JPH09243575A - Microwave type densitometer - Google Patents

Microwave type densitometer

Info

Publication number
JPH09243575A
JPH09243575A JP5319396A JP5319396A JPH09243575A JP H09243575 A JPH09243575 A JP H09243575A JP 5319396 A JP5319396 A JP 5319396A JP 5319396 A JP5319396 A JP 5319396A JP H09243575 A JPH09243575 A JP H09243575A
Authority
JP
Japan
Prior art keywords
microwave
calibration curve
concentration
fluid
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5319396A
Other languages
Japanese (ja)
Other versions
JP3311230B2 (en
Inventor
Seiji Yamaguchi
征治 山口
Renzou Hirai
錬造 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP05319396A priority Critical patent/JP3311230B2/en
Publication of JPH09243575A publication Critical patent/JPH09243575A/en
Application granted granted Critical
Publication of JP3311230B2 publication Critical patent/JP3311230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide the microwave-type tensitometer, which can measure the concentration of the suspension liquid of excellent conducting particle such as carbon and metal powder and can also measure the concentration of mixed fluid with rmonconducting material. SOLUTION: This densitometer detects the phase delay θ1 6f the microwave, which is obtained by the measurement of the reference fluid in concentration measuring pipe 20, and the phase delay θ2 of the microwave, which is obtained by the measurement for fluid to be measured. The densitometer is constituted so as to perform these detections and to measure the concentration of the fluid to be measured from the phase difference Δθ=θ2 -θ1 of both phase delays. In this case, the following means are provided. The concentration operating means computes the concentration X by the calibration curve X=a.Δθ+b in correspondence with every kind of the fluid to be measured. The calibration-curve selecting means performs the discrimination of the positive/negative values of the phase difference Δθ, selects the calibration curve, where the value of the inclination (a) of the calibration curve becomes the positive numerical value, when Δθ is positive, and selects the calibration curve, where the value of the inclination (a) of the calibration curve becomes the negative numerical, when Δθ is negative.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、懸濁物質の濃度、
例えば汚泥、パルプ、その他種々の物資を含む被測定流
体の濃度を測定する濃度計に係り、特に非良導電性物質
も良導電性物質、いずれの懸濁液の濃度も測定できる機
能を有するマイクロ波式濃度計に関するものである。
TECHNICAL FIELD The present invention relates to a concentration of a suspended substance,
For example, it relates to a densitometer for measuring the concentration of a fluid to be measured containing sludge, pulp, and other various substances, and particularly a micrometer having a function capable of measuring the concentration of both non-good and good conductive substances and suspensions. The present invention relates to a wave type densitometer.

【0002】[0002]

【従来の技術】液体中の濃度測定を行うに際し、従来か
ら超音波の減衰率を測定して濃度を求める超音波式濃度
計、光を用いて透過光減衰率や散乱光増加率を測定して
濃度を求める光学式濃度計が多く用いられている。
2. Description of the Related Art When measuring the concentration in a liquid, an ultrasonic densitometer has conventionally been used to obtain the concentration by measuring the attenuation factor of ultrasonic waves, and the transmitted light attenuation factor and scattered light increase factor are measured using light. Optical densitometers are widely used to calculate the concentration.

【0003】しかし、前者は流体中に気泡が混入してい
る場合、その影響を大きく受け測定誤差が大きくなる。
一方、後者は光を入射するあるいは受光する光学窓に汚
れが付着すると、その影響を大きく受け測定誤差が大き
くなる。そこで、近年では、気泡や汚れ付着の影響を受
け難い濃度計としてマイクロ波を用いて濃度を測定する
濃度計が開発されている。
However, in the former case, when air bubbles are mixed in the fluid, the influence thereof is greatly affected and the measurement error becomes large.
On the other hand, in the latter case, if dirt adheres to the optical window that receives or receives light, it is greatly affected and the measurement error increases. Therefore, in recent years, a densitometer that measures the concentration using microwaves has been developed as a densitometer that is less likely to be affected by bubbles and dirt.

【0004】図6は、マイクロ波を用いた濃度計の構成
例を示している。同図に示すように、流体の流通する配
管1に、マイクロ波送信アンテナ11とマイクロ波受信
アンテナ12とが対向配置され、マイクロ波発振器13
からマイクロ波が発射されるようになっている。
FIG. 6 shows an example of the structure of a densitometer using microwaves. As shown in the figure, a microwave transmitting antenna 11 and a microwave receiving antenna 12 are arranged to face each other in a pipe 1 through which a fluid flows, and a microwave oscillator 13
The microwave is emitted from.

【0005】また、マイクロ波の通過経路として、パワ
ースプリッタ14〜送信アンテナ11〜管内流体〜受信
アンテナ12を通って位相差測定回路15に導入される
第1の経路と、同じくマイクロ波がパワースプリッタ1
4を通って位相差測定回路15に導入される第2の経路
とが形成されている。
As a microwave passage, the first path introduced into the phase difference measuring circuit 15 through the power splitter 14, the transmission antenna 11, the in-tube fluid, and the reception antenna 12, and similarly the microwave is the power splitter. 1
And a second path which is introduced into the phase difference measuring circuit 15 through the line 4.

