JPH09241067A - Mgo-cao based carbon-containing refractory - Google Patents

Mgo-cao based carbon-containing refractory

Info

Publication number
JPH09241067A
JPH09241067A JP8070897A JP7089796A JPH09241067A JP H09241067 A JPH09241067 A JP H09241067A JP 8070897 A JP8070897 A JP 8070897A JP 7089796 A JP7089796 A JP 7089796A JP H09241067 A JPH09241067 A JP H09241067A
Authority
JP
Japan
Prior art keywords
cao
mgo
weight
raw material
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8070897A
Other languages
Japanese (ja)
Other versions
JP3336187B2 (en
Inventor
Koji Kono
幸次 河野
Takayuki Inuzuka
孝之 犬塚
Hajime Kasahara
始 笠原
Yasuhiro Yamada
泰宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07089796A priority Critical patent/JP3336187B2/en
Publication of JPH09241067A publication Critical patent/JPH09241067A/en
Application granted granted Critical
Publication of JP3336187B2 publication Critical patent/JP3336187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To contrive high durability and longevity of a smelting vessel by lining a part of or full surface of the vessel with a molten MgO-CaO based carbon-containing refractory. SOLUTION: The MgO-CaO based carbon-containing refractory is obtained by kneading the raw materials of a blending composition composed of (1) 70-94wt.% MgO-CaO based refractory raw material, which contains >=96wt.% MgO, 1.3-2.7wt.% CaO and 0.1-0.3wt.% SiO2 and in which the CaO/SiO2 ratio is 6-20, CaO inters into a periclase of MgO and the periclase of MgO has 300mμ crystal dimeter, (2) 5-25wt.% carbon based refractory raw material and (3) 1-5wt.% metal Al or one or more kinds of Al-Mg alloys in total with a hinder, molding and drying.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は溶融還元炉、スクラ
ップ溶解炉、転炉等の溶解・精錬容器、特に低C/Sの
スラグ条件下で用いられる溶解・精錬容器の炉底あるい
は側壁の一部に張ったり、全張りしたりするMgO−C
aO質炭素含有耐火物に関する。
TECHNICAL FIELD The present invention relates to a melting / refining vessel such as a smelting reduction furnace, a scrap melting furnace, a converter, etc., particularly one of the bottom or side wall of a melting / refining vessel used under slag conditions of low C / S. MgO-C that stretches over all parts
It relates to an aO carbon-containing refractory material.

【0002】[0002]

【従来の技術】一般に銑鋼工程で使用されている溶融還
元炉、スクラップ溶解炉、転炉等の溶融金属用溶解・精
錬容器では、近年、溶解・精錬効率の同上を狙って、上
底吹き撹拌力の強化や二次燃焼比率の増大等が図られる
ようになり、そこに用いられる内張り耐火物は過酷な条
件に晒されている。これらの溶解・精錬容器の内張り耐
火物としては従来MgO−Cれんがが使用されてきた。
2. Description of the Related Art In the melting and refining vessels for molten metal such as smelting reduction furnaces, scrap melting furnaces, converters, etc., which are generally used in the pig steel process, in recent years, aiming at the same efficiency of melting and refining, the bottom blowing Since the stirring power has been strengthened and the secondary combustion ratio has been increased, the refractory linings used there are exposed to severe conditions. Conventionally, MgO-C bricks have been used as refractory linings for these melting and refining vessels.

【0003】特に低CaO/SiO2 (C/S)のスラ
グ条件下で用いられる溶解・精錬容器の場合は、特開昭
63−248753号公報、あるいは特開昭63−27
7557号公報に示されているようなMgO−CaO−
Cれんがが使用されている。このMgO−CaO−Cれ
んがは、低C/Sスラグに対して、れんがから溶出した
CaOがスラグのC/Sを高めるため、スラグとれんが
の反応を抑制する働きがある。
Particularly in the case of a melting / refining vessel used under a low CaO / SiO 2 (C / S) slag condition, JP-A-63-248753 or JP-A-63-27.
MgO-CaO- as disclosed in Japanese Patent No. 7557.
C bricks are used. This MgO-CaO-C brick has a function of suppressing the reaction between the slag and the brick because CaO eluted from the brick increases the C / S of the slag with respect to the low C / S slag.

【0004】一方、CaOはスラグ中のFeOと反応
し、低融物を容易に生成して、れんがの耐食性を低下さ
せる。従って、スラグ中のFeOとれんがから溶出した
CaOとの反応を抑制しつつ、低C/SスラグのC/S
を高めるというMgO−CaO−Cれんがの利点を活か
すべく、特開平4−132655号公報には、CaO含
有量の少ないMgO−CaOクリンカーの使用が提案さ
れている。
On the other hand, CaO reacts with FeO in the slag and easily forms a low-melting material, which lowers the corrosion resistance of the brick. Therefore, while suppressing the reaction between FeO in the slag and CaO eluted from the brick, the C / S of low C / S slag is suppressed.
In order to take advantage of the advantage of MgO-CaO-C bricks to improve the temperature, JP-A-4-132655 proposes the use of MgO-CaO clinker having a low CaO content.

【0005】しかし、このクリンカーは、MgOペリク
レース粒界にCaOが分布しており、結果として、Mg
Oペリクレースの結晶径が小さくなって、スラグ中へM
gOペリクレースが流出してしまい、耐食性に限界が生
じてくる。又微粉のMgO−CaOクリンカーは、水和
反応が早く、原料として安定に使用できない等の問題も
あった。
However, this clinker has CaO distributed in the MgO periclase grain boundaries, and as a result, MgO
O The crystal size of periclase has become smaller, and M has entered the slag.
The gO periclase flows out, and the corrosion resistance is limited. In addition, the finely powdered MgO-CaO clinker has a problem that the hydration reaction is quick and it cannot be stably used as a raw material.

