JPH09238356A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH09238356A
JPH09238356A JP8067450A JP6745096A JPH09238356A JP H09238356 A JPH09238356 A JP H09238356A JP 8067450 A JP8067450 A JP 8067450A JP 6745096 A JP6745096 A JP 6745096A JP H09238356 A JPH09238356 A JP H09238356A
Authority
JP
Japan
Prior art keywords
pixel
light
pixels
light receiving
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8067450A
Other languages
Japanese (ja)
Other versions
JP3680410B2 (en
Inventor
Masakuni Iwanaga
正国 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP06745096A priority Critical patent/JP3680410B2/en
Publication of JPH09238356A publication Critical patent/JPH09238356A/en
Application granted granted Critical
Publication of JP3680410B2 publication Critical patent/JP3680410B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the accuracy of a luminance signal and color difference signals and the performance of the device in the case of improving the resolution without changing a degree of circuit integration by varying an angle of parallel flat plates and detecting sequentially sample points of a light receiving section and forming plural image signals from detected outputs of the sample points. SOLUTION: A light is made incident to an image pickup board 1 having a light receiving section 2 where lots of light receiving pixels are arranged via a position displacement device 4 revising a projection position of sample points and a lens 3. The position displacement device 4 is made up of a support plate 7 to which a circular hole 7a is made, a transparent parallel disks 5 provided between the support plate 7 and a hold ring 6 and a piezoelectric element 8 tilted to an optical axis 3-dimensionally. Then the piezoelectric element 8 is electrically expanded and contracted to vary an angle of the parallel flat disk 5, any light receiving pixel of the light receiving section 2 is used to sequentially detect four sample points SA-SD and outputs of plural sample points are synchronized to form plural image signals. Thus, in the case of improving the resolution without changing a degree of circuit integration, the accuracy of the luminance and color difference signals is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は固体撮像装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device.

【0002】[0002]

【従来の技術】従来、固体撮像装置は、CCDなどの受
光画素を縦横に配列した受光部で撮影対称物の像つまり
撮影する画像を多数のサンプル点として検出し、この検
出した各サンプル点の出力を画像信号として形成するも
のであり、画像を撮影したときの解像度が受光画素の画
素数で決まっている。このため、解像度を向上させるた
めには、集積度を上げて画素数を増やすことが考えられ
るが、固体撮像装置では受光部に感光部と電荷転送部を
作らなければならないため、集積度を上げると1つ1つ
の受光画素の面積が小さくなり、感度が低下してしま
う。
2. Description of the Related Art Conventionally, a solid-state image pickup device detects an image of a photographic symmetrical object, that is, an image to be photographed as a large number of sample points by a light receiving portion in which light receiving pixels such as CCDs are arranged vertically and horizontally, and the detected sample points The output is formed as an image signal, and the resolution when the image is captured is determined by the number of light receiving pixels. Therefore, in order to improve the resolution, it is conceivable to increase the degree of integration to increase the number of pixels. However, in the solid-state imaging device, the light receiving section must have the photosensitive section and the charge transfer section. As a result, the area of each light receiving pixel becomes small, and the sensitivity is lowered.

【0003】これを解決する方法として、集積度を変え
ずに、撮影する画像の複数のサンプル点を機械的または
光学的に順次移動させて受光部のいずれか1つの受光画
素で検出し、この検出した複数のサンプル点の出力をこ
れらサンプル点の移動位置に同期させて複数の画像信号
として形成することが提案されている。この場合、サン
プル点を移動させる機械的な手段としては、受光部を水
平および垂直方向に移動させる構造のものがあり、光学
的な手段としては、光を屈折させる屈折素子の傾き角お
よび傾き方向や屈折素子の厚さなどを可変制御すること
により、画像のサンプル点を受光部上で移動させる構造
のものなどがある。
As a method of solving this, a plurality of sample points of an image to be photographed are sequentially moved mechanically or optically without changing the degree of integration and detected by any one of the light-receiving pixels of the light-receiving section. It has been proposed to synchronize the detected outputs of a plurality of sample points with the moving positions of these sample points to form a plurality of image signals. In this case, as a mechanical means for moving the sample point, there is a structure for moving the light receiving part in the horizontal and vertical directions, and as an optical means, the tilt angle and tilt direction of the refraction element for refracting light are used. There is a structure in which the sample point of the image is moved on the light receiving portion by variably controlling the thickness of the refraction element and the refraction element.

【0004】このように複数のサンプル点を移動させて
1つの受光画素で順次検出し、この検出した出力により
形成された画像信号を補間処理(順次検出した画像信号
の画素データを見かけ上、それぞれ各受光画素間に配列
する処理)することにより、最終画素配列データを得て
いる。図6(a)〜(e)はその最終画素配列データを
得るための補間処理の一例を示した図である。この場
合、受光部の受光画素の配列は、図6(a)に示すよう
に、ABCの横並び3つの受光画素を1組とする配列に
なっており、各受光画素の横方向および列方向の各間に
は1つの受光画素に対応する隙間が設けられている。そ
して、このように配列された各受光画素で撮影する画像
の4つのサンプル点を順次検出して補間処理する。な
お、ここでは、説明の便宜上、受光画素が見かけ上移動
すると考えることにする。
In this way, a plurality of sample points are moved and one light-receiving pixel is sequentially detected, and an image signal formed by the detected output is subjected to interpolation processing (apparently the pixel data of the sequentially detected image signal is apparently The final pixel array data is obtained by arranging between the light receiving pixels. FIGS. 6A to 6E are diagrams showing an example of interpolation processing for obtaining the final pixel array data. In this case, as shown in FIG. 6A, the array of the light receiving pixels of the light receiving section is an array in which three light receiving pixels arranged side by side in ABC form one set, and the light receiving pixels are arranged in the horizontal direction and the column direction. A gap corresponding to one light receiving pixel is provided between each of them. Then, four sample points of the image photographed by the respective light receiving pixels arranged in this way are sequentially detected and the interpolation processing is performed. In addition, here, for convenience of description, it is assumed that the light-receiving pixel apparently moves.

【0005】まず、図6(b)に示すように、各受光画
素を右に0.5画素ピッチ移動させ、これによりA画素
を移動前の初期配列のA画素とB画素の間、B画素を初
期配列のB画素とC画素の間、C画素を初期配列のC画
素とA画素(図示せず)の間にそれぞれ配列する。この
後、図6(c)に示すように、各受光画素を下に0.5
画素ピッチ移動させ、これによりA画素を前回の移動で
配列された上下のA画素の間、B画素を前回の移動で配
列された上下のB画素の間、C画素を前回の移動で配列
された上下のC画素の間にそれぞれ配列する。さらに、
図6(d)に示すように、各受光画素を左に0.5画素
ピッチ移動させ、これによりA画素を初期配列の上下の
A画素の間、B画素を初期配列の上下のB画素の間、C
画素を初期配列の上下のC画素の間にそれぞれ配列す
る。
First, as shown in FIG. 6B, each light receiving pixel is moved to the right by 0.5 pixel pitch, whereby the A pixel is moved between the A pixel and the B pixel in the initial array before the B pixel is moved. Are arranged between the B pixel and the C pixel in the initial array, and the C pixel is arranged between the C pixel and the A pixel (not shown) in the initial array. Thereafter, as shown in FIG. 6C, each light receiving pixel is moved downward by 0.5.
The pixel pitch is moved so that the A pixel is arranged between the upper and lower A pixels arranged by the previous movement, the B pixel is arranged between the upper and lower B pixels arranged by the previous movement, and the C pixel is arranged by the previous movement. They are respectively arranged between the upper and lower C pixels. further,
As shown in FIG. 6 (d), each light-receiving pixel is moved to the left by 0.5 pixel pitch, whereby the A pixel is located between the upper and lower A pixels of the initial array and the B pixel is located between the upper and lower B pixels of the initial array. Meanwhile, C
Pixels are arranged between C pixels above and below the initial arrangement.

