JPH0923677A - Dc linear motor - Google Patents

Dc linear motor

Info

Publication number
JPH0923677A
JPH0923677A JP7169415A JP16941595A JPH0923677A JP H0923677 A JPH0923677 A JP H0923677A JP 7169415 A JP7169415 A JP 7169415A JP 16941595 A JP16941595 A JP 16941595A JP H0923677 A JPH0923677 A JP H0923677A
Authority
JP
Japan
Prior art keywords
current
converter
speed control
mode
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7169415A
Other languages
Japanese (ja)
Other versions
JP2988853B2 (en
Inventor
Koichi Matsuoka
孝一 松岡
Masaaki Ono
正明 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Railway Technical Research Institute
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Railway Technical Research Institute
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Railway Technical Research Institute, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7169415A priority Critical patent/JP2988853B2/en
Publication of JPH0923677A publication Critical patent/JPH0923677A/en
Application granted granted Critical
Publication of JP2988853B2 publication Critical patent/JP2988853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Control Of Linear Motors (AREA)
  • Linear Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate the generation of an overvoltage when narrowing the current value of a converter down to about zero, and to reduce the size of a DC reactor, in a speed control method of a DC linear motor whose thrust is controlled by the control of the energization current of the converter. SOLUTION: An FF inverter 14 for commutating the output current of a converter 11 to the respective phases of an armature coil 15 provided on the ground side responding to the relative position of a mobile body to the armature coil 15 is provided. A speed control system 19 outputs the speed control output responding to the preset speed value of the mobile body and its sensed speed value, and the lower limit of this output is restricted by a limiter 22 to give a current command to a current control system 13 and then to restrict the lower limit of the current of the converter 11. A commutation-phase-angle selecting portion 21A switches, responding to the acceleration and deceleration of the mobile body which are decided from the variational direction of its speed control output, the commutation-phase-angle of the FF converter 14 from the acceleration mode of zero in electrical angle to the deceleration mode of πin electrical angle via the coasting mode of π/2 in electrical angle, and vice versa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直流リニアモータに係
り、特に地上側の電機子コイルに対する移動体側の界磁
磁石位置(電気角)を検出して移動体の速度制御を行う
速度制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC linear motor, and more particularly to a speed control system for detecting the position of a field magnet (electrical angle) on the moving body side with respect to an armature coil on the ground side to control the speed of the moving body. Regarding

【0002】[0002]

【従来の技術】図6は、直流リニアモータの基本構成で
ある。地上側の電機子コイル1は、1つ飛びに直列接続
し、第1相コイルと第2相コイルを構成する。直流定電
流変換装置(コンバータ)2からの直流電流はフリップ
・フロップ・インバータ(FFインバータ)3によっ
て、移動体側の界磁磁石(電磁石又は永久磁石)4の位
置に対応して第1相コイルと第2相コイルに交互に振り
分け、一方向に断続する矩形波状の電流として地上側の
電機子コイル1に供給する。
2. Description of the Related Art FIG. 6 shows a basic structure of a DC linear motor. The armature coils 1 on the ground side are connected in series one by one to form a first phase coil and a second phase coil. The DC current from the DC constant current converter (converter) 2 is fed to the first phase coil by the flip-flop inverter (FF inverter) 3 in correspondence with the position of the field magnet (electromagnet or permanent magnet) 4 on the moving body side. The current is alternately distributed to the second phase coil and supplied to the ground side armature coil 1 as a rectangular wave-shaped current which is intermittent in one direction.

【0003】地上側の電機子コイル1の電流は、常に一
方向に流れるため、界磁磁石4は電機子コイル1の縦辺
との間で推力を得ることができる。また、界磁磁石4の
磁束が電機子コイル1の水平辺に同時に鎖交するような
位置関係にしておくと、界磁磁石4は推力と同時に浮上
力を得ることができる。
Since the current of the armature coil 1 on the ground side always flows in one direction, the field magnet 4 can obtain thrust between it and the vertical side of the armature coil 1. Further, if the magnetic field of the field magnet 4 is set such that the magnetic flux of the field magnet 4 is linked to the horizontal side of the armature coil 1 at the same time, the field magnet 4 can obtain the levitation force at the same time as the thrust force.

【0004】直流定電流変換装置2は、出力電流を一定
にすることによって、電機子コイル1の電流の切換タイ
ミングの制御のみで浮上力一定のまま加速、惰行、制動
の制御を行うことができる。これに対応して直流定電流
変換装置2の負荷電圧は正負の範囲で変化し、電力の供
給と回生が自動的に行われる。
The DC constant current converter 2 can perform acceleration, coasting, and braking control with the levitation force kept constant by only controlling the switching timing of the current of the armature coil 1 by keeping the output current constant. . Corresponding to this, the load voltage of the DC constant current converter 2 changes within the range of positive and negative, and power supply and regeneration are automatically performed.