【0006】これに対して特開平5−186258号公
報、あるいは特開平6−107453号公報には、電融
マグネシアクリンカーとしてクリンカー中のC/SやS
iO2 含有量、ペリクレース結晶径を規定したものが開
示されている。しかしながら、いずれも安定してMgO
−CaOクリンカーの特徴を引き出せるものではない上
に、コストが高い等の問題もあった。
On the other hand, in Japanese Unexamined Patent Publication No. 5-186258 or Japanese Unexamined Patent Publication No. 6-107453, C / S and S in the clinker as an electrofused magnesia clinker.
It is disclosed that the iO 2 content and the periclase crystal diameter are regulated. However, both are stable MgO
In addition to the fact that the characteristics of -CaO clinker cannot be extracted, there are also problems such as high cost.

【0007】一方、昨今の二次燃焼比率の増大に伴い、
スラグ浴から雰囲気部にかけて高温となる。その結果、
高温下でのれんが中Cの酸化、高温下での溶鋼流、スラ
グ流、ダスト等による摩耗、あるいはれんが稼働面の温
度上昇による熱スポール等が顕著になってきた。従っ
て、これらの損耗に対し、れんがが具備すべき特性とし
て、耐食性、耐酸化性、耐摩耗性、耐スポール性、ある
いは熱間強度が特に要求されるようになった。それに対
してMgO−Cれんが、あるいはMgO−CaO−Cれ
んが以外にもMgO−Cr23れんが等の使用が試みら
れたが、現在までのところ満足のいく結果は得られてい
ない。
On the other hand, with the recent increase in the secondary combustion ratio,
The temperature rises from the slag bath to the atmosphere. as a result,
Oxidation of medium C bricks at high temperatures, wear due to molten steel flow, slag flow, dust, etc. at high temperatures, and heat spalls due to temperature rise of brick working surface have become remarkable. Therefore, with respect to these wear and tears, corrosion resistance, oxidation resistance, wear resistance, spall resistance, or hot strength is particularly required as a characteristic that a brick should have. Although the use of such MgO-C bricks or MgO-CaO-C in addition to bricks also MgO-Cr 2 O 3 brick, whereas been tried, no satisfactory results are obtained up to now.

【0008】特にMgO−Cれんがにおいては、耐酸化
性及び熱間強度を改善する目的で、金属添加量の増量が
なされている。しかし、逆に耐スポール性が低下し、こ
の点が問題である。又、耐酸化性を改善する目的で、特
開平3−208862号公報にはSiCを1〜6重量%
添加することが記載されている。しかしながら、この添
加量では耐酸化性改善に不十分であり、逆に耐食性が低
下するという問題も生じている。
Particularly in MgO-C bricks, the amount of metal added is increased for the purpose of improving oxidation resistance and hot strength. However, on the contrary, the spall resistance is lowered, which is a problem. Further, in order to improve the oxidation resistance, JP-A-3-208862 discloses that SiC is contained in an amount of 1 to 6% by weight.
Addition is described. However, this addition amount is insufficient for improving the oxidation resistance, and conversely, there is a problem that the corrosion resistance decreases.

【0009】[0009]

【発明が解決しようとする課題】このように従来のMg
O−CれんがやMgO−CaO−Cれんがにおいては、
耐酸化性及び熱間強度を改善する手段はあるものの、逆
に耐食性や耐スポール性が低下する等の問題があり、前
記5つの具備すべき特性を同時に満足する手段はない。
本発明はこのような問題に鑑みて開発されたものであ
り、耐酸化性を損なうことなく耐食性、耐摩耗性、耐ス
ポール性、熱間強度を向上させることが可能なMgO−
CaO質炭素含有耐火物を提供することを目的とする。
As described above, the conventional Mg
For OC bricks and MgO-CaO-C bricks,
Although there are means for improving the oxidation resistance and hot strength, there is a problem that the corrosion resistance and spall resistance are deteriorated, and there is no means for simultaneously satisfying the above five characteristics.
The present invention has been developed in view of such problems, and MgO- that can improve corrosion resistance, wear resistance, spall resistance, and hot strength without impairing oxidation resistance.
It is intended to provide a refractory material containing CaO-based carbon.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、(1)MgO含有量が96重量%以
上、CaO含有量が1.3〜2.7重量%、SiO2
有量が0.1〜0.3重量%、CaO/SiO2 比(C
/S)が6〜20で、かつCaOがMgOペリクレース
中に固溶し、MgOペリクレースの結晶径が300μ以
上であるMgO−CaO質耐火原料(クリンカー)70
〜94重量%、(2)鱗状黒鉛等のC質耐火原料5〜2
5重量%、及び(3)金属AlまたはAl−Mg合金の
うち1種または2種以上の合計が1〜5重量%、の
(1)、(2)、及び(3)で構成される配合組成の原
料を、例えばフェノールレジン等のバインダーとともに
混練、成形した後、乾燥して得られるMgO−CaO質
炭素含有耐火物を提供する。
In order to achieve the above object, according to the present invention, (1) MgO content is 96% by weight or more, CaO content is 1.3 to 2.7% by weight, and SiO 2 is contained. 0.1 to 0.3% by weight, CaO / SiO 2 ratio (C
/ S) is 6 to 20, CaO is solid-dissolved in MgO periclase, and the MgO periclase has a crystal diameter of 300 μm or more.
~ 94% by weight, (2) C-type refractory raw material such as scaly graphite 5-2
5% by weight, and (3) 1 to 5% by weight of one or more of metallic Al or Al-Mg alloys in total, 1 to 5% by weight (1), (2), and (3). A refractory material containing MgO-CaO-based carbon, which is obtained by kneading and molding a raw material having a composition with a binder such as phenol resin, and then drying the kneaded material is provided.