【0006】そして、位相差測定回路15にて第1の経
路からのマイクロ波の第2の経路からのマイクロ波に対
する位相遅れから位相差を求める構成となっている。こ
の濃度計では、マイクロ波発振器13からパワースプリ
ッタ14を経由して直接受信するマイクロ波に対する配
管内の被測定流体を伝播してくるマイクロ波の位相遅れ
θ2 と、管内に基準流体(例えば水道水)を充填して被
測定流体の場合と同じ条件で測定した時のマイクロ波の
位相遅れθ1 とを比較し、その位相差Δθ=(θ2 −θ
1 )から検量線を用いて濃度を測定する。具体的には、
濃度X=aΔθ+bの演算を行なって濃度を求めるもの
である。なお、aは検量線の傾き、bは検量線の切片で
ある。
In the phase difference measuring circuit 15, the phase difference is obtained from the phase delay of the microwave from the first path with respect to the microwave from the second path. In this densitometer, the phase delay θ 2 of the microwave propagating the fluid under measurement in the pipe with respect to the microwave directly received from the microwave oscillator 13 via the power splitter 14 and the reference fluid (for example, water supply) in the pipe. water) was filled with comparing the phase delay theta 1 of microwaves when measured under the same conditions as in the fluid to be measured, the phase difference Δθ = (θ 2
Measure the concentration using the calibration curve from 1 ). In particular,
The density is calculated by calculating the density X = aΔθ + b. Note that a is the slope of the calibration curve, and b is the intercept of the calibration curve.

【0007】[0007]

【発明が解決しようとする課題】以上のようなマイクロ
波式濃度計は、マイクロ波の減衰率を測定する方式では
なく、位相差を測定する方式であり、またマイクロ波を
入射あるいは受波する窓部は透明である必要はないた
め、気泡や汚れの影響を受け難く、しかも連続的に濃度
を測定することができる。
The microwave densitometer as described above is not a method for measuring the attenuation rate of microwaves but a method for measuring the phase difference, and it receives or receives microwaves. Since the window does not need to be transparent, it is less susceptible to air bubbles and dirt, and the concentration can be continuously measured.

【0008】しかしながら、上記マイクロ波式濃度計
は、汚泥やパルプなど非良導電性物質の懸濁液濃度測定
には適用できるが、炭や金属粉など良導電性物質粒子の
懸濁液に対するマイクロ波特性が従来明らかでなくその
濃度測定に適用することができなかった。
However, the microwave densitometer described above can be applied to the measurement of the concentration of suspension of non-conductive substance such as sludge and pulp. The wave characteristics have not been clarified in the past and could not be applied to the concentration measurement.

【0009】本発明は、このような実情を考慮してなさ
れたもので、炭や金属粉など良導電性粒子の懸濁液の濃
度測定、さらに非良導電性物質との混合流体の濃度測定
も可能であるマイクロ波式濃度計を提供することを目的
とする。
The present invention has been made in consideration of such circumstances, and measures the concentration of a suspension of good conductive particles such as charcoal and metal powder, and further measures the concentration of a fluid mixed with a non-good conductive substance. Another object is to provide a microwave densitometer that is also possible.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、請求項1に対応する発明は、濃度測定用管にマイク
ロ波送信器及びマイクロ波受信器を対向配置し、濃度測
定用管に基準流体が流れているときにマイクロ波送信器
から送信され基準流体を通ってマイクロ波受信器にて受
信されたマイクロ波の位相遅れθ1 を検出し、濃度測定
用管に被測定流体が流れているときにマイクロ波送信器
から送信され被測定流体を通ってマイクロ波受信器にて
受信されたマイクロ波の位相遅れθ2 を検出し、両位相
遅れの位相差Δθ=θ2 −θ1 から被測定流体の濃度を
測定するマイクロ波濃度計において、濃度Xを、被測定
流体の種類毎に対応する検量線X=a・Δθ+bにより
算出する濃度演算手段と、位相差Δθの正負判別を行
い、Δθが正のときは検量線の傾きaの値が正の数値と
なる検量線を選定し、Δθが負のときは検量線の傾きa
の値が負の数値となる検量線を選定する検量線選定手段
とを有することを特徴とするマイクロ波式濃度計であ
る。
In order to solve the above problems, the invention according to claim 1 provides a concentration measuring tube in which a microwave transmitter and a microwave receiver are arranged to face each other. While the reference fluid is flowing, the phase delay θ 1 of the microwave transmitted from the microwave transmitter and received by the microwave receiver through the reference fluid is detected, and the fluid to be measured flows into the concentration measuring tube. During this period, the phase delay θ 2 of the microwave transmitted from the microwave transmitter and received by the microwave receiver through the fluid to be measured is detected, and the phase difference between both phase delays Δθ = θ 2 −θ 1 In the microwave densitometer for measuring the concentration of the fluid to be measured, the concentration calculation means for calculating the concentration X from the calibration curve X = a · Δθ + b corresponding to each type of the fluid to be measured, and whether the phase difference Δθ is positive or negative are determined. If Δθ is positive, the calibration curve You can select the calibration curve the value of a is a positive numerical value, the gradient a of the calibration curve when Δθ is negative
And a calibration curve selecting means for selecting a calibration curve having a negative value.

【0011】また、請求項2に対応する発明は、請求項
1に対応する発明において、検量線の傾きaの値が正と
なる検量線及び負となる検量線とを組み合わせて一の測
定対象モードとし、複数の測定対象モードのうちの何れ
かのモードを検量線選定手段の選定対象として設定する
測定対象モード設定手段を設けたマイクロ波式濃度計で
ある。
The invention according to claim 2 is the same as the invention according to claim 1, in which a calibration curve having a positive slope a of the calibration curve and a calibration curve having a negative slope are combined to form one measurement target. The microwave densitometer is provided with a measurement target mode setting means for setting any one of a plurality of measurement target modes as a selection target of the calibration curve selection means.

【0012】以上のように構成された各請求項に対応す
るマイクロ波式濃度計を発明するにあたり、従来、明ら
かでなかった良導電性物質粒子に対するマイクロ波特性
を調べるため、炭の粒子を水中に懸濁させた液にマイク
ロ波入射し、粒子濃度と位相差の関係を調査する実験を
行った。
[0012] In inventing a microwave type densitometer corresponding to each claim constructed as described above, in order to investigate the microwave characteristics for particles of a good conductive substance, which has not been clarified hitherto, a particle of charcoal is used. An experiment was conducted to investigate the relationship between particle concentration and phase difference by injecting microwave into a liquid suspended in water.