【0006】このようにして得られた最終画素配列デー
タは、図6(e)に示すように、同一画素が相互に隣接
し合った配列になる。すなわち、ABCの各画素のう
ち、4つのA画素は相互に隣接し合い、4つのB画素は
相互に隣接し合ってA画素の右側に配列され、4つのC
画素は相互に隣接し合ってB画素の右側に配列されてい
る。このように配列された最終画素配列データを処理す
ることにより、輝度信号Yおよび2種類の色差信号R−
Y,B−Yが得られ、これらの信号Y,R−Y,B−Y
によって撮影した画像が図6(d)に示す最終画素配列
データの画素配列で再生されることになり、受光画素の
集積度を変えずに、解像度を向上させることができる。
The final pixel array data thus obtained is an array in which the same pixels are adjacent to each other, as shown in FIG. 6 (e). That is, among the pixels of ABC, four A pixels are adjacent to each other and four B pixels are adjacent to each other and are arranged on the right side of the A pixel, and four C pixels are arranged.
The pixels are arranged adjacent to each other on the right side of the B pixel. By processing the final pixel array data arrayed in this way, the luminance signal Y and the two types of color difference signals R-
Y, BY are obtained, and these signals Y, RY, BY are obtained.
The image taken by is reproduced with the pixel array of the final pixel array data shown in FIG. 6D, and the resolution can be improved without changing the integration degree of the light receiving pixels.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな固体撮像装置では、最終画素配列データが図6
(e)に示すように同一画素が相互に隣接し合った画素
配列になっているので、同一画素が局所的に密集するこ
とになり、このため輝度信号Yの解像度を十分に高める
ことができないという問題がある。また、受光部のAB
C3つの受光画素で1組となる配列であるから、3つの
受光画素のデータを処理することにより、1組の色差信
号R−Y,B−Yを得ることはできるが、補間処理した
3種類の画素が種類ごとに密集しているため、3種類の
画素が広い間隔で分散されることになり、このため色差
信号R−Y,B−Yのデータ精度が低くなり、固体撮像
装置として十分な性能が得られないという問題もある。
However, in such a solid-state image pickup device, the final pixel array data is shown in FIG.
As shown in (e), the same pixels are arranged in a pixel array adjacent to each other, so that the same pixels are locally concentrated, so that the resolution of the luminance signal Y cannot be sufficiently increased. There is a problem. In addition, AB of the light receiving unit
C Since the array is composed of three light receiving pixels, one set of color difference signals R-Y and B-Y can be obtained by processing the data of the three light receiving pixels, but three types of interpolated Since the pixels of 3 are densely packed for each type, the 3 types of pixels are dispersed at wide intervals, which reduces the data accuracy of the color difference signals RY and BY, which is sufficient for a solid-state imaging device. There is also a problem that it is not possible to obtain high performance.

【0008】この発明の課題は、集積度を変えずに解像
度を向上させる際、輝度信号および色差信号の精度の向
上および固体撮像装置としての性能の向上をも図るよう
にすることである。
An object of the present invention is to improve the precision of the luminance signal and the color difference signal and the performance of the solid-state image pickup device when improving the resolution without changing the degree of integration.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
受光画素が配列された受光部で撮影する画像の多数のサ
ンプル点を検出する際、画像の複数のサンプル点を位置
変位手段によって移動させて受光部の1つの受光画素で
順次検出し、この検出した複数のサンプル点の出力を位
置変位手段による移動位置に同期させて複数の画像信号
として形成する固体撮像装置において、複数の画像信号
を補間処理した最終画素配列データが、受光部の複数の
受光画素を1組としたとき、この1組の受光画素の組み
合わせ配列で、少なくとも横並び周期になる画素配列で
あることを特徴とするものである。
According to the first aspect of the present invention,
When detecting a large number of sample points of an image to be photographed by a light receiving section in which light receiving pixels are arranged, a plurality of sample points of the image are moved by position displacement means and sequentially detected by one light receiving pixel of the light receiving section. In the solid-state imaging device that forms the plurality of image signals by synchronizing the output of the plurality of sample points with the movement position by the position displacement means, the final pixel array data obtained by interpolating the plurality of image signals is the plurality of light receiving units. When one set of pixels is provided, the combination array of the one set of light-receiving pixels is a pixel array having at least a horizontal array period.

【0010】したがって、この請求項1記載の発明によ
れば、画像の複数のサンプル点を受光部の1つの受光画
素で順次検出して複数の画像信号を形成することによ
り、集積度を変えずに解像度を向上させる際に、複数の
画像信号を補間処理した最終画素配列データが、1組の
受光画素の組み合わせで、少なくとも横並び周期になる
画素配列であるから、最終画素配列データの横並び配列
において同一画素が相互に隣接し合うことがなく、この
ため従来のように同一画素が局所的に密集することがな
いため、輝度信号の解像度を十分に高めることができる
とともに、補間処理した複数種類の画素が従来のものよ
りも緊密になるので、色差信号のデータ精度を向上させ
ることができ、これにより固体撮像装置として十分な性
能を得ることができる。この場合、請求項2に記載のご
とく、最終画素配列データは、受光部の横並び3つの受
光画素を1組としたとき、この1組の受光画素を見かけ
上、右に1.5画素ピッチ移動し、下に0.5画素ピッ
チ移動し、さらに左に1.5画素ピッチ移動してなる画
素配列であることが望ましい。
Therefore, according to the first aspect of the present invention, a plurality of sample points of the image are sequentially detected by one light receiving pixel of the light receiving section to form a plurality of image signals, so that the degree of integration is not changed. When the resolution is improved, the final pixel array data obtained by interpolating a plurality of image signals is a pixel array having at least a horizontal array period with a combination of one set of light receiving pixels. Therefore, in the horizontal array of the final pixel array data, Since the same pixels are not adjacent to each other, and therefore, the same pixels are not locally concentrated as in the conventional case, the resolution of the luminance signal can be sufficiently increased, and a plurality of types of interpolation processed Since the pixels are closer than the conventional one, it is possible to improve the data accuracy of the color difference signal, and this makes it possible to obtain sufficient performance as a solid-state imaging device. . In this case, as described in claim 2, in the final pixel array data, when three light-receiving pixels arranged side by side in the light-receiving unit are set as one set, the one light-receiving pixel is apparently moved by 1.5 pixel pitch to the right. However, it is desirable that the pixel arrangement is such that the pixel array is moved downward by 0.5 pixel pitch and further moved to the left by 1.5 pixel pitch.

【0011】請求項3記載の発明は、最終画素配列デー
タが、1組の受光画素を見かけ上、斜め方向に順次移動
させる補間処理により、その1組の受光画素の組み合わ
せ配列で、横方向および列方向のそれぞれに並んだ画素
配列であるから、最終画素配列データの横方向および列
方向のいずれの並びにおいても、同一画素が相互に隣接
し合うことがなく、このため請求項1記載の発明のもの
よりも、輝度信号および色差信号の精度が良く、固体撮
像装置としての性能をより一層、高めることができる。
この場合、請求項4に記載のごとく、最終画素配列デー
タが、受光部の横方向および列方向にそれぞれ2つづつ
並んだ4つの受光画素を1組としたとき、この1組の受
光画素を見かけ上、右に1画素ピッチでかつ上に0.5
画素ピッチの合成方向に移動し、右に0.5画素ピッチ
でかつ下に1画素ピッチの合成方向に移動し、さらに左
に1画素ピッチでかつ下に0.5画素ピッチの合成方向
に移動してなる画素配列であることが望ましい。
According to the third aspect of the present invention, the final pixel array data is interpolated so that one set of light-receiving pixels is apparently sequentially moved in an oblique direction. Since the pixel arrays are arranged in the respective column directions, the same pixels are not adjacent to each other in both the lateral direction and the column direction of the final pixel array data. Therefore, the invention according to claim 1 The accuracy of the luminance signal and the color difference signal is better than that of the above, and the performance as a solid-state imaging device can be further enhanced.
In this case, when the final pixel array data is a set of four light-receiving pixels arranged in the lateral direction and two in the column direction of the light-receiving portion, the one set of light-receiving pixels is defined as follows. Apparently 1 pixel pitch to the right and 0.5 above
Move in the pixel pitch composition direction, move to the right by 0.5 pixel pitch and downward in the 1 pixel pitch composition direction, and further to the left in 1 pixel pitch and downward in the 0.5 pixel pitch composition direction It is desirable that the pixel array is formed by