【0011】また、このように(1)、(2)、及び
(3)で構成される配合組成の原料100重量部に対し
て、さらに最大粒径[X](μ)と外掛けでの添加量
[Y](重量部)とが次式(1)の関係を満足するSi
C原料を添加し、バインダーとともに混練、成形した
後、乾燥して得られるMgO−CaO質炭素含有耐火物
も有用である。 [Y]≦3log[X]………(1)
Further, with respect to 100 parts by weight of the raw material having the compounding composition composed of (1), (2), and (3), the maximum particle size [X] (μ) and the external weight Si that satisfies the relationship of the following expression (1) with the addition amount [Y] (parts by weight)
A MgO-CaO-based carbon-containing refractory obtained by adding a C raw material, kneading and molding with a binder, and then drying is also useful. [Y] ≦ 3log [X] ………… (1)

【0012】特に上記(1)、(2)、及び(3)で構
成される配合組成の原料100重量部に対して、粒径
0.1〜0.5mmのSiC原料を外掛けで8重量部以
下あるいは粒径0.5〜1.0mmのSiC原料を外掛
けで10重量部以下添加することにより耐スポール性は
格段に向上する。又、上記(1)、(2)、及び(3)
で構成される配合組成の原料100重量部に対して、粒
径10μ以下のSiC超微粉原料を外掛けで3重量部以
下添加することにより、熱間強度、耐摩耗性が大幅に向
上する。
In particular, to 100 parts by weight of the raw material having the compounding composition composed of (1), (2), and (3) above, 8 parts by weight of a SiC raw material having a particle diameter of 0.1 to 0.5 mm is applied. Parts or less, or by adding 10 parts by weight or less of a SiC raw material having a particle size of 0.5 to 1.0 mm, the spall resistance is significantly improved. Also, the above (1), (2), and (3)
By adding 3 parts by weight or less of an SiC ultrafine powder material having a particle size of 10 μm or less to 100 parts by weight of a raw material having a compounding composition composed of, the hot strength and wear resistance are significantly improved.

【0013】[0013]

【発明の実施の形態】本発明において、使用するMgO
−CaO質耐火原料のCaO含有量を規定する理由は以
下の通りである。CaOが2.7重量%を越えると、M
gOペリクレース中に固溶しきれなくなって、粒界にC
aOが分布するようになり、結果としてMgOペリクレ
ースの結晶径が小さくなる。これによって、粒界に分布
するCaO成分がスラグ中へ溶出したあと、クリンカー
は流出してしまい、耐食性に限界が生じる。又、粒界に
分布するCaOが多くなると、MgO−CaO質耐火原
料が微粉になるため、その活性度が増して水和反応性が
高まり、レンガの原料として安定的に使用できなくな
る。
BEST MODE FOR CARRYING OUT THE INVENTION MgO used in the present invention
-The reason for defining the CaO content of the CaO refractory raw material is as follows. When CaO exceeds 2.7% by weight, M
gO Periclase could not be completely dissolved in C
aO is distributed, and as a result, the crystal size of MgO periclase is reduced. This causes the clinker to flow out after the CaO component distributed at the grain boundaries is eluted into the slag, and the corrosion resistance is limited. Further, when the amount of CaO distributed at the grain boundaries is large, the MgO-CaO quality refractory raw material becomes fine powder, so that the activity thereof increases and the hydration reactivity increases, so that it cannot be stably used as a raw material for bricks.

【0014】一方、CaOが1.3重量%未満になる
と、低C/Sスラグの高C/S化が達成できず、電融マ
グネシアクリンカーとなんら大差がなくなる。従って、
CaO含有量は1.3〜2.7重量%とする。更に、M
gO−CaO質耐火原料のSiO2 含有量については、
0.3重量%を越えると、CS系の化合物を作り易くな
り、耐食性が低下する。一方、0.1重量%未満になる
と、CS系の化合物は生成しにくいが、MgOペリクレ
ースに固溶しきれなかったCaOがフリーに存在するよ
うになり、水和の問題や価格上昇の問題が生じてくる。
On the other hand, when the content of CaO is less than 1.3% by weight, the high C / S ratio of the low C / S slag cannot be achieved, and there is no great difference from the fused magnesia clinker. Therefore,
The CaO content is 1.3 to 2.7% by weight. Further, M
Regarding the SiO 2 content of the gO-CaO refractory raw material,
If it exceeds 0.3% by weight, it becomes easy to form a CS-based compound and the corrosion resistance decreases. On the other hand, if the content is less than 0.1% by weight, CS-based compounds are difficult to form, but CaO that could not be completely dissolved in MgO periclese will be present in a free state, causing problems of hydration and price increase. Will occur.