【0013】その結果、図4に示すように、濃度Xに対
して位相差Δθは負の傾きをもつ直線関係にある検量線
で示されることが判明した。ここで、θ1 は濃度ゼロの
基準液(通常は水)での位相遅れで、ゼロ点位相値θ1
と呼ぶ。θ2 は被測定液の位相遅れである。θ2 とθ1
の差Δθ=θ2 −θ1 を位相差Δθと呼ぶ。
As a result, as shown in FIG. 4, it was found that the phase difference Δθ with respect to the concentration X is shown by a calibration curve having a linear relationship with a negative slope. Where θ 1 is the phase lag in the zero-concentration reference liquid (usually water), and the zero-point phase value θ 1
Call. θ 2 is the phase delay of the measured liquid. θ 2 and θ 1
The difference Δθ = θ 2 −θ 1 is called the phase difference Δθ.

【0014】なお、従来から測定可能であった汚泥やパ
ルプなど非良導電性物質の懸濁液濃度Xと位相差Δθの
関係は図5に示すように、Xに対してΔθは正の傾きを
もつ直線関係にある検量線で示される。
The relationship between the suspension concentration X of sludge and pulp, which has been measurable in the past, and the phase difference Δθ is as shown in FIG. 5, and Δθ is a positive slope with respect to X. It is shown by a calibration curve having a linear relationship with.

【0015】そこで、まず、請求項1に対応する発明の
マイクロ波式濃度計においては、検量線選定手段によっ
て、位相差Δθの正負判別が行われ、Δθが正のときは
検量線の傾きaの値が正の数値となる検量線が選定さ
れ、Δθが負のときは検量線の傾きaの値が負の数値と
なる検量線が選定されるようにした。
Therefore, first, in the microwave densitometer of the invention according to claim 1, the calibration curve selecting means determines whether the phase difference Δθ is positive or negative. When Δθ is positive, the slope a of the calibration curve is determined. A calibration curve with a positive value is selected, and when Δθ is negative, a calibration curve with a negative slope curve a value is selected.

【0016】そして、濃度演算手段によって、選定され
た検量線X=a・Δθ+bにより濃度Xが算出される。
したがって、非良導電性物質の懸濁液と良導電性物質の
懸濁液の両方が個別に交互に流れるまたは混合して流れ
る配管ラインにマイクロ波式濃度計を適用する場合、Δ
θ≧0かΔθ≦0かによって検量線の傾きaの値を正と
するか、負とするか自動的に選定することができること
になる。
Then, the concentration X is calculated by the concentration calculating means from the selected calibration curve X = a.Δθ + b.
Therefore, when applying a microwave densitometer to a pipeline in which both a suspension of a non-good conductive material and a suspension of a good conductive material flow separately or alternately and mixed,
Depending on whether θ ≧ 0 or Δθ ≦ 0, it is possible to automatically select whether the value of the slope a of the calibration curve is positive or negative.

【0017】また、請求項2に対応する発明のマイクロ
波式濃度計においては、請求項1に対応する発明と同様
に作用する他、検量線の傾きaの値が正となる検量線及
び負となる検量線とを組み合わせて一の測定対象モード
とし、測定対象モード設定手段によって、複数の測定対
象モードのうちの何れかのモードが検量線選定手段の選
定対象として設定される。
Further, in the microwave type densitometer of the invention according to claim 2, the same operation as in the invention according to claim 1 is achieved, and in addition, a calibration curve and a negative curve having a positive slope a of the calibration curve are provided. One of the plurality of measurement object modes is set by the measurement object mode setting means as a selection object of the calibration curve selection means.

【0018】したがって、各モードにおける測定対象に
応じて、適合する検量線の傾きaの値を自動的に選定し
て、濃度X=aΔθ+bの演算を行って濃度を求めるこ
とができる。
Therefore, it is possible to obtain the concentration by automatically selecting the value of the slope a of the calibration curve that suits the object of measurement in each mode and calculating the concentration X = aΔθ + b.

【0019】[0019]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて図面を参照して詳細に説明する。図1は、本実施の
形態に係るマイクロ波式濃度計の構成図である。このマ
イクロ波式濃度計は、マイクロ波送受信部40と信号処
理部41とによって構成されている。また、マイクロ波
送受信部40には、送信アンテナ31及び受信アンテナ
32が設けられ、濃度検出用管20に取り付けられてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a configuration diagram of a microwave densitometer according to the present embodiment. This microwave densitometer is composed of a microwave transmitter / receiver 40 and a signal processor 41. Further, the microwave transmitting / receiving unit 40 is provided with a transmitting antenna 31 and a receiving antenna 32, and is attached to the concentration detecting tube 20.

【0020】この濃度検出用管20は、上流側配管21
と下流側配管22との間に仕切り弁23,24を介して
設けられている。また、濃度検出用管20には、給水バ
ルブ26及び排水バルブ27が設けられている。給水バ
ルブ26には水道水等の基準流体を導くための水道管2
8が接続され、また排水バルブ27には配水管29が接
続されている。
The concentration detecting pipe 20 is provided with an upstream pipe 21.
And the downstream side pipe 22 are provided via sluice valves 23 and 24. Further, a water supply valve 26 and a drain valve 27 are provided in the concentration detecting pipe 20. A water pipe 2 for guiding a reference fluid such as tap water to the water supply valve 26.
8 is connected, and a water distribution pipe 29 is connected to the drain valve 27.

【0021】また、この濃度検出用管20を含む配管ラ
インには、非良導電性物質の懸濁液と良導電性物質の懸
濁液が交互に流れるようになっている。もしくは非良導
電性を示す混合懸濁液と良導電性を示す混合懸濁液が交
互に流れるようになっている。
Further, the suspension of the non-good conductive material and the suspension of the good conductive material flow alternately in the pipeline including the concentration detecting pipe 20. Alternatively, the mixed suspension having non-good conductivity and the mixed suspension having good conductivity flow alternately.