【0012】請求項5記載の発明は、最終画素配列デー
タが、1組の受光画素を見かけ上、移動させる補間処理
により、その1組の受光画素の組み合わせ配列で、横並
び周期で、かつその横並び周期が奇数列と偶数列で0.
5画素ピッチずれた画素配列であるから、最終画素配列
データの横並びにおいて、同一画素が相互に隣接し合う
ことがなく、しかも横並び周期が奇数列と偶数列で0.
5画素ピッチずれていることにより、列方向の並びにお
いても、同一画素が完全に対応して隣接し合うことがな
く、このため請求項3記載の発明と同様、輝度信号およ
び色差信号の精度が良く、固体撮像装置としての性能を
高めることができる。この場合、請求項6に記載のごと
く、最終画素配列データが、受光部の横並び3つの受光
画素を1組としたとき、この1組の受光画素を見かけ
上、右に1.5画素ピッチ移動し、右に0.75画素ピ
ッチでかつ下に0.5画素ピッチの合成方向に移動し、
さらに左に1.5画素ピッチ移動してなる画素配列であ
ることが望ましい。
According to a fifth aspect of the present invention, the final pixel array data is a combination array of the one set of light receiving pixels by an interpolation process in which one set of light receiving pixels is apparently moved, with a side by side arrangement period and its side by side arrangement. The period is 0 for odd and even columns.
Since the pixel arrangement is shifted by 5 pixel pitches, the same pixels are not adjacent to each other in the horizontal arrangement of the final pixel arrangement data, and the horizontal arrangement period is 0.
The same pixel does not completely correspond to and adjacent to each other even in the arrangement in the column direction due to the deviation of 5 pixel pitch. Therefore, the accuracy of the luminance signal and the color difference signal is the same as in the invention according to claim 3. The performance of the solid-state imaging device can be improved. In this case, as described in claim 6, when the final pixel array data is a set of three light receiving pixels arranged side by side in the light receiving unit, the one light receiving pixel is apparently moved by 1.5 pixel pitch to the right. Then, move to the combining direction of 0.75 pixel pitch to the right and 0.5 pixel pitch downward,
Further, it is desirable that the pixel array is moved to the left by 1.5 pixel pitch.

【0013】[0013]

【発明の実施の形態】以下、図1〜図3を参照して、こ
の発明の固体撮像装置の第1実施形態について説明す
る。図1は固体撮像装置の構成図である。この図におい
て、1は撮像基板であり、この撮像基板1の光入射面に
は受光部2が設けられている。この受光部2は、後述す
る受光画素が縦横に多数配列形成された構造になってい
る。この受光部2の前方(光入射側)にはレンズ3が配
置されており、このレンズ3の前方(光入射側)には撮
影する画像(図示せず)のサンプル点の投影位置を変位
させる位置変位機構(位置変位手段)4が配置されてい
る。この位置変位機構4は、円形状の透明な平行平面板
5と、この平行平面板5の外周に装着された保持リング
6と、平行平面板5が対応する個所に円形孔7aが設け
られた支持板7と、この支持板7と保持リング6の間に
設けられて平行平面板5を光軸Oに対し3次元的に傾け
るピエゾ素子(変位素子)8とからなり、ピエゾ素子8
の伸縮変形を電気的に制御して平行平面板5の光軸Oに
対する傾き角および傾き方向を可変する構造になってい
る。
BEST MODE FOR CARRYING OUT THE INVENTION A first embodiment of a solid-state image pickup device of the present invention will be described below with reference to FIGS. FIG. 1 is a block diagram of a solid-state imaging device. In this figure, reference numeral 1 denotes an image pickup substrate, and a light receiving portion 2 is provided on a light incident surface of the image pickup substrate 1. The light receiving section 2 has a structure in which a large number of light receiving pixels, which will be described later, are formed in a matrix. A lens 3 is arranged in front of the light receiving unit 2 (light incident side), and a projection position of a sample point of an image (not shown) to be photographed is displaced in front of the lens 3 (light incident side). A position displacement mechanism (position displacement means) 4 is arranged. The position displacement mechanism 4 has a circular transparent plane-parallel plate 5, a holding ring 6 attached to the outer periphery of the plane-parallel plate 5, and a circular hole 7a at a position corresponding to the plane-parallel plate 5. The piezo element 8 includes a support plate 7 and a piezo element (displacement element) 8 provided between the support plate 7 and the holding ring 6 for inclining the plane-parallel plate 5 three-dimensionally with respect to the optical axis O.
Is electrically controlled to expand and contract, and the tilt angle and tilt direction of the plane-parallel plate 5 with respect to the optical axis O can be varied.

【0014】したがって、この固体撮像装置では、撮影
対称物の画像を撮影する際、画像の各サンプル点からの
光を平行平面板5の光軸Oに対する傾き角および傾き方
向に応じてシフトさせ、このシフトした各サンプル点の
光をレンズ3を介して受光部2の各受光画素に入射させ
るとともに、ピエゾ素子8の伸縮変形を電気的に制御し
て平行平面板5の光軸Oに対する傾き角および傾き方向
を可変することにより、隣接する複数のサンプル点を受
光部2のいずれか1つの受光画素で順次検出し、この検
出した複数のサンプル点の出力をこれらサンプル点の移
動位置に同期させて複数の画像信号として形成する。す
なわち、図2に示すように、撮影する画像の4つのサン
プル点SA、SB、SC、SDの投影位置を平行平面板5の
光軸Oに対する傾き角および傾き方向の変化に応じて順
次受光部2上で移動させ、この受光部2のいずれか1つ
の受光画素(同図に斜線で示す部分)で4つのサンプル
点SA、SB、SC、SDを順次検出する。
Therefore, in this solid-state image pickup device, when the image of the object to be photographed is taken, the light from each sample point of the image is shifted according to the tilt angle and the tilt direction with respect to the optical axis O of the plane-parallel plate 5, The light of each shifted sample point is made incident on each light receiving pixel of the light receiving unit 2 through the lens 3, and the expansion and contraction deformation of the piezo element 8 is electrically controlled to tilt the parallel plane plate 5 with respect to the optical axis O. By varying the tilt direction, the plurality of adjacent sample points are sequentially detected by any one of the light receiving pixels of the light receiving unit 2, and the outputs of the detected plurality of sample points are synchronized with the moving positions of these sample points. To form a plurality of image signals. That is, as shown in FIG. 2, the projection positions of the four sample points S A , S B , S C , and S D of the image to be captured are changed depending on the tilt angle and the tilt direction of the plane parallel plate 5 with respect to the optical axis O. And sequentially move it on the light receiving section 2, and sequentially detect four sample points S A , S B , S C , and S D by any one light receiving pixel (the hatched portion in the figure) of this light receiving section 2. .

【0015】このように複数のサンプル点SA、SB、S
C、SDを移動させて1つの受光画素で順次検出し、この
検出した出力により形成された画像信号を補間処理する
ことにより、最終画素配列データが得られる。この最終
画素配列データを得る補間処理を図3(a)〜(e)に
示す。この場合、受光部2の受光画素の配列は、図3
(a)に示すように、ABCの横並び3つの受光画素を
1組とする配列になっており、各受光画素の横方向およ
び列方向の各間には1つの受光画素に対応する隙間が設
けられている。また、受光部2の各受光画素の開口率Q
は、受光画素の見かけ上の移動回数をN(4回)とした
とき、 Q=(1/N)×100%=25% に設定されている。このように配列された各受光画素で
画像の4つのサンプル点SA、SB、SC、SDを順次検出
し、検出された画像信号を補間処理する。なお、ここで
も、説明の便宜上、受光画素が見かけ上移動すると考え
ることにする。
Thus, a plurality of sample points S A , S B , S
The final pixel array data is obtained by moving C and S D and sequentially detecting them by one light receiving pixel, and interpolating the image signal formed by the detected output. Interpolation processing for obtaining the final pixel array data is shown in FIGS. In this case, the arrangement of the light receiving pixels of the light receiving unit 2 is as shown in FIG.
As shown in (a), it is arranged so that three light receiving pixels arranged side by side in ABC form one set, and a gap corresponding to one light receiving pixel is provided between each of the light receiving pixels in the horizontal direction and the column direction. Has been. In addition, the aperture ratio Q of each light receiving pixel of the light receiving unit 2
Is set to Q = (1 / N) × 100% = 25% when the apparent number of movements of the light receiving pixels is N (4 times). The four sample points S A , S B , S C , and S D of the image are sequentially detected by the respective light receiving pixels arranged in this way, and the detected image signal is interpolated. Here, also for convenience of explanation, it is assumed that the light-receiving pixel apparently moves.