【0015】本発明で使用するMgO−CaO質耐火原
料は、CaOが粒界に分布しておらず、かつCaOがM
gOペリクレース中に完全に固溶して安定に存在するこ
とが好ましい。その為にはSiO2 含有量は0.1〜
0.3重量%であることが必要となる。また、同時に、
MgO−CaO質耐火原料中のC/Sが6〜20の範囲
内にあること、さらに、前記耐食性の観点から、MgO
ペリクレースの結晶径が300μ以上であることも必要
である。なお、このような成分組成のMgO−CaO質
耐火原料は、電融、焼結のどちらで製造したものでも構
わないが、CaOを固溶させる観点からすれば、電融品
の方が好ましいと考える。
In the MgO-CaO quality refractory raw material used in the present invention, CaO is not distributed at grain boundaries, and CaO is M
It is preferable that the gO periclase completely exists as a solid solution and stably exists. Therefore, the SiO 2 content is 0.1
It needs to be 0.3% by weight. At the same time,
C / S in the MgO-CaO refractory raw material is in the range of 6 to 20, and further, from the viewpoint of the corrosion resistance, MgO.
It is also necessary that the crystal size of periclase is 300 μm or more. The MgO-CaO refractory raw material having such a component composition may be produced by either electrofusion or sintering, but from the viewpoint of CaO forming a solid solution, an electromelted product is preferable. Think

【0016】次に、本発明においては、耐食性の低下を
抑制するために、SiCの添加量をその最大粒径で限定
している。すなわち、SiCは、れんが中に存在するC
Oガスと反応して、次式で示されるような反応によりS
iO2を生成する。 SiO+CO→SiO+C…(2) SiO+CO→SiO2+C…(3)
Next, in the present invention, in order to suppress deterioration of corrosion resistance, the amount of SiC added is limited by its maximum particle size. That is, SiC is C existing in the brick.
S reacts with O gas and reacts with S as shown by the following equation.
Generate iO 2 . SiO + CO → SiO + C ... (2) SiO + CO → SiO 2 + C ... (3)

【0017】こうして生成したSiO2 は、ガラス皮膜
を形成し、Cの酸化防止の役目を果たす。しかし、Mg
O−C系では、このガラス皮膜の粘性が高いため、Si
Cを多量に入れないとCに対する酸化防止効果は十分に
発揮されない。又SiC自体、硬度が高いとともに、少
量のSiO2 が生成した場合には、組織の空隙を充填す
るため、耐摩耗性を向上させる効果がある。ところが、
SiO2 が多量に生成すると逆に、耐食性は低下する。
The SiO 2 thus produced forms a glass film and serves to prevent the oxidation of C. However, Mg
In the O-C system, since the viscosity of this glass film is high, Si
Unless C is added in a large amount, the antioxidant effect on C cannot be fully exhibited. In addition, SiC itself has a high hardness, and when a small amount of SiO 2 is produced, it fills the voids of the structure, and therefore has the effect of improving wear resistance. However,
On the contrary, when a large amount of SiO 2 is produced, the corrosion resistance decreases.

【0018】このように、SiCはれんがの耐摩耗性を
向上させる反面、耐食性を低下させる側面を持ってお
り、れんがに添加する際には、十分な配慮が必要であ
る。一般に、固体は微粉になるほど、その粒子表面の活
性度が増大するため、上記(2)式及び(3)式の反応
が早く進ようになり、SiO2 が多量に生成して、耐食
性が低下する。一方、固体粒子が大きくなると、上記
(2)式及び(3)式の反応は粒子表面にのみ限定さ
れ、SiO2 生成量が抑制される。その結果、耐食性の
低下は小さい。
As described above, SiC has a side surface that improves the wear resistance of bricks, but has a side surface that deteriorates corrosion resistance. Therefore, sufficient consideration must be taken when adding to bricks. Generally, as the solid becomes finer, the activity of the surface of the particle increases, so that the reactions of the above formulas (2) and (3) proceed faster, and a large amount of SiO 2 is produced, resulting in a decrease in corrosion resistance. To do. On the other hand, when the solid particles become large, the reactions of the above formulas (2) and (3) are limited only to the particle surface, and the amount of SiO 2 produced is suppressed. As a result, the decrease in corrosion resistance is small.

【0019】従って、SiCを微粉で添加する際には、
その使用量を少なくし、従って、中粒〜粗粒で添加する
際には、その使用量を増やすことが可能となる。本発明
においては、種々の実験調査を行なった結果、耐食性を
損なわずに耐摩耗性を向上させることができる、SiC
最大粒径[X](μ)と添加(使用)量[Y](重量
%)との関係は、[Y]≦3log[X]であることを
見いだした。
Therefore, when adding SiC in the form of fine powder,
It is possible to reduce the amount used, and therefore to increase the amount used in the case of adding medium particles to coarse particles. In the present invention, as a result of various experimental investigations, SiC that can improve wear resistance without impairing corrosion resistance
It has been found that the relationship between the maximum particle size [X] (μ) and the added (used) amount [Y] (wt%) is [Y] ≦ 3 log [X].

【0020】一方、SiCはMgOに比べて熱膨張係数
が小さく、加熱時にMgOとの膨張差によりマイクロク
ラックを形成してれんがの弾性率を低下させ、耐スポー
ル性を向上させる。このマイクロクラック形成には、中
粒〜粗粒のSiCをできるだけ多く添加するようにし
て、SiCの表面層のみを反応させ、内部は未反応のま
まで残存させておく方が好ましい。従って、粒径0.1
〜0.5mmのSiC原料では外掛けで8重量部以下、
粒径0.5〜1.0mmのSiC原料では外掛けで10
重量部以下をMgO−CaO質耐火原料100重量部に
添加するのが最も優れている。
On the other hand, SiC has a smaller coefficient of thermal expansion than MgO, and when heated, it forms microcracks due to the difference in expansion from MgO, lowers the elastic modulus of the brick, and improves spall resistance. In forming the microcracks, it is preferable to add as much medium- to coarse-grained SiC as possible so that only the surface layer of SiC reacts and the inside remains unreacted. Therefore, the particle size is 0.1
~ 0.5 mm SiC raw material is 8 parts by weight or less on the outside,
For SiC raw material with a particle size of 0.5 to 1.0 mm, it is 10
It is best to add less than 100 parts by weight to 100 parts by weight of the MgO-CaO refractory raw material.

【0021】なおこれよりも小さい粒径のSiC原料を
添加しても弾性率の低下幅が小さくて、むしろ耐食性の
低下の方が大きくなり、好ましくない。又、これよりも
大きい粒径のSiC原料を添加すると、弾性率の低下は
大きいものの、組織強度の低下やコストの上昇を招くの
で好ましくない。
Even if a SiC raw material having a particle size smaller than the above is added, the elastic modulus is less decreased, and the corrosion resistance is rather decreased, which is not preferable. Further, addition of a SiC raw material having a particle size larger than this causes a large decrease in elastic modulus but causes a decrease in structure strength and an increase in cost, which is not preferable.

【0022】次に、熱間強度向上に対しては、従来、金
属AlやAl−Mg合金の含有量を増やすことが一般的
に行われている。しかし、これらAl系金属は、いった
ん炭化物のAl43を経由して酸化物となるため、体積
膨張を伴うとともに、弾性率が上昇して耐スポール性が
低下する等の問題が生じ、また昇華しやすい等の問題も
あった。
Next, in order to improve the hot strength, it has been general practice to increase the content of metallic Al or Al-Mg alloy. However, since these Al-based metals once become oxides via Al 4 C 3 which is a carbide, they are accompanied by volume expansion, and at the same time, there arises a problem that the elastic modulus increases and the spall resistance decreases. There were also problems such as easy sublimation.

【0023】これに対して、本発明のように、MgO−
CaO質耐火原料に加えて、さらにSiCを併用する
と、SiCの酸化で生成したSiO2 とCaO,MgO
が反応してCMS系の化合物を生成するため、熱間強度
が向上する。この反応は、体積変化を伴わず、マトリッ
クスに分散したMgO−CaO耐火原料の周囲で生じる
ため、ボンディング効果が大きく、組織強化(耐摩耗性
向上)にも役立つ。特にSiC超微粉を使用した場合に
この効果が大きく、MgO−CaO耐火原料100重量
部に対して、粒径10μ以下のSiC超微粉を添加する
場合には、外掛けで添加量3重量部以下なら耐食性の低
下も少ない。
On the other hand, as in the present invention, MgO--
When SiC is used together with the CaO-based refractory raw material, SiO 2 produced by oxidation of SiC and CaO, MgO
Reacts with each other to produce a CMS-based compound, so that the hot strength is improved. This reaction occurs around the MgO—CaO refractory raw material dispersed in the matrix without volume change, and therefore has a large bonding effect and is also useful for strengthening the structure (improving wear resistance). This effect is particularly great when using SiC ultra-fine powder, and when adding SiC ultra-fine powder with a particle size of 10 μm or less to 100 parts by weight of MgO—CaO refractory raw material, the external addition amount is 3 parts by weight or less. If so, there is little deterioration in corrosion resistance.

【0024】なお、本発明で使用するC質耐火原料とし
ては、純度を問わず、鱗状黒鉛ならばなんでも使用可能
であり、その他無定型黒鉛、カーボンブラック、メソフ
ェーズカーボン等も適用可能である。また、Al系金属
としては、Al,Al−Mg合金が適用可能である。し
かし、その添加量が5重量%を超えると、耐スポール性
が低下し、1%未満では耐酸化性及び熱間強度向上に有
効でない。Al,Al−Mg合金以外の金属は、必要に
応じて適宜使用可能である。一方、SiC原料として
は、純度97%以上のものが好ましいが、低純度のもの
でも適用可能である。
As the C-type refractory raw material used in the present invention, any graphite can be used regardless of its purity, and amorphous graphite, carbon black, mesophase carbon and the like can also be applied. Further, as the Al-based metal, Al, Al-Mg alloy can be applied. However, if the addition amount exceeds 5% by weight, the spall resistance decreases, and if it is less than 1%, it is not effective in improving the oxidation resistance and the hot strength. Metals other than Al and Al-Mg alloys can be appropriately used as needed. On the other hand, as the SiC raw material, a material having a purity of 97% or more is preferable, but a low purity material is also applicable.

【0025】れんがは、フェノールレジンやタール、ピ
ッチ等のバインダーとともに、混練、成形した後、乾燥
して、不焼成品として提供できる。更に還元焼成し、タ
ール含浸処理を施すことにより、特性が向上する。これ
らのれんがは溶融還元炉、スクラップ溶解炉、転炉等の
溶解・精錬容器の炉底、側壁の内張り全面に適用可能で
ある。特に、損耗の大きい部位に適用すると更に効果的
である。
Brick can be provided as a non-fired product by kneading and molding with a binder such as phenol resin, tar and pitch, and then drying. Further reduction firing and tar impregnation treatment improve the characteristics. These bricks can be applied to the bottom of smelting and refining vessels such as smelting reduction furnaces, scrap smelting furnaces, converters, and the entire lining of side walls. In particular, it is even more effective when applied to a site with large wear.