【0005】直流リニアモータの推力は、供給電流一定
のままFFインバータ3の転流位相によって制御する。
図7に示す電機子コイル1と界磁磁石4の位置関係にお
いて、電気角θで電機子コイルに通流し、電気角(π+
θ)で切ると、界磁磁石4は電気角θ〜πの間で推力
を、電気角π〜(π+θ)の間で制動力を受ける。
The thrust of the DC linear motor is controlled by the commutation phase of the FF inverter 3 while keeping the supply current constant.
In the positional relationship between the armature coil 1 and the field magnet 4 shown in FIG. 7, the current flows through the armature coil at an electrical angle θ, and the electrical angle (π +
When it is cut at θ), the field magnet 4 receives a thrust force in the electrical angle θ to π and a braking force in the electrical angle π to (π + θ).

【0006】従って、θ〜(π+θ)間に生じる平均推
力は電気角θによって調整できる。この電気角θをFF
インバータの転流位相角としたときの推力との関係は図
8に示す特性になる。同図中、Fmは電機子コイルの縦
辺長L等で決まる最大推力を示し、転流位相角θを零
(電気角0〜πまで通流)にするときは推力がFmにな
り、π/2とする場合に推力が零になり、πとするとき
は推力が−Fmとなることを示す。
Therefore, the average thrust generated between θ and (π + θ) can be adjusted by the electrical angle θ. This electrical angle θ is FF
The relationship with the thrust when the commutation phase angle of the inverter has the characteristics shown in FIG. In the figure, F m represents the maximum thrust determined by the longitudinal side length L of the armature coil, etc. When the commutation phase angle θ is set to zero (electric current flows from 0 to π), the thrust becomes F m . , Π / 2, the thrust becomes zero, and when π, the thrust becomes −F m .

【0007】上記のことから、推力を連続的に変化させ
るためには、転流する位相角を位置検出信号から算出し
て連続的に変化させる必要がある。
From the above, in order to continuously change the thrust, it is necessary to calculate the commutating phase angle from the position detection signal and continuously change it.

【0008】図9は、従来の制御方式を示すブロック図
である。コンバータ11と直流リアクトル12によって
直流定電流を得る。この定電流制御は、必要な浮上力に
応じた設定電流Isetと検出電流の偏差を比例積分演算
する電流制御系13により自動制御される。
FIG. 9 is a block diagram showing a conventional control method. A constant DC current is obtained by the converter 11 and the DC reactor 12. This constant current control is automatically controlled by the current control system 13 which performs proportional integral calculation of the deviation between the set current I set according to the required levitation force and the detected current.

【0009】FFインバータ14の転流制御は、電機子
コイル15に対する界磁磁石16の位置を位置検出器1
7で検出し、この位置変化率から速度検出器18に速度
検出を得、設定速度Vsetと検出速度から速度制御系1
9によって偏差を比例積分演算して加速又は減速の制御
信号を得、これを推力指令として転流位相角演算部20
が位置検出器17の位置信号から必要な転流位相角θを
求める。
In the commutation control of the FF inverter 14, the position of the field magnet 16 relative to the armature coil 15 is detected by the position detector 1.
7, the speed detection is obtained by the speed detector 18 from the position change rate, and the speed control system 1 is obtained from the set speed V set and the detected speed.
9, the deviation is proportionally integrated to obtain a control signal for acceleration or deceleration, and the commutation phase angle calculation unit 20 is used as a thrust command.
Calculates the required commutation phase angle θ from the position signal of the position detector 17.

【0010】なお、電機子コイルを多相とするときは、
各相の電機子コイルを直列配置し、FFインバータは、
界磁磁石の位置に応じて各相への電流切換を順次行い、
また速度制御系の推力指令に応じて転流位相角を演算調
整する。
When the armature coil has multiple phases,
Armature coils of each phase are arranged in series, and the FF inverter is
The current is switched to each phase sequentially according to the position of the field magnet,
Further, the commutation phase angle is calculated and adjusted according to the thrust command of the speed control system.

【0011】また、FFインバータ3(14)に代え
て、図10に示すように、単相ブリッジ形インバータ3
A、さらには3相ブリッジ形インバータとする場合もあ
る。
Further, instead of the FF inverter 3 (14), as shown in FIG.
In some cases, A, or a three-phase bridge type inverter may be used.

【0012】[0012]

【発明が解決しようとする課題】従来の制御方式では、
浮上力と推力を同時に得るため、コンバータ11の通電
電流を一定にして浮上力を確保し、インバータ14の転
流角を制御して推力を調整する。
In the conventional control method,
In order to obtain the levitation force and the thrust force at the same time, the current supplied to the converter 11 is kept constant to secure the levitation force, and the commutation angle of the inverter 14 is controlled to adjust the thrust force.