【0016】まず、図3(b)に示すように、各受光画
素を右に1.5画素ピッチ移動させ、これによりA画素
を移動前の初期配列のB画素とC画素の間、B画素を初
期配列のC画素とA画素の間、C画素を初期配列の右側
のA画素の右隣にそれぞれ配列する。この後、図3
(c)に示すように、各受光画素を下に0.5画素ピッ
チ移動させ、これによりA画素を前回の移動で配列され
た上下のA画素の間、B画素を前回の移動で配列された
上下のB画素の間、C画素を前回の移動で配列された上
下のC画素の間にそれぞれ配列する。さらに、図3
(d)に示すように、各受光画素を左に1.5画素ピッ
チ移動させ、これによりA画素を初期配列の上下のA画
素の間、B画素を初期配列の上下のB画素間、C画素を
初期配列の上下のC画素の間にそれぞれ配列する。
First, as shown in FIG. 3B, each light receiving pixel is moved to the right by 1.5 pixel pitches, whereby the A pixel is moved between the B pixel and the C pixel in the initial array before the B pixel is moved. Between the C pixel and the A pixel in the initial array, and the C pixel on the right side of the A pixel on the right side of the initial array. After this, FIG.
As shown in (c), each light-receiving pixel is moved downward by 0.5 pixel pitch, so that the A pixel is arranged between the upper and lower A pixels arranged by the previous movement, and the B pixel is arranged by the previous movement. C pixels are arranged between the upper and lower B pixels and between the upper and lower C pixels arranged by the previous movement. Further, FIG.
As shown in (d), each light-receiving pixel is moved to the left by 1.5 pixel pitches, whereby A pixel is located between the upper and lower A pixels of the initial array, B pixel is located between the upper and lower B pixels of the initial array, and C. Pixels are arranged between C pixels above and below the initial arrangement.

【0017】このように補間処理された最終画素配列デ
ータは、図3(e)に示すように、横並び配列において
同一画素が相互に隣接し合うことがなく、ABCの画素
配列がその組み合わせ配列であるACBの画素配列にな
るとともに、各画素が0.5画素ピッチの配列となる。
このように配列された最終画素配列データを処理するこ
とにより、輝度信号Yおよび2種類の色差信号R−Y,
B−Yが得られ、これらの信号Y,R−Y,B−Yによ
って撮影した画像が図3(d)に示す最終画素配列デー
タの画素配列で再生される。
In the final pixel array data interpolated in this way, as shown in FIG. 3 (e), the same pixels are not adjacent to each other in the side-by-side array, and the ABC pixel array is the combined array. Along with a certain ACB pixel array, each pixel also has an array of 0.5 pixel pitch.
By processing the final pixel array data arrayed in this way, the luminance signal Y and the two types of color difference signals RY,
BY is obtained, and the image photographed by these signals Y, RY, and BY is reproduced with the pixel array of the final pixel array data shown in FIG. 3D.

【0018】このように、この固体撮像装置では、撮影
する画像の4つのサンプル点SA、SB、SC、SDを受光
部2の1つの受光画素で順次検出して複数の画像信号を
形成することにより、集積度を変えずに解像度を向上さ
せる際に、4つの画像信号を補間処理した最終画素配列
データが、受光部2の横並び3つの受光画素ABCを1
組とし、この1組の受光画素を見かけ上、右に1.5画
素ピッチ移動し、下に0.5画素ピッチ移動し、さらに
左に1.5画素ピッチ移動してなる画素配列であるか
ら、横並び配列において同一画素が相互に隣接し合うこ
とがなく、図3(e)に示すように、ABCの画素配列
がその組み合わせ配列であるACBの画素配列で、各画
素が0.5画素ピッチの配列となり、従来のように同一
画素が局所的に密集することがなく、このため輝度信号
Yの解像度を向上させることができるとともに、補間処
理したACBの画素が従来のものよりも緊密になってい
るので、2種類の色差信号R−Y,B−Yのデータ精度
を向上させることができ、これにより固体撮像装置とし
て十分な性能を得ることができる。
As described above, in this solid-state image pickup device, the four sample points S A , S B , S C , and S D of the image to be photographed are sequentially detected by one light-receiving pixel of the light-receiving section 2 to obtain a plurality of image signals. When the resolution is improved without changing the degree of integration, the final pixel array data obtained by interpolating the four image signals is set to one of the three light receiving pixels ABC arranged side by side in the light receiving unit 2.
A set of light receiving pixels is apparently moved by 1.5 pixel pitch to the right, moved by 0.5 pixel pitch downward, and further moved by 1.5 pixel pitch to the left. As shown in FIG. 3E, the same pixel is not adjacent to each other in the side-by-side array, and the pixel array of ABC is the pixel array of ACB which is the combination array, and each pixel has a pitch of 0.5 pixel. Since the same pixels are not locally concentrated as in the conventional arrangement, the resolution of the luminance signal Y can be improved, and the pixels of the interpolated ACB are closer than in the conventional arrangement. Therefore, it is possible to improve the data accuracy of the two types of color difference signals R-Y and B-Y, and it is possible to obtain sufficient performance as a solid-state imaging device.

【0019】次に、図4(a)〜(e)を参照して、こ
の発明の固体撮像装置の第2実施形態について説明す
る。なお、図1〜図3に示された第1実施形態と同一部
分には同一符号を付し、その説明は省略する。この固体
撮像装置は、第1実施形態における受光部2の1組の受
光画素および補間処理が異なる以外は同じ構成になって
いる。すなわち、受光部2の受光画素の配列は、図4
(a)に示すように、ABCDの4つの受光画素を1組
とし、ABが横に並び、その下にCDが対応した配列に
なっており、各受光画素の横方向および列方向の各間に
は1つの受光画素に対応する隙間が設けられている。ま
た、受光部2の各受光画素の開口率Qは、第1実施形態
と同様、25%(=(1/N)×100%)に設定され
ている。このように配列された各受光画素で検出した画
素データを桂馬飛びの斜め方向に順次移動させる補間処
理することにより、最終画素配列データを得ている。な
お、ここでも、説明の便宜上、受光画素が見かけ上移動
すると考えることにする。
Next, with reference to FIGS. 4A to 4E, a second embodiment of the solid-state image pickup device of the present invention will be described. The same parts as those in the first embodiment shown in FIGS. 1 to 3 are denoted by the same reference numerals, and description thereof will be omitted. This solid-state imaging device has the same configuration except that the set of light-receiving pixels of the light-receiving unit 2 and the interpolation process in the first embodiment are different. That is, the arrangement of the light receiving pixels of the light receiving unit 2 is as shown in FIG.
As shown in (a), four light-receiving pixels of ABCD are set as one set, AB is arranged side by side, and CD is arranged under the array, and the light-receiving pixels are arranged in the horizontal and column directions. Is provided with a gap corresponding to one light receiving pixel. Further, the aperture ratio Q of each light receiving pixel of the light receiving unit 2 is set to 25% (= (1 / N) × 100%) as in the first embodiment. The final pixel array data is obtained by performing an interpolation process in which the pixel data detected by the respective light-receiving pixels arrayed in this way are sequentially moved in the diagonal direction of the keima jump. Here, also for convenience of explanation, it is assumed that the light-receiving pixel apparently moves.

【0020】最終画素配列データを得るための補間処理
は、まず、図4(b)に示すように、各受光画素を右に
1.5画素ピッチでかつ上に0.5画素ピッチの合成方
向に移動させ、これによりA画素を移動前の初期配列の
B画素の上、B画素を初期配列のA画素の上、C画素を
初期配列の右側のB画素とD画素の間、D画素を初期配
列のA画素とC画素の間にそれぞれ配列する。この後、
図4(c)に示すように、各受光画素を右に0.5画素
ピッチでかつ下に1画素ピッチの合成方向に移動させ、
これによりA画素を前回の移動で配列されたC画素とD
画素の間、B画素を前回の移動で配列されたD画素とC
画素の間、C画素を前回の移動で配列されたA画素とB
画素の間、D画素を前回の移動で配列されたB画素とA
画素の間にそれぞれ配列する。さらに、図4(d)に示
すように、各受光画素を左に1画素ピッチでかつ下に
0.5画素ピッチの合成方向に移動させ、これによりA
画素を初期配列のC画素とD画素の間、B画素を初期配
列のD画素とC画素の間、C画素を初期配列のA画素と
B画素の間、D画素を初期配列のB画素とA画素の間に
それぞれ配列する。
In the interpolation process for obtaining the final pixel array data, as shown in FIG. 4 (b), first, as shown in FIG. 4B, the light-receiving pixels are combined in the direction of 1.5 pixel pitch to the right and 0.5 pixel pitch upward. To move the A pixel above the B pixel in the initial array before moving, the B pixel above the A pixel in the initial array, the C pixel between the B pixel and the D pixel on the right side of the initial array, and the D pixel between The pixels are arranged between the A pixel and the C pixel in the initial arrangement. After this,
As shown in FIG. 4C, each light-receiving pixel is moved to the right in the combining direction of 0.5 pixel pitch and 1 pixel pitch downward,
As a result, the A pixel is replaced with the C pixel and the D arrayed by the previous movement.
Between pixels, the B pixel is replaced with the D pixel and the C arrayed by the previous movement.
Between pixels, C pixel is the A pixel and B pixel arrayed by the previous movement
Between pixels, the D pixel is the B pixel and the A arrayed by the previous movement.
They are arranged between pixels. Further, as shown in FIG. 4D, each light-receiving pixel is moved to the left in the combining direction of one pixel pitch and downward by 0.5 pixel pitch.
Pixels are between C pixels and D pixels in the initial array, B pixels are between D pixels and C pixels in the initial array, C pixels are between A pixels and B pixels in the initial array, and D pixels are B pixels in the initial array. They are arranged between A pixels respectively.

