048563A 1996-03-06 1996-03-06 Zoom lens Pending JPH09243912A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8048563A JPH09243912A (en) 1996-03-06 1996-03-06 Zoom lens
US08/812,992 US6002526A (en) 1996-03-06 1997-03-04 Zoom lens system
US09/295,482 US6072637A (en) 1996-03-06 1999-04-20 Zoom lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8048563A JPH09243912A (en) 1996-03-06 1996-03-06 Zoom lens

Publications (1)

Publication Number Publication Date
JPH09243912A true JPH09243912A (en) 1997-09-19

Family

ID=12806868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8048563A Pending JPH09243912A (en) 1996-03-06 1996-03-06 Zoom lens

Country Status (1)

Country Link
JP (1) JPH09243912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095543A1 (en) * 2005-03-11 2006-09-14 Sony Corporation Zoom lens system and imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006095543A1 (en) * 2005-03-11 2006-09-14 Sony Corporation Zoom lens system and imaging device
US7535657B2 (en) 2005-03-11 2009-05-19 Sony Corporation Zoom lens system and imaging device

Similar Documents

Publication Publication Date Title
US7196852B2 (en) Zoom lens system and image pickup device having zoom lens system
JP3506691B2 (en) High magnification zoom lens
JP2006039531A (en) Zoom lens and imaging apparatus equipped with the same
JPH0850244A (en) Zoom lens having high variable power ratio
US20110116174A1 (en) Zoom lens, optical apparatus having same, and method of manufacturing zoom lens
JP2004246043A (en) Variable focal length lens system
JPH11109241A (en) Zoom lens system
US6072637A (en) Zoom lens system
JPH1164733A (en) Zoom lens long in back focus
JPH07199070A (en) Zoom lens
JPH11109233A (en) Zoom lens system
JP2019219450A (en) Zoom lens
US6661584B2 (en) Zoom lens and camera having the zoom lens
JP4585796B2 (en) Zoom lens and imaging apparatus having the same
JP2513481B2 (en) Zoom lens
JP2001290076A (en) Variable focal length lens system
JPH08146297A (en) Zoom lens of large aperture diameter
JPH09218352A (en) Zoom lens
JP2000214380A (en) Photographing lens
JPH11109236A (en) Zoom lens system
JP4333151B2 (en) Zoom lens
JPH05341189A (en) Zoom lens
JPH08179205A (en) Wide-angle zoom lens
JPH11109235A (en) Zoom lens system
JPH09243910A (en) Zoom lens