JPH09243552A - Control of temperature of flow cell - Google Patents

Control of temperature of flow cell

Info

Publication number
JPH09243552A
JPH09243552A JP5287596A JP5287596A JPH09243552A JP H09243552 A JPH09243552 A JP H09243552A JP 5287596 A JP5287596 A JP 5287596A JP 5287596 A JP5287596 A JP 5287596A JP H09243552 A JPH09243552 A JP H09243552A
Authority
JP
Japan
Prior art keywords
peltier element
switches
flow cell
temperature
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5287596A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
浩 鈴木
Hideaki Oraku
英昭 大楽
Tsuneo Shimazaki
恒雄 島崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP5287596A priority Critical patent/JPH09243552A/en
Publication of JPH09243552A publication Critical patent/JPH09243552A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To change over the polarity of the current flowing to a Peltier element and to control the temp. of a flow cell by a single power supply by making applied voltage constant and changing over the input terminal of the Peltier element. SOLUTION: Switches S1 and S2, S3 and S4 connected in series are further connected in parallel. One input terminal (a) of a Peltier element 5 is connected to the contact of the switches S1, S2 and the outer input terminal (b) thereof is connected to the contact of the switches S3, S4. In this constitution, when the switches S1, S4 are turned on and the switches S2, S3 are turned off in such a state that constant potential difference V is applied across points C, D, the current flowing to the element 5 flows in the direction I1 of terminal (a) → terminal (b) and, when the switches S1, S4 are turned off and the switches S2, S3 are turned on, a current flows in a direction 1I2 of terminal (b) → terminal (a). By this constitution, a power supply of both positive and negative polaritiies is not required and, even in a single power supply, the polarity of the current to the element 5 can be changed over and the temp. of the flow cell can be controlled by the single power supply.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はフローセルの温度制
御にペルチエ素子を使用する装置においてその制御方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method for an apparatus using a Peltier element for temperature control of a flow cell.

【0002】[0002]

【従来の技術】従来、フローセルの温度制御にはペルチ
エ素子が使用され、ペルチエ素子に流す電流の極性を切
替えることで加熱,冷却を行っている。ペルチエ素子に
流す電流の極性は、図5に示すように、正負両極の電流
源を用い、ペルチエ素子5の一方の端子aを接地し、も
う一方の端子bをトランジスタ等を用いて上記電流源の
極性を選択することで決定していた。
2. Description of the Related Art Conventionally, a Peltier element has been used for controlling the temperature of a flow cell, and heating and cooling are performed by switching the polarity of the current passed through the Peltier element. As shown in FIG. 5, the polarity of the current flowing through the Peltier element is such that a positive and negative current source is used, one terminal a of the Peltier element 5 is grounded, and the other terminal b is a transistor or the like. It was decided by selecting the polarity of.

【0003】[0003]

【発明が解決しようとする課題】このような温度制御方
法では正負両極の安定電流源が必要となり、電源容量も
正負同じだけ必要であった。
In such a temperature control method, a stable current source having positive and negative polarities is required, and the power source capacity is required to be the same as positive and negative.

【0004】本発明の目的は単一電源でフローセルの温
度制御を行う方法を提供し、電源の種類を減らすことに
ある。
It is an object of the present invention to provide a method for controlling the temperature of a flow cell with a single power source and reduce the number of power sources.

【0005】[0005]

【課題を解決するための手段】本発明は図2に示すよう
に、開閉器S1とS2,S3とS4が直列に接続された
ものをさらに並列に接続する。S1とS2の接点にペル
チエ素子5の一方の端子aを接続し、もう一方の端子b
をS3とS4の接点に接続する。
According to the present invention, as shown in FIG. 2, switches S1 and S2 and S3 and S4 connected in series are further connected in parallel. One terminal a of the Peltier element 5 is connected to the contacts of S1 and S2, and the other terminal b
Is connected to the contacts of S3 and S4.

【0006】c点とd点の間に一定の電位差Vを与えた
状態で、表1に示す条件1のときペルチエ素子5に流れ
る電流はI1 の方向に流れ、条件2のときはI2 の方向
に流れる。
When a constant potential difference V is applied between points c and d, the current flowing through the Peltier element 5 flows in the direction of I 1 under the condition 1 shown in Table 1 and I 2 under the condition 2. Flowing in the direction of.

【0007】[0007]

【表1】 [Table 1]

【0008】上記構成により単一電源でもペルチエ素子
に流れる電流の極性を切替えることができるようにな
る。
With the above structure, the polarity of the current flowing through the Peltier element can be switched even with a single power source.

【0009】[0009]

【発明の実施の形態】図3は本発明を光度計のフローセ
ル温度制御に用いた実施例を表している。6は光度計測
光部のフローセルであり、その近傍にはサーミスタ8が
設けられ、フローセル6の温度検知ができるように設定
されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 shows an embodiment in which the present invention is used for controlling the flow cell temperature of a photometer. Reference numeral 6 is a flow cell of the light intensity measuring optical unit, and a thermistor 8 is provided in the vicinity thereof, and is set so that the temperature of the flow cell 6 can be detected.

【0010】サーミスタ8は抵抗R1,抵抗R2,抵抗
R3でブリッジ回路を構成し、サーミスタ8と抵抗R3
の一方端は接地されていて、抵抗R1と抵抗R2の一方
端はツェナーダイオードZD1を介して接地されてい
る。これによりブリッジ回路の電位差Vzは一定電圧
(例えば−8V)に固定されている。サーミスタ8と抵
抗R1は抵抗を介して増幅器A1の非反転入力端子に入
力され、抵抗R2と抵抗R3は増幅器A1の反転入力端
子に入力されている。これによりフローセル6の温度変
化は増幅器A1の出力Vo1の電圧変化に変換されてい
る。
The thermistor 8 constitutes a bridge circuit with the resistors R1, R2 and R3, and the thermistor 8 and the resistor R3.
One end is grounded, and one ends of the resistors R1 and R2 are grounded via the Zener diode ZD1. As a result, the potential difference Vz of the bridge circuit is fixed to a constant voltage (for example, -8V). The thermistor 8 and the resistor R1 are input to the non-inverting input terminal of the amplifier A1 via the resistor, and the resistors R2 and R3 are input to the inverting input terminal of the amplifier A1. As a result, the temperature change of the flow cell 6 is converted into the voltage change of the output Vo 1 of the amplifier A1.

【0011】出力Vo1 は抵抗を介して増幅器A2の反
転入力端子及び、増幅器A3の反転入力端子に接続され
ていて、増幅器A4と増幅器A5で構成される三角波発
振回路9の出力Vo2 も増幅器A2の反転入力端子及
び、増幅器A3の反転入力端子に接続されている。増幅
器A2の帰還抵抗R4は反転入力端子に接続され、増幅
器A3の帰還抵抗R5は非反転入力端子に接続されてい
る。これにより出力Vo1は三角波出力Vo2と加算さ
れ、反転加算出力Vo3と非反転加算出力Vo4の2種類
の出力に変換されている。
The output Vo 1 is connected to the inverting input terminal of the amplifier A2 and the inverting input terminal of the amplifier A3 via a resistor, and the output Vo 2 of the triangular wave oscillation circuit 9 composed of the amplifiers A4 and A5 is also amplified. It is connected to the inverting input terminal of A2 and the inverting input terminal of the amplifier A3. The feedback resistor R4 of the amplifier A2 is connected to the inverting input terminal, and the feedback resistor R5 of the amplifier A3 is connected to the non-inverting input terminal. As a result, the output Vo 1 is added to the triangular wave output Vo 2, and is converted into two types of outputs, that is, the inverted addition output Vo 3 and the non-inversion addition output Vo 4 .

【0012】出力Vo3 は抵抗を介してNPNトランジ
スタQ1とPNPトランジスタQ2のベースに接続され
ている。出力Vo4 は抵抗を介してNPNトランジスタ
Q3とPNPトランジスタQ4のベースに接続されてい
る。トランジスタQ1とトランジスタQ3のコレクタは
ペルチエ素子5の駆動用電源Vpに接続され、トランジ
スタQ2とトランジスタQ4のエミッタは接地されてい
る。トランジスタQ1のエミッタとトランジスタQ2の
コレクタは、電流制御用抵抗R6を介しペルチエ素子5
の一方の端子aに接続され、ペルチエ素子4のもう一方
の端子bはトランジスタQ3のエミッタとトランジスタ
Q4のコレクタに接続されている。
The output Vo 3 is connected to the bases of the NPN transistor Q1 and the PNP transistor Q2 via a resistor. The output Vo 4 is connected to the bases of the NPN transistor Q3 and the PNP transistor Q4 via a resistor. The collectors of the transistors Q1 and Q3 are connected to the driving power source Vp of the Peltier element 5, and the emitters of the transistors Q2 and Q4 are grounded. The Peltier element 5 is connected between the emitter of the transistor Q1 and the collector of the transistor Q2 via the current controlling resistor R6.
The other terminal b of the Peltier element 4 is connected to one terminal a of the transistor Q3 and the emitter of the transistor Q3 and the collector of the transistor Q4.

【0013】図1と比較するとフローセル6からの温度
帰還信号は図3ではサーミスタ8で実現されており、図
1における温度制御回路1は図3では増幅器A1,A
2,A3,A4,A5を含んだ回路で実現され、図1に
おけるペルチエ駆動回路はトランジスタQ1,Q2,Q
3,Q4と抵抗R6より構成される回路で実現されてい
る。
As compared with FIG. 1, the temperature feedback signal from the flow cell 6 is realized by the thermistor 8 in FIG. 3, and the temperature control circuit 1 in FIG. 1 has amplifiers A1 and A in FIG.
2, a circuit including A3, A4, A5. The Peltier drive circuit in FIG. 1 has transistors Q1, Q2, Q.
It is realized by a circuit composed of 3, Q4 and a resistor R6.

【0014】つぎに本実施例の動作を図3,図4ととも
に説明する。フローセル6の温度が制御温度にあると
き、つまりブリッジ回路が平衡状態のときは差動出力V
1 が0Vとなる。このとき出力Vo3 は図4の1)に
示されるように出力Vo2 の三角波とVo1 が反転加算
増幅された値となって次段に取り込まれる。出力Vo4
も図4の2)に示されるように出力Vo2とVo1が非反
転加算増幅された値となって次段に取り込まれている。
出力Vo3が正の値のとき出力Vo3をべースに取り込む
トランジスタQ1とQ2は図4の3),4)に示される
ように、トランジスタQ1はオン、トランジスタQ2は
オフとなる。このとき出力Vo4 は正の値となるので出
力Vo4 をべースに取り込むトランジスタQ3とQ4は
図4の5),6)に示されるように、トランジスタQ3
はオフ、トランジスタQ4はオンとなる。この結果ペル
チエ素子5に流れる電流の向きはI1 の方向に流れる。
出力Vo3 が負の値のときはトランジスタQ2とQ3が
オン、トランジスタQ1とQ4がオフとなるのでペルチ
エ素子5に流れる電流の向きはI2 の方向に流れる。
Next, the operation of this embodiment will be described with reference to FIGS. When the temperature of the flow cell 6 is at the control temperature, that is, when the bridge circuit is in a balanced state, the differential output V
o 1 becomes 0V. At this time, the output Vo 3 becomes a value obtained by inverting and amplifying the triangular wave of the output Vo 2 and Vo 1 , as shown in 1) of FIG. Output Vo 4
Also, as shown in 2) of FIG. 4, the outputs Vo 2 and Vo 1 are taken into the next stage as non-inverting addition amplified values.
When the output Vo 3 has a positive value, the transistors Q1 and Q2 that take the output Vo 3 into the base turn on the transistor Q1 and turn off the transistor Q2, as indicated by 3) and 4) in FIG. At this time, the output Vo 4 has a positive value, so that the transistors Q3 and Q4 that take the output Vo 4 into the base are as shown in 5) and 6) of FIG.
Is off and the transistor Q4 is on. As a result, the direction of the current flowing through the Peltier element 5 flows in the direction of I 1 .
When the output Vo 3 has a negative value, the transistors Q2 and Q3 are turned on and the transistors Q1 and Q4 are turned off, so that the direction of the current flowing through the Peltier element 5 flows in the direction of I 2 .

【0015】フローセル6の温度が制御温度にないと
き、つまりブリッジ回路の平衡状態のときは差動出力V
1が正の値または負の値となる。Vo1が正の値のとき
出力Vo3は図4の7)に示されるように、−側へシフ
トした値となり、出力Vo4は図4の8)に示されるよ
うに+側へシフトした値となる。Vo1 負の値のときは
出力Vo3 が図4の13)に示されるように、+側へシ
フトした値となり、出力Vo4 は図4の14)に示され
るように−側へシフトした値となる。これによりトラン
ジスタのオン時間及びオフ時間が変動し、ペルチエ素子
5に流れる電流を比例制御している。
When the temperature of the flow cell 6 is not at the control temperature, that is, when the bridge circuit is in a balanced state, the differential output V
o 1 becomes a positive value or a negative value. When Vo 1 is a positive value, the output Vo 3 has a value shifted to the − side as shown in 7) of FIG. 4, and the output Vo 4 has been shifted to the + side as shown in 8) of FIG. It becomes a value. Vo 1 When the value is negative, the output Vo 3 becomes a value shifted to the + side as shown in 13) of FIG. 4, and the output Vo 4 is shifted to the − side as shown in 14) of FIG. It becomes a value. As a result, the on-time and off-time of the transistor fluctuate, and the current flowing through the Peltier element 5 is proportionally controlled.

【0016】[0016]

【発明の効果】本発明ではペルチエ素子の入力端子に与
える電圧を一定とし、ペルチエ素子の入力端子を切替え
ることでペルチエ素子に流れる電流の極性切替えを行え
るようにした。その結果、従来のように正負両極性の電
源を必要とせず単一電源でもペルチエ素子に流れる電流
の極性を切替ることができるようになる。
According to the present invention, the voltage applied to the input terminal of the Peltier element is kept constant and the input terminal of the Peltier element is switched so that the polarity of the current flowing through the Peltier element can be switched. As a result, it is possible to switch the polarity of the current flowing through the Peltier element even with a single power supply without the need for a power supply with both positive and negative polarities as in the conventional case.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を示すブロック図。FIG. 1 is a block diagram showing the present invention.

【図2】本発明の課題を解決するための手段の説明図。FIG. 2 is an explanatory diagram of means for solving the problems of the present invention.

【図3】一実施例を示す回路図。FIG. 3 is a circuit diagram showing an embodiment.

【図4】実施例の動作を示すタイミングチャート。FIG. 4 is a timing chart showing the operation of the embodiment.

【図5】従来の回路図。FIG. 5 is a conventional circuit diagram.

【符号の説明】[Explanation of symbols]

1…ブリッジ回路、2…温度制御回路、3…単一出力電
源、4…ペルチエ駆動回路、5…ペルチエ素子、6…フ
ローセル、7…試料、8…サーミスタ、9…測光部。
1 ... Bridge circuit, 2 ... Temperature control circuit, 3 ... Single output power supply, 4 ... Peltier drive circuit, 5 ... Peltier element, 6 ... Flow cell, 7 ... Sample, 8 ... Thermistor, 9 ... Photometric unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大楽 英昭 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 (72)発明者 島崎 恒雄 茨城県ひたちなか市大字市毛1040番地 株 式会社日立サイエンスシステムズ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Ogura 1040 Ichige, Ichima, Hitachinaka City, Ibaraki Prefecture, Hitachi Science Systems, Inc. (72) Tsuneo Shimazaki, 1040 Ichige, Ichige, Hitachinaka, Ibaraki Within Hitachi Science Systems

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】反応処理された試料を光学的に測光する測
定部にフローセルを使用し、前記フローセルを温度制御
するためのペルチエ素子と、前記ペルチエ素子に正逆電
流を流して温度制御を行う回路を備えた光度計におい
て、前記ペルチエ素子の駆動用電源を単一電源としたこ
とを特徴とするフローセル温度制御方法。
1. A Peltier element for controlling the temperature of the flow cell and a Peltier element for controlling the temperature of the flow cell, and a forward and reverse current are passed through the Peltier element to control the temperature. In a photometer having a circuit, a flow cell temperature control method is characterized in that a single power source is used as a power source for driving the Peltier element.
【請求項2】請求項1において、前記温度制御回路に三
角波を付加し制御温度近くで比例制御を持たせた温度制
御方法。
2. The temperature control method according to claim 1, wherein a triangular wave is added to the temperature control circuit to provide proportional control near the control temperature.
JP5287596A 1996-03-11 1996-03-11 Control of temperature of flow cell Pending JPH09243552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5287596A JPH09243552A (en) 1996-03-11 1996-03-11 Control of temperature of flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5287596A JPH09243552A (en) 1996-03-11 1996-03-11 Control of temperature of flow cell

Publications (1)

Publication Number Publication Date
JPH09243552A true JPH09243552A (en) 1997-09-19

Family

ID=12927063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5287596A Pending JPH09243552A (en) 1996-03-11 1996-03-11 Control of temperature of flow cell

Country Status (1)

Country Link
JP (1) JPH09243552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210123823A1 (en) * 2019-10-28 2021-04-29 Beamex Oy Ab Individual control of inner and outer peltier elements
US12031872B2 (en) * 2019-10-28 2024-07-09 Beamex Oy Ab Individual control of inner and outer Peltier elements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210123823A1 (en) * 2019-10-28 2021-04-29 Beamex Oy Ab Individual control of inner and outer peltier elements
US12031872B2 (en) * 2019-10-28 2024-07-09 Beamex Oy Ab Individual control of inner and outer Peltier elements

Similar Documents

Publication Publication Date Title
JPS6142965B2 (en)
KR0136875B1 (en) Voltage-current converter
US4458213A (en) Constant quiescent current, class AB amplifier output stage
KR920015740A (en) Frequency double and mixing circuit
KR870002693B1 (en) Amplifier device
NL193545C (en) Constant current generating circuit.
JPH04227104A (en) Amplifier circuit
JPH09243552A (en) Control of temperature of flow cell
JPS6313509A (en) Current mirror circuit
US5220289A (en) Differential amplifier circuit
KR19990037539A (en) Power amplifier
JPH09306193A (en) Sample-and-hold circuit
KR900007414B1 (en) Speed control system for dc motor
EP0384710B1 (en) Amplifier circuit operable at low power source voltage
US4393340A (en) Motor speed control device
JP3318161B2 (en) Low voltage operation type amplifier and optical pickup using the same
JPS61251214A (en) Power supply circuit
JPS5852185B2 (en) Reference voltage source
JPH0435776Y2 (en)
JP2000004136A (en) Gain switching amplifier circuit
JP2706813B2 (en) Track hold amplifier
JP3813428B2 (en) Output circuit of A / D converter
JPH04329707A (en) Gain switching amplifier
JPH01103702A (en) Turning-on/off regulator
SU1020802A1 (en) Temperature regulator