【0021】このように補間処理された最終画素配列デ
ータは、図4(e)に示すように、横方向の配列および
列方向の配列のいずれにおいても、同一画素が相互に隣
接し合うことがなく、ABCDの画素配列がその組み合
わせの配列となる。すなわち、横方向の配列は、上から
順に、BDAC、ACBD、DBCA、CADBの各画
素配列となり、列方向の配列は、左から順に、BAD
C、DCBA、ABCD、CDABの各画素配列とな
る。また、このような画素配列は、各画素が0.5画素
ピッチで緊密に配列される。このように配列された最終
画素配列データを処理することにより、第1実施形態と
同様、輝度信号Yおよび2種類の色差信号R−Y,B−
Yが得られ、これらの信号Y,R−Y,B−Yによって
撮影した画像が図4(d)に示す最終画素配列データの
画素配列で再生される。
In the final pixel array data interpolated in this way, the same pixels may be adjacent to each other in both the horizontal array and the column array, as shown in FIG. 4 (e). Instead, the pixel array of ABCD becomes the array of the combination. That is, the array in the horizontal direction is the pixel array of BDAC, ACBD, DBCA, and CADB in order from the top, and the array in the column direction is BAD in order from the left.
The pixel arrays are C, DCBA, ABCD, and CDAB. Further, in such a pixel arrangement, each pixel is closely arranged with a 0.5 pixel pitch. By processing the final pixel array data arrayed in this way, as in the first embodiment, the luminance signal Y and the two types of color difference signals RY, B-.
Y is obtained, and an image photographed by these signals Y, RY, and BY is reproduced with the pixel array of the final pixel array data shown in FIG. 4 (d).

【0022】このような固体撮像装置では、第1実施形
態と同様の作用効果があるほか、複数の画像信号を補間
処理した最終画素配列データが、受光部2のABCDの
4つの受光画素を1組とし、この1組の受光画素を見か
け上、右に1画素ピッチでかつ上に0.5画素ピッチの
合成方向に移動し、右に0.5画素ピッチでかつ下に1
画素ピッチの合成方向に移動し、さらに左に1画素ピッ
チでかつ下に0.5画素ピッチの合成方向に移動してな
る画素配列であるから、横方向の配列および列方向の配
列のいずれにおいても、同一画素が相互に隣接し合うこ
とがなく、図4(e)に示すようにABCDの画素配列
がその組み合わせ配列で、例えば横方向の配列は、上か
ら順に、BDAC、ACBD、DBCA、CADBの各
画素配列となり、列方向の配列は、左から順に、BAD
C、DCBA、ABCD、CDABの各画素配列とな
り、かつ各画素が0.5画素ピッチで緊密に配列される
ことになる。このため、従来のように同一画素が局所的
に密集することがなく、しかも列方向の配列においても
同一画素が相互に隣接し合うことがないため、第1実施
形態のものよりも、輝度信号Yの解像度を高めることが
できるとともに、2種類の色差信号R−Y,B−Yのデ
ータ精度をより一層、向上させることができ、これによ
り固体撮像装置として十分な性能を確保することができ
る。
In such a solid-state image pickup device, in addition to the same effects as the first embodiment, the final pixel array data obtained by interpolating a plurality of image signals is obtained by setting the four light-receiving pixels of the ABCD of the light-receiving unit 2 to one. Apparently, one set of light-receiving pixels is apparently moved to the combining direction of 1 pixel pitch to the right and 0.5 pixel pitch to the right, and 1 pixel pitch to the right and 1 pixel downward.
Since the pixel array is formed by moving in the pixel pitch combination direction and further moving to the left by 1 pixel pitch and downward in the 0.5 pixel pitch combination direction, either in the horizontal direction arrangement or the column direction arrangement. Also, the same pixels are not adjacent to each other, and the pixel array of ABCD is a combination array thereof as shown in FIG. 4E. For example, in the lateral direction, BDAC, ACBD, DBCA, It becomes each pixel array of CADB, and the array in the column direction is BAD in order from the left.
Each pixel array of C, DCBA, ABCD, and CDAB is arranged, and each pixel is closely arranged at a 0.5 pixel pitch. Therefore, unlike the conventional case, the same pixels are not locally concentrated and the same pixels are not adjacent to each other even in the arrangement in the column direction. The Y resolution can be increased, and the data accuracy of the two types of color difference signals R-Y and B-Y can be further improved, whereby sufficient performance as a solid-state imaging device can be ensured. .

【0023】次に、図5(a)〜(d)を参照して、こ
の発明の固体撮像装置の第3実施形態について説明す
る。なお、この場合にも、図1〜図3に示された第1実
施形態と同一部分には同一符号を付し、その説明は省略
する。この固体撮像装置は、第1実施形態における最終
画素配列データが異なる以外は同じ構成になっている。
この場合、受光部2の受光画素の配列は、第1実施形態
と同様に、ABCの3つの受光画素を1組とした横並び
配列になっており、受光部2の各受光画素の開口率Q
は、第1実施形態と同様、25%(=(1/N)×10
0%)に設定されている。このように配列された各受光
画素で撮影する画像の4つのサンプル点SA、SB
C、SDを順次検出し、検出した4種類の画像信号を補
間処理することにより、最終画素配列データを得てい
る。なお、ここでも、説明の便宜上、受光画素が見かけ
上移動すると考えることにする。
Next, a third embodiment of the solid-state image pickup device of the present invention will be described with reference to FIGS. Also in this case, the same parts as those in the first embodiment shown in FIGS. 1 to 3 are designated by the same reference numerals, and the description thereof will be omitted. This solid-state imaging device has the same configuration except that the final pixel array data in the first embodiment is different.
In this case, as in the first embodiment, the light receiving pixels of the light receiving unit 2 are arranged side by side with three light receiving pixels of ABC as one set, and the aperture ratio Q of each light receiving pixel of the light receiving unit 2 is set.
Is 25% (= (1 / N) × 10 as in the first embodiment.
It is set to 0%). Four sample points S A , S B of the image captured by the respective light receiving pixels arranged in this way,
The final pixel array data is obtained by sequentially detecting S C and S D and interpolating the four types of detected image signals. Here, also for convenience of explanation, it is assumed that the light-receiving pixel apparently moves.

【0024】最終画素配列データを得るための補間処理
は、まず、図5(a)に示すように、各受光画素を右に
1.5画素ピッチ移動させ、これによりA画素を移動前
の初期配列のB画素とC画素の間、B画素を初期配列の
C画素と右側のA画素の間、C画素を初期配列の右側の
A画素の右にそれぞれ配列する。この後、図5(b)に
示すように、各受光画素を右に0.75画素ピッチでか
つ下に0.5画素ピッチの合成方向に移動させ、これに
よりA画素を初期配列の上下のC画素と前回の移動で配
列された上下のB画素の両者に跨った間、B画素を初期
配列の上下のA画素と前回の移動で配列された上下のC
画素の両者に跨った間、C画素を前回の移動で配列され
た上下のA画素の間に半分重なった状態でそれぞれ配列
する。さらに、図5(c)に示すように、各受光画素を
左に1.5画素ピッチ移動させ、これによりA画素を初
期配列の上下のB画素の間に半分重なった状態、B画素
を前々回の移動で配列された上下のA画素と初期配列の
上下のC画素の両者に跨った間、C画素を前々回の移動
で配列された上下のB画素と初期配列の上下のA画素の
両者に跨った間にそれぞれ配列する。
In the interpolation process for obtaining the final pixel array data, first, as shown in FIG. 5A, each light receiving pixel is moved to the right by 1.5 pixel pitches, whereby the A pixel is set to the initial state before the movement. The B pixel is arranged between the B pixel and the C pixel of the array, the B pixel is arranged between the C pixel of the initial array and the A pixel on the right side, and the C pixel is arranged on the right side of the A pixel on the right side of the initial array. After that, as shown in FIG. 5B, each light-receiving pixel is moved to the right in the combining direction of 0.75 pixel pitch and 0.5 pixel pitch downward, whereby the A pixel is positioned above and below the initial array. While straddling both the C pixel and the upper and lower B pixels arranged by the previous movement, the B pixel is the upper and lower A pixels of the initial arrangement and the upper and lower C pixels arranged by the previous movement.
While straddling both of the pixels, the C pixels are arranged in a state of being half-overlapped between the upper and lower A pixels arranged in the previous movement. Further, as shown in FIG. 5C, each light receiving pixel is moved to the left by 1.5 pixel pitches, whereby the A pixel is half-overlapped between the upper and lower B pixels of the initial array, and the B pixel is moved two times before. While straddling both the upper and lower A pixels arranged by the movement of C and the upper and lower C pixels of the initial arrangement, the C pixel becomes both the upper and lower B pixels arranged by the movement two times before and the upper and lower A pixels of the initial arrangement. Arrange each while straddling.