【0013】しかし、転流位相角θは、移動体の速度に
よって電機子コイルの端(0rad)からの時間が変化
し、さらに加速度による補間をかける必要がある。ま
た、移動体の加減速の状況によってθ自体も変わってし
まうため、転流位相角演算部20での演算にかなり複雑
な演算処理を必要とする問題があった。
However, the commutation phase angle θ changes from the end (0 rad) of the armature coil depending on the speed of the moving body, and it is necessary to perform interpolation by acceleration. Further, since θ itself also changes depending on the acceleration / deceleration status of the moving body, there is a problem that the commutation phase angle calculation unit 20 requires considerably complicated calculation processing.

【0014】また、推力を不要とする場合にも浮上力発
生のために電機子コイルには定電流通電しており、電力
損失が発生する。
Further, even when the thrust is unnecessary, a constant current is applied to the armature coil to generate the levitation force, resulting in power loss.

【0015】これら課題を解決する方式として、図11
に示す制御方式を本願出願人は既に提案している。
As a method for solving these problems, FIG.
The applicant of the present application has already proposed the control method shown in FIG.

【0016】速度制御系19の演算結果は電流制御系1
3の電流指令にされ、コンバータ11の電流制御により
速度制御がなされる。
The calculation result of the speed control system 19 is the current control system 1.
3 is used as the current command, and the speed is controlled by the current control of the converter 11.

【0017】転流位相角選択部21は、速度制御系19
の速度偏差出力の増減に応じて加速と減速の判定をし、
この判定と現在の転流位相角からFFインバータ14の
転流位相角を零(最大推力)又はπ(最大減速力)に切
り換える。
The commutation phase angle selector 21 includes a speed control system 19
Acceleration and deceleration are judged according to the increase or decrease of the speed deviation output of
Based on this determination and the current commutation phase angle, the commutation phase angle of the FF inverter 14 is switched to zero (maximum thrust) or π (maximum deceleration force).

【0018】また、加速と減速の判定から電流制御系1
3の制御位相を切り換え(極性切換)、加速時にはコン
バータ11から電機子コイル15への電流供給とし、減
速時には電機子コイル15からコンバータ11への回生
に切り換える。
In addition, the current control system 1 is determined from the acceleration and deceleration judgments.
The control phase of 3 is switched (polarity switching), current is supplied from the converter 11 to the armature coil 15 during acceleration, and regeneration is switched from the armature coil 15 to the converter 11 during deceleration.

【0019】この方式は、直流リニアモータを推力専用
とする。これにより、コンバータ11の電流を一定にす
ることを不要にし、コンバータ11からの供給電流を速
度制御系19の出力で制御することにより推力又は制動
力を調整する。
In this system, the DC linear motor is dedicated to thrust. Accordingly, it is not necessary to keep the current of the converter 11 constant, and the thrust or the braking force is adjusted by controlling the current supplied from the converter 11 with the output of the speed control system 19.

【0020】また、推力をコンバータ11の電流で調整
できることからインバータ14の転流位相角の演算及び
調整も不要になり、転流位相角演算部20に代えた転流
位相角選択部21では加速又は減速に応じて最大推力が
得られる電気角0又は最大制動力が得られる電気角πの
モードの選択切換で済む簡単な演算になる。
Further, since the thrust can be adjusted by the current of the converter 11, it is not necessary to calculate and adjust the commutation phase angle of the inverter 14, and the commutation phase angle selector 21 instead of the commutation phase angle calculator 20 accelerates. Alternatively, it is a simple calculation that can be performed by selectively switching the mode of the electrical angle 0 at which the maximum thrust is obtained or the electrical angle π at which the maximum braking force is obtained according to deceleration.

【0021】また、電流制御で推力の調整を行うため、
電機子コイル抵抗による損失を従来の定電流駆動方式に
比べて低減できると共にコイルの温度上昇も少なくな
る。
Since the thrust is adjusted by the current control,
The loss due to the armature coil resistance can be reduced as compared with the conventional constant current drive system, and the temperature rise of the coil is also reduced.

【0022】上記の方式においては、速度制御にはコン
バータ11の電流を制御するが、加速も減速も必要とし
ない惰行運転のために電流値を零近くまで絞るとリップ
ル分によって電流の断続が発生し、直流リアクトル12
の電流遮断で過電圧が発生し、コンバータやインバータ
のスイッチ素子を破損する恐れがある。
In the above method, the current of the converter 11 is controlled for speed control, but if the current value is narrowed to near zero for coasting operation that does not require acceleration or deceleration, the current is intermittent due to ripple. DC Reactor 12
If the current is cut off, an overvoltage may occur, which may damage the switching elements of the converter or inverter.