【0022】さらに、濃度検出用管20は、管軸を挟ん
で相対向する位置にそれぞれマイクロ波入射・出射用の
開口窓部が形成され、この開口窓部に気密用シールパッ
キンを介してアンテナ取付け用板が取付けられている。
Further, the concentration detecting tube 20 is formed with an opening window portion for microwave incidence / emission at each of the positions opposed to each other with the tube axis interposed therebetween, and the antenna is provided in this opening window portion via an airtight seal packing. A mounting plate is attached.

【0023】このアンテナ取付け用板には、絶縁物を介
し、上記したように送信アンテナ31及び受信アンテナ
32が密着して取付けられる。アンテナ取付け用板の絶
縁物は、ファイバ・レジン・プラスチック(FRP)、
塩化ビニル樹脂、又はその他の絶縁物で形成されてい
る。
The transmitting antenna 31 and the receiving antenna 32 are closely attached to the antenna mounting plate via an insulator as described above. The insulator of the antenna mounting plate is fiber resin plastic (FRP),
It is made of vinyl chloride resin or other insulating material.

【0024】この濃度計のマイクロ波送受信部40は、
マイクロ波発振器33と、パワースプリッタ34と、送
信アンテナ31と、受信アンテナ32とから構成されて
いる。そして、マイクロ波の送信系として、マイクロ波
を発生するためのマイクロ波発振器33、パワースプリ
ッタ34及び送信アンテナ31が設けられ、このマイク
ロ波発振器33の出力がパワースプリッタ34を介して
送信アンテナ31へ送られる。
The microwave transmitter / receiver 40 of this densitometer
It includes a microwave oscillator 33, a power splitter 34, a transmitting antenna 31, and a receiving antenna 32. As a microwave transmission system, a microwave oscillator 33 for generating microwaves, a power splitter 34, and a transmission antenna 31 are provided, and the output of the microwave oscillator 33 is transmitted to the transmission antenna 31 via the power splitter 34. Sent.

【0025】また、マイクロ波の受信系として、送信ア
ンテナ31から発信されたマイクロ波を濃度検出用管2
0を介して受信する受信アンテナ32及び位相測定回路
35が設けられ、位相測定回路35には、受信アンテナ
32で受信したマイクロ波及びパワースプリッタ34に
て分配された基準信号が入力される。
As the microwave receiving system, the microwave transmitted from the transmitting antenna 31 is used as the concentration detecting tube 2.
The receiving antenna 32 and the phase measuring circuit 35 for receiving via 0 are provided, and the microwave received by the receiving antenna 32 and the reference signal distributed by the power splitter 34 are input to the phase measuring circuit 35.

【0026】一方、この濃度計における信号処理部41
としては、受信系の一部でもある位相測定回路35と、
位相差演算回路36と、検量線傾きa選定及び濃度演算
回路37と、測定対象モード設定器38と、信号変換回
路39と、その他特に図示しない周辺要素とが設けられ
ている。
On the other hand, the signal processing unit 41 in this densitometer
As a phase measuring circuit 35 which is also a part of the receiving system,
A phase difference calculation circuit 36, a calibration curve slope a selection / concentration calculation circuit 37, a measurement target mode setting device 38, a signal conversion circuit 39, and other peripheral elements not particularly shown are provided.

【0027】位相測定回路35は、濃度ゼロの基準とな
る位相遅れθ1 や測定対象液の位相遅れθ2 を測定し、
その結果を位相差演算回路36に入力する部分である。
位相差演算回路36は、θ1 の値を記憶しておき、時々
刻々のθ2 の値とθ1の差Δθ=θ2 −θ1 を演算し、
検量線傾きa選定及び濃度演算回路37にΔθを入力す
る部分である。
The phase measuring circuit 35 measures the phase delay θ 1 as a reference for zero concentration and the phase delay θ 2 of the liquid to be measured,
The result is input to the phase difference calculation circuit 36.
Phase difference calculation circuit 36 stores the value of theta 1, calculates a difference Δθ = θ 21 of values and theta 1 momentary theta 2,
This is a portion for inputting Δθ to the calibration curve slope a selection and concentration calculation circuit 37.

【0028】測定対象モード設定器38は、例えば図2
に示すような複数の測定対象モードから濃度検出用管2
0を流れる懸濁液等の種類に応じた測定対象モードが設
定され、その設定内容を検量線傾きa選定及び濃度演算
回路37に入力する部分である。すなわち、ここからど
の測定対象モードで測定を行うかを指定する。
The measuring object mode setting device 38 is, for example, as shown in FIG.
The tube for concentration detection 2 from a plurality of measurement target modes as shown in
This is a part in which a measurement target mode is set according to the type of suspension flowing through 0, and the setting contents are input to the calibration curve slope a selection and concentration calculation circuit 37. That is, the measurement target mode to be used for measurement is designated from here.

【0029】図2は本実施の形態のマイクロ波式濃度計
に用いられる測定対象モード表の一例を示す図である。
同図においては、各対象モード(1),(2),...
(N)に対応する検量線の傾きaの値が設定されてい
る。この各aは、測定対象液の種類ごとにそれぞれに適
合する検量線の傾きの値であり、さらに各モードには測
定対象の非良導電性物質と良導電性物質の組合せが予め
設定されている。
FIG. 2 is a diagram showing an example of a measurement target mode table used in the microwave densitometer of the present embodiment.
In the figure, target modes (1), (2) ,. . .
The value of the slope a of the calibration curve corresponding to (N) is set. Each a is the value of the slope of the calibration curve that is suitable for each type of liquid to be measured, and the combination of the non-good conductive substance and the good conductive substance to be measured is preset in each mode. There is.

【0030】つまり、この各検量線の傾きaの値には、
+a1 ,+a2 ,...(以下、+ai で代表する)
と、−am1,−am2,...(以下、−amiで代表す
る)とのそれぞれが各モード毎に設けられ、+ai もし
くは−amiの何れかが検量線傾きa選定及び濃度演算回
路37により選択される。
That is, the value of the slope a of each calibration curve is
+ A 1 , + a 2 ,. . . (Hereinafter, represented by + a i )
, -Am1 , -am2 ,. . . (Hereinafter represented by −a mi ) is provided for each mode, and either + a i or −a mi is selected by the calibration curve slope a selection and concentration calculation circuit 37.

【0031】また、濃度検出用管20を含む配管ライン
には、非良導電性物質の懸濁液と良導電性物質の懸濁液
が交互に流れるようになっているので、測定対象液の位
相遅れの差Δθの正負を判定することで、各モード内の
検量線の傾きaの値及び対応する検量線の切片bの値が
選択可能となる。
Further, since the suspension of the non-good conductive material and the suspension of the good conductive material alternately flow in the pipeline including the concentration detecting pipe 20, the suspension of the liquid to be measured is By determining whether the phase delay difference Δθ is positive or negative, the value of the slope a of the calibration curve and the value of the intercept b of the corresponding calibration curve in each mode can be selected.

【0032】図2には特に示さないが、検量線の切片b
の値についても、各検量線の傾きaに対応する値が測定
対象モード表内に設定されている。なお、この測定対象
モード表そのものは、検量線傾きa選定及び濃度演算回
路37に設けられる。
Although not particularly shown in FIG. 2, the intercept b of the calibration curve
Also for the value of, the value corresponding to the slope a of each calibration curve is set in the measurement target mode table. The measurement target mode table itself is provided in the calibration curve slope a selection and concentration calculation circuit 37.

【0033】検量線傾きa選定及び濃度演算回路37
は、Δθ≧0かΔθ<0か及び指定されている測定対象
モードに応じて、aの値を自動的に選定して、濃度X=
a・Δθ+bの演算を行って濃度Xを求め、信号変換回
路39に入力する部分である。
Calibration curve slope a selection and concentration calculation circuit 37
Automatically selects the value of a according to whether Δθ ≧ 0 or Δθ <0 and the designated measurement target mode, and the concentration X =
This is a part for calculating the density X by calculating a.Δθ + b and inputting it to the signal conversion circuit 39.

【0034】つまり、本実施の形態では、非良導電性物
質の懸濁液と良導電性物質の懸濁液の両方が個別に交互
に流れる又は混合して流れる配管ラインにマイクロ波式
濃度計を適用しているので、Δθ≧0かΔθ≦0かによ
って検量線の傾きaの値が正である+ai もしくは、負
である−amiかを自動的に選定することで、非良導電性
物質粒子及良導電性物質粒子双方に対するマイクロ波特
性の違いに対応している。
That is, in the present embodiment, both the suspension of the non-good conductive material and the suspension of the good conductive material are separately alternately flowed or mixed to each other, and a microwave type densitometer is installed in the pipeline. Since .DELTA..theta..gtoreq.0 or .DELTA..theta..ltoreq.0, by automatically selecting whether the value of the slope a of the calibration curve is positive + a i or negative -a mi , Corresponding to the difference in microwave characteristics for both conductive material particles and good conductive material particles.

【0035】信号変換回路39は、検量線傾きa選定及
び濃度演算回路37にて求められた濃度値Xを、例えば
4−20mADCなどの統一信号に変換して出力する部
分である。
The signal conversion circuit 39 is a portion for converting the concentration value X obtained by the calibration curve slope a selection and concentration calculation circuit 37 into a unified signal such as 4-20 mA DC and outputting it.

【0036】また、特に図示していないが、4−20m
ADCなどの統一信号に変換されたのち、さらに、懸濁
液の濃度値そのものに変換し、CRTもしくはプリンタ
等の出力手段から上記統一信号及び濃度値を出力しても
良い。
Although not particularly shown, 4-20 m
After being converted into a unified signal such as ADC, the concentration value of the suspension may be further converted, and the unified signal and the concentration value may be output from an output means such as a CRT or a printer.

【0037】なお、上記本実施形態で説明した構成と請
求項における構成は以下のように対応する。まず、濃度
演算手段は、例えば検量線傾きa選定及び濃度演算回路
37によって構成されている。
The configuration described in this embodiment and the configuration in the claims correspond as follows. First, the concentration calculation means is composed of, for example, a calibration curve slope a selection and concentration calculation circuit 37.

【0038】また、検量線検出手段は、例えば位相差演
算回路と検量線傾きa選定及び濃度演算回路37とによ
って構成されている。次に、以上のように構成された本
発明の実施の形態のマイクロ波式濃度計の動作について
説明する。
The calibration curve detecting means is composed of, for example, a phase difference computing circuit and a calibration curve slope a selection / concentration computing circuit 37. Next, the operation of the microwave densitometer of the embodiment of the present invention configured as described above will be described.

【0039】先ず、測定対象モード設定器38から、こ
れから測定を行う測定対象に適合する番号をあらかじめ
指定しておく。指定されたモード番号のデータは検量線
傾きa選定及び濃度演算回路37に送られる。
First, from the measurement object mode setting device 38, a number suitable for the measurement object to be measured is designated in advance. The data of the designated mode number is sent to the calibration curve slope a selection and concentration calculation circuit 37.

【0040】懸濁液等の濃度測定対象の液体の測定の前
に、濃度ゼロの基準位相遅れθ1 を測定する。この濃度
ゼロの基準位相遅れθ1 の測定に際しては、仕切弁2
3,24を閉じた後、排水バルブ27を開けて管20内
に残留する測定流体を排出し、しかる後、給水バルブ2
6を開けて水道水を供給して管20内の汚れを洗浄した
後、排水バルブ27を閉じて管20内に水道水を満ぱい
状態にする。
Before measuring the liquid whose concentration is to be measured, such as a suspension, the reference phase delay θ 1 at zero concentration is measured. When measuring the reference phase delay θ 1 of zero concentration, the sluice valve 2
After closing 3, 24, the drain valve 27 is opened to discharge the measurement fluid remaining in the pipe 20, and then the water supply valve 2
After opening 6 to supply tap water to wash dirt in the pipe 20, the drain valve 27 is closed to fill the pipe 20 with tap water.

【0041】このようにして水道水を満ぱい状態にした
後に図1に示すように、マイクロ波発振器33からマイ
クロ波信号を発生すると、このマイクロ波はパワースプ
リッタ34を通って送信アンテナ31から送信され、管
20内の水道水を伝播して受信アンテナ32によって受
信される。この受信アンテナ32によるマイクロ波受信
波は位相測定回路35へ送られる。一方、この位相測定
回路35にはパワースプリッタ34からマイクロ波送信
波の一部が基準信号として送られてきている。
When the microwave signal is generated from the microwave oscillator 33 as shown in FIG. 1 after the tap water is thus filled up, this microwave is transmitted from the transmission antenna 31 through the power splitter 34. Then, the tap water in the pipe 20 is propagated and received by the receiving antenna 32. The microwave received by the receiving antenna 32 is sent to the phase measuring circuit 35. On the other hand, part of the microwave transmission wave is sent from the power splitter 34 to the phase measuring circuit 35 as a reference signal.

【0042】位相測定回路35では、マイクロ波送信波
すなわち上記基準信号とマイクロ波受信波との比較によ
って基準流体に関する基準位相遅れθ1 を測定し、この
測定された基準位相遅れθ1 を位相差演算回路36へ送
出して記憶させる。
[0042] In the phase measurement circuit 35, the reference phase delay theta 1 measured with respect to a reference fluid by comparing the microwave transmission wave that is, the reference signal and the microwave receiving wave, a phase difference reference phase delay theta 1 This the measured It is sent to the arithmetic circuit 36 and stored therein.

【0043】しかる後、排水バルブ27を開けて管20
内の水道水を排出した後、仕切弁23,24を開けて測
定物質を含む測定流体を流し、濃度測定を開始する。ま
ず、測定物質を含む測定流体が流れている状態でマイク
ロ波発振器33からマイクロ波信号を発信する。
After that, the drain valve 27 is opened to open the pipe 20.
After discharging the tap water inside, the sluice valves 23 and 24 are opened, the measurement fluid containing the measurement substance is caused to flow, and the concentration measurement is started. First, the microwave signal is transmitted from the microwave oscillator 33 while the measurement fluid containing the measurement substance is flowing.

【0044】このマイクロ波信号は、前述と同様に、パ
ワースプリッタ34を介して送信アンテナ31と位相測
定回路35に送られる。送信アンテナ31から発したマ
イクロ波が、濃度検出用管20内の被測定流体を伝播し
て受信アンテナ32に到達すると、受信アンテナ32が
被測定流体の濃度に応じた位相遅れを持ったマイクロ波
信号を出力する。
This microwave signal is sent to the transmitting antenna 31 and the phase measuring circuit 35 via the power splitter 34 as described above. When the microwave emitted from the transmitting antenna 31 propagates through the fluid to be measured in the concentration detecting tube 20 and reaches the receiving antenna 32, the receiving antenna 32 has a phase delay corresponding to the concentration of the fluid to be measured. Output a signal.

【0045】位相測定回路35では、前述と同様に、被
測定流体の濃度に応じた位相遅れを持ったマイクロ波信
号の位相送れθ2 を基準信号とマイクロ波受信波との比
較によって測定する。
In the phase measuring circuit 35, the phase shift θ 2 of the microwave signal having a phase delay corresponding to the concentration of the fluid to be measured is measured by comparing the reference signal and the microwave received wave, as described above.

【0046】次に、位相差演算回路36で位相差Δθ=
θ2 −θ1 が演算され、このΔθの値及び測定対象モー
ド設定器38であらかじめ指定されている測定対象モー
ドに応じて図3に示すような動作フローに従って検量線
傾きa選定及び濃度演算回路37における演算がなされ
る。
Next, in the phase difference calculation circuit 36, the phase difference Δθ =
θ 2 −θ 1 is calculated, and according to the value of Δθ and the measurement target mode preset by the measurement target mode setting unit 38, the calibration curve slope a selection and concentration calculation circuit is performed according to the operation flow as shown in FIG. The operation at 37 is performed.

【0047】図3は本実施の形態のマイクロ波式濃度計
の検量線傾きa選定及び濃度演算回路の動作を示す流れ
図である。まず、検量線傾きa選定及び濃度演算回路3
7に位相差演算回路36から位相差Δθが入力されると
(ST1)、位相差Δθが正であるか負であるかが判定
される(ST2)。
FIG. 3 is a flow chart showing the operation of the calibration curve slope a selection and the concentration calculation circuit of the microwave type densitometer of this embodiment. First, the calibration curve slope a selection and concentration calculation circuit 3
When the phase difference Δθ is input to the 7 from the phase difference calculation circuit 36 (ST1), it is determined whether the phase difference Δθ is positive or negative (ST2).

【0048】位相差Δθが正であった場合(ST2)、
測定対象モード設定器38で指定されている測定対象モ
ードの内、+ai が検量線の傾きaとなる検量線が選定
される(ST3)。
When the phase difference Δθ is positive (ST2),
Among the measurement object modes designated by the measurement object mode setter 38, a calibration curve having + a i as the inclination a of the calibration curve is selected (ST3).

【0049】さらに、濃度X=a・Δθ+bの演算によ
り、濃度値Xが求められる。このとき、例えば、測定対
象モード(1)が指定されている場合には、Δθ≧0で
あるので、 X=+a1 Δθ+b1 …(1) により演算がなされる(ST4)。
Further, the density value X is obtained by the calculation of density X = a · Δθ + b. At this time, for example, when the measurement target mode (1) is designated, Δθ ≧ 0, and therefore the calculation is performed by X = + a 1 Δθ + b 1 (1) (ST4).

【0050】そして、信号変換回路39に、演算結果と
しての濃度値Xが入力される(ST5)。一方、位相差
Δθが負であった場合(ST2)、測定対象モード設定
器38で指定されている測定対象モードの内、−ami
検量線の傾きaとなる検量線が選定される(ST6)。
Then, the density value X as the calculation result is input to the signal conversion circuit 39 (ST5). On the other hand, when the phase difference Δθ is negative (ST2), the calibration curve whose -a mi is the inclination a of the calibration curve is selected from the measurement target modes designated by the measurement target mode setting unit 38 ( ST6).

【0051】そして、濃度X=a・Δθ+bの演算によ
り、濃度値Xが求められるが、このとき、例えば、測定
対象モード(1)が指定されている場合には、Δθ<0
であるので、 X=−am1Δθ+bm1 …(2) により演算がなされる(ST7)。
Then, the density value X is obtained by the calculation of density X = a.Δθ + b. At this time, for example, when the measurement object mode (1) is designated, Δθ <0.
Therefore, the calculation is performed by X = −a m1 Δθ + b m1 (2) (ST7).

【0052】そして、信号変換回路39に、演算結果と
しての濃度値Xが入力される(ST5)。以下、算出さ
れた濃度値は信号変換回路39にて統一信号に信号変換
され、濃度測定値として出力される。
Then, the density value X as the calculation result is input to the signal conversion circuit 39 (ST5). Hereinafter, the calculated density value is converted into a unified signal by the signal conversion circuit 39 and output as a density measurement value.

【0053】上述したように、本発明の実施の形態に係
るマイクロ波式濃度計によれば、測定演算された位相差
Δθが正であるか負であるかに基づき、設定されたモー
ド内の非良導電性の被測定流体に対応する検量線か良導
電性の被測定流体に対応する検量線かを選定するように
したので、汚泥、パルプなど非良導電性物質の懸濁液と
炭、金属粉など良導電性物質の懸濁液の両方が個別に交
互に流れるまたは混合して流れる配管ラインでそれぞれ
の懸濁液の濃度測定を行うことができる。
As described above, according to the microwave densitometer according to the embodiment of the present invention, whether the phase difference Δθ measured and calculated is positive or negative It is possible to select either a calibration curve for non-good conductivity measurement fluid or a calibration curve for good conductivity measurement fluid. It is possible to measure the concentration of each suspension in a pipeline in which both suspensions of a good conductive substance such as metal powder flow separately or alternately.

【0054】すなわち、本実施の形態によれば、このよ
うな非良導電性,良導電性の被測定流体に対応した濃度
測定が1台のマイクロ波式濃度計で可能となる。なお、
本発明は、上記各実施の形態に限定されるものでなく、
その要旨を逸脱しない範囲で種々に変形することが可能
である。
That is, according to the present embodiment, it is possible to measure the concentration corresponding to the fluid to be measured having such poor conductivity and good conductivity with one microwave concentration meter. In addition,
The present invention is not limited to the above embodiments,
Various modifications can be made without departing from the gist of the invention.

【0055】[0055]

【発明の効果】以上詳記したように本発明によれば、炭
や金属粉など良導電性粒子の懸濁液の濃度測定、さらに
非良導電性物質との混合流体の濃度測定も可能であるマ
イクロ波式濃度計を提供することができる。
As described above in detail, according to the present invention, it is possible to measure the concentration of a suspension of good conductive particles such as charcoal and metal powder, and the concentration of a fluid mixed with a non-good conductive substance. A microwave densitometer can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態に係るマイクロ波式濃度
計の構成図。
FIG. 1 is a configuration diagram of a microwave densitometer according to an embodiment of the present invention.

【図2】本実施の形態のマイクロ波式濃度計に用いられ
る測定対象モード表の一例を示す図。
FIG. 2 is a diagram showing an example of a measurement target mode table used in the microwave densitometer of the present embodiment.

【図3】本実施の形態のマイクロ波式濃度計の検量線傾
きa選定及び濃度演算回路の動作を示す流れ図。
FIG. 3 is a flowchart showing the operation of the calibration curve slope a selection and the concentration calculation circuit of the microwave type densitometer of the present embodiment.

【図4】良導電性物質の濃度と位相差Δθの関係を示す
図。
FIG. 4 is a diagram showing the relationship between the concentration of a good conductive substance and the phase difference Δθ.

【図5】非良導電性物質の濃度と位相差Δθの関係を示
す図。
FIG. 5 is a diagram showing the relationship between the concentration of a poor conductive material and the phase difference Δθ.

【図6】マイクロ波式濃度計を説明するための基本構成
図。
FIG. 6 is a basic configuration diagram for explaining a microwave densitometer.

【符号の説明】[Explanation of symbols]

20…濃度検出器管 21…上流側配管 22…下流側配管 23,24…仕切り弁 26…給水バルブ 27…排水バルブ 28…水道管 29…配水管 31…送信アンテナ 32…受信アンテナ 33…マイクロ波発振器 34…パワースプリッタ 35…位相測定回路 36…位相差演算回路 37…検量線傾きa選定及び濃度演算回路 38…測定対象モード設定器 39…信号交換回路 20 ... Concentration detector pipe 21 ... Upstream side pipe 22 ... Downstream side pipe 23, 24 ... Partition valve 26 ... Water supply valve 27 ... Drainage valve 28 ... Water pipe 29 ... Water distribution pipe 31 ... Transmission antenna 32 ... Reception antenna 33 ... Microwave Oscillator 34 ... Power splitter 35 ... Phase measurement circuit 36 ... Phase difference calculation circuit 37 ... Calibration curve inclination a selection and concentration calculation circuit 38 ... Measurement mode selector 39 ... Signal exchange circuit

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 濃度測定用管にマイクロ波送信器及びマ
イクロ波受信器を対向配置し、前記濃度測定用管に基準
流体が流れているときに前記マイクロ波送信器から送信
され基準流体を通って前記マイクロ波受信器にて受信さ
れたマイクロ波の位相遅れθ1 を検出し、前記濃度測定
用管に被測定流体が流れているときに前記マイクロ波送
信器から送信され被測定流体を通って前記マイクロ波受
信器にて受信されたマイクロ波の位相遅れθ2 を検出
し、両位相遅れの位相差Δθ=θ2 −θ1 から前記被測
定流体の濃度を測定するマイクロ波濃度計において、 前記濃度Xを、前記被測定流体の種類毎に対応する検量
線X=a・Δθ+bにより算出する濃度演算手段と、 前記位相差Δθの正負判別を行い、Δθが正のときは前
記検量線の傾きaの値が正の数値となる検量線を選定
し、Δθが負のときは前記検量線の傾きaの値が負の数
値となる検量線を選定する検量線選定手段とを有するこ
とを特徴とするマイクロ波式濃度計。
1. A microwave transmitter and a microwave receiver are arranged in opposition to a concentration measuring tube, and when a reference fluid is flowing through the concentration measuring tube, the microwave is transmitted from the microwave transmitter and passes through the reference fluid. Detecting the phase delay θ 1 of the microwave received by the microwave receiver, and when the fluid to be measured flows through the concentration measuring tube, it is transmitted from the microwave transmitter and passes through the fluid to be measured. In the microwave densitometer for detecting the phase delay θ 2 of the microwave received by the microwave receiver, and measuring the concentration of the fluid to be measured from the phase difference Δθ = θ 2 −θ 1 of both phase delays. A concentration calculation means for calculating the concentration X by a calibration curve X = a · Δθ + b corresponding to each type of the fluid to be measured, and whether the phase difference Δθ is positive or negative is determined, and when Δθ is positive, the calibration curve is obtained. The value of the slope a of That selects the calibration curve, a microwave densitometer when Δθ is negative, characterized in that it comprises a calibration curve selecting means for selecting a calibration curve value of slope a of the calibration curve is a negative number.
【請求項2】 前記検量線の傾きaの値が正となる検量
線及び負となる検量線とを組み合わせて一の測定対象モ
ードとし、複数の測定対象モードのうちの何れかのモー
ドを前記検量線選定手段の選定対象として設定する測定
対象モード設定手段を設けたこと特徴とする請求項1記
載のマイクロ波式濃度計。
2. A calibration curve in which the value of the slope a of the calibration curve is positive and a calibration curve in which the value is negative are combined to form one measurement target mode, and one of a plurality of measurement target modes is set to the above-mentioned mode. 2. The microwave densitometer according to claim 1, further comprising a measurement target mode setting unit which is set as a selection target of the calibration curve selecting unit.
JP05319396A 1996-03-11 1996-03-11 Microwave densitometer Expired - Lifetime JP3311230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05319396A JP3311230B2 (en) 1996-03-11 1996-03-11 Microwave densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05319396A JP3311230B2 (en) 1996-03-11 1996-03-11 Microwave densitometer

Publications (2)

Publication Number Publication Date
JPH09243575A true JPH09243575A (en) 1997-09-19
JP3311230B2 JP3311230B2 (en) 2002-08-05

Family

ID=12936043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05319396A Expired - Lifetime JP3311230B2 (en) 1996-03-11 1996-03-11 Microwave densitometer

Country Status (1)

Country Link
JP (1) JP3311230B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902276A2 (en) * 1997-09-11 1999-03-17 Kabushiki Kaisha Toshiba Microwave type concentration measuring apparatus
CN105424564A (en) * 2015-11-05 2016-03-23 东北电力大学 Tuning method for microwave measurement parameters of pulverized-coal concentration

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902276A2 (en) * 1997-09-11 1999-03-17 Kabushiki Kaisha Toshiba Microwave type concentration measuring apparatus
EP0902276A3 (en) * 1997-09-11 2003-04-16 Kabushiki Kaisha Toshiba Microwave type concentration measuring apparatus
CN105424564A (en) * 2015-11-05 2016-03-23 东北电力大学 Tuning method for microwave measurement parameters of pulverized-coal concentration

Also Published As

Publication number Publication date
JP3311230B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
JP3160474B2 (en) Microwave densitometer
JP3139874B2 (en) Densitometer
JPH0727720A (en) Concentration meter
CA2548063C (en) A method and flow meter for determining the flow rates of the components of a multiphase fluid
MY129545A (en) System for validating calibration of a coriolis flowmeter
CN109085186B (en) Microwave ranging method-based oil-water two-phase flow water holding rate detection device and method
JPH09243575A (en) Microwave type densitometer
JPH09210925A (en) Concentration meter
KR101845238B1 (en) Flow detection apparatus with complex sensing structure
JP2965712B2 (en) Densitometer
NO331687B1 (en) Stromningsmaleapparat
JP3199815B2 (en) Densitometer
CN209589881U (en) Two phase flow measuring of phase ratio device based on the microwave transmission time
KR100320329B1 (en) Densitometer using microwave
JP4028284B2 (en) Substance measuring device
JPH05281131A (en) Concentration measuring method and densitometer
JP2003139722A (en) Microwave type concentration
JP3631478B2 (en) Densitometer
JP3373734B2 (en) Densitometer
GB2276242A (en) Acoustic fluid flowmeter
JP2001255285A (en) Microwave type concentration meter
JPH01134213A (en) Flowmeter
JPH06129998A (en) Concentration meter
JPH0979881A (en) Flow measuring method and its device
JP2001074671A (en) Microwave densitometer

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130524

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140524

Year of fee payment: 12

EXPY Cancellation because of completion of term