【0025】このように補間処理された最終画素配列デ
ータは、図5(d)に示すように、横方向の配列および
列方向の配列のいずれにおいても、同一画素が相互に隣
接し合うことがなく、ABCの画素配列の組み合わせの
配列となるばかりか、奇数列の画素配列と偶数列の画素
配列が0.5画素ピッチずれ、上下の3つの画素がすべ
て異なるABCの画素の組み合わせで三角形状に隣接し
合うことになる。すなわち、横方向の配列は、奇数列が
ACBの画素配列となり、偶数列がBACの画素配列と
なり、奇数列と偶数列が上下に三角形状に対応する3つ
づつの画素配列は、すべてABCの組合せの配列とな
る。このように配列された最終画素配列データを処理す
ることにより、第1実施形態と同様、輝度信号Yおよび
2種類の色差信号R−Y,B−Yが得られ、これらの信
号Y,R−Y,B−Yによって撮影した画像が図5
(d)に示す最終画素配列データの画素配列で再生され
る。
In the final pixel array data interpolated in this way, the same pixels may be adjacent to each other in both the horizontal array and the column array, as shown in FIG. 5D. Not only is the arrangement of combinations of ABC pixel arrangements, but the pixel arrangement of odd-numbered columns and the pixel arrangement of even-numbered columns are shifted by 0.5 pixel pitch, and the upper and lower three pixels are all in a triangular shape with a combination of ABC pixels. Will be adjacent to each other. That is, in the horizontal array, the odd-numbered columns are ACB pixel arrays, the even-numbered columns are BAC pixel arrays, and the three pixel arrays in which the odd-numbered columns and the even-numbered columns vertically correspond to the combination of ABC. Becomes an array of. By processing the final pixel array data arrayed in this way, a luminance signal Y and two types of color difference signals RY and BY are obtained as in the first embodiment, and these signals Y and R- are obtained. The images taken by Y and BY are shown in FIG.
It is reproduced with the pixel array of the final pixel array data shown in (d).

【0026】このような固体撮像装置では、第1実施形
態と同様の作用効果があるほか、4つの画像信号を補間
処理した最終画素配列データが、受光部2のABCの3
つの受光画素を1組とし、この1組の受光画素を見かけ
上、右に1.5画素ピッチ移動し、右に0.75画素ピ
ッチでかつ下に0.5画素ピッチの合成方向に移動し、
さらに左に1.5画素ピッチ移動してなる画素配列であ
るから、横方向の配列および列方向の配列のいずれにお
いても、同一画素が相互に隣接し合うことがなく、しか
も奇数列の画素配列と偶数列の画素配列が0.5画素ピ
ッチずれ、上下の3つの画素がすべて異なるABCの画
素の組み合わせで三角形状に隣接し合うことになり、こ
のため従来のように同一画素が局所的に密集することが
ないばかりか、列方向の配列においても同一画素が相互
に隣接し合うことがなく、しかも上下の3つの画素がす
べて異なるABCの画素の組み合わせで三角形状に隣接
し合うため、第1実施形態のものよりも、輝度信号Yの
解像度を高めることができるとともに、2種類の色差信
号R−Y,B−Yのデータ精度をより一層向上させるこ
とができ、固体撮像装置として十分な性能を確保するこ
とができる。
In such a solid-state image pickup device, the same effect as the first embodiment can be obtained, and the final pixel array data obtained by interpolating the four image signals is the ABC 3 of the light receiving section 2.
One light-receiving pixel is set as one set, and one set of light-receiving pixels is apparently moved to the right by 1.5 pixel pitch, and moved to the right at 0.75 pixel pitch and downward in the combination direction of 0.5 pixel pitch. ,
Further, since the pixel array is moved to the left by 1.5 pixel pitch, the same pixel is not adjacent to each other in both the horizontal array and the column array, and the pixel array of the odd column And the pixel array in the even-numbered column is shifted by 0.5 pixel pitch, and the upper and lower three pixels are all adjacent to each other in a triangular shape by a combination of different ABC pixels. In addition to not being densely packed, the same pixels are not adjacent to each other even in the arrangement in the column direction, and the upper and lower three pixels are all adjacent to each other in a triangular shape by a combination of different ABC pixels. The resolution of the luminance signal Y can be increased and the data accuracy of the two types of color difference signals R-Y and B-Y can be further improved as compared with the first embodiment. It is possible to secure a sufficient performance as a device.

【0027】なお、この発明の固体撮像装置は、静止画
を撮影する電子スチルカメラ、あるいは動画を撮影する
ビデオカメラや監視カメラなどの撮影機器に広く適用す
ることができる。
The solid-state image pickup device of the present invention can be widely applied to photographing equipment such as an electronic still camera for photographing a still image or a video camera or a surveillance camera for photographing a moving image.

【0028】[0028]

【発明の効果】以上説明したように、請求項1記載の発
明によれば、撮影する画像の複数のサンプル点を移動さ
せて受光部の1つの受光画素で順次検出し、この検出し
た複数のサンプル点の出力を移動位置に同期させて複数
の画像信号として形成することにより、集積度を変えず
に解像度を向上させる際に、複数の画像信号を補間処理
した最終画素配列データが、受光部の複数の受光画素を
1組としたとき、この1組の受光画素の組み合わせ配列
で、少なくとも横並び周期になる画素配列であるから、
最終画素配列データの横並び配列において同一画素が相
互に隣接し合うことがなく、このため従来のように同一
画素が局所的に密集することがないため、輝度信号の解
像度を十分に高めることができるとともに、補間処理し
た複数種類の画素が従来のものよりも緊密になるので、
色差信号のデータ精度を向上させることができ、これに
より固体撮像装置として十分な性能を得ることができ
る。
As described above, according to the first aspect of the present invention, a plurality of sample points of an image to be photographed are moved and sequentially detected by one light receiving pixel of the light receiving section, and the detected plurality of detected pixels are detected. When the output of the sample point is synchronized with the moving position and formed as a plurality of image signals, when the resolution is improved without changing the integration degree, the final pixel array data obtained by interpolating the plurality of image signals is the light receiving unit. When a plurality of light receiving pixels of is set as one set, the combination array of the one set of light receiving pixels is a pixel array having at least a horizontal arrangement period,
Since the same pixels are not adjacent to each other in the side-by-side arrangement of the final pixel arrangement data, and therefore the same pixels are not locally concentrated as in the conventional case, the resolution of the luminance signal can be sufficiently increased. At the same time, the interpolated multiple types of pixels will be closer than before, so
It is possible to improve the data accuracy of the color difference signals, and thereby obtain sufficient performance as a solid-state imaging device.