【0023】また、リップル分を低減させてコンバータ
の電流制御範囲(速度制御範囲)を零近くまで拡大する
ためには、直流リアクトル12のインダクタンスを大き
くしてリップル分を抑制する必要があるが、これは直流
リアクトルが大形になってそのコスト・寸法・損失の点
で問題がある。
Further, in order to reduce the ripple component and expand the current control range (speed control range) of the converter to near zero, it is necessary to increase the inductance of the DC reactor 12 to suppress the ripple component. This is problematic in terms of cost, size, and loss due to the large size of the DC reactor.

【0024】本発明の目的は、コンバータの通電電流の
制御により推力を制御する速度制御方式において、コン
バータの電流値を零近くに絞ったときの過電圧の発生を
無くした直流リニアモータを提供することにある。
An object of the present invention is to provide a DC linear motor which eliminates the occurrence of overvoltage when the current value of the converter is reduced to near zero in a speed control system in which the thrust is controlled by controlling the current flowing through the converter. It is in.

【0025】本発明の他の目的は、速度制御範囲を零ま
で拡大しながら直流リアクトルの小型化を可能にする直
流リニアモータを提供することにある。
Another object of the present invention is to provide a DC linear motor which enables downsizing of the DC reactor while expanding the speed control range to zero.

【0026】[0026]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、地上側に配置した電機子コイルと、移動
体に設けられ前記電機子コイルの電流によって推力を発
生する界磁磁石と、直流電流を制御できる電流制御系を
持つコンバータと、このコンバータの出力電流を前記界
磁磁石の位置に応じて電機子コイルの各相に転流するイ
ンバータとを備えた直流リニアモータにおいて、前記移
動体の速度設定値と速度検出値の偏差に応じた速度制御
出力を得る速度制御系と、前記速度制御出力を電流指令
としかつ下限値を制限するリミッタを有して前記コンバ
ータの出力電流を制御する電流制御系と、前記速度制御
出力の増減方向から判定する加速と減速に応じて前記イ
ンバータの転流位相角を電気角零の加速モードと電気角
πの減速モードを電気角π/2の惰行モードを経由して
切り換えかつ前記電流制御系を供給と回生に切り換える
転流位相角選択部とを備えたことを特徴とする直流リニ
アモータ。
In order to solve the above-mentioned problems, the present invention provides a field magnet which is arranged on the ground side and a field magnet which is provided in a moving body and generates thrust by the current of the armature coil. In a DC linear motor including a converter having a current control system capable of controlling a DC current, and an inverter that commutates an output current of the converter to each phase of an armature coil according to the position of the field magnet, An output current of the converter having a speed control system for obtaining a speed control output according to a deviation between the speed setting value of the moving body and a speed detection value, and a limiter for setting the speed control output as a current command and limiting a lower limit value. And a current control system for controlling the commutation phase angle of the inverter in accordance with the acceleration and deceleration determined from the increase / decrease direction of the speed control output in an acceleration mode of electrical angle zero and a deceleration mode of electrical angle π. DC linear motor, characterized in that a commutation phase angle selection unit for switching the switching and the current control system via the coasting mode of the air angle [pi / 2 to regeneration and the supply.

【0027】[0027]

【作用】本発明は、直流リニアモータを推力専用とし、
コンバータの通電電流の制御により推力を制御する速度
制御方式において、電流制御系の下限値をリミッタで制
限することにより、コンバータの出力電流を絞ったとき
にリップルによる電流遮断を無くし、過電圧発生を防止
する。
In the present invention, the DC linear motor is dedicated to thrust,
In the speed control method that controls the thrust by controlling the energizing current of the converter, by limiting the lower limit value of the current control system with a limiter, the current interruption due to ripple is eliminated when the output current of the converter is narrowed down, and the overvoltage is prevented. To do.

【0028】インバータの運転に惰行モードを設けるこ
とにより、コンバータの出力電流の下限値制限にも速度
制御範囲を零まで拡大する。
By providing the coasting mode for the operation of the inverter, the speed control range is expanded to zero even for the lower limit value of the output current of the converter.

【0029】コンバータの電流を下限値に制限すること
により、直流リアクトルのインダクタンスを比較的小さ
くした小形化を可能にする。
By limiting the converter current to the lower limit, it is possible to reduce the size of the DC reactor by making it relatively small in inductance.

【0030】加速と減速のモード切り換えは、惰行モー
ドを経由させることにより、リミッタによる出力電流の
非線形変化によるトルクショックを緩和する。
By switching the mode between acceleration and deceleration through the coasting mode, the torque shock due to the non-linear change of the output current by the limiter is alleviated.

【0031】[0031]

【実施例】図1は、本発明の一実施例を示すブロック図
であり、図11と同じ部分は同一符号で示す。
1 is a block diagram showing an embodiment of the present invention, in which the same parts as in FIG. 11 are designated by the same reference numerals.

【0032】速度制御系19の演算結果は、電流制御系
13の入力段になるリミッタ22により下限値が制限さ
れて電流制御系13の電流指令にされる。このリミッタ
22の下限値A0は、設定器23により設定される。な
お、リミッタ22は、電流制御系13の出力を制限する
構成でも良い。
The lower limit value of the calculation result of the speed control system 19 is limited by the limiter 22 which is the input stage of the current control system 13, and is used as the current command of the current control system 13. The lower limit value A 0 of the limiter 22 is set by the setter 23. The limiter 22 may be configured to limit the output of the current control system 13.

【0033】図2は、リミッタ22の制御特性を示し、
速度制御系19からの出力になる加速又は減速の電流指
令が下限値A0以下ではその値A0に制限する。これによ
り、コンバータ11の電流の下限値が値A0に制限され
る。
FIG. 2 shows the control characteristics of the limiter 22,
When the current command for acceleration or deceleration output from the speed control system 19 is equal to or lower than the lower limit value A 0 , the value is limited to the value A 0 . As a result, the lower limit value of the current of converter 11 is limited to value A 0 .

【0034】次に、転流位相角選択部21Aは、速度制
御系19の速度制御出力の増減に応じた加速と減速を判
定してその運転モードを切り換える他に、設定器23か
らの下限値A0と速度制御出力を比較し、速度制御出力
が下限値A0以下になるときに惰行モードに切り換え
る。
Next, the commutation phase angle selection unit 21A determines acceleration and deceleration according to the increase or decrease of the speed control output of the speed control system 19 and switches the operation mode, and the lower limit value from the setter 23. A 0 is compared with the speed control output, and when the speed control output becomes the lower limit value A 0 or less, the coasting mode is switched to.

【0035】図3は、転流位相角選択部21Aのモード
選択特性を示し、速度制御系19からの出力に応じて加
速モード(転流位相角0)と減速モード(転流位相角
π)の切り換えを行ったFFインバータ14の制御を行
い、下限値A0以下になるときは惰行モード(転流位相
角π/2)に切り換え、推力を零にする。
FIG. 3 shows the mode selection characteristics of the commutation phase angle selection section 21A, and shows the acceleration mode (commutation phase angle 0) and deceleration mode (commutation phase angle π) according to the output from the speed control system 19. The FF inverter 14 that has been switched over is controlled, and when the lower limit value A 0 or less is reached, the coasting mode (commutation phase angle π / 2) is switched over and the thrust is made zero.

【0036】したがって、本実施例の制御特性は、図4
に示すように、速度制御系19からの速度指令出力が下
限値A0以下にあるときは惰行モードで運転され、コン
バータ11の出力は下限値A0に応じた低い電流出力を
維持し、FFインバータ14はπ/2の転流位相角で運
転されて推力が零になる。
Therefore, the control characteristic of this embodiment is shown in FIG.
As shown in, when the speed command output from the speed control system 19 is equal to or lower than the lower limit value A 0 , the operation is performed in the coasting mode, and the output of the converter 11 maintains a low current output according to the lower limit value A 0 , and FF The inverter 14 is operated at a commutation phase angle of π / 2 and the thrust becomes zero.

【0037】これにより、コンバータ11の最小電流
は、下限値A0に制限され、コンバータ11の電流が小
さくなり過ぎてリップルによる電流遮断を起こすのを防
止でき、直流リアクトル12による過電圧の発生を無く
すことができる。
As a result, the minimum current of the converter 11 is limited to the lower limit value A 0 , the current of the converter 11 is prevented from becoming too small, and the current interruption due to the ripple can be prevented, and the generation of the overvoltage by the DC reactor 12 is eliminated. be able to.

【0038】これに伴い、コンバータ11の出力電流に
は比較的大きなリップル分が許容されることから、直流
リアクトル12のインダクタンスを大きくすることを不
要にし、そのコスト・寸法・損失の点で有利となる。
As a result, a relatively large ripple is allowed in the output current of the converter 11, so that it is unnecessary to increase the inductance of the DC reactor 12, which is advantageous in terms of cost, size, and loss. Become.

【0039】また、インバータの運転に惰行モードを設
けることにより、コンバータを下限値に制限するも速度
制御範囲を零まで拡大した運転が可能となる。
Further, by providing the coasting mode for the operation of the inverter, the speed control range can be expanded to zero even though the converter is limited to the lower limit value.

【0040】図5は、転流位相角選択部21Aのモード
選択フローチャートを示す。転流位相角選択部21A
は、速度制御系19の出力が加速(前回値よりも今回値
が増加)に有るか否かで加速の要否を判定し(ステップ
S1)、減速(前回値よりも今回値が減少)に有るか否
かで減速の要否を判定する(ステップS2)。
FIG. 5 shows a mode selection flowchart of the commutation phase angle selection unit 21A. Commutation phase angle selector 21A
Determines whether or not acceleration is necessary depending on whether the output of the speed control system 19 is acceleration (the current value is higher than the previous value) (step S1), and the speed is decelerated (the current value is lower than the previous value). Whether or not deceleration is necessary is determined based on whether or not there is any (step S2).

【0041】ステップS1の判定で加速を必要とすると
き、現在の転流位相角が0かπ/2かπかの制御モード
を判定し(ステップS3)、加速側になる転流位相角0
ではそのままにして加速を続け、惰行になる転流位相角
π/2では加速側に変更(転流位相角0)して加速に切
り換える(ステップS4)。
When acceleration is required in the determination in step S1, the control mode of whether the current commutation phase angle is 0, π / 2 or π is determined (step S3), and the commutation phase angle 0 on the acceleration side is 0.
Then, the acceleration is continued as it is, and when the commutation phase angle π / 2 becomes coasting, it is changed to the acceleration side (commutation phase angle 0) and switched to acceleration (step S4).

【0042】また、減速側になる転流位相角πでは転流
位相角π/2に変更して一旦惰行に切り換え(ステップ
S5)、次回の判定にも加速要では惰行モードから加速
モードに切り換える。
Further, when the commutation phase angle π on the deceleration side is changed to the commutation phase angle π / 2, the coasting mode is once switched (step S5), and the coasting mode is switched from the coasting mode to the acceleration mode when acceleration is required for the next judgment. .

【0043】同様に、ステップS2の判定で減速を必要
とするとき、現在の転流位相角が0かπ/2かπかの制
御モードを判定し(ステップS6)、減速側になる転流
位相角πではそのままにして減速を続け、惰行になる転
流位相角π/2では転流位相角πに変更して減速に切り
換える(ステップS7)。
Similarly, when deceleration is required in the determination in step S2, the control mode in which the current commutation phase angle is 0, π / 2, or π is determined (step S6), and the commutation on the deceleration side is performed. At the phase angle π, deceleration is continued as it is, and at the commutation phase angle π / 2 where coasting occurs, the deceleration is switched to the commutation phase angle π (step S7).

【0044】また、加速側になる転流位相角0では転流
位相角π/2に変更して減速に切り換える(ステップS
5)。
When the commutation phase angle is 0 on the acceleration side, the commutation phase angle is changed to π / 2 to switch to deceleration (step S
5).

【0045】従って、本実施例による速度制御は、以下
のようになる。
Therefore, the speed control according to this embodiment is as follows.

【0046】(1)加速又は定速走行時は、転流位相角
を0radにして最大推力になる転流とし、推力の調整
は電流制御で行う。
(1) When accelerating or traveling at a constant speed, the commutation phase angle is set to 0 rad to obtain the maximum thrust, and the thrust is adjusted by current control.

【0047】(2)加速し過ぎて減速しなければならな
いときには転流位相角をπ/2radにして一旦惰行モ
ードで運転し、この惰行モードでは推力を零にして減速
をする。
(2) When it is necessary to decelerate by accelerating too much, the commutation phase angle is set to π / 2 rad, and the operation is temporarily performed in the coasting mode. In this coasting mode, the thrust is reduced to zero to decelerate.

【0048】(3)この惰行モードでの減速でもさらに
減速を必要とするときに転流位相角をπradにして最
大制動力になる減速モードに切り換える。このときの制
動力の調整は電流制御で行う。
(3) When the deceleration in the coasting mode requires further deceleration, the commutation phase angle is set to πrad and the mode is switched to the deceleration mode in which the maximum braking force is obtained. Adjustment of the braking force at this time is performed by current control.

【0049】(4)減速し過ぎて加速しなければならな
いときには転流位相角をπ/2radにして一旦惰行モ
ードで運転し、この惰行モードでは推力を零にして制動
力の低減、すなわち現状速度の維持をする。
(4) When it is necessary to accelerate the vehicle by decelerating too much, the commutation phase angle is set to π / 2 rad, and the vehicle is temporarily operated in the coasting mode. In this coasting mode, the thrust is reduced to zero to reduce the braking force. To maintain.

【0050】(5)この惰行モードでの現状速度の維持
でも加速を必要とするときに転流位相角を0radにし
て最大推力になる加速モードに切り換える。この時の推
力の調整は電流制御で行う。
(5) When acceleration is required even when maintaining the current speed in the coasting mode, the commutation phase angle is set to 0 rad and the acceleration mode is switched to the maximum thrust. The thrust is adjusted at this time by current control.

【0051】したがって、加速モードから減速モードへ
の切り換え、または減速モードから加速モードへの切り
換えには惰行モードを経由して行われ、コンバータ11
の出力電流出力(モータ出力)に非線形部分が発生する
が、惰行モードを経由することでリニアモータにトルク
ショックが発生するのを緩和することができる。
Therefore, the switching from the acceleration mode to the deceleration mode or the switching from the deceleration mode to the acceleration mode is performed via the coasting mode.
Although a non-linear portion occurs in the output current output (motor output) of, the torque shock in the linear motor can be alleviated by passing through the coasting mode.

【0052】なお、実施例において、加速と減速のモー
ドの切り換えは、先にコンバータの電流を下限値近くに
絞り込む減速又は加速制御を行い、この電流制御だけで
は不足する加速又は減速を必要とするときに転流位相角
選択部21Aが惰行モードを経由してモードを切り換え
るのが好ましい。これにより、モード切り換えによる加
速又は減速は電流を下限値から増加させる変化になり、
モード切り換えに電流の急激な変化を無くして滑らかな
速度制御を得ることができる。
In the embodiment, the switching between the acceleration mode and the deceleration mode requires deceleration or acceleration control by first narrowing down the converter current to near the lower limit value, and this current control alone requires insufficient acceleration or deceleration. At this time, it is preferable that the commutation phase angle selection unit 21A switch the mode via the coasting mode. As a result, acceleration or deceleration due to mode switching is a change that increases the current from the lower limit value,
It is possible to obtain smooth speed control by eliminating a sudden change in current when switching modes.

【0053】また、実速度が設定速度に近づいている
か、離れているかによって加速モード又は減速モードの
切り換えを制限するのが好ましい。この場合は、加速と
減速の切り換えの頻度を少なくし、速度制御を一層滑ら
かにすることができる。
Further, it is preferable to limit the switching between the acceleration mode and the deceleration mode depending on whether the actual speed is close to or far from the set speed. In this case, the frequency of switching between acceleration and deceleration can be reduced and the speed control can be made smoother.

【0054】[0054]

【発明の効果】以上のとおり、本発明によれば、直流リ
ニアモータを推力専用とし、コンバータの通電電流の制
御により推力を制御する速度制御方式において、電流制
御系の下限値をリミッタで制限するため、コンバータの
出力電流を絞ったときにリップルによる電流遮断を無く
し、過電圧発生を防止することができる。
As described above, according to the present invention, in the speed control system in which the direct current linear motor is dedicated to the thrust and the thrust is controlled by controlling the energizing current of the converter, the lower limit value of the current control system is limited by the limiter. Therefore, when the output current of the converter is reduced, current interruption due to ripple can be eliminated, and overvoltage can be prevented.

【0055】また、コンバータの電流を下限値に制限
し、インバータの運転に惰行モードを設けることによ
り、速度制御範囲を零まで拡大しながら直流リアクトル
のインダクタンスを比較的小さくしてその小形化を図る
ことができる。
Further, by limiting the converter current to the lower limit value and providing the coasting mode for the operation of the inverter, the inductance of the DC reactor is made relatively small while the speed control range is expanded to zero, and its size is reduced. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】実施例におけるコンバータの電流制限特性図。FIG. 2 is a current limit characteristic diagram of the converter in the embodiment.

【図3】実施例におけるインバータの転流位相角特性
図。
FIG. 3 is a commutation phase angle characteristic diagram of the inverter in the embodiment.

【図4】実施例におけるリニアモータの出力特性図。FIG. 4 is an output characteristic diagram of the linear motor in the embodiment.

【図5】実施例における転流位相角選択部のフローチャ
ート。
FIG. 5 is a flowchart of a commutation phase angle selection unit in the embodiment.

【図6】直流リニアモータの基本構成図。FIG. 6 is a basic configuration diagram of a DC linear motor.

【図7】界磁位置と推力の関係図。FIG. 7 is a diagram showing the relationship between field position and thrust.

【図8】転流位相角と推力の関係図。FIG. 8 is a diagram showing the relationship between commutation phase angle and thrust.

【図9】従来のブロック図。FIG. 9 is a conventional block diagram.

【図10】直流リニアモータの変形例。FIG. 10 shows a modification of the DC linear motor.

【図11】他の従来例のブロック図。FIG. 11 is a block diagram of another conventional example.

【符号の説明】[Explanation of symbols]

1、15…電機子コイル 2、11…コンバータ 3…FFインバータ 4、16…界磁電磁石 13…電流制御系 14…インバータ 17…位置検出器 18…速度検出器 19…速度制御系 21、21A…転流位相角選択部 22…リミッタ 23…設定器 1, 15 ... Armature coil 2, 11 ... Converter 3 ... FF inverter 4, 16 ... Field electromagnet 13 ... Current control system 14 ... Inverter 17 ... Position detector 18 ... Speed detector 19 ... Speed control system 21, 21A ... Commutation phase angle selection unit 22 ... Limiter 23 ... Setting device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 地上側に配置した電機子コイルと、移動
体に設けられ前記電機子コイルの電流によって推力を発
生する界磁磁石と、直流電流を制御できる電流制御系を
持つコンバータと、このコンバータの出力電流を前記界
磁磁石の位置に応じて電機子コイルの各相に転流するイ
ンバータとを備えた直流リニアモータにおいて、 前記移動体の速度設定値と速度検出値の偏差に応じた速
度制御出力を得る速度制御系と、 前記速度制御出力を電流指令としかつ下限値を制限する
リミッタを有して前記コンバータの出力電流を制御する
電流制御系と、 前記速度制御出力の増減方向から判定する加速と減速に
応じて前記インバータの転流位相角を電気角零の加速モ
ードと電気角πの減速モードを電気角π/2の惰行モー
ドを経由して切り換えかつ前記電流制御系を供給と回生
に切り換える転流位相角選択部とを備えたことを特徴と
する直流リニアモータ。
1. An armature coil arranged on the ground side, a field magnet provided on a moving body for generating thrust by a current of the armature coil, and a converter having a current control system capable of controlling a direct current, In a DC linear motor equipped with an inverter that commutates the output current of the converter to each phase of the armature coil according to the position of the field magnet, according to the deviation between the speed setting value and the speed detection value of the moving body. A speed control system that obtains a speed control output, a current control system that controls the output current of the converter by using a limiter that limits the lower limit value by using the speed control output as a current command, and from the increasing / decreasing direction of the speed control output. The commutation phase angle of the inverter is switched between an acceleration mode with an electrical angle of zero and a deceleration mode with an electrical angle of π via an coasting mode of an electrical angle of π / 2 according to the acceleration and deceleration to be determined, and DC linear motor, characterized in that a commutation phase angle selection unit for switching the flow control system to the regenerative supply.
JP7169415A 1995-07-05 1995-07-05 DC linear motor Expired - Fee Related JP2988853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7169415A JP2988853B2 (en) 1995-07-05 1995-07-05 DC linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7169415A JP2988853B2 (en) 1995-07-05 1995-07-05 DC linear motor

Publications (2)

Publication Number Publication Date
JPH0923677A true JPH0923677A (en) 1997-01-21
JP2988853B2 JP2988853B2 (en) 1999-12-13

Family

ID=15886179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7169415A Expired - Fee Related JP2988853B2 (en) 1995-07-05 1995-07-05 DC linear motor

Country Status (1)

Country Link
JP (1) JP2988853B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9350283B2 (en) 2011-11-30 2016-05-24 Mitsubishi Electric Corporation Inverter device for electric vehicle
EP2034608A4 (en) * 2006-06-23 2017-07-19 Daikin Industries, Ltd. Inverter control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2034608A4 (en) * 2006-06-23 2017-07-19 Daikin Industries, Ltd. Inverter control method
US9350283B2 (en) 2011-11-30 2016-05-24 Mitsubishi Electric Corporation Inverter device for electric vehicle

Also Published As

Publication number Publication date
JP2988853B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
US5739664A (en) Induction motor drive controller
US5990657A (en) Inverter system and control system for electric vehicle
JPH0612954B2 (en) Synchronous motor control method
JP2006528881A (en) Highly accurate adaptive motor control in cruise control system with various motor control mechanisms
Pratapgiri Comparative analysis of hysteresis current control and direct instantaneous torque control of switched reluctance motor
JP3672457B2 (en) Control device for permanent magnet type synchronous motor
JPH01206896A (en) Method and apparatus for controlling amplitude and direction of current applied to winding
JP4788949B2 (en) Variable speed drive device for induction motor
JP2988853B2 (en) DC linear motor
JP3554798B2 (en) Electric car control device
JP3419258B2 (en) Motor control device
JP3750681B2 (en) Permanent magnet type synchronous motor drive control apparatus and method
JP3239532B2 (en) Motor drive
JP3695805B2 (en) Induction motor control device
JPH07274568A (en) Dc linear motor
JP3149600B2 (en) Control device for permanent magnet motor for electric vehicle
JP2000333498A (en) Controller for synchronous motor
JP2001238455A (en) Multiple power converter
JP2910517B2 (en) Induction motor control device
JP5272333B2 (en) Motor drive device and motor device
Fuengwarodsakul et al. Instantaneous torque controller for switched reluctance vehicle propulsion drives
JPH0626079Y2 (en) Induction motor torque control device
KR20210114185A (en) Apparatus for controlling inverter and method thereof
JP2812856B2 (en) Control method of linear motor
JPH1087273A (en) Crane running device and inverter for crane running device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees