JPH09241197A - Optically active calixarene compound and identification of optical isomer using the compound - Google Patents

Optically active calixarene compound and identification of optical isomer using the compound

Info

Publication number
JPH09241197A
JPH09241197A JP5159696A JP5159696A JPH09241197A JP H09241197 A JPH09241197 A JP H09241197A JP 5159696 A JP5159696 A JP 5159696A JP 5159696 A JP5159696 A JP 5159696A JP H09241197 A JPH09241197 A JP H09241197A
Authority
JP
Japan
Prior art keywords
compound
naph
added
formula
optical isomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5159696A
Other languages
Japanese (ja)
Inventor
Yoshiharu Kubo
由治 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5159696A priority Critical patent/JPH09241197A/en
Publication of JPH09241197A publication Critical patent/JPH09241197A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject new compound bonding with one of optical isomers of a specific asymmetric compound to remarkably change its color and, accordingly, useful for the identification, production management, etc., of a compound having an optical isomer important as pharmaceuticals, agrochemicals, etc. SOLUTION: This calixarene compound is expressed by formula I (X is a bivalent organic group containing an optically active organic group; R<1> to R<4> are each H, a 1-4C alkyl or a 1-4C alkoxy). The group X in formula I is preferably an optically active binaphthyl or an organic group of formula II ((n) is 0 or 1). The analysis with the compound comprises e.g. the mixing of the compound of formula I with a solution containing an optical isomer and the identification of the optical isomer from the change in the absorption spectrum caused by the mixing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、不斉化合物を認識
して発色する化合物に関するものであり、医薬、農薬等
の光学異性体が重要な化合物の分析に用いることがで
き、その同定、生産管理、等に利用できる。
TECHNICAL FIELD The present invention relates to a compound that recognizes an asymmetric compound and develops a color, and can be used for analysis of a compound whose optical isomers such as pharmaceuticals and agricultural chemicals are important, and their identification and production. It can be used for management, etc.

【0002】[0002]

【従来の技術】生体物質は、ほとんどがその鏡像体がも
との分子とは重ならない不斉化合物であり、生理活性物
質も不斉化合物が多く、従って、医薬や農薬、生化学試
薬、等は不斉化合物であるものが大部分である。また、
医農薬以外でも、強誘電性液晶などは、不斉化合物が利
用されている。このようなものでは、光学異性体は全く
異なる生理活性を示したり、ラセミ体では機能が低下し
たり全く発現しなくなったりする。
2. Description of the Related Art Most biological substances are asymmetric compounds whose enantiomers do not overlap with the original molecule, and many biologically active substances are also asymmetric compounds. Therefore, drugs, agricultural chemicals, biochemical reagents, etc. Are mostly asymmetric compounds. Also,
Other than pharmaceuticals and agricultural chemicals, asymmetric compounds are used for ferroelectric liquid crystals. In such a case, the optical isomers show completely different physiological activities, or the racemic form has a reduced function or no expression at all.

【0003】このように、不斉化合物が利用されている
分野は多いが、光学異性体を定量するのは簡単ではな
い。良く用いられるのは分光学的な手法であり、不斉化
合物の溶液に吸収がある場合には右円偏光と左円偏光の
吸収の差である円二色性を、吸収の無い波長領域では直
線偏光の回転(旋光性)を測定する方法が一般的であ
る。この装置は精密なものであり、可視、紫外の吸収ス
ペクトルを測定するのに比較して装置も高価であり容易
でない。当然の事ながら、外観を見て違いが分かるもの
では全くない。
As described above, there are many fields in which asymmetric compounds are used, but it is not easy to quantify optical isomers. A method that is often used is spectroscopic method.When the solution of an asymmetric compound has absorption, the circular dichroism, which is the difference between the absorption of right circularly polarized light and that of left circularly polarized light, is A general method is to measure the rotation (optical rotation) of linearly polarized light. This device is precise, and the device is expensive and not easy as compared with the measurement of visible and ultraviolet absorption spectra. As a matter of course, it's not what you can see the difference in appearance.

【0004】また、不斉化合物をその一方の光学異性体
のみと相互作用して何らかの変化を引き起こす、不斉認
識を用いることも行われている。不斉認識は生体内で起
こる最も基本的な過程の一つであり、それ故、これまで
キラルクラウンエーテルなど合成のモデル化合物が数多
く提案されてきた。今日まで、高い不斉認識機能を示す
ホスト−ゲストの組み合わせがいくつか報告されてお
り、例えばクラウンエーテル−有機アンモニウムイオン
(E. B. Kyba, K. Koga, L. R. Sousa, M. G. Siegel, a
nd D. J. Cram, J. Am. Chem. Soc., 95, 2692 (197
3))、ポルフィリン−アミノ酸(K. Konishi, K. Yahara,
H. Toshishige,T. Aida, and S. Inoue, J. Am. Chem.
Soc., 116, 1337 (1994)) などが挙げられ、いずれも
水素結合、パイ電子−パイ電子相互作用、イオン−双極
子、立体的な相補性などの相互作用を巧みに組み合わせ
てこれを実現している。
It is also practiced to use asymmetric recognition in which an asymmetric compound interacts with only one of its optical isomers to cause some change. Asymmetric recognition is one of the most basic processes that occur in the living body, and therefore many synthetic model compounds such as chiral crown ethers have been proposed so far. To date, several host-guest combinations showing high asymmetric recognition function have been reported, for example, crown ether-organic ammonium ion.
(EB Kyba, K. Koga, LR Sousa, MG Siegel, a
nd DJ Cram, J. Am. Chem. Soc., 95, 2692 (197
3)), porphyrin-amino acid (K. Konishi, K. Yahara,
H. Toshishige, T. Aida, and S. Inoue, J. Am. Chem.
Soc., 116, 1337 (1994)), all of which are realized by skillfully combining interactions such as hydrogen bonding, pi-electron-pi-electron interaction, ion-dipole, and steric complementarity. are doing.

【0005】一方、これらのホストの持つ不斉認識能の
評価も様々な手法が報告されている。例えば、高速原子
衝撃(以下FABと略記)法を用いたマススペクトルによ
る錯体の検出(M. Sawada, Y. Takai, H. Yamada, S. Hi
rayama, T. Kaneda, T. Tanaka, K. Kamada, T. Mizook
u, S. Takeuti, K. Ueno, K. Hirose, Y. Tobe, andK.
Naemura, J. Am. Chem. Soc., 117, 7726 (1995), M. S
awada, Y. Okumura,M. Shizuma, Y. Takai, Y. Hidaka,
H. Yamada, T. Tanaka, T. Kaneda, K. Hirose, S. Mi
sumi, and S. Takahashi, J. Am. Chem. Soc., 115, 73
81 (1993))は質量分析の持つ高感度特性を利用した効率
の良い手法であるし、シリカゲル上にホストを担持して
クロマトグラフィーで光学分割を行った例(L. R. Sous
a, G.D. Y. Sogah, D. H. Hoffman, and D. J. Cram,
J. Am. Chem. Soc., 100, 4569 (1978))、ホストによる
ゲストの液−液抽出をNMRにおけるホスト側のシグナ
ルの変化から調べた例(E. P. Kyba, J. M. Timko, L.
J. Kaplan, F. de Jong, G. W. Gokel, and D. J. Cra
m, 100, 4555 (1978)) などいくつか挙げることができ
る。
On the other hand, various methods have been reported for evaluating the chiral recognition ability of these hosts. For example, detection of a complex by mass spectrum using a fast atom bombardment (FAB) method (M. Sawada, Y. Takai, H. Yamada, S. Hi
rayama, T. Kaneda, T. Tanaka, K. Kamada, T. Mizook
u, S. Takeuti, K. Ueno, K. Hirose, Y. Tobe, and K.
Naemura, J. Am. Chem. Soc., 117, 7726 (1995), M.S.
awada, Y. Okumura, M. Shizuma, Y. Takai, Y. Hidaka,
H. Yamada, T. Tanaka, T. Kaneda, K. Hirose, S. Mi
sumi, and S. Takahashi, J. Am. Chem. Soc., 115, 73
81 (1993)) is an efficient method that utilizes the high-sensitivity characteristics of mass spectrometry, and an example of carrying out optical resolution by chromatography by supporting a host on silica gel (LR Sous
a, GDY Sogah, DH Hoffman, and DJ Cram,
J. Am. Chem. Soc., 100, 4569 (1978)), an example of liquid-liquid extraction of a guest by a host investigated from changes in the signal on the host side in NMR (EP Kyba, JM Timko, L.
J. Kaplan, F. de Jong, GW Gokel, and DJ Cra
m, 100, 4555 (1978)).

【0006】これらの中で、簡便でわかりやすく、かつ
最も興味深い例は、光学特性の変化を利用した研究であ
る。これは、吸光度、あるいは蛍光の変化という形で錯
形成情報を検出でき、ホスト−ゲストの親和性を示す会
合定数の算出法が容易な形で確立されているなど多くの
メリットがあるが、何より面白いのは、その簡便性を生
かして不斉識別試薬として利用できる可能性を秘めてい
る点である。入江ら(M. Irie, T. Yorozu, and K. Haya
shi, J. Am. Chem. Soc., 100, 2236 (1978),T. Yoroz
u, K. Hayashi, and M. Irie, J. Am. Chem. Soc., 10
3, 5480 (1981))はキラルな1,1'-ビナフチルの蛍光を、
蛍光クエンチャーであるキラルアミンの添加によって、
不斉選択的に消光した例を紹介しており、新海ら(T. D.
James,K. R. A. S. Sandanayake, and S. Shinkai, Na
ture, 374, 345 (1995)) はキラルな1,1'-ビナフチル
に、糖を結合するアリールボロン酸を組み込んだ化合物
で、糖の不斉の認識に伴うビナフチルの消光が起こった
例を紹介している。この二つの例はいずれも、電子ある
いは電荷移動による蛍光の消光過程は電子的な要素とと
もに立体的な効果が大きく働くという事実に基づいたも
のであり、レセプターにおける認識ではなく、いわば光
学機能部位での不斉識別ということで、この分野におけ
る一つの画期的な手法として注目できる。一方、色調の
変化など、おもに可視領域における光学的不斉認識応答
を示す例もいくつか報告されている。例えば、液晶性を
示すコレステロール分子にアンモニウムイオンを結合す
るユニットとしてクラウンエーテルを組み込んだ例(T.
Nishi, A. Ikeda, T. Matsuda,and S. Shinkai, J. Che
m. Soc., Chem. Commun., 1991, 339, S. Shinkai, T.N
ishi, and T. Matsuda, Chem. Lett., 1991, 437) で
は、アミノ酸やキラルアミンの塩酸塩、あるいはキラル
なマンデル酸塩の添加に伴ってコレステリック液晶のピ
ッチに変化を生じ、ゲストのキラリティーに応じて、反
射光の波長で最高60nmもの差を生じるが、試料調整
の煩雑さや液晶の応答の遅さを考慮するとあまり有効と
は言えない。また、兼田らはキラルクラウンエーテル骨
格にアゾフェノール色素を組み込み、アミンに対する光
学的不斉認識応答を示す化合物として多数報告している
が(例えば、T. Kaneda, K. Hirose, and S. Misumi, J.
Am.Chem. Soc., 111, 742 (1989)) 、これらは最も大
きな差が出た場合でさえR、Sの極大波長変化は10n
mにすぎず、肉眼で違いを識別するのは困難である。
Of these, the simple, easy-to-understand, and most interesting example is a study utilizing changes in optical characteristics. This has many advantages such as that complex formation information can be detected in the form of change in absorbance or fluorescence, and a method for calculating an association constant indicating host-guest affinity has been established in an easy form. What is interesting is that it has the potential to be used as an asymmetric discrimination reagent due to its simplicity. Irie et al. (M. Irie, T. Yorozu, and K. Haya
shi, J. Am. Chem. Soc., 100, 2236 (1978), T. Yoroz
u, K. Hayashi, and M. Irie, J. Am. Chem. Soc., 10
3, 5480 (1981)) shows the fluorescence of chiral 1,1'-binaphthyl,
By adding chiral amine, which is a fluorescence quencher,
Introducing an example of asymmetric selective extinction, Shinkai et al. (TD
James, KRAS Sandanayake, and S. Shinkai, Na
ture, 374, 345 (1995)) is a compound that incorporates a sugar-binding arylboronic acid into a chiral 1,1'-binaphthyl compound, and introduces an example in which quenching of binaphthyl occurs due to asymmetric recognition of sugar. are doing. Both of these two examples are based on the fact that the quenching process of fluorescence by electrons or charge transfer has a large steric effect together with electronic elements, and it is not recognition at the receptor but at the optical functional site, so to speak. It can be noted as one of the epoch-making methods in this field because of the asymmetric discrimination of. On the other hand, some examples have been reported that show an optical asymmetric recognition response mainly in the visible region, such as a change in color tone. For example, an example of incorporating a crown ether as a unit that binds ammonium ions to a cholesterol molecule exhibiting liquid crystallinity (T.
Nishi, A. Ikeda, T. Matsuda, and S. Shinkai, J. Che
m. Soc., Chem. Commun., 1991, 339, S. Shinkai, TN
ishi, and T. Matsuda, Chem. Lett., 1991, 437), changes in the pitch of cholesteric liquid crystals occur with the addition of amino acid or chiral amine hydrochlorides or chiral mandelate salts. Accordingly, there is a difference of up to 60 nm in the wavelength of the reflected light, but it is not so effective considering the complexity of sample preparation and the slow response of the liquid crystal. In addition, Kaneda et al. Have reported many compounds that incorporate an azophenol dye into the chiral crown ether skeleton and exhibit an optical asymmetric recognition response to amines (for example, T. Kaneda, K. Hirose, and S. Misumi, J.
Am.Chem. Soc., 111, 742 (1989)), the maximum wavelength change of R and S is 10n even when the largest difference is obtained.
It is only m, and it is difficult to distinguish the difference with the naked eye.

【0007】[0007]

【発明が解決しようとする課題】このように、従来の不
斉化合物の光学異性体の同定には、精密で高価な装置を
使用する必要があった。また、不斉認識による色や蛍光
の変化を利用する場合にも、その変化は微小であり、精
度良く定量したり、目で見て簡便に違いを認識すること
は困難なものであった。本発明は、不斉化合物の光学異
性体との結合で色の変化が大きく、しかも結合する相手
の濃度範囲を大きくとることができる新規な化合物を提
供するものである。
As described above, it has been necessary to use a precise and expensive device for identifying optical isomers of conventional asymmetric compounds. Further, even when a change in color or fluorescence due to asymmetric recognition is used, the change is minute, and it is difficult to quantify it with high precision or to visually and easily recognize the difference. The present invention provides a novel compound capable of undergoing a large change in color upon binding with an optical isomer of an asymmetric compound, and capable of taking a large concentration range of a binding partner.

【0008】[0008]

【課題を解決するための手段】発明者らは、下記に示す
化合物が、特定の不斉化合物の一方の光学異性体と結合
して、色が大きく変化することを見出し、本発明に至っ
た。すなわち、本第一発明の要旨は下記一般式(I)で
表されるカリックスアレーン化合物である。
Means for Solving the Problems The present inventors have found that the compound shown below binds to one optical isomer of a specific asymmetric compound to cause a large change in color, and has arrived at the present invention. . That is, the gist of the first invention is a calixarene compound represented by the following general formula (I).

【0009】[0009]

【化3】 Embedded image

【0010】(式中、Xは光学活性な有機基を含有する
2価の有機基を、また、R1〜R4はそれぞれ水素原子ま
たは置換基を有していてもよい炭素数1から4のアルキ
ル基若しくはアルコキシ基を示す。) 本第二発明の要旨は、光学異性体を含む溶液と、前記カ
リックスアレーン化合物とを混合し、その時の吸収スペ
クトルの変化より光学異性体を識別する方法である。
(In the formula, X is a divalent organic group containing an optically active organic group, and R 1 to R 4 are each a hydrogen atom or a carbon atom which may have a substituent. The second aspect of the present invention is a method of mixing a solution containing an optical isomer and the calixarene compound, and distinguishing the optical isomer from the change in absorption spectrum at that time. is there.

【0011】[0011]

【発明の実施の形態】以下、本発明について詳細に説明
する。上記一般式(I)において、Xとしては光学活性
なビナフチル基を含有する2価の有機基が好ましく、下
記構造式(II)で表される2価の有機基が特に好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. In the above general formula (I), X is preferably a divalent organic group containing an optically active binaphthyl group, and particularly preferably a divalent organic group represented by the following structural formula (II).

【0012】[0012]

【化4】 Embedded image

【0013】(式中、nは0または1を示す。) 上記構造式(II)で表される有機基には不斉炭素はな
いが、2つのナフタレン環が自由に回転できないため、
不斉化合物になるものである。この化合物は4つのフェ
ノールがメチレンで結合したカリックスアレーンより合
成することができる。光学活性なXの部分は、原料で光
学活性なものを用い、その光学活性が消失しないような
ルートで導入してもよいし、ラセミ体で合成し、後で光
学分割する方法も可能である。さらに、光学活性部位と
カリックスアレーン環の間の2つの連結基の長さは同じ
でも異なっていてもよいが、ゲスト分子が結合したとき
の二つの色素部位への効果が異なるものとなり、発現す
る効果がより顕著なものとなるので、異なっている方が
好ましい。すなわち、上記構造式(II)ではnは1よ
りも0の方が好ましい。
(In the formula, n represents 0 or 1.) The organic group represented by the structural formula (II) has no asymmetric carbon, but two naphthalene rings cannot rotate freely.
It becomes an asymmetric compound. This compound can be synthesized from calixarene in which four phenols are linked by methylene. The optically active X moiety may be introduced by a route such that the optically active material is used and the optical activity does not disappear, or a method of synthesizing in a racemic form and subsequently performing optical resolution is also possible. . Furthermore, the lengths of the two linking groups between the optically active site and the calixarene ring may be the same or different, but when the guest molecule is bound, the effect on the two dye sites becomes different and expression occurs. Since the effect becomes more remarkable, different ones are preferable. That is, in the above structural formula (II), n is preferably 0 rather than 1.

【0014】本発明の化合物は、特定の有機アミン類の
不斉化合物と結合して、吸収スペクトルが大きく変化す
る。このとき、Xの配置(RまたはS)により、結合す
る不斉の有機アミンもRとSで結合定数が大きく異な
り、吸収スペクトルの変化する割合が大きく異なる。こ
の変化は相当に大きいため、目視でも判別できる程であ
るので、簡便に光学異性体を判別する事が可能である。
The compound of the present invention binds to an asymmetric compound of a specific organic amine, and its absorption spectrum is largely changed. At this time, depending on the arrangement of X (R or S), the asymmetric organic amine to be bound also has a large difference in the binding constant between R and S, and the rate at which the absorption spectrum changes greatly. Since this change is so large that it can be visually discriminated, it is possible to easily discriminate optical isomers.

【0015】また、本発明の化合物もRとSの両方を用
意すれば、対象とする有機アミンのRとSの混合比を決
定することができる。これは、有機アミンのRとSの混
合物を二つに分け、本発明の化合物のRとSを別々に作
用させてその吸収スペクトルの変化をそれぞれ測定すれ
ばよい。
Also, by preparing both R and S for the compound of the present invention, the mixing ratio of R and S of the target organic amine can be determined. For this, a mixture of R and S of the organic amine is divided into two, R and S of the compound of the present invention are allowed to act separately, and the change in the absorption spectrum thereof is measured.

【0016】[0016]

【実施例】【Example】

実施例1 Example 1

【0017】[0017]

【化5】 Embedded image

【0018】の合成Synthesis of

【0019】[0019]

【化6】 [Chemical 6]

【0020】2-ブロモエチルテトラヒドロピラニルエー
テル 10 の合成 2-ブロモエタノール(3 g, 0.024 mol) に 3,4-ジヒド
ロ-2H-ピラン(3.03 g,0.036 mol)と濃塩酸を触媒量
(半滴)加え、1 時間室温で攪拌した。トリベンジルア
ミンをpHが5 - 6.5になるまで加え、減圧蒸留(80℃,
0.2Torr)すると無色透明液体の 10 が4.29g(収率 85
%)得られた。13 C-NMR (50MHz, CDCl3)δ(ppm) 98.9, 67.5, 62.2, 3
0.7, 30.4, 25.3, 19.2.
Synthesis of 2-Bromoethyl Tetrahydropyranyl Ether 10 3,4-Dihydro-2H-pyran (3.03 g, 0.036 mol) and concentrated hydrochloric acid in 2-bromoethanol (3 g, 0.024 mol) as a catalytic amount (half a drop). ) Was added and stirred at room temperature for 1 hour. Tribenzylamine was added until pH reached 5-6.5 and vacuum distillation (80 ° C,
0.2Torr), 10 of colorless transparent liquid 4.29g (yield 85
%) Got. 13 C-NMR (50MHz, CDCl 3 ) δ (ppm) 98.9, 67.5, 62.2, 3
0.7, 30.4, 25.3, 19.2.

【0021】2-(クロロエトキシ)エチルテトラヒドロピ
ラニルエーテル 11 の合成 2-(2-クロロエトキシ)エタノール(10.0 g, 72.2 mo
l)に 3,4-ジヒドロ-2H-ピラン(10.2 g, 118 mmol)と
濃塩酸を触媒量(半滴)加え、1 時間室温で攪拌した。
トリベンジルアミンを pH が 5 - 6.5 になるまで加
え、減圧蒸留(87-88℃, 0.5 Torr)すると無色透明液
体の 11 が 16.1 g(収率 98 %)得られた。13 C-NMR (50 MHz, CDCl3) δ (ppm) 99.0, 71.4, 70.7,
66.7, 62.3, 42.7, 30.6, 25.4, 19.5.
Synthesis of 2- (chloroethoxy) ethyl tetrahydropyranyl ether 11 2- (2-chloroethoxy) ethanol (10.0 g, 72.2 mo
3,4-dihydro-2H-pyran (10.2 g, 118 mmol) and concentrated hydrochloric acid (catalytic amount (half drop)) were added to (l) and stirred at room temperature for 1 hour.
Tribenzylamine was added until the pH became 5-6.5, and distillation under reduced pressure (87-88 ° C, 0.5 Torr) yielded 16.1 g (98% yield) of 11 as a colorless transparent liquid. 13 C-NMR (50 MHz, CDCl 3 ) δ (ppm) 99.0, 71.4, 70.7,
66.7, 62.3, 42.7, 30.6, 25.4, 19.5.

【0022】p -tert -ブチルカリックス[4]アレーン 4
の合成 p-tert-ブチルフェノール 3(25.0 g, 0.17 mol)に 37
% ホルムアルデヒド水溶液(15.5 mL, 0.19 mol)及び
NaOH(0.3 g, 7.5 mmol)を加え、120 ℃で2時間攪拌
した。室温まで放冷の後、フェニルエーテル(250 mL)
を加え溶解し、反応混合物へ窒素を流しながらゆっくり
昇温して水分を除去した後、2時間還流(259 ℃)し
た。放冷した後、酢酸エチル(275 mL)を加え、一晩攪
拌してから生成した沈澱を濾別した。得られた沈澱を酢
酸エチル(25 mL)で 2 回、酢酸(50 mL)で 1 回、水
(50 mL)で 2 回それぞれ洗浄して、化合物 4 を白色
粉末として 13.9 g(収率 52 %)得た。1 H-NMR (400 MHz, CDCl3) δ (ppm) 10.33 (s, 4H, Ar-
OH), 7.05 (s, 8H, Ar-H), 4.38-3.40 (m, 8H, ArCH2A
r), 1.21 (s, 36H, t-Bu); MS, m/z 648 (M+); mp 320
-322℃.
P-tert-butylcalix [4] arene 4
Synthesis of p-tert-butylphenol 3 (25.0 g, 0.17 mol) in 37
% Formaldehyde aqueous solution (15.5 mL, 0.19 mol) and
NaOH (0.3 g, 7.5 mmol) was added, and the mixture was stirred at 120 ° C for 2 hr. After cooling to room temperature, phenyl ether (250 mL)
Was added and dissolved, and the temperature was slowly raised while flowing nitrogen into the reaction mixture to remove water, and then the mixture was refluxed (259 ° C.) for 2 hours. After allowing to cool, ethyl acetate (275 mL) was added, and the mixture was stirred overnight, and the formed precipitate was filtered off. The obtained precipitate was washed twice with ethyl acetate (25 mL), once with acetic acid (50 mL), and twice with water (50 mL) to give compound 4 as a white powder (13.9 g, yield 52%). )Obtained. 1 H-NMR (400 MHz, CDCl 3 ) δ (ppm) 10.33 (s, 4H, Ar-
OH), 7.05 (s, 8H, Ar-H), 4.38-3.40 (m, 8H, ArCH 2 A
r), 1.21 (s, 36H, t-Bu); MS, m / z 648 (M +); mp 320
-322 ° C.

【0023】カリックス[4]アレーン 5 の合成 化合物 4(30.0 g, 45.1 mmol) の dry トルエン溶液
(280 mL)にフェノール(20.4g, 0.217 mol) 及び塩化
アルミニウム(32.0 g, 0.240 mol)を加え、窒素下、5
0 ℃ で 2 時間攪拌した。反応混合物に 0.2N HCl 水溶
液(500 mL)を加え、攪拌してから有機層を分取して、
洗浄(トルエン 280 mL - 水 280 mL)した。加熱濃縮
の後、メタノールを加えると沈澱が析出するのでこれを
濾別し、クロロホルム - メタノール溶媒系で再結晶し
て化合物 5 を 15.6 g(収率 79 %)得た。1 H-NMR (200 MHz, CDCl3) δ (ppm) 10.10 (s, 4H, Ar-
OH), 7.70 (d, J=7.5Hz,8H, Ar-H), 6.75 (t, J=7.5Hz,
4H, Ar-H), 4.60-3.30 (brd, 8H, ArCH2Ar); MS, m/z
424 (M+).
Synthesis of calix [4] arene 5 To a dry toluene solution (280 mL) of compound 4 (30.0 g, 45.1 mmol) was added phenol (20.4 g, 0.217 mol) and aluminum chloride (32.0 g, 0.240 mol), Under nitrogen, 5
The mixture was stirred at 0 ° C for 2 hours. 0.2N HCl aqueous solution (500 mL) was added to the reaction mixture, the mixture was stirred, and then the organic layer was separated.
It was washed (toluene 280 mL -water 280 mL). After heating and concentrating, methanol was added to precipitate a precipitate, which was filtered off and recrystallized in a chloroform-methanol solvent system to obtain 15.6 g (yield 79%) of compound 5. 1 H-NMR (200 MHz, CDCl 3 ) δ (ppm) 10.10 (s, 4H, Ar-
OH), 7.70 (d, J = 7.5Hz, 8H, Ar-H), 6.75 (t, J = 7.5Hz,
4H, Ar-H), 4.60-3.30 (brd, 8H, ArCH 2 Ar); MS, m / z
424 (M +).

【0024】(S)-2'-(2-(2-テトラヒドロピラニロキシ)
エトキシ)-1,1'-ビナフチル-2-オール 7 の合成 (S)-1,1'-ビ-2-ナフトール(500 mg, 1.75 mmol)6 の
dry アセトン溶液(10mL)に無水炭酸カリウム(310 m
g, 2.24 mmol)を加え、窒素下 1 時間加熱還流してか
ら 1-ブロモ-2-(2-テトラヒドロピラニロキシ)エタン 1
0 の dry アセトン溶液(2 mL)を加えた。46 時間加熱
還流した後、溶媒を減圧留去し、塩化メチレン(25 m
L)- 水(25 mL)で目的物を抽出した。有機層を2 回水
洗後、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去し
てからカラムクロマトグラフィー(充填剤 wakogel C-3
00、展開溶媒 酢酸エチル:クロロホルム = 1 : 9)で分
離精製することによって目的の化合物 7 を 428mg(収
率 59 %)得た。
(S) -2 '-(2- (2-tetrahydropyranyloxy)
Synthesis of (ethoxy) -1,1'-binaphthyl-2-ol 7 of (S) -1,1'-bi-2-naphthol (500 mg, 1.75 mmol) 6
Dry acetone solution (10 mL) in anhydrous potassium carbonate (310 m
g, 2.24 mmol) and heated under reflux for 1 hour under nitrogen, then 1-bromo-2- (2-tetrahydropyranyloxy) ethane 1
0 dry acetone solution (2 mL) was added. After heating under reflux for 46 hours, the solvent was distilled off under reduced pressure, and methylene chloride (25 m
The target substance was extracted with (L) -water (25 mL). The organic layer was washed twice with water, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure before column chromatography (packing agent wakogel C-3
428 mg (yield 59%) of the target compound 7 was obtained by separating and purifying with 00, a developing solvent ethyl acetate: chloroform = 1: 9).

【0025】1H-NMR (200 MHz, CDCl3) δ (ppm) 8.01
(d, J=9.1Hz, 2H, Naph-H4), 7.89-7.81 (m, 2H, Naph
-H5), 7.49 (d, J=9.2Hz, 1H, Naph-H3), 7.48 (d, J=
9.0Hz,1H, Naph-H3'), 7.36 (pseudo-t, 2H, Naph-H6),
7.29-7.02 (m, 4H, Naph-H7,8), 5.16 (brs, 1H, Naph
-OH), 4.28-3.13 (m, 9H, OCH2, THP-H), 1.60-1.23
(m, 4H, THP-H).
1 H-NMR (200 MHz, CDCl 3 ) δ (ppm) 8.01
(d, J = 9.1Hz, 2H, Naph-H4), 7.89-7.81 (m, 2H, Naph
-H5), 7.49 (d, J = 9.2Hz, 1H, Naph-H3), 7.48 (d, J =
9.0Hz, 1H, Naph-H3 '), 7.36 (pseudo-t, 2H, Naph-H6),
7.29-7.02 (m, 4H, Naph-H7,8), 5.16 (brs, 1H, Naph
-OH), 4.28-3.13 (m, 9H, OCH 2 , THP-H), 1.60-1.23
(m, 4H, THP-H).

【0026】(S)-2'-(2-ヒドロキシエトキシ)-2-(2-(2-
ヒドロキシエトキシ)エトキシ)-1,1'-ビナフチル 8 の
合成 化合物 7(669 mg, 1.61 mmol)の dry DMF 溶液(10 m
L)に 60% NaH(129 mg, 3.23 mmol)及び NaI(484 m
g, 3.23 mmol)を加えて 1 時間 80℃ で加熱攪拌した
後、 1-(2-クロロエトキシ)-2-(2-テトラヒドロピラニ
ロキシ)エタン 11(673 mg, 3.23 mmol)の dry DMF 溶
液(2 mL)を加えて 24 時間加熱還流した。反応終了
後、水を数滴加えてから溶媒を減圧留去し、塩化メチレ
ン(30 mL)-水 (30 mL) で抽出し、有機層を水 (30 m
L) で 2 回洗浄した。この有機層に対して、メタノール
(30 mL)及び濃塩酸(2 mL)を加えて室温で 3.5 時間
攪拌した。飽和炭酸水素ナトリウム水溶液 (ca. 20 mL)
で中和後、有機層を 3 回水洗して溶媒を減圧留去し、
カラムクロマトグラフィー( 充填剤 Wakogel C-300、
展開溶媒 酢酸エチル)で分離精製することによって、
黄色タール状の目的化合物 8 を 549 mg(収率 81 %)
得た。
(S) -2 '-(2-hydroxyethoxy) -2- (2- (2-
Synthesis of (hydroxyethoxy) ethoxy) -1,1'-binaphthyl 8 A solution of compound 7 (669 mg, 1.61 mmol) in dry DMF (10 m
L) 60% NaH (129 mg, 3.23 mmol) and NaI (484 m
g, 3.23 mmol) and heated with stirring at 80 ° C for 1 hour, and then dried 1- (2-chloroethoxy) -2- (2-tetrahydropyranyloxy) ethane 11 (673 mg, 3.23 mmol) in a dry DMF solution ( 2 mL) was added and the mixture was heated under reflux for 24 hours. After the reaction was completed, a few drops of water were added, the solvent was distilled off under reduced pressure, and the mixture was extracted with methylene chloride (30 mL) -water (30 mL).
Washed twice with L). Methanol (30 mL) and concentrated hydrochloric acid (2 mL) were added to this organic layer, and the mixture was stirred at room temperature for 3.5 hours. Saturated aqueous sodium hydrogen carbonate solution (ca. 20 mL)
After neutralizing with, the organic layer was washed 3 times with water and the solvent was distilled off under reduced pressure.
Column chromatography (Wakogel C-300 packing material,
By separating and purifying with a developing solvent (ethyl acetate),
549 mg of the target compound 8 in the form of yellow tar (yield 81%)
Obtained.

【0027】1H-NMR (200 MHz, CDCl3) δ (ppm) 7.97
(d, J=9.2Hz, 2H, Naph-H4), 7.88 (d, J=8.0Hz, 2H, N
aph-H5), 7.47 (d, J=9.0Hz, 1H, Naph-H3), 7.42 (d,
J=9.1Hz, 1H, Naph-H3'), 7.37-7.29 (pseudo-t, 2H, N
aph-H6), 7.27-7.17 (pseudo-t, 2H, Naph-H7), 7.14-
7.07 (m, 2H, Naph-H8), 4.36-3.11 (m, 12H, OCH2),
3.63 (brs, 1H, OH), 3.62 (brs, 1H, OH).
1 H-NMR (200 MHz, CDCl 3 ) δ (ppm) 7.97
(d, J = 9.2Hz, 2H, Naph-H4), 7.88 (d, J = 8.0Hz, 2H, N
aph-H5), 7.47 (d, J = 9.0Hz, 1H, Naph-H3), 7.42 (d,
J = 9.1Hz, 1H, Naph-H3 '), 7.37-7.29 (pseudo-t, 2H, N
aph-H6), 7.27-7.17 (pseudo-t, 2H, Naph-H7), 7.14-
7.07 (m, 2H, Naph-H8), 4.36-3.11 (m, 12H, OCH2),
3.63 (brs, 1H, OH), 3.62 (brs, 1H, OH).

【0028】(S)-2'-(2-トシロキシエトキシ)-2-(2-(2-
トシロキシエトキシ)エトキシ)-1,1'-ビナフチル 9 の
合成 p-トルエンスルホン酸クロライド(2000 mg, 10.5 mmo
l)の dry ピリジン溶液(5 mL)を 0 ℃で 1 時間攪拌
後、化合物 8(549 mg, 1.31 mmol)の冷 dryピリジン
溶液(3 mL)を加え、氷冷下で 1 時間攪拌した。冷凍
庫で 2 日間放置してから、反応混合物をクラッシュア
イスへ注ぎ、未反応の TsCl を分解するために 1 時間
攪拌した後、塩化メチレン(30 mL)を加えてよく攪拌
した。有機層を 3N 塩酸水溶液(30 mL)で 3 回、5%
炭酸水素ナトリウム水溶液で 1 回洗浄した後、無水硫
酸ナトリウムで乾燥し、溶媒を減圧留去した。得られた
タール状物を真空乾燥することによって、タール状の目
的化合物 9 を 819 mg(収率 86%)得た。
(S) -2 '-(2-Tosyloxyethoxy) -2- (2- (2-
Synthesis of (tosyloxyethoxy) ethoxy) -1,1'-binaphthyl 9 p-toluenesulfonic acid chloride (2000 mg, 10.5 mmo
l) dry pyridine solution (5 mL) was stirred at 0 ° C. for 1 hour, compound 8 (549 mg, 1.31 mmol) in cold dry pyridine solution (3 mL) was added, and the mixture was stirred under ice cooling for 1 hour. After leaving it in the freezer for 2 days, the reaction mixture was poured into crushed ice and stirred for 1 hour to decompose unreacted TsCl, and then methylene chloride (30 mL) was added and stirred well. The organic layer was washed 3 times with 3N aqueous hydrochloric acid solution (30 mL), 5%
The extract was washed once with an aqueous sodium hydrogen carbonate solution, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure. By vacuum-drying the obtained tar-like substance, 819 mg (yield 86%) of the tar-like target compound 9 was obtained.

【0029】1H-NMR (200 MHz, CDCl3) δ (ppm) 7.95
(d, J=9.0Hz, 1H, Naph-H4), 7.88 (d, J=8.7Hz, 1H,
Naph-H4'), 7.84-7.78 (m, 2H, Naph-H5), 7.70 (d, J=
8.3Hz,2H, Ts-H), 7.44-7.03 (m, 10H, Naph-H and Ts-
H), 4.16-2.98 (m, 12H, OCH2), 2.42 (s, 3H, Ar-CH
3), 2.36 (s, 3H, Ar-CH3).
1 H-NMR (200 MHz, CDCl 3 ) δ (ppm) 7.95
(d, J = 9.0Hz, 1H, Naph-H4), 7.88 (d, J = 8.7Hz, 1H,
Naph-H4 '), 7.84-7.78 (m, 2H, Naph-H5), 7.70 (d, J =
8.3Hz, 2H, Ts-H), 7.44-7.03 (m, 10H, Naph-H and Ts-
H), 4.16-2.98 (m, 12H, OCH2), 2.42 (s, 3H, Ar-CH
3), 2.36 (s, 3H, Ar-CH3).

【0030】(S)-1,1'-ビナフチル置換カリックス[4]ク
ラウン 2a の合成 カリックス[4]アレーン 5(478mg, 1.13mmol)の dry
トルエン溶液(95 mL)に 60% 水素化ナトリウム(45 m
g, 1.13 mmol)を加え、1 時間加熱還流した。白濁した
反応混合物に対してトシレート 9(819 mg, 1.13 mmo
l)の dry アセトニトリル(1 mL)- dry トルエン(40
mL)混合溶液をゆっくり(2分間)加え、そのまま 46
時間加熱還流した。その間 12-18 時間おきに 60% 水
素化ナトリウム(45 mg, 1.13 mmol)を 2 回、合計 90
mg (2.26 mmol) 加えた。反応終了後、反応溶液を 1%
塩酸水溶液(150 mL)で 2 回、水(150 mL)で 1 回そ
れぞれ洗浄(激しいエマルジョンになる場合があるが、
その場合はメタノール(10 mL)を添加)し、有機層を
無水硫酸マグネシウムで乾燥してから溶媒を減圧留去し
た。得られた固体をカラムクロマトグラフィー(充填剤
Wakogel C-300、展開溶媒 塩化メチレン)で分離精製
してから、さらに分離しきれなかった不純物をGPC(カ
ラム Shodex K-2000 + K-2001 昭和電工製、展開溶媒
クロロホルム)で除くことによって白色固体の化合物 2
a を 307 mg(収率 34 %)得た。
Synthesis of (S) -1,1'-binaphthyl-substituted calix [4] crown 2a Calix [4] arene 5 (478 mg, 1.13 mmol) dry
Toluene solution (95 mL) was added with 60% sodium hydride (45 m
g, 1.13 mmol) was added, and the mixture was heated under reflux for 1 hr. Tosylate 9 (819 mg, 1.13 mmo for the cloudy reaction mixture)
l) dry acetonitrile (1 mL) -dry toluene (40 mL)
(mL) Add the mixed solution slowly (for 2 minutes) and leave it as it is.
Heated to reflux for an hour. During that time, 60% sodium hydride (45 mg, 1.13 mmol) was added twice every 12 to 18 hours for a total of 90 times.
mg (2.26 mmol) was added. After the reaction is complete, add 1% of the reaction solution.
Wash twice with aqueous hydrochloric acid (150 mL) and once with water (150 mL).
In that case, methanol (10 mL) was added), the organic layer was dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The obtained solid is subjected to column chromatography (filler
After separating and purifying with Wakogel C-300, a developing solvent of methylene chloride, impurities that could not be further separated were GPC (column Shodex K-2000 + K-2001, Showa Denko, developing solvent).
Compound 2 as a white solid by removing with chloroform)
307 mg (34% of yield) of a were obtained.

【0031】1H-NMR (400 MHz, CDCl3) δ (ppm) 7.99
(d, J = 9.0Hz, 1H, Naph-H4), 7.89(d, J= 8.0Hz, 1H,
Naph-H5), 7.77 (d, 1H, Naph-H5'), 7.53 (s, 1H, Ar
-OH),7.52 (d, J= 8.9Hz, 1H, Naph-H3), 7.44 (d, J=
9.0Hz, 1H, Naph-H4'), 7.35(s, 1H, Ar-OH), 7.32 (t,
J= 8.1Hz, 1H, Naph-H6), 7.31 (t, J= 8.1Hz, 1H,Nap
h-H6'), 7.24-7.19 (m, 4H, Naph-H7,7' and Naph-H8,
8'), 7.01 (d, J= 9.0Hz, 1H, Naph-H3'), 7.09-6.84
(m, 7H, Ar-H), 6.74-6.60 (m, 7H, Ar-H), 4.64-3.58
(m, 12H, CH2), 4.55 and 3.35 (ABq, J= 13.2Hz, 2H,
ArCH2Ar), 4.22and 3.35 (ABq, J= 13.4Hz, 2H, ArCH2A
r), 4.25 and 3.34 (ABq, J= 13.1Hz,2H, ArCH2Ar), 3.
22 and 2.48 (ABq, J= 13.2Hz, 2H, ArCH2Ar); MS (E
I), m/z805 (M+-1).
1 H-NMR (400 MHz, CDCl 3 ) δ (ppm) 7.99
(d, J = 9.0Hz, 1H, Naph-H4), 7.89 (d, J = 8.0Hz, 1H,
Naph-H5), 7.77 (d, 1H, Naph-H5 '), 7.53 (s, 1H, Ar
-OH), 7.52 (d, J = 8.9Hz, 1H, Naph-H3), 7.44 (d, J =
9.0Hz, 1H, Naph-H4 '), 7.35 (s, 1H, Ar-OH), 7.32 (t,
J = 8.1Hz, 1H, Naph-H6), 7.31 (t, J = 8.1Hz, 1H, Nap
h-H6 '), 7.24-7.19 (m, 4H, Naph-H7,7' and Naph-H8,
8 '), 7.01 (d, J = 9.0Hz, 1H, Naph-H3'), 7.09-6.84
(m, 7H, Ar-H), 6.74-6.60 (m, 7H, Ar-H), 4.64-3.58
(m, 12H, CH 2 ), 4.55 and 3.35 (ABq, J = 13.2Hz, 2H,
ArCH 2 Ar), 4.22and 3.35 (ABq, J = 13.4Hz, 2H, ArCH 2 A
r), 4.25 and 3.34 (ABq, J = 13.1Hz, 2H, ArCH 2 Ar), 3.
22 and 2.48 (ABq, J = 13.2Hz, 2H, ArCH 2 Ar); MS (E
I), m / z 805 (M + 1).

【0032】(S)-1,1'-ビナフチル置換カリックス[4]ク
ラウン 2a から誘導される新規色素体 1a の合成 (S)-1,1'-ビナフチル置換カリックス[4]クラウン 2a(2
00 mg, 0.248 mmol)のアセトニトリル溶液(100 mL)
に DBU(9 mL)及び 4-アミノ-m-クレゾール(122 mg,
0.991 mmol)を加えて溶解させ、次にフェリシアン化カ
リウム(653 mg, 1.983 mmol)の水溶液(50 mL)を一
気に加え、室温にて一晩攪拌した。氷冷下、10% 酢酸水
溶液で反応溶液を中和し、クロロホルム(100 mL)- 1%
塩酸水溶液(100 mL)で抽出した。有機層を 1% 塩酸
水溶液(100 mL)で 2 回、水(100 mL)で 3 回それぞ
れ洗浄して、溶媒を減圧留去した。赤色の残さをカラム
クロマトグラフィー(充填剤 中性アルミナ活性度、展
開溶媒 クロロホルム)で分離精製してから分離しきれ
なかった不純物を GPC(カラム Shodex K-2000 + K-200
1 昭和電工製、展開溶媒 クロロホルム)で除き、さら
にクロロホルム(1 mL)- ヘキサン(25 mL)で再沈し
て赤色粉末の化合物 1a を 138 mg(収率 53%)得た。
Synthesis of a novel pigment body 1a derived from (S) -1,1'-binaphthyl-substituted calix [4] crown 2a (S) -1,1'-binaphthyl-substituted calix [4] crown 2a (2
00 mg, 0.248 mmol) in acetonitrile (100 mL)
DBU (9 mL) and 4-amino-m-cresol (122 mg,
0.991 mmol) was added and dissolved, then an aqueous solution (50 mL) of potassium ferricyanide (653 mg, 1.983 mmol) was added all at once, and the mixture was stirred overnight at room temperature. The reaction solution was neutralized with 10% acetic acid aqueous solution under ice cooling, and chloroform (100 mL) -1%
It was extracted with a hydrochloric acid aqueous solution (100 mL). The organic layer was washed twice with a 1% aqueous hydrochloric acid solution (100 mL) and three times with water (100 mL), and the solvent was evaporated under reduced pressure. The red residue was separated and purified by column chromatography (filler neutral alumina activity, developing solvent chloroform) and impurities that could not be separated were separated by GPC (column Shodex K-2000 + K-200).
1 Removed with Showa Denko, developing solvent chloroform) and reprecipitated with chloroform (1 mL) -hexane (25 mL) to obtain 138 mg (yield 53%) of compound 1a as a red powder.

【0033】1H-NMR (400 MHz, CDCl3, 299.3 K) δ (p
pm) 8.06 (brs, 1H, Ar-OH), 7.91 (s, 1H, Ar-OH),
7.79 (d,1H, J = 8.0Hz, Naph-H5'), 7.58 (d, J = 9.0
Hz, 1H,Naph-H4), 7.54 (d, J = 9.0Hz, 1H, Naph-H3),
7.4-7.1 (m, 6H, Naph-H7,7',8,8' and Naph-H6,6'),
7.13 (d, J = 9.0Hz, 1H, Naph-H3'), 7.11 (d, J = 1
0.2Hz, 1H, Quinoid-Hb), 6.94-6.64 (m, 10H, ArH),
6.60 (brs, 1H, Quinoid-Hc), 6.55-6.52 (m, 2H, Quin
oid-Ha and Hc'), 6.45 (dd, J = 2.2Hz and 10.3Hz, 1
H, Quinod-Ha'), 4.64-3.36 (m, 12H, CH2), 4.27 and
3.39 (ABq, J = 12.9Hz, 2H, ArCH2Ar), 4.62 and 3.37
(ABq, J = 13.4Hz, 2H, ArCH2Ar), 4.28 and 3.37 (AB
q, J = 12.9Hz, 2H, ArCH2Ar), 3.33 and 2.54 (ABq, J
= 16.0Hz, 2H, ArCH2Ar), 2.38 (s, 3H, Ar-CH3), 2.2
9 (s, 3H, Ar-CH3); 13C-NMR (100MHz, CDCl3, 297.3
K) d (ppm) 188.3 (Quinone carbonyl-C), 188.2 (Quin
one carbonyl-C), 156.6, 156.2, 154.7, 154.2,153.2,
152.6, 151.6, 151.5, 150.0,149.9, 134.2, 133.7, 1
33.2, 133.0, 132.9, and 132.1 (Ar-C (Quaternary)),
131.8 (Quinoid-C), 131.6 (Quinoid-C), 130.3, 130.
2, 129.5, 129.4, 129.3, 129.2, 129.1,129.0, 128.7,
and 128.5 (ArC), 127.9 (Naph-C5'), 127.8 (Naph-C
5), 126.4, 126.2, 125.6, 125.4, and 125.3 (ArC), 1
23.9 (Naph-C), 123.8 (Naph-C), 122.8 (Calixarene-
C), 122.7 (Calixarene-C), 122.5 (Calixarene-C), 12
2.4 (Calixarene-C), 121.0 (ArC), 120.3 (ArC), 116.
9 (Naph-C3'), 115.8 (Naph-C3), 76.2 (OCH2), 75.4
(OCH2), 70.3 (OCH2), 70.0 (OCH2),68.6 (OCH2), 31.3
(ArCH2Ar), 31.1 (ArCH2Ar), 29.9 (ArCH2Ar), 18.3
(ArCH3), 18.2 (ArCH3).MS (FAB+), m/z = 1045 (M++
1); CD (100% EtOH), λmax (nm) (Δε (mol-1 dm3 cm
-1)), 237 (+145), 226 (-63.8), 214 (+60.0). AnalCa
lcd for C68H56O9N2・1/2H2O: C, 77.48; H, 5.45; N,
2.66. Found: C, 77.49; H, 5.47; N, 2.65.
1 H-NMR (400 MHz, CDCl 3 , 299.3 K) δ (p
pm) 8.06 (brs, 1H, Ar-OH), 7.91 (s, 1H, Ar-OH),
7.79 (d, 1H, J = 8.0Hz, Naph-H5 '), 7.58 (d, J = 9.0
Hz, 1H, Naph-H4), 7.54 (d, J = 9.0Hz, 1H, Naph-H3),
7.4-7.1 (m, 6H, Naph-H7,7 ', 8,8' and Naph-H6,6 '),
7.13 (d, J = 9.0Hz, 1H, Naph-H3 '), 7.11 (d, J = 1
0.2Hz, 1H, Quinoid-Hb), 6.94-6.64 (m, 10H, ArH),
6.60 (brs, 1H, Quinoid-Hc), 6.55-6.52 (m, 2H, Quin
oid-Ha and Hc '), 6.45 (dd, J = 2.2Hz and 10.3Hz, 1
H, Quinod-Ha '), 4.64-3.36 (m, 12H, CH 2 ), 4.27 and
3.39 (ABq, J = 12.9Hz, 2H, ArCH 2 Ar), 4.62 and 3.37
(ABq, J = 13.4Hz, 2H, ArCH 2 Ar), 4.28 and 3.37 (AB
q, J = 12.9Hz, 2H, ArCH 2 Ar), 3.33 and 2.54 (ABq, J
= 16.0Hz, 2H, ArCH 2 Ar), 2.38 (s, 3H, Ar-CH 3 ), 2.2
9 (s, 3H, Ar-CH 3 ); 13 C-NMR (100MHz, CDCl 3 , 297.3
K) d (ppm) 188.3 (Quinone carbonyl-C), 188.2 (Quin
one carbonyl-C), 156.6, 156.2, 154.7, 154.2,153.2,
152.6, 151.6, 151.5, 150.0, 149.9, 134.2, 133.7, 1
33.2, 133.0, 132.9, and 132.1 (Ar-C (Quaternary)),
131.8 (Quinoid-C), 131.6 (Quinoid-C), 130.3, 130.
2, 129.5, 129.4, 129.3, 129.2, 129.1,129.0, 128.7,
and 128.5 (ArC), 127.9 (Naph-C5 '), 127.8 (Naph-C
5), 126.4, 126.2, 125.6, 125.4, and 125.3 (ArC), 1
23.9 (Naph-C), 123.8 (Naph-C), 122.8 (Calixarene-
C), 122.7 (Calixarene-C), 122.5 (Calixarene-C), 12
2.4 (Calixarene-C), 121.0 (ArC), 120.3 (ArC), 116.
9 (Naph-C3 '), 115.8 (Naph-C3), 76.2 (OCH 2 ), 75.4
(OCH 2 ), 70.3 (OCH 2 ), 70.0 (OCH 2 ), 68.6 (OCH 2 ), 31.3
(ArCH 2 Ar), 31.1 (ArCH 2 Ar), 29.9 (ArCH 2 Ar), 18.3
(ArCH 3 ), 18.2 (ArCH 3 ) .MS (FAB +), m / z = 1045 (M ++
1); CD (100% EtOH), λmax (nm) (Δε (mol -1 dm 3 cm
-1 )), 237 (+145), 226 (-63.8), 214 (+60.0). AnalCa
lcd for C 68 H 56 O 9 N 2 1 / 2H 2 O: C, 77.48; H, 5.45; N,
2.66. Found: C, 77.49; H, 5.47; N, 2.65.

【0034】化合物 1a は 100% エタノール中、515.5
nm(ε; 14500 mol-1 dm3 cm-1)に吸収極大を示し赤色
を呈するが、ゲストとして 1 級アミンを添加すると酸
塩基反応に基づく長波長側シフトを示し、650 nm 付近
に新たな吸収が現れて色調は紫〜青色へと変化する。ま
た本化合物は、100% エタノール中、237 nm に +145mol
-1 dm3 cm-1、226 nm に -63.8 mol-1 dm3 cm-1、214 nm
に +60.0 mol-1dm3cm -1の CD 活性を示したことから、
原料の (S)-1,1'-ビナフトールの光学活性は合成の途中
で失われていない。
Compound 1a was added to 515.5% in 100% ethanol.
nm (ε; 14500 mol-1 dmThree cm-1) Indicates maximum absorption and red
However, when a primary amine is added as a guest, the acid
Shows long-wavelength side shift due to base reaction, around 650 nm
New absorption appears and the color tone changes from purple to blue. Ma
This compound was +145 mol at 237 nm in 100% ethanol.
-1 dmThree cm-1, -63.8 mol at 226 nm-1 dmThree cm-1, 214 nm
To +60.0 mol-1dmThreecm -1Since it showed CD activity of
The optical activity of the raw material (S) -1,1'-binaphthol is in the process of synthesis.
Not lost in.

【0035】実施例2 化合物 1a に対して (R)-フェニルグリシノールを添加
した吸収スペクトルを図1に示す。652.5 nm にフェノ
ールとアミンの酸塩基反応に基づくと見られる新たな吸
収バンドが出現し、アミンの添加量を増加するにつれて
このバンドの吸収強度が強くなるのが観測された。その
一方で解離していないインドフェノールの吸収バンド
(515.5 nm)はアミンの添加によって、505 nm 付近に
等吸収点を保ちながら、吸収強度の増加を伴う 22 nm
の長波長側シフトを示し、新たに 538 nm に吸収を持っ
た。
Example 2 FIG. 1 shows an absorption spectrum obtained by adding (R) -phenylglycinol to compound 1a. At 652.5 nm, a new absorption band that appears to be based on the acid-base reaction of phenol and amine appeared, and it was observed that the absorption intensity of this band increased as the amount of amine added increased. On the other hand, the absorption band of undissociated indophenol (515.5 nm) is 22 nm with the increase of absorption intensity while maintaining the isosbestic point around 505 nm by the addition of amine.
Shows a long-wavelength side shift and has a new absorption at 538 nm.

【0036】次にゲストを対掌体である (S)-フェニル
グリシノールに変えて同様の測定を行った。その結果を
図2に示す。大変興味深いことに、ゲストを R-体から
S-体に変更したことによって吸収スペクトルの変化は
かなり抑えられ、視覚的にもR-体を添加した場合には赤
色から紫色へと変化したのに対して S-体の添加では赤
色のままであった。ここにも示したように S-体の添加
では 1000 倍モル比でほぼ飽和になっており、R-体の場
合に見られたような短波長バンド(515.5 nm)の長波長
側シフトは観測されなかった。このようにゲストの絶対
構造が変わることによって吸収スペクトルの反応が変わ
るということは、化合物 1a がフェニルグリシノールに
対して不斉認識機能を有する可能性を示唆している。さ
らに短波長バンドの変化で考えれば R-体では良好な変
化が起こったのに対して、S-体ではゲストをかなり過剰
に添加しても変化が完全に抑えられた。
Next, the same measurement was performed by changing the guest to the antipode (S) -phenylglycinol. The result is shown in FIG. Very interestingly, the guest from the R-body
The change in the absorption spectrum was significantly suppressed by changing to the S-form, and visually, when the R-form was added, the color changed from red to purple, whereas when the S-form was added, it remained red. Met. As shown here, the addition of the S- form was almost saturated at a 1000-fold molar ratio, and the long-wavelength side shift of the short-wavelength band (515.5 nm) observed with the R- form was observed. Was not done. The fact that the reaction of the absorption spectrum changes due to the change in the absolute structure of the guest suggests that compound 1a may have an asymmetric recognition function for phenylglycinol. Considering the change in the shorter wavelength band, the R-form showed a good change, whereas the S-form showed that the change was completely suppressed even when the guest was added in a considerably excessive amount.

【0037】実施例3 会合定数に関しては吸光度変化を用いて簡便に算出でき
る、Benesi-Hildebrand plotを用いた。ゲストが(R)-フ
ェニルグリシノールであった場合の Benesi-Hildebrand
plot を図3 に示す。各点は良い直線関係にあること
から化合物 1aと(R)-フェニルグリシノール は 1:1 錯
体を形成していることがわかった。
Example 3 The Benesi-Hildebrand plot, which can be easily calculated using the change in absorbance, was used for the association constant. Benesi-Hildebrand when the guest was (R) -phenylglycinol
The plot is shown in Figure 3. Since each point has a good linear relationship, it was found that compound 1a and (R) -phenylglycinol form a 1: 1 complex.

【0038】実施例4 錯体の形成を直接確認するため質量分析による錯体の検
出を試みた。イオン化法について、ホストとゲストは非
共有結合的な力で結合しているのでソフトなイオン化法
である高速原子衝撃(FAB)法を用いることにした。方
法は次の通りである。すなわち、ホスト 1a のクロロホ
ルム溶液(0.03 mol dm-3、20 mL)とゲスト(R)-フェニ
ルグリシノールのメタノール溶液(0.5 mol dm-3、12 m
L)をバイアル中で混合してから溶媒を除き、マトリッ
クスとして 3-ニトロベンジルアルコール(20 mL)を添
加([1a] = 0.03 mol dm-3、[Guest] / [Host] = 10 /
1)、良く攪拌して二晩放置した。これを 1 mL 取り FA
B 用ターゲット上にのせ、測定した。その結果、ホスト
の分子イオンピークであるm/z 1045 (M+1) の他、m/z 1
181 に小さなピークが観測された。ホストのマスナンバ
ーが 1044、ゲストのマスナンバーが 137 であり、両者
の和が 1181 であるので観測された小さなピークは錯体
に由来するものと考えられる。
Example 4 An attempt was made to detect a complex by mass spectrometry in order to directly confirm the formation of the complex. Regarding the ionization method, we decided to use the fast atom bombardment (FAB) method, which is a soft ionization method, because the host and guest are bound by a non-covalent force. The method is as follows. That is, a chloroform solution of host 1a (0.03 mol dm -3 , 20 mL) and a methanol solution of guest (R) -phenylglycinol (0.5 mol dm -3 , 12 m
L) was mixed in a vial, the solvent was removed, and 3-nitrobenzyl alcohol (20 mL) was added as a matrix ([1a] = 0.03 mol dm -3 , [Guest] / [Host] = 10 /
1), stirred well and left for two nights. Take 1 mL of this FA
It was placed on the target for B and measured. As a result, in addition to m / z 1045 (M + 1) which is the molecular ion peak of the host, m / z 1
A small peak was observed at 181. The host's mass number is 1044, the guest's mass number is 137, and the sum of the two is 1181. Therefore, the small peak observed is considered to be derived from the complex.

【0039】実施例5 化合物 1a の 100% エタノール溶液(2.0 x 10-5 mol d
m-3)に対して 500 eq.相当のアミノ酸を固体のまま加え
た。この時大部分のアミノ酸は溶解せずに沈澱するの
で、上澄み液を用いて吸収スペクトル測定を行った。
Example 5 100% ethanol solution of compound 1a (2.0 x 10 -5 mol d
An amino acid equivalent to 500 eq. to m −3 ) was added as a solid. At this time, most of the amino acid does not dissolve but precipitates, so the absorption spectrum was measured using the supernatant.

【0040】その結果、アミノ酸の一種であるフェニル
グリシンに対して光学的不斉認識応答機能が見出され
た。すなわち、ゲストとして (S)-フェニルグリシンを
添加しても溶液の色調は赤色のままであったのに対し
て、(R)-フェニルグリシンを添加した場合は赤紫色と肉
眼で識別できるほどの変化を示した。その吸収スペクト
ルを図4に示す。 実施例6
As a result, an optical asymmetric recognition response function was found for phenylglycine which is one of the amino acids. That is, the color tone of the solution remained red even when (S) -phenylglycine was added as a guest, whereas when (R) -phenylglycine was added, it was visually recognizable as magenta. Showed a change. The absorption spectrum is shown in FIG. Example 6

【0041】[0041]

【化7】 Embedded image

【0042】化合物 2b (80 mg, 0.094 mmol) のアセト
ニトリル溶液(40 mL)に、DBU (1,8-Diazabicyclo[5.
4.0]-7-undecene) (3.7 mL) を加えて攪拌しながら、4-
アミノ-m-クレゾール (34.7 mg, 0.282 mmol) を加えて
溶解させた。この溶液にフェリシアン化カリウム (187
mg, 0.564 mmol) の水溶液 (19 mL) をゆっくりと滴下
し、一晩反応させた。反応が終了したら、氷冷下、10%
酢酸水溶液で反応溶液を中和し、クロロホルム(30 m
L)- 1% 塩酸水溶液(40 mL)で抽出した。有機層を 1%
塩酸水溶液(70 mL)で 4 回、水(90 mL)で 1 回そ
れぞれ洗浄して、溶媒を減圧留去した。赤色の残さをカ
ラムクロマトグラフィー(充填剤 WakogelFC-40、展開
溶媒 5% アセトン含有蒸留クロロホルム→ 8% アセトン
含有蒸留クロロホルム)で分離精製してから分離しきれ
なかった不純物を GPC(カラム Shodex K-2000 + K-200
1 昭和電工製、展開溶媒 クロロホルム)で除き、さら
にクロロホルム(1 mL)- ヘキサン(25 mL)で再沈し
て赤色粉末の化合物 1b を 17mg(収率 17%)得た。
A compound solution 2b (80 mg, 0.094 mmol) in acetonitrile (40 mL) was added to DBU (1,8-Diazabicyclo [5.
4.0] -7-undecene) (3.7 mL) was added and the mixture was stirred while 4-
Amino-m-cresol (34.7 mg, 0.282 mmol) was added and dissolved. Potassium ferricyanide (187
An aqueous solution (19 mL) of mg, 0.564 mmol) was slowly added dropwise, and the mixture was reacted overnight. When the reaction is complete, cool on ice at 10%
Neutralize the reaction solution with aqueous acetic acid and add chloroform (30 m
L) -1% hydrochloric acid aqueous solution (40 mL) extracted. 1% organic layer
The solution was washed 4 times with an aqueous hydrochloric acid solution (70 mL) and once with water (90 mL), and the solvent was evaporated under reduced pressure. The red residue was separated and purified by column chromatography (Wakogel FC-40, packing solvent, distilled chloroform containing 5% acetone → distilled chloroform containing 8% acetone), and impurities that could not be separated were separated by GPC (column Shodex K-2000 + K-200
1 Removed with Showa Denko, developing solvent chloroform) and reprecipitated with chloroform (1 mL) -hexane (25 mL) to obtain 17 mg of red powdered compound 1b (yield 17%).

【0043】1H-NMR (200 MHz, CDCl3) δ (ppm) 8.31
(brs, 2H, Ar-OH), 7.95 (d, J=9.0Hz, 2H, Naph-H4),
7.86 (d, J=7.6Hz, 2H, Naph-H5), 7.47 (d, J=9.0Hz,
2H, Naph-H3), 7.33 (pseudo-t, 2H, Naph-H6), 7.26-
7.17 (m, 2H, Ar-H), 7.07 (d,J=10.2Hz, 2H, Quinoid-
Hb), 6.97 (pseudo-t, J=7.8Hz, 2H, Naph-H7), 6.90-
6.89 (m, 2H, Ar-H), 6.82 (d, J=7.4Hz, 2H, Ar-H),
6.77 (d, J=2.4Hz, Ar-OH), 6.66 (d, J=2.4Hz, 2H, Ar
-H), 6.53 (m, 2H, Quinoid-Hc), 6.42 (dd, J=10.2Hz
and 2.3Hz, 2H, Quinoid-Ha), 4.52-3.16 (m, 16H, OCH
2), 4.43 and 3.37(ABq, J=12.9Hz, 4H, ArCH2Ar), 4.3
8 and 3.37 (ABq, J=13.2Hz, 4H, ArCH2Ar), 2.28 (s,
6H, Ar-CH3); CD (100% EtOH), λmax (nm) (Δε (mol
-1 dm3 cm- 1)), 236 (+193), 225 (-107).
1 H-NMR (200 MHz, CDCl 3 ) δ (ppm) 8.31
(brs, 2H, Ar-OH), 7.95 (d, J = 9.0Hz, 2H, Naph-H4),
7.86 (d, J = 7.6Hz, 2H, Naph-H5), 7.47 (d, J = 9.0Hz,
2H, Naph-H3), 7.33 (pseudo-t, 2H, Naph-H6), 7.26-
7.17 (m, 2H, Ar-H), 7.07 (d, J = 10.2Hz, 2H, Quinoid-
Hb), 6.97 (pseudo-t, J = 7.8Hz, 2H, Naph-H7), 6.90-
6.89 (m, 2H, Ar-H), 6.82 (d, J = 7.4Hz, 2H, Ar-H),
6.77 (d, J = 2.4Hz, Ar-OH), 6.66 (d, J = 2.4Hz, 2H, Ar
-H), 6.53 (m, 2H, Quinoid-Hc), 6.42 (dd, J = 10.2Hz
and 2.3Hz, 2H, Quinoid-Ha), 4.52-3.16 (m, 16H, OCH
2 ), 4.43 and 3.37 (ABq, J = 12.9Hz, 4H, ArCH 2 Ar), 4.3
8 and 3.37 (ABq, J = 13.2Hz, 4H, ArCH 2 Ar), 2.28 (s,
6H, Ar-CH 3 ); CD (100% EtOH), λmax (nm) (Δε (mol
-1 dm 3 cm - 1 )), 236 (+193), 225 (-107).

【0044】実施例7 実施例6の化合物のエタノール溶液にフェニルグリシノ
ールの R-体、及び S-体を添加してみた。その結果をそ
れぞれ図5及び 図6に示す。実施例6の化合物は化合
物1aに比べると程度は小さいが不斉認識応答を示す。そ
こでこの結果をもとに実施例3と同様の方法で Benesi-
Hildebrand plotで会合定数を求めたところ、17 ± 12
dm3 mol-1 と算出された。
Example 7 The R-form and S-form of phenylglycinol were added to the ethanol solution of the compound of Example 6. The results are shown in FIGS. 5 and 6, respectively. The compound of Example 6 exhibits an asymmetric recognition response, although to a lesser extent than compound 1a. Therefore, based on this result, Benesi-
When the association constant was calculated using the Hildebrand plot, it was 17 ± 12
It was calculated to be dm 3 mol -1 .

【0045】[0045]

【発明の効果】本発明を用いれば、不斉化合物の光学異
性体を簡便に検出する事ができる。
INDUSTRIAL APPLICABILITY By using the present invention, optical isomers of asymmetric compounds can be easily detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1の化合物の2×10-5Mのエタノー
ル溶液に(R)−フェニルグリシノールを加えたときの
吸収スペクトルの変化を示すものである。
FIG. 1 shows changes in absorption spectrum when (R) -phenylglycinol was added to a 2 × 10 −5 M ethanol solution of the compound of Example 1.

【図2】 実施例1の化合物の2×10-5Mのエタノー
ル溶液に(S)−フェニルグリシノールを加えたときの
吸収スペクトルの変化を示すものである。
FIG. 2 shows changes in absorption spectrum when (S) -phenylglycinol was added to a 2 × 10 −5 M ethanol solution of the compound of Example 1.

【図3】 実施例1の化合物と(R)−フェニルグリシ
ノールの錯体のBenesi-Hildebrandプロットである。横
軸に(R)−フェニルグリシノールの濃度の逆数、縦軸
に吸光度の変化の逆数をプロットした。
FIG. 3 is a Benesi-Hildebrand plot of the complex of the compound of Example 1 and (R) -phenylglycinol. The reciprocal of the concentration of (R) -phenylglycinol is plotted on the horizontal axis, and the reciprocal of the change in absorbance is plotted on the vertical axis.

【図4】 実施例1の化合物の2×10-5Mのエタノー
ル溶液に500等量の(R)−フェニルグリシンを加え
たときの吸収スペクトルの変化(a)および(S)−フ
ェニルグリシンを加えたときの吸収スペクトルの変化
(b)を示すものである。
FIG. 4 shows changes in absorption spectrum (a) and (S) -phenylglycine when 500 equivalents of (R) -phenylglycine was added to a 2 × 10 −5 M ethanol solution of the compound of Example 1. It shows a change (b) in the absorption spectrum when added.

【図5】 実施例5の化合物の2×10-5Mのエタノー
ル溶液に(R)−フェニルグリシノールを加えたときの
吸収スペクトルの変化を示すものである。
FIG. 5 shows a change in absorption spectrum when (R) -phenylglycinol was added to a 2 × 10 −5 M ethanol solution of the compound of Example 5.

【図6】 実施例6の化合物の2×10-5Mのエタノー
ル溶液に(S)−フェニルグリシノールを加えたときの
吸収スペクトルの変化を示すものである。
FIG. 6 shows a change in absorption spectrum when (S) -phenylglycinol was added to a 2 × 10 −5 M ethanol solution of the compound of Example 6.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(I)で表されるカリックス
アレーン化合物。 【化1】 (式中、Xは光学活性な有機基を含有する2価の有機基
を、また、R1〜R4はそれぞれ水素原子または置換基を
有していてもよい炭素数1から4のアルキル基若しくは
アルコキシ基を示す。)
1. A calixarene compound represented by the following general formula (I): Embedded image (In the formula, X is a divalent organic group containing an optically active organic group, and R 1 to R 4 are each a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a substituent. Alternatively, it represents an alkoxy group.)
【請求項2】 Xが光学活性なビナフチル基を含有する
請求項1に記載のカリックスアレーン化合物。
2. The calixarene compound according to claim 1, wherein X contains an optically active binaphthyl group.
【請求項3】 Xが下記構造式(II)で表される2価
の有機基である請求項1に記載のカリックスアレーン化
合物。 【化2】 (式中、nは0または1を示す。)
3. The calixarene compound according to claim 1, wherein X is a divalent organic group represented by the following structural formula (II). Embedded image (In the formula, n represents 0 or 1.)
【請求項4】 光学異性体を含む溶液と、請求項1〜3
のいずれか1項に記載のカリックスアレーン化合物とを
混合し、その時の吸収スペクトルの変化により光学異性
体を識別する方法。
4. A solution containing an optical isomer, and claims 1-3.
A method of mixing the calixarene compound according to any one of 1. to identify an optical isomer by a change in absorption spectrum at that time.
JP5159696A 1996-03-08 1996-03-08 Optically active calixarene compound and identification of optical isomer using the compound Withdrawn JPH09241197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5159696A JPH09241197A (en) 1996-03-08 1996-03-08 Optically active calixarene compound and identification of optical isomer using the compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5159696A JPH09241197A (en) 1996-03-08 1996-03-08 Optically active calixarene compound and identification of optical isomer using the compound

Publications (1)

Publication Number Publication Date
JPH09241197A true JPH09241197A (en) 1997-09-16

Family

ID=12891299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5159696A Withdrawn JPH09241197A (en) 1996-03-08 1996-03-08 Optically active calixarene compound and identification of optical isomer using the compound

Country Status (1)

Country Link
JP (1) JPH09241197A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218823A (en) * 2006-02-20 2007-08-30 Saitama Univ Chiral probe of self organization type, and absolute configuration determination method for chiral matter using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218823A (en) * 2006-02-20 2007-08-30 Saitama Univ Chiral probe of self organization type, and absolute configuration determination method for chiral matter using the same
JP4742265B2 (en) * 2006-02-20 2011-08-10 国立大学法人埼玉大学 Self-organizing chiral probe and method for determining the absolute configuration of a chiral substance to be tested using the same

Similar Documents

Publication Publication Date Title
Liu et al. Fluorescent sensors for amino acid anions based on calix [4] arenes bearing two dansyl groups
Durmaz et al. Synthesis of chiral calix [4] arenes bearing aminonaphthol moieties and their use in the enantiomeric recognition of carboxylic acids
Colera et al. Synthesis of chiral 18-crown-6 ethers containing lipophilic chains and their enantiomeric recognition of chiral ammonium picrates
Otto et al. A modular access to (±)-tubocurine and (±)-curine-formal total synthesis of tubocurarine
Jiao et al. A coumarin-based chiral fluorescence sensor for the highly enantioselective recognition of phenylalaninol
Botha et al. Recognition of chiral anions using calix [4] arene-based ureido receptor in the 1, 3-alternate conformation
Khanvilkar et al. Synthesis and characterization of chiral aza-macrocycles and study of their enantiomer recognition ability for organo-phosphoric acid and phosphonic acid derivatives by 31 P NMR and fluorescence spectroscopy
CN101146800A (en) Organic compounds useful for the treatment of alzheimer&#39;s disease, their use and method of preparation
JPH03500249A (en) Multiplexed label time-resolved fluorescence analysis of nucleic acid sequences using lanthanide chelates
JPH09241197A (en) Optically active calixarene compound and identification of optical isomer using the compound
Qing et al. Sensitive fluorescent sensors for malate based on calix [4] arene bearing anthracene
Chen et al. Syntheses of novel types of calix [6] bis-crowns and related compounds
Rozenberg et al. Resolution and novel reactions of 4‐hydroxy [2.2] paracyclophane
Erdemir Synthesis of novel chiral Schiff base and amino alcohol derivatives of calix [4] arene and chiral recognition properties
Christoffers et al. Novel bi-and tridentate phosphane and thioether ligands derived from chiral α-hydroxy acids
Stavrakov et al. From Central to Axial to Central Chirality: Enantioselective Construction of the trans‐4, 5, 9, 10‐Tetrahydroxy‐9, 10‐dihydrophenanthrene System
JP4545370B2 (en) Chiral sensor
EP1134209B1 (en) Optically active phosphate derivative and its use
Khanbabaee et al. Synthesis of novel chiral 6, 6′-bis (oxazolyl)-1, 1′-biphenyls and their application as ligands in copper (I)-catalyzed asymmetric cyclopropanation
Shi et al. An inherently chiral calix [4] crown carboxylic acid in the partial cone conformation
CN107129512B (en) A kind of fluorescence probe and the preparation method and application thereof containing selenium atom
KR100797375B1 (en) Novel fluorogenic calix[4]azacrown pyreneamide-coumarin based compound, preparation method and uses thereof
CN111393869A (en) Fluorescent dye containing phenylethynyl naphthalene, preparation method and application thereof
Kurjatschij et al. Synthesis and structures of crystalline solvates formed of pyridinium N-phenoxide (Reichardt's-type) betaine dyes and alcohols
Geraci et al. Doubly bridged calix [8] crowns

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040305