【0026】[0026]

【実施例】以下図並びに表を用いて、実施例を説明す
る。表1並びに表2の各試料は、純度99%の電融Mg
Oクリンカー、純度99%の鱗状黒鉛、純度99%のS
iC原料を用いており、表に示した配合組成で、フェノ
ールレジンをバインダーとして混練、成形した後、20
0℃×24Hrsの条件で乾燥して評価試験に供した。
耐食性は、1700℃×3Hrsの条件でC/S=1.
2のスラグを用い、回転浸食法により溶損した寸法を指
数表示化し、No.1を100とした溶損指数として示
した。耐摩耗性は、1600℃×1Hrの条件で溶射バ
ーナーによりMgO粉を吹きつけた時の減寸量を測定
し、No.7を100とした摩耗指数として示した。弾
性率は、1400℃×3Hrsの条件で還元焼成した
後、動弾性率を測定した。熱間強度は、1400℃還元
雰囲気中、3点曲げ法により測定した。また、耐スポー
ル性は、1500℃での空冷熱スポール試験により、試
料が破壊するまでの回数を測定し、その値の大小によっ
て、○△×の3段階評価を行なった。
EXAMPLES Examples will be described below with reference to the drawings and tables. Each sample in Table 1 and Table 2 is a fused 99% pure Mg
O clinker, 99% pure scaly graphite, 99% pure S
After using the iC raw material and kneading and molding with phenol resin as a binder with the composition shown in the table, 20
It was dried under the condition of 0 ° C. × 24 Hrs and subjected to the evaluation test.
Corrosion resistance was 1700 ° C. × 3 Hrs, C / S = 1.
The slag of No. 2 was used to display the size of the melt-damaged by the rotary erosion method as an index, and It was shown as a melt loss index with 1 being 100. The abrasion resistance was measured by measuring the amount of reduction when MgO powder was sprayed by a thermal spray burner under the condition of 1600 ° C. × 1 Hr. It was shown as a wear index with 7 being 100. The elastic modulus was measured by measuring the kinetic elastic modulus after reduction firing under the condition of 1400 ° C. × 3 Hrs. The hot strength was measured by a 3-point bending method in a reducing atmosphere at 1400 ° C. In addition, the spall resistance was measured by the air-cooling heat spall test at 1500 ° C., and the number of times until the sample was broken was measured.

【0027】まず、表1に各種MgO−CaO質耐火原
料の評価試験結果を示す。ここでは、CaO含有量が
2.9%以上のとき(No.1,2,3)と、0.8%
のとき(No.12)のMgO−CaO質耐火原料につ
いて溶損指数が88以上と大きい。又CaO含有率が
2.7〜1.3%の範囲にあっても、クリンカー中のC
/Sが6未満のもの(No.5,6)はペリクレース結
晶径が300μ未満であり、耐食性はあまり良くない。
また、C/Sが20を超えているもの(No.10)
は、微粉部でMgO−CaO質耐火原料を使用すること
が困難なため、電融MgOを使用する必要があり、従っ
て、耐食性も悪化している。
First, Table 1 shows the evaluation test results of various MgO-CaO quality refractory raw materials. Here, when the CaO content is 2.9% or more (No. 1, 2, 3), 0.8%
At this time (No. 12), the MgO—CaO quality refractory raw material has a large melt loss index of 88 or more. Even if the CaO content is in the range of 2.7 to 1.3%, the C in the clinker is
Those having a / S of less than 6 (Nos. 5 and 6) have a periclase crystal diameter of less than 300 μ and are not so good in corrosion resistance.
Moreover, C / S exceeds 20 (No. 10)
Since it is difficult to use the MgO-CaO refractory raw material in the fine powder portion, it is necessary to use electrofused MgO, and therefore the corrosion resistance is also deteriorated.

【0028】次に、表2に各種SiC原料及びAl系金
属の評価試験結果を示す。ここでは、AlやAl−Mg
合金の合計含有量が5重量%を超える(No.13,2
2)と、耐スポール性が低下している。一方、中粒(粒
径0.1〜1.0mm)のSiCを添加したNo.1
5,16は添加なしのNo.7に対して耐食性は殆ど同
じだが、動弾性率が大幅に低下し、熱間強度、耐摩耗性
は多少向上している。又、SiC超微粉の添加は、熱間
強度、耐摩耗性向上には極めて有効である(No.17
〜20)が、添加量が3重量%を越える(No.17)
と、耐食性が大幅に低下している。
Next, Table 2 shows the evaluation test results of various SiC raw materials and Al-based metals. Here, Al and Al-Mg
The total alloy content exceeds 5% by weight (No. 13, 2)
2), the spall resistance is reduced. On the other hand, No. 1 containing medium-sized (particle size 0.1 to 1.0 mm) SiC was added. 1
Nos. 5 and 16 are No. Although the corrosion resistance is almost the same as that of No. 7, the dynamic elastic modulus is significantly reduced, and the hot strength and wear resistance are slightly improved. Further, addition of SiC ultrafine powder is extremely effective in improving hot strength and wear resistance (No. 17).
~ 20), the addition amount exceeds 3% by weight (No. 17)
And, the corrosion resistance is significantly reduced.

【0029】図1に、耐食性に対するSiCの最大粒径
と添加量の関係を示す。図中の直線より上の領域では耐
食性が大幅に悪化した。又、表2より、SiCを添加し
た試料は全て、耐摩耗性が向上し、添加するSiCの粒
径が小さく、その量が多いものほど耐摩耗性は向上す
る。一方、動弾性率は、添加するSiCの粒径が144
μ以下ではあまり変わらず、200〜500μでは、添
加量が増加するのに伴って低下する傾向が見られたが、
あまり顕著ではない。
FIG. 1 shows the relationship between the maximum grain size of SiC and the addition amount with respect to corrosion resistance. Corrosion resistance was significantly deteriorated in the region above the straight line in the figure. Further, from Table 2, the wear resistance is improved in all the samples to which SiC is added, and the wear resistance is improved as the particle size of the added SiC is smaller and the amount thereof is larger. On the other hand, the dynamic elastic modulus is such that the particle size of the added SiC is 144
It did not change so much at μ or less, and tended to decrease as the addition amount increased at 200 to 500 μ,
Not very noticeable.

【0030】図2に添加するSiCの粒径、量と動弾性
率の関係を示す。中粒のSiCを添加した場合(0.1
〜0.5mmと0.5〜1mm)には、添加量が増える
につれて動弾性率が大幅に低下し、耐食性は悪化せず、
耐摩耗性も向上した。しかし、0.5mm未満のSiC
を添加した場合には、添加量が増えても動弾性率の変化
は軽微であるのに対して、耐摩耗性は向上した。しか
し、添加量8重量%以上では耐食性が悪化する結果とな
った。従って、耐食性と耐摩耗性を向上させるには図1
の直線またはそれより下の領域で、直線近傍が最も適し
ている。更に耐スポール性も向上させるには、中粒のS
iC添加(粒径0.1〜0.5mmならば8重量%以
下、0.5〜1mmならば10重量%以下)が効果的で
ある。
FIG. 2 shows the relationship between the particle size and amount of SiC added and the dynamic elastic modulus. When medium-sized SiC is added (0.1
.About.0.5 mm and 0.5 to 1 mm), the dynamic elastic modulus significantly decreases as the addition amount increases, and the corrosion resistance does not deteriorate,
Abrasion resistance is also improved. However, SiC less than 0.5 mm
In the case of adding, the change in the dynamic elastic modulus was slight even when the addition amount was increased, while the wear resistance was improved. However, if the addition amount is 8% by weight or more, the corrosion resistance deteriorates. Therefore, in order to improve the corrosion resistance and wear resistance,
The area near or below the straight line is most suitable. To further improve spall resistance, medium-grained S
Addition of iC (8% by weight or less if the particle size is 0.1 to 0.5 mm, 10% by weight or less if the particle size is 0.5 to 1 mm) is effective.

【0031】[0031]

【表1A】 *1)電融MgOは、粒度構成からMgO-CaOを全量に対して使用不可能な為、代替 として用いた。[Table 1A] * 1) Electro-fused MgO was used as a substitute because MgO-CaO cannot be used for all amounts due to the grain size composition.

【0032】[0032]

【表1B】 *1)電融MgOは、粒度構成からMgO-CaOを全量に対して使用不可能な為、代替 として用いた。[Table 1B] * 1) Electro-fused MgO was used as a substitute because MgO-CaO cannot be used for all amounts due to the grain size composition.

【0033】[0033]

【表2A】 *2)表1.No.8のMgO-CaOクリンカーを使用 *3)外掛け[Table 2A] * 2) Table 1. Uses No.8 MgO-CaO clinker * 3) External hanging

【0034】[0034]

【表2B】 *2)表1.No.8のMgO-CaOクリンカーを使用 *3)外掛け[Table 2B] * 2) Table 1. Uses No.8 MgO-CaO clinker * 3) External hanging

【0035】[0035]

【発明の効果】本発明によれば、MgO−CaO質炭素
含有耐火物の耐摩耗性、耐スポール性とともに、熱間強
度も向上させることができ、溶融還元炉、スクラップ溶
解炉、転炉等の溶解・精錬容器の炉底、側壁の内張り耐
火物の耐用を著しく向上させることが可能となる。これ
によって、炉材コスト、修繕費の削減のみならず、生産
安定化も達成できる。
INDUSTRIAL APPLICABILITY According to the present invention, not only the wear resistance and spall resistance of a refractory material containing MgO-CaO-based carbon can be improved but also the hot strength can be improved, and a smelting reduction furnace, a scrap melting furnace, a converter, etc. It is possible to significantly improve the durability of the refractory lining on the bottom and side walls of the melting and refining vessel. This not only reduces the cost of furnace materials and repairs, but also stabilizes production.

【図面の簡単な説明】[Brief description of drawings]

【図1】耐食性に対するSiCの最大粒径と添加量の関
係を示した図である。
FIG. 1 is a diagram showing the relationship between the maximum grain size of SiC and the addition amount with respect to corrosion resistance.

【図2】添加するSiCの粒径及び量と動弾性率の関係
を示した図である。
FIG. 2 is a diagram showing the relationship between the particle size and amount of SiC to be added and the dynamic elastic modulus.

フロントページの続き (72)発明者 山田 泰宏 愛知県東海市東海町5−3 新日本製鐵株 式会社名古屋製鐵所内Front Page Continuation (72) Inventor Yasuhiro Yamada 5-3 Tokai-cho, Tokai-shi, Aichi Nippon Steel Co., Ltd. Nagoya Steel Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (1)MgO含有量が96重量%以上、
CaO含有量が1.3〜2.7重量%、SiO2含有量
が0.1〜0.3重量%、CaO/SiO2比(C/
S)が6〜20で、かつCaOがMgOペリクレース中
に固溶し、MgOペリクレースの結晶径が300μ以上
であるMgO−CaO質耐火原料70〜94重量%、
(2)C質耐火原料5〜25重量%、及び(3)金属A
lまたはAl−Mg合金のうち1種または2種以上の合
計が1〜5重量%、の(1)、(2)、及び(3)で構
成される配合組成の原料を、バインダーとともに混練、
成形した後、乾燥して得られるMgO−CaO質炭素含
有耐火物。
1. A MgO content of 96% by weight or more,
CaO content is 1.3 to 2.7% by weight, SiO 2 content is 0.1 to 0.3% by weight, CaO / SiO 2 ratio (C /
S) is 6 to 20 and CaO is solid-dissolved in MgO periclase, and the MgO periclase has a crystal diameter of 300 μm or more.
(2) 5 to 25 wt% of C-type refractory raw material, and (3) metal A
1 or 2 or more of Al or Al-Mg alloys in a total amount of 1 to 5% by weight, and kneading the raw materials of the compounding composition composed of (1), (2), and (3) together with a binder.
A MgO-CaO-based carbon-containing refractory material obtained by molding and then drying.
【請求項2】 特許請求の範囲第1項で示される配合組
成の原料100重量部に対して、さらに最大粒径[X]
(μ)と外掛けでの添加量[Y](重量部)とが次式の
関係を満足するSiC原料を添加し、バインダーととも
に混練、成形した後、乾燥して得られるMgO−CaO
質炭素含有耐火物。 [Y]≦3log[X]
2. The maximum particle size [X] is further added to 100 parts by weight of the raw material having the compounding composition shown in claim 1.
MgO-CaO obtained by adding a SiC raw material in which (μ) and the added amount [Y] (parts by weight) in the external coating satisfy the relationship of the following equation, kneading and molding with a binder, and then drying.
Refractory containing high quality carbon. [Y] ≦ 3 log [X]
【請求項3】 特許請求の範囲第1項で示される配合組
成の原料100重量部に対して、さらに粒径0.1〜
0.5mmのSiC原料を外掛けで8重量部以下、ある
いは粒径0.5〜1.0mmのSiC原料を外掛けで1
0重量部以下添加し、バインダーとともに混練、成形し
た後、乾燥して得られるMgO−CaO質炭素含有耐火
物。
3. A particle size of 0.1 to 100 parts by weight of the raw material having the compounding composition shown in claim 1 is further added.
8 parts by weight or less of 0.5 mm of SiC raw material or 1 of externally applied SiC raw material of particle size 0.5 to 1.0 mm
A MgO-CaO-based carbon-containing refractory obtained by adding 0 parts by weight or less, kneading and molding with a binder, and then drying.
【請求項4】 特許請求の範囲第1項で示される配合組
成の原料100重量部に対して、さらに、粒径10μ以
下のSiC超微粉を外掛けで3重量部以下添加し、バイ
ンダーとともに混練、成形した後、乾燥して得られるM
gO−CaO質炭素含有耐火物。
4. To 100 parts by weight of the raw material having the composition shown in claim 1, 3 parts by weight or less of SiC ultrafine powder having a particle size of 10 μ or less is externally added and kneaded with a binder. , M obtained by molding and then drying
Refractory containing gO-CaO carbon.
JP07089796A 1996-03-04 1996-03-04 MgO-CaO carbon-containing refractory Expired - Lifetime JP3336187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07089796A JP3336187B2 (en) 1996-03-04 1996-03-04 MgO-CaO carbon-containing refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07089796A JP3336187B2 (en) 1996-03-04 1996-03-04 MgO-CaO carbon-containing refractory

Publications (2)

Publication Number Publication Date
JPH09241067A true JPH09241067A (en) 1997-09-16
JP3336187B2 JP3336187B2 (en) 2002-10-21

Family

ID=13444791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07089796A Expired - Lifetime JP3336187B2 (en) 1996-03-04 1996-03-04 MgO-CaO carbon-containing refractory

Country Status (1)

Country Link
JP (1) JP3336187B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021544A1 (en) * 1999-09-24 2001-03-29 Shinagawa Refractories Co., Ltd. Carbonaceous refractory with high resistance to spalling and process for producing the same
JP2022182319A (en) * 2021-05-28 2022-12-08 株式会社ヨータイ LOW CARBON MgO-C BRICK AND PRODUCTION METHOD THEREOF

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021544A1 (en) * 1999-09-24 2001-03-29 Shinagawa Refractories Co., Ltd. Carbonaceous refractory with high resistance to spalling and process for producing the same
AU770590B2 (en) * 1999-09-24 2004-02-26 Shinagawa Refractories Co., Ltd. Carbonaceous refractory with high resistance to spalling and process for producing the same
JP2022182319A (en) * 2021-05-28 2022-12-08 株式会社ヨータイ LOW CARBON MgO-C BRICK AND PRODUCTION METHOD THEREOF

Also Published As

Publication number Publication date
JP3336187B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
Buhr et al. The steel industry in Germany–trends in clean steel technology and refractory engineering
JP3336187B2 (en) MgO-CaO carbon-containing refractory
JPH0118030B2 (en)
JP3330811B2 (en) Carbon-containing refractory and melting and refining vessel for molten metal lined with the refractory
JP2769400B2 (en) Irregular refractories for hot metal parts
JP3330810B2 (en) Carbon-containing basic refractory and melting and refining vessel for molten metal lined with the refractory
JPH0733513A (en) Magnesia-carbon brick and its production
JPH06144939A (en) Basic castable refractory
JP3002296B2 (en) Method for producing coarse aggregate blended magnesia-carbon refractory
JP2000302539A (en) Filling material for masonry joint of brick
JPH0319183B2 (en)
JP4695354B2 (en) Carbon-containing refractory brick
JPH11278918A (en) Basic refractory raw material and basic refractory, its production and metal smelting furnace and baking furnace using the same
JPH09278540A (en) Corrosion-and oxidation-resistant amorphous refractory material
JP3201679B2 (en) High spalling resistant magnesia carbon brick and its manufacturing method
JPS589874A (en) Refractories for blast furnace lining
JPH10306308A (en) Carbon-containing refractory for tuyere in molten metal refining furnace
JPH06298564A (en) Carbonaceous magnesia fire brick
JPS59137367A (en) Magnesia alumina castable refractories
JP2000351674A (en) Monolithic refractory material for blast furnace runner
JP2023102168A (en) Method for producing unburned bricks for molten iron vessel
JP3433298B2 (en) Blow-up coating method in smelting furnace
JPH07267719A (en) Alumina-magnesia-carbon brick
JPH0826817A (en) Magnesia carbonaceous refractory brick
JPS6278151A (en) Non-burnt refractory brick for molten metal vessel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130802

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term