【0029】請求項3記載の発明によれば、最終画素配
列データが、1組の受光画素を見かけ上、斜め方向に順
次移動させる補間処理により、その1組の受光画素の組
み合わせ配列で、横方向および列方向に並んだ画素配列
であるから、最終画素配列データの横方向および列方向
のいずれの並びにおいても、同一画素が相互に隣接し合
うことがなく、このため請求項1記載の発明のものより
も、輝度信号および色差信号の精度が良く、固体撮像装
置としての性能をより一層、高めることができる。請求
項5記載の発明によれば、最終画素配列データが、1組
の受光画素を見かけ上、移動させる補間処理により、そ
の1組の受光画素の組み合わせ配列で、横並び周期で、
かつその横並び周期が奇数列と偶数列で0.5画素ピッ
チずれた画素配列であるから、最終画素配列データの横
並びにおいて、同一画素が相互に隣接し合うことがな
く、しかも横並び周期が奇数列と偶数列で0.5画素ピ
ッチずれていることにより、列方向の並びにおいても、
同一画素が完全に対応して隣接し合うことがなく、この
ため請求項3記載の発明と同様、輝度信号および色差信
号の精度が良く、固体撮像装置としての性能を高めるこ
とができる。
According to the third aspect of the invention, the final pixel array data is interpolated in such a manner that one set of light-receiving pixels is apparently sequentially moved in an oblique direction. Since the pixel arrays are arranged in the horizontal direction and the column direction, the same pixels are not adjacent to each other in any of the horizontal direction and the column direction of the final pixel array data. Therefore, the invention according to claim 1. The accuracy of the luminance signal and the color difference signal is better than that of the above, and the performance as a solid-state imaging device can be further enhanced. According to the invention described in claim 5, the final pixel array data is a combination array of the one set of light receiving pixels by an interpolation process of apparently moving one set of light receiving pixels, in a horizontal arrangement cycle,
In addition, since the pixel arrangement in which the horizontal arrangement period is shifted by 0.5 pixel pitch between the odd-numbered column and the even-numbered column, the same pixel is not adjacent to each other in the horizontal arrangement of the final pixel arrangement data, and the horizontal arrangement period is an odd-numbered column. And the even-numbered columns are shifted by 0.5 pixel pitch, even in the arrangement in the column direction,
Since the same pixel does not completely correspond to each other and are adjacent to each other, the accuracy of the luminance signal and the color difference signal is good, and the performance of the solid-state imaging device can be improved, as in the third aspect of the invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の固体撮像装置の構成図。FIG. 1 is a configuration diagram of a solid-state imaging device according to the present invention.

【図2】図1の受光部における1つの受光画素に対する
4つのサンプル点の対応関係を示した図。
FIG. 2 is a diagram showing a correspondence relationship of four sample points with respect to one light receiving pixel in the light receiving section of FIG.

【図3】この発明の第1実施形態の最終画素配列データ
の作成過程を示し、(a)は受光部にけるABC3つの
受光画素の配列状態を示した図、(b)は各画素を右に
1.5画素ピッチ移動させたときの画素の配列状態を示
した図、(c)はさらに各画素を下に0.5画素ピッチ
移動させたときの画素の配列状態を示した図、(d)は
さらに各画素を左に1.5画素ピッチ移動させたときの
画素の配列状態を示した図、(e)は最終画素配列デー
タの基本的な画素の配列状態を示した図。
3A and 3B show a process of creating final pixel array data according to the first embodiment of the present invention, FIG. 3A is a diagram showing an array state of three ABC light receiving pixels in a light receiving portion, and FIG. FIG. 6 is a diagram showing a pixel arrangement state when the pixel pixel is moved by 1.5 pixel pitch, FIG. 7C is a diagram showing a pixel arrangement state when each pixel is further moved downward by 0.5 pixel pitch, FIG. 7D is a diagram showing a pixel arrangement state when each pixel is further moved to the left by 1.5 pixel pitch, and FIG. 8E is a diagram showing a basic pixel arrangement state of final pixel arrangement data.

【図4】この発明の第2実施形態の最終画素配列データ
の作成過程を示し、(a)は受光部にけるABCD4つ
の受光画素の配列状態を示した図、(b)は各画素を右
に1画素ピッチでかつ上に0.5画素ピッチの合成方向
に移動させたときの画素の配列状態を示した図、(c)
はさらに各画素を右に0.5画素ピッチでかつ下に1画
素ピッチの合成方向に移動させたときの画素の配列状態
を示した図、(d)はさらに各画素を左に1画素ピッチ
でかつ下に0.5画素ピッチの合成方向に移動させたと
きの画素の配列状態を示した図、(e)は最終画素配列
データの基本的な画素の配列状態を示した図。
FIG. 4 shows a process of creating final pixel array data according to the second embodiment of the present invention, FIG. 4A is a diagram showing an array state of four ABCD light receiving pixels in a light receiving section, and FIG. FIG. 3C is a diagram showing an arrangement state of pixels when the pixel is moved in a combination direction of 1 pixel pitch and 0.5 pixel pitch upward, FIG.
Is a diagram showing an arrangement state of pixels when the pixels are further moved to the right by 0.5 pixel pitch and downward in the combining direction of 1 pixel pitch, and (d) further shows that each pixel is moved to the left by 1 pixel pitch. And (e) is a diagram showing a basic pixel arrangement state of the final pixel arrangement data when the pixel is moved downward in the combining direction of 0.5 pixel pitch.

【図5】この発明の第3実施形態の最終画素配列データ
の作成過程を示し、(a)は各画素を右に1.5画素ピ
ッチ移動させたときの画素の配列状態を示した図、
(b)はさらに各画素を右に0.75画素ピッチでかつ
下に0.5画素ピッチの合成方向に移動させたときの画
素の配列状態を示した図、(c)はさらに各画素を左に
1.5画素ピッチ移動させたときの画素の配列状態を示
した図、(d)は最終画素配列データの基本的な画素の
配列状態を示した図。
FIG. 5 is a diagram showing a process of creating final pixel array data according to the third embodiment of the present invention, FIG. 5A is a diagram showing an array state of pixels when each pixel is moved to the right by 1.5 pixel pitch;
(B) is a diagram showing an arrangement state of pixels when the pixels are further moved to the right in a combination direction of 0.75 pixel pitch and 0.5 pixel pitch downward, and (c) further shows each pixel. The figure which shows the pixel arrangement state when it is moved to the left by 1.5 pixel pitch, and (d) is the figure which shows the basic pixel arrangement state of the final pixel arrangement data.

【図6】従来の最終画素配列データの作成過程を示し、
(a)は受光部にけるABC3つの受光画素の配列状態
を示した図、(b)は各画素を右に0.5画素ピッチ移
動させたときの画素の配列状態を示した図、(c)はさ
らに各画素を下に0.5画素ピッチ移動させたときの画
素の配列状態を示した図、(d)はさらに各画素を左に
0.5画素ピッチ移動させたときの画素の配列状態を示
した図、(e)は最終画素配列データの基本的な画素の
配列状態を示した図。
FIG. 6 shows a conventional process of creating final pixel array data,
(A) is a diagram showing an array state of three ABC light-receiving pixels in a light receiving section, (b) is a diagram showing an array state of pixels when each pixel is moved to the right by 0.5 pixel pitch, (c) 8D is a diagram showing an arrangement state of pixels when each pixel is further moved downward by 0.5 pixel pitch, and FIG. 8D is an arrangement of pixels when each pixel is further moved to the left by 0.5 pixel pitch. The figure which showed the state, (e) is the figure which showed the basic pixel arrangement | positioning state of final pixel arrangement | sequence data.

【符号の説明】[Explanation of symbols]

2 受光部 4 位置変位機構 A、B、C、D 受光画素 SA、SB、SC、SD サンプル点2 Light receiving part 4 Position displacement mechanism A, B, C, D Light receiving pixel S A , S B , S C , S D Sample point

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】受光画素が配列された受光部で撮影する画
像の多数のサンプル点を検出する際、前記画像の複数の
サンプル点を位置変位手段によって移動させて前記受光
部の1つの受光画素で順次検出し、この検出した前記複
数のサンプル点の出力を前記位置変位手段による移動位
置に同期させて複数の画像信号として形成する固体撮像
装置において、 前記複数の画像信号を補間処理した最終画素配列データ
が、前記受光部の複数の受光画素を1組としたとき、こ
の1組の受光画素の組み合わせ配列で、少なくとも横並
び周期になる画素配列であることを特徴とする固体撮像
装置。
1. When detecting a large number of sample points of an image captured by a light receiving section in which light receiving pixels are arranged, a plurality of sample points of the image are moved by a position displacing means to obtain one light receiving pixel of the light receiving section. In the solid-state imaging device that sequentially detects the output of the plurality of detected sample points and forms a plurality of image signals in synchronization with the movement position by the position displacement means, the final pixel obtained by interpolating the plurality of image signals. A solid-state imaging device, wherein the array data is a pixel array having at least a side-by-side cycle in a combined array of the one set of light-receiving pixels when a plurality of light-receiving pixels of the light-receiving unit is set as one set.
【請求項2】前記最終画素配列データは、前記受光部の
横並び3つの受光画素を1組としたとき、この1組の受
光画素を見かけ上、右に1.5画素ピッチ移動し、下に
0.5画素ピッチ移動し、さらに左に1.5画素ピッチ
移動してなる画素配列であることを特徴とする請求項1
記載の固体撮像装置。
2. The final pixel array data is such that, when three light receiving pixels arranged side by side in the light receiving unit are set as one set, the one set of light receiving pixels is apparently moved to the right by 1.5 pixel pitch and is moved downward. 2. A pixel array which is moved by 0.5 pixel pitch and further moved by 1.5 pixel pitch to the left.
The solid-state imaging device according to claim 1.
【請求項3】前記最終画素配列データは、前記1組の受
光画素を見かけ上、斜め方向に順次移動させる補間処理
により、前記1組の受光画素の組み合わせ配列で、横方
向および列方向のそれぞれに並んだ画素配列であること
を特徴とする請求項1記載の固体撮像装置。
3. The final pixel array data is a combination array of the one set of light-receiving pixels in each of a horizontal direction and a column direction by an interpolation process for apparently sequentially moving the one set of light-receiving pixels in an oblique direction. The solid-state imaging device according to claim 1, wherein the solid-state imaging device has a pixel array arranged in line.
【請求項4】前記最終画素配列データは、前記受光部の
横方向および列方向にそれぞれ2つづつ並んだ4つの受
光画素を1組としたとき、この1組の受光画素を見かけ
上、右に1画素ピッチでかつ上に0.5画素ピッチの合
成方向に移動し、右に0.5画素ピッチでかつ下に1画
素ピッチの合成方向に移動し、さらに左に1画素ピッチ
でかつ下に0.5画素ピッチの合成方向に移動してなる
画素配列であることを特徴とする請求項3記載の固体撮
像装置。
4. The final pixel array data has a set of four light-receiving pixels arranged in the lateral direction and two in the column direction of the light-receiving unit as one set, and the one set of light-receiving pixels is apparently right. 1 pixel pitch upward and 0.5 pixel pitch upward in the combining direction, 0.5 pixel pitch rightward and 1 pixel pitch downward in the combining direction, and 1 pixel pitch downward and downward. 4. The solid-state imaging device according to claim 3, wherein the solid-state imaging device has a pixel array formed by moving in a combination direction of 0.5 pixel pitch.
【請求項5】前記最終画素配列データは、前記1組の受
光画素を見かけ上、順次移動させる補間処理により、前
記1組の受光画素の組み合わせ配列で、横並び周期で、
かつその横並び周期が奇数列と偶数列で0.5画素ピッ
チずれた画素配列であることを特徴とする請求項1記載
の固体撮像装置。
5. The final pixel array data is a combination array of the one set of light receiving pixels in a side-by-side cycle by an interpolation process of apparently moving the one set of light receiving pixels in sequence.
2. The solid-state image pickup device according to claim 1, wherein the horizontal array period is a pixel array in which odd-numbered columns and even-numbered columns are shifted by 0.5 pixel pitch.
【請求項6】前記最終画素配列データは、前記受光部の
横並び3つの受光画素を1組としたとき、この1組の受
光画素を見かけ上、右に1.5画素ピッチ移動し、右に
0.75画素ピッチでかつ下に0.5画素ピッチの合成
方向に移動し、さらに左に1.5画素ピッチ移動してな
る画素配列であることを特徴とする請求項5記載の固体
撮像装置。
6. The final pixel array data is such that, when three light-receiving pixels arranged side by side in the light-receiving section are set as one set, the one set of light-receiving pixels is apparently moved to the right by 1.5 pixel pitch and to the right. 6. The solid-state imaging device according to claim 5, wherein the pixel array has a pixel pitch of 0.75 pixel pitch and is moved downward in a combining direction of 0.5 pixel pitch, and further moved to the left by 1.5 pixel pitch. .
【請求項7】前記位置変位手段は、前記画像と前記受光
部との間の光軸上に配置された透明な平行平面板と、こ
の平行平面板を光軸に対し3次元的に傾斜させる変位素
子とからなることを特徴とする請求項1〜6のいずれか
に記載の固体撮像装置。
7. The position displacing means has a transparent plane-parallel plate disposed on the optical axis between the image and the light-receiving unit, and tilts the plane-parallel plate three-dimensionally with respect to the optical axis. The solid-state imaging device according to claim 1, comprising a displacement element.
【請求項8】前記受光画素の開口率Qは、前記受光画素
の見かけ上の移動回数をNとしたとき、 Q=(1/N)×100% に設定されていることを特徴とする請求項1〜7のいず
れかに記載の固体撮像装置。
8. The aperture ratio Q of the light receiving pixels is set to Q = (1 / N) × 100%, where N is the apparent number of movements of the light receiving pixels. Item 7. The solid-state imaging device according to any one of items 1 to 7.
JP06745096A 1996-02-29 1996-02-29 Solid-state imaging device Expired - Fee Related JP3680410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06745096A JP3680410B2 (en) 1996-02-29 1996-02-29 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06745096A JP3680410B2 (en) 1996-02-29 1996-02-29 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH09238356A true JPH09238356A (en) 1997-09-09
JP3680410B2 JP3680410B2 (en) 2005-08-10

Family

ID=13345283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06745096A Expired - Fee Related JP3680410B2 (en) 1996-02-29 1996-02-29 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3680410B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057916A1 (en) * 2003-12-11 2005-06-23 Lg Electronics, Inc. Display device and display method
WO2005057918A1 (en) * 2003-12-11 2005-06-23 Lg Electronics, Inc. Actuator for improvement of resolution
WO2005117428A1 (en) * 2004-05-27 2005-12-08 Lg Electronics, Inc. Display device
WO2005117429A1 (en) * 2004-05-27 2005-12-08 Lg Electronics, Inc. Display device
WO2005120056A1 (en) * 2004-06-01 2005-12-15 Lg Electronics,Inc. Dispositif d'affichage
WO2005120057A1 (en) * 2004-06-01 2005-12-15 Lg Electronics, Inc. Display device
WO2005122560A1 (en) * 2004-06-14 2005-12-22 Lg Electronics,Inc Display device
JP2009079987A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Method and device for measuring distance
JP2009079988A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Method and device for measuring distance and imaging element used for same
JP2009085706A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Apparatus and method for distance measurement and program
JP2009085705A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Apparatus and method for distance measurement and program

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057916A1 (en) * 2003-12-11 2005-06-23 Lg Electronics, Inc. Display device and display method
WO2005057918A1 (en) * 2003-12-11 2005-06-23 Lg Electronics, Inc. Actuator for improvement of resolution
WO2005057917A1 (en) * 2003-12-11 2005-06-23 Lg Electronics, Inc. Actuator for improvement of resolution
WO2005117428A1 (en) * 2004-05-27 2005-12-08 Lg Electronics, Inc. Display device
WO2005117429A1 (en) * 2004-05-27 2005-12-08 Lg Electronics, Inc. Display device
WO2005120056A1 (en) * 2004-06-01 2005-12-15 Lg Electronics,Inc. Dispositif d'affichage
WO2005120057A1 (en) * 2004-06-01 2005-12-15 Lg Electronics, Inc. Display device
WO2005122560A1 (en) * 2004-06-14 2005-12-22 Lg Electronics,Inc Display device
JP2009079987A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Method and device for measuring distance
JP2009079988A (en) * 2007-09-26 2009-04-16 Fujifilm Corp Method and device for measuring distance and imaging element used for same
JP2009085706A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Apparatus and method for distance measurement and program
JP2009085705A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Apparatus and method for distance measurement and program

Also Published As

Publication number Publication date
JP3680410B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
US5907434A (en) Image pickup apparatus
US6236430B1 (en) Color still image sensing apparatus and method
RU2490715C1 (en) Image capturing device
JPH02210996A (en) Color solid-state image pickup device
JPH09238356A (en) Solid-state image pickup device
JP5597777B2 (en) Color imaging device and imaging apparatus
CN101884215A (en) Pixel shift type imaging device
JP3523667B2 (en) Compound eye optical system
JPH09219867A (en) Still color picture image pickup device and its method
JP2003005315A (en) Stereoscopic image photographing device
JPH06261236A (en) Image pickup device
JP3134820B2 (en) Imaging method and imaging device
US6400402B1 (en) Highly precise image pickup apparatus with apertures offset from a lenter
JP4332906B2 (en) Line sensor camera
JP5357688B2 (en) Adjustment device for reference image display device, adjustment device for imaging device, and adjustment device for display device
JPS60134675A (en) Solid-state image pickup device and its manufacture
JPS6041510B2 (en) solid-state imaging plate
KR100263425B1 (en) Highly precise image pickup apparatus
JPH0691601B2 (en) Image input device using solid-state image sensor
JPH0496585A (en) Picture input device
JPH07261120A (en) Manufacture of lenticular display
JPH0548979A (en) Image pickup device
JPH0955885A (en) Image pickup device
JPH066686A (en) Image pickup device
JPH0319480A (en) Image pickup device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees