JPH09236724A - Optical multiplexer/demultiplexer and its manufacture - Google Patents

Optical multiplexer/demultiplexer and its manufacture

Info

Publication number
JPH09236724A
JPH09236724A JP4454696A JP4454696A JPH09236724A JP H09236724 A JPH09236724 A JP H09236724A JP 4454696 A JP4454696 A JP 4454696A JP 4454696 A JP4454696 A JP 4454696A JP H09236724 A JPH09236724 A JP H09236724A
Authority
JP
Japan
Prior art keywords
optical
spherical surface
substantially spherical
concave
convex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4454696A
Other languages
Japanese (ja)
Other versions
JP3401134B2 (en
Inventor
Masanori Iida
正憲 飯田
Hiroyuki Asakura
宏之 朝倉
Masaki Kobayashi
正樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4454696A priority Critical patent/JP3401134B2/en
Publication of JPH09236724A publication Critical patent/JPH09236724A/en
Application granted granted Critical
Publication of JP3401134B2 publication Critical patent/JP3401134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To facilitate the adjustment of the optical axis of a diffraction grating against an optical fiber and to improve the accuracy of wavelength separation and to reduce the transmission loss by preventing a deviation of the optical axis after the adjustment thereof in an optical mutiplexer/demultiplexer. SOLUTION: An input optical fiber 1 and output optical fibers 21, 22, 23, whose end faces 20 are obliquely ground, are fixed to a graded index lens 3, a first transparent body 81 having a convex sphericality 81a is adhered and fixed to the graded index lens 3, a second transparent body 71 having a recessed spherical surface 71a is adhered and fixed to the diffraction grating 5. The optical axis is adjusted at a state in which the convex sphericality 81a is adhered to the recessed sherical surface 71a via a resin cured by the ultraviolet rays, then the first transparent body 81 is firmly fixed to the second transparent body 71 by irradiating the adhered surface with ultraviolet rays.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光通信における波
長分割多重伝送システム及びその装置に用いる光合分波
器及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength division multiplexing transmission system in optical communication, an optical multiplexer / demultiplexer used in the apparatus, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】光通信において、多チャンネルの信号を
1本のファイバで伝送する波長多重光伝送方式が知られ
ている。波長多重光伝送方式とは、光合波器により各チ
ャンネルの信号をそれぞれ波長の異なる光で波長多重
し、送信側より1本のファイバで受信側に伝送し、受信
側では光分波器により多重伝送された光を各波長ごとに
分離し、再生するものである。一般に、光合分波器の波
長分離素子として、干渉膜フィルター、回折格子、光導
波路等が用いられている。特に、送信信号光を数ナノメ
ーター間隔で波長多重する高密度波長多重伝送には、分
解能の高い回折格子が使用され、光ファイバやレンズ等
と組み合わされ、光合分波器が構成されている。
2. Description of the Related Art In optical communication, a wavelength division multiplexing optical transmission system for transmitting multi-channel signals through a single fiber is known. The wavelength division multiplexing optical transmission system is that the signal of each channel is wavelength-multiplexed by the optical multiplexer with the light of different wavelengths, transmitted from the transmitting side to the receiving side with one fiber, and the receiving side multiplexes with the optical demultiplexer. The transmitted light is separated and regenerated for each wavelength. Generally, an interference film filter, a diffraction grating, an optical waveguide, etc. are used as a wavelength separation element of an optical multiplexer / demultiplexer. In particular, for high-density wavelength-division multiplex transmission in which transmission signal light is wavelength-multiplexed at intervals of several nanometers, a diffraction grating with high resolution is used and is combined with an optical fiber, a lens or the like to form an optical multiplexer / demultiplexer.

【0003】波長多重光伝送方式において、従来より用
いられている光合分波器の一例(中央部分の断面)を図
12を参照しつつ説明する。図12において、1は入力
光ファイバ、21,22,23は出力光ファイバ、3は
屈折率分布レンズ、5は回折格子、7はプリズム状の透
明体、4及び6はそれぞれ接着層、7a及び3aはそれ
ぞれ透明体7と屈折率レンズ3の端面を表す。光分波器
として使用する場合、図12に示すように、例えば3チ
ャンネルの信号をそれぞれ異なる波長λ1,λ2,λ3で
波長多重し、入力光ファイバ1を介して伝送する。波長
多重光は屈折率レンズ3により平行光となり、プリズム
状の透明体7を介して回折格子5に入射する。回折格子
5は、各波長λ1,λ2,λ3に応じてそれぞれ異なった
方向に入射光を分離(回折)し、反射する。透明体7お
よび屈折率レンズ3を介して、各波長λ1,λ2,λ3に
応じた回折方向には出力光ファイバ21,22,23が
設けられており、波長分離された波長λ1,λ2,λ3の
光はそれぞれ異なった出力光ファイバ21,22,23
中を伝送される。一方、光合波器として使用する場合、
この逆の原理で波長多重される。
An example of an optical multiplexer / demultiplexer conventionally used in the wavelength division multiplexing optical transmission system (a cross section of the central portion) will be described with reference to FIG. In FIG. 12, 1 is an input optical fiber, 21, 22, 23 is an output optical fiber, 3 is a gradient index lens, 5 is a diffraction grating, 7 is a prism-shaped transparent body, 4 and 6 are adhesive layers, 7a and Reference numerals 3a denote end faces of the transparent body 7 and the refractive index lens 3, respectively. When used as an optical demultiplexer, as shown in FIG. 12, for example, signals of three channels are wavelength-multiplexed with different wavelengths λ1, λ2, and λ3 and transmitted through the input optical fiber 1. The wavelength-multiplexed light is converted into parallel light by the refractive index lens 3 and is incident on the diffraction grating 5 via the prism-shaped transparent body 7. The diffraction grating 5 separates (diffracts) the incident light in different directions according to the wavelengths λ1, λ2, and λ3, and reflects it. Through the transparent body 7 and the refractive index lens 3, output optical fibers 21, 22, and 23 are provided in the diffraction directions corresponding to the respective wavelengths λ1, λ2, and λ3, and the wavelength-separated wavelengths λ1, λ2, and λ3 are provided. Light of different output optical fibers 21, 22, 23
Is transmitted inside. On the other hand, when used as an optical multiplexer,
Wavelength multiplexing is performed by the reverse principle.

【0004】上記従来の光合分波器を作製する場合、あ
らかじめ接着層6により回折格子5を透明体7に所定の
傾き角で固定し、また、入力光ファイバ1及び出力光フ
ァイバ21,22,23を配置した屈折率分布レンズ3
を用意しておき、光軸調整後に端面7aと3aを接着層
4を介して固定する。これにより各光部品が一体型構成
となった光合分波器を得ることができる。
When manufacturing the above-mentioned conventional optical multiplexer / demultiplexer, the diffraction grating 5 is fixed to the transparent body 7 at a predetermined inclination angle by the adhesive layer 6 in advance, and the input optical fiber 1 and the output optical fibers 21, 22, 22 are provided. Refractive index distribution lens 3 in which 23 is arranged
Is prepared, and after the optical axis is adjusted, the end faces 7a and 3a are fixed via the adhesive layer 4. As a result, it is possible to obtain an optical multiplexer / demultiplexer in which each optical component is integrated.

【0005】[0005]

【発明が解決しようとする課題】回折格子を用いた光合
分波器では、回折格子5による光の分散方向と光ファイ
バの配列とを一致させなければならない。そのため、上
記従来の光合分波器では、回折格子5の回転方向(図1
2の矢印Aの方向)、あおり方向(図12の矢印Bの方
向)、格子面内の回転方向(図12の矢印Cの方向)の
3つを調整し、その位置で回折格子5を安定させ、固定
しなければならないという問題点を有していた。
In an optical multiplexer / demultiplexer using a diffraction grating, the direction of light dispersion by the diffraction grating 5 and the arrangement of the optical fibers must match. Therefore, in the above conventional optical multiplexer / demultiplexer, the rotation direction of the diffraction grating 5 (see FIG.
2), the tilt direction (direction of arrow B in FIG. 12), the rotation direction in the plane of the grating (direction of arrow C in FIG. 12), and stabilize the diffraction grating 5 at that position. However, there was a problem that it had to be fixed.

【0006】また、回折格子を用いた光合分波器は非常
に高い分解能を有するが、逆に、わずかな光軸のずれや
設定誤差により、損失が増加したり、合波および分波す
る波長がずれてしまう。そのため、上記従来例のよう
に、屈折率分布レンズ3に光ファイバ1、21,22,
23や回折格子5を張り合わせたり、平面基台上に各部
品を調整し接着することが行われている。この場合、各
部品の位置や角度調整が平面状の端面どうしでの調整作
業となるため、端面7aと3aとが斜め状態で接触し、
光の通過面上に傷を生じやすいという問題点を集してい
た。光の通過面上の傷の発生を防ぐためには、互いの端
面間に間隙を設けて調整作業を行う必要がある。しかし
ながら、調整後であっても、透明体7と屈折率分布レン
ズ3とを完全に密着した状態で固定することはできず、
接着層4の層厚が不均一となり、固定後の経時的な安定
が得にくいという問題点を有していた。
An optical multiplexer / demultiplexer using a diffraction grating has a very high resolution, but conversely, a slight shift in the optical axis or a setting error causes an increase in loss, or wavelengths at which multiplexing and demultiplexing are performed. Will be misaligned. Therefore, as in the above-mentioned conventional example, the refractive index distribution lens 3 has optical fibers 1, 21, 22,
23 and the diffraction grating 5 are attached to each other, or each component is adjusted and bonded on a flat base. In this case, since the position and angle of each component are adjusted between the flat end faces, the end faces 7a and 3a contact each other in an oblique state,
The problem is that scratches are likely to occur on the light passage surface. In order to prevent the occurrence of scratches on the light passage surface, it is necessary to provide a gap between the end faces of each other for the adjustment work. However, even after the adjustment, it is not possible to fix the transparent body 7 and the gradient index lens 3 in a state where they are in complete contact,
There is a problem that the layer thickness of the adhesive layer 4 becomes non-uniform and it is difficult to obtain stability over time after fixing.

【0007】本発明は上記従来の光合分波器の問題点を
解決するためになされたものであり、組立て、調整及び
固定の容易な光合分波器及びその製造方法を提供するこ
とを目的とする。
The present invention has been made to solve the above-mentioned problems of the conventional optical multiplexer / demultiplexer, and an object thereof is to provide an optical multiplexer / demultiplexer which can be easily assembled, adjusted and fixed, and a manufacturing method thereof. To do.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明の第1の光合分波器は、波長多重光信号及び
波長の異なる複数の光信号を入出力するための複数の光
ファイバと、前記光ファイバにより伝送された波長多重
光信号をそれぞれの波長の光信号に分離し又は複数の光
信号を波長多重させる回折格子と、前記光ファイバによ
り入出力される光信号を前記回折格子にコリメートする
屈折率分布レンズと、前記回折格子の格子面上に設けら
れ、前記屈折率分布レンズ側の面が凹又は凹状の略球面
である第1の透明体と、前記屈折率分布レンズの前記回
折格子側に設けられ、前記第1の透明体の凹状又は凸状
の略球面に密着する凸状又は凹状の略球面を有する第2
の透明体とを具備する。
To achieve the above object, a first optical multiplexer / demultiplexer according to the present invention comprises a plurality of optical fibers for inputting and outputting a wavelength division multiplexed optical signal and a plurality of optical signals having different wavelengths. And a diffraction grating for separating the wavelength-multiplexed optical signal transmitted by the optical fiber into optical signals of respective wavelengths or wavelength-multiplexing a plurality of optical signals, and the diffraction grating for the optical signals input and output by the optical fiber. Of the refractive index distribution lens for collimating the first and the second transparent body provided on the grating surface of the diffraction grating and having a concave or concave substantially spherical surface on the side of the refractive index distribution lens; A second spherical surface provided on the diffraction grating side and having a convex or concave substantially spherical surface that is in close contact with the concave or convex substantially spherical surface of the first transparent body.
And a transparent body.

【0009】また、本発明の第2の光合分波器は、波長
多重光信号及び波長の異なる複数の光信号を入出力する
ための複数の光ファイバと、前記光ファイバにより伝送
された波長多重光信号をそれぞれの波長の光信号に分離
し又は複数の光信号を波長多重させる回折格子と、前記
回折格子側の面は凸状又は凹状の略球面であり、前記光
ファイバにより入出力される光信号を前記回折格子にコ
リメートする屈折率分布レンズと、前記回折格子の格子
面上に設けられ、前記屈折率分布レンズ側の面が前記屈
折率分布レンズの前記凸状又は凹状の略球面と密着する
凹状又は凸状の略球面である透明体とを具備する。
A second optical multiplexer / demultiplexer of the present invention is a plurality of optical fibers for inputting / outputting a wavelength-multiplexed optical signal and a plurality of optical signals having different wavelengths, and a wavelength-multiplexer transmitted by the optical fiber. A diffraction grating for separating an optical signal into optical signals of respective wavelengths or wavelength-multiplexing a plurality of optical signals, and a surface on the side of the diffraction grating is a convex or concave substantially spherical surface, which is input and output by the optical fiber. A refractive index distribution lens for collimating an optical signal to the diffraction grating, and a surface on the side of the refractive index distribution lens, which is provided on the grating surface of the diffraction grating, is the convex or concave substantially spherical surface of the refractive index distribution lens. The transparent body is a concave or convex substantially spherical surface that is in close contact with the transparent body.

【0010】また、本発明の第3の光合分波器は、波長
多重光信号及び波長の異なる複数の光信号を入出力する
ための複数の光ファイバと、一方の端面に回折格子が形
成され、他方の端面が凹状又は凸状の略球面であり、前
記光ファイバにより伝送された波長多重光信号をそれぞ
れの波長の光信号に分離し又は複数の光信号を波長多重
させる回折素子と、前記光ファイバにより入出力される
光信号を前記回折素子にコリメートする屈折率分布レン
ズと、前記屈折率分布レンズの前記回折素子側に設けら
れ、前記回折素子の前記凹状又は凸状の略球面に密着す
る凸状又は凹状の略球面を有する透明体とを具備する。
Further, the third optical multiplexer / demultiplexer of the present invention has a plurality of optical fibers for inputting and outputting a wavelength division multiplexed optical signal and a plurality of optical signals having different wavelengths, and a diffraction grating is formed on one end face thereof. A diffraction element that separates the wavelength-multiplexed optical signal transmitted by the optical fiber into optical signals of respective wavelengths or wavelength-multiplexes a plurality of optical signals, and the other end surface is a concave or convex substantially spherical surface. A gradient index lens for collimating an optical signal input and output by an optical fiber to the diffractive element, and a refractive index distribution lens provided on the diffractive element side of the diffractive element, and closely attached to the concave or convex substantially spherical surface of the diffractive element. And a transparent body having a convex or concave substantially spherical surface.

【0011】また、本発明の第4の光合分波器は、波長
多重光信号及び波長の異なる複数の光信号を入出力する
ための複数の光ファイバと、一方の端面に回折格子が形
成され、他方の端面が凹状又は凸状の略球面であり、前
記光ファイバにより伝送された波長多重光信号をそれぞ
れの波長の光信号に分離し又は複数の光信号を波長多重
させる回折素子と、前記回折素子側の端面が前記回折素
子の前記凹状又は凸状の略球面に密着する凸状又は凹状
の略球面であり、前記光ファイバにより入出力される光
信号を前記回折素子にコリメートする屈折率分布レンズ
とを具備する。
The fourth optical multiplexer / demultiplexer of the present invention has a plurality of optical fibers for inputting / outputting a wavelength-multiplexed optical signal and a plurality of optical signals having different wavelengths, and a diffraction grating formed on one end face thereof. A diffraction element that separates the wavelength-multiplexed optical signal transmitted by the optical fiber into optical signals of respective wavelengths or wavelength-multiplexes a plurality of optical signals, and the other end surface is a concave or convex substantially spherical surface. The end surface on the side of the diffractive element is a convex or concave substantially spherical surface in close contact with the concave or convex substantially spherical surface of the diffractive element, and a refractive index for collimating an optical signal input / output by the optical fiber to the diffractive element. And a distribution lens.

【0012】上記第1から第4の光合分波器において、
前記凹状の略球面と前記凸状の略球面の曲率半径が等し
いことが好ましい。また、前記光ファイバ端面及び前記
屈折率分布レンズの前記光ファイバ端面と当接する端面
を光軸に対して斜めに研磨し又はカットすることが好ま
しい。
In the first to fourth optical multiplexers / demultiplexers,
It is preferable that the concave substantially spherical surface and the convex substantially spherical surface have the same radius of curvature. Further, it is preferable to polish or cut the end face of the optical fiber and the end face of the gradient index lens in contact with the end face of the optical fiber obliquely with respect to the optical axis.

【0013】また、上記第1の光合分波器において、少
なくとも前記回折格子及び前記第2の透明体をその内壁
と接触しないように収納し得る内部空間を有する筐体を
具備することが好ましい。また、上記第2の光合分波器
において、少なくとも前記回折格子及び前記透明体をそ
の内壁と接触しないように収納し得る内部空間を有する
筐体を具備することが好ましい。また、上記第3又は第
4の光合分波器において、少なくとも前記回折素子をそ
の内壁と接触しないように収納し得る内部空間を有する
筐体を具備することが好ましい。
In the first optical multiplexer / demultiplexer, it is preferable that the first optical multiplexer / demultiplexer further comprises a housing having an internal space capable of accommodating at least the diffraction grating and the second transparent body so as not to contact the inner wall thereof. The second optical multiplexer / demultiplexer preferably includes a housing having an internal space that can house at least the diffraction grating and the transparent body so as not to contact the inner wall thereof. Further, in the third or fourth optical multiplexer / demultiplexer, it is preferable to include a housing having an internal space capable of accommodating at least the diffraction element so as not to contact the inner wall thereof.

【0014】一方、本発明の第1の光合分波器の製造方
法は、波長多重光信号及び波長の異なる複数の光信号を
入出力するための複数の光ファイバと、前記光ファイバ
により伝送された波長多重光信号をそれぞれの波長の光
信号に分離し又は複数の光信号を波長多重させる回折格
子と、前記光ファイバにより入出力される光信号を前記
回折格子にコリメートする屈折率分布レンズとを具備す
る光合分波器の製造方法であって、前記回折格子の格子
面上に前記屈折率分布レンズ側の面が凹状又は凸状の略
球面である第1の透明体を設け、前記屈折率分布レンズ
の前記回折格子側に前記第1の透明体の凹状又は凸状の
略球面に密着する凸状又は凹状の略球面を有する第2の
透明体を設け、前記凹状の略球面と前記凸状の略球面の
間に紫外線硬化樹脂を充填し、互いに密着した状態で光
軸調整を行い、光軸調整終了後、紫外線を前記凹状の略
球面と凸状の略球面の接触部に照射して固定する。
On the other hand, the first method of manufacturing an optical multiplexer / demultiplexer according to the present invention includes a plurality of optical fibers for inputting and outputting a wavelength-division-multiplexed optical signal and a plurality of optical signals having different wavelengths, and the optical fibers for transmission. And a diffraction grating for separating the wavelength-multiplexed optical signal into optical signals of respective wavelengths or wavelength-multiplexing a plurality of optical signals, and a refractive index distribution lens for collimating the optical signals input / output by the optical fiber to the diffraction grating. A method of manufacturing an optical multiplexer / demultiplexer comprising: providing a first transparent body having a concave or convex substantially spherical surface on a side of the gradient index lens on a grating surface of the diffraction grating, A second transparent body having a convex or concave substantially spherical surface that is in close contact with the concave or convex substantially spherical surface of the first transparent body is provided on the diffraction grating side of the factor distribution lens, and the concave substantially spherical surface and the UV-cured tree between convex spherical surfaces Filling the performs optical axis adjustment in close contact with each other, after the optical axis adjustment ends to fix the ultraviolet rays irradiated to the contact portion of the substantially spherical and convex substantially spherical surface of the concave.

【0015】また、本発明の第2の光合分波器の製造方
法は、波長多重光信号及び波長の異なる複数の光信号を
入出力するための複数の光ファイバと、前記光ファイバ
により伝送された波長多重光信号をそれぞれの波長の光
信号に分離し又は複数の光信号を波長多重させる回折格
子と、前記光ファイバにより入出力される光信号を前記
回折格子にコリメートする屈折率分布レンズとを具備す
る光合分波器の製造方法であって、前記屈折率分布レン
ズの前記回折格子側の面を凸状又は凹状の略球面に成形
し、前記回折格子の格子面上に前記屈折率分布レンズ側
の面が前記屈折率分布レンズの前記凸状又は凹状の略球
面と密着する凹状又は凸状の略球面である透明体を設
け、前記凹状の略球面と前記凸状の略球面の間に紫外線
硬化樹脂を充填し、互いに密着した状態で光軸調整を行
い、光軸調整終了後、紫外線を前記凹状の略球面と凸状
の略球面の接触部に照射して固定する。
A second method of manufacturing an optical multiplexer / demultiplexer according to the present invention includes a plurality of optical fibers for inputting / outputting a wavelength-multiplexed optical signal and a plurality of optical signals having different wavelengths, and the optical fibers for transmission. And a diffraction grating for separating the wavelength-multiplexed optical signal into optical signals of respective wavelengths or wavelength-multiplexing a plurality of optical signals, and a refractive index distribution lens for collimating the optical signals input / output by the optical fiber to the diffraction grating. In the method of manufacturing an optical multiplexer / demultiplexer, the surface of the gradient index lens on the side of the diffraction grating is formed into a convex or concave substantially spherical surface, and the refractive index distribution is formed on the grating surface of the diffraction grating. A lens-side surface is provided with a transparent body that is a concave or convex substantially spherical surface that comes into close contact with the convex or concave substantially spherical surface of the gradient index lens, and between the concave substantially spherical surface and the convex substantially spherical surface. Filled with UV curable resin, Perform optical axis adjustment in close contact you are, after optical axis adjustment ends to fix the ultraviolet rays irradiated to the contact portion of the substantially spherical and convex substantially spherical surface of the concave.

【0016】また、本発明の第3の光合分波器の製造方
法は、波長多重光信号及び波長の異なる複数の光信号を
入出力するための複数の光ファイバと、前記光ファイバ
により伝送された波長多重光信号をそれぞれの波長の光
信号に分離し又は複数の光信号を波長多重させる回折素
子と、前記光ファイバにより入出力される光信号を前記
回折素子にコリメートする屈折率分布レンズとを具備す
る光合分波器の製造方法であって、前記回折素子の一方
の端面に回折格子が形成し、他方の端面が凹状又は凸状
の略球面を形成し、前記屈折率分布レンズの前記回折素
子側に前記回折素子の前記凹状又は凸状の略球面に密着
する凸状又は凹状の略球面を有する透明体を設け、前記
凹状の略球面と前記凸状の略球面の間に紫外線硬化樹脂
を充填し、互いに密着した状態で光軸調整を行い、光軸
調整終了後、紫外線を前記凹状の略球面と凸状の略球面
の接触部に照射して固定する。
The third method of manufacturing an optical multiplexer / demultiplexer according to the present invention includes a plurality of optical fibers for inputting and outputting a wavelength division multiplexed optical signal and a plurality of optical signals having different wavelengths, and the optical fibers transmitting the optical signals. And a diffractive element that separates the wavelength-multiplexed optical signal into optical signals of respective wavelengths or wavelength-multiplexes a plurality of optical signals, and a refractive index distribution lens that collimates the optical signals input and output by the optical fiber to the diffractive element. In the method of manufacturing an optical multiplexer / demultiplexer, the diffraction grating is formed on one end face of the diffraction element, and the other end face forms a concave or convex substantially spherical surface, and On the diffractive element side, a transparent body having a convex or concave substantially spherical surface that adheres to the concave or convex substantially spherical surface of the diffractive element is provided, and ultraviolet curing is performed between the concave substantially spherical surface and the convex substantially spherical surface. Fill the resin and Perform optical axis adjustment in wearing condition, after the optical axis adjustment ends to fix the ultraviolet rays irradiated to the contact portion of the substantially spherical and convex substantially spherical surface of the concave.

【0017】また、本発明の第4の光合分波器の製造方
法は、波長多重光信号及び波長の異なる複数の光信号を
入出力するための複数の光ファイバと、前記光ファイバ
により伝送された波長多重光信号をそれぞれの波長の光
信号に分離し又は複数の光信号を波長多重させる回折素
子と、前記光ファイバにより入出力される光信号を前記
回折素子にコリメートする屈折率分布レンズとを具備す
る光合分波器の製造方法であって、前記回折素子の一方
の端面に回折格子が形成し、他方の端面が凹状又は凸状
の略球面を形成し、前記屈折率分布レンズの前記回折素
子側の端面を前記回折素子の前記凹状又は凸状の略球面
に密着する凸状又は凹状の略球面に形成し、前記凹状の
略球面と前記凸状の略球面の間に紫外線硬化樹脂を充填
し、互いに密着した状態で光軸調整を行い、光軸調整終
了後、紫外線を前記凹状の略球面と凸状の略球面の接触
部に照射して固定する。
Further, a fourth method of manufacturing an optical multiplexer / demultiplexer according to the present invention is provided with a plurality of optical fibers for inputting and outputting a wavelength division multiplexed optical signal and a plurality of optical signals having different wavelengths, and the optical fibers for transmission. And a diffractive element that separates the wavelength-multiplexed optical signal into optical signals of respective wavelengths or wavelength-multiplexes a plurality of optical signals, and a refractive index distribution lens that collimates the optical signals input and output by the optical fiber to the diffractive element In the method of manufacturing an optical multiplexer / demultiplexer, the diffraction grating is formed on one end face of the diffraction element, and the other end face forms a concave or convex substantially spherical surface, and The end face on the side of the diffractive element is formed into a convex or concave substantially spherical surface that adheres to the concave or convex substantially spherical surface of the diffractive element, and an ultraviolet curable resin is provided between the concave substantially spherical surface and the convex substantially spherical surface. Filled and stick to each other State perform optical axis adjustment, after the optical axis adjustment ends to fix the ultraviolet rays irradiated to the contact portion of the substantially spherical and convex substantially spherical surface of the concave.

【0018】上記第1の光合分波器の製造方法におい
て、前記第1及び第2の透明体はその形状の逆相を有す
る金型によりプレス加工によって形成されることが好ま
しい。また、上記第2の光合分波器の製造方法におい
て、前記透明体はその形状の逆相を有する金型によりプ
レス加工によって形成されることが好ましい。また、上
記第3又は第4の光合分波器の製造方法において、前記
回折素子はその形状の逆相を有する金型によりプレス加
工によって形成されることが好ましい。
In the first method of manufacturing the optical multiplexer / demultiplexer, it is preferable that the first and second transparent bodies are formed by pressing with a die having an opposite phase of its shape. Further, in the above-mentioned second method of manufacturing the optical multiplexer / demultiplexer, it is preferable that the transparent body is formed by press working with a mold having an opposite phase of its shape. In the third or fourth optical multiplexer / demultiplexer manufacturing method, it is preferable that the diffractive element is formed by pressing with a mold having an opposite phase of its shape.

【0019】[0019]

【発明の実施の形態】 (第1の実施形態)本発明の光合分波器及びその製造方
法の第1の実施形態を図1から図3を参照しつつ説明す
る。図1は本発明の光合分波器の第1の実施形態の一構
成例を示す断面図であり、図2はその光合分波器の製造
方法を示す工程図である。また、図3は第1の実施形態
の他の構成例を示す断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION (First Embodiment) A first embodiment of the optical multiplexer / demultiplexer and the manufacturing method thereof according to the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a cross-sectional view showing a configuration example of a first embodiment of an optical multiplexer / demultiplexer of the present invention, and FIG. 2 is a process diagram showing a method of manufacturing the optical multiplexer / demultiplexer. Further, FIG. 3 is a cross-sectional view showing another configuration example of the first embodiment.

【0020】図1に示す光合分波器は、入力光ファイバ
1と、例えば3本の出力光ファイバ21,22,23
と、コリメートレンズの役割を果たす屈折率分布レンズ
3と、屈折率分布レンズ3の一端3a側に設けられ、一
面が凸状の略球面(以下、凸球面とする)81aである
第1の透明体81と、凸球面81aに対向する凹状の略
球面(以下、凹球面とする)71aを有する第2の透明
体71と、平面直線回折格子(以下、回折格子とする)
5と、第2の透明体71と回折格子5とを固定する接着
層6等で構成されている。
The optical multiplexer / demultiplexer shown in FIG. 1 has an input optical fiber 1 and, for example, three output optical fibers 21, 22, 23.
A gradient index lens 3 that plays the role of a collimator lens, and a first transparent lens 81a that is provided on one end 3a side of the gradient index lens 3 and has one convex surface (a convex spherical surface) 81a. A body 81, a second transparent body 71 having a concave substantially spherical surface (hereinafter referred to as a concave spherical surface) 71a facing the convex spherical surface 81a, and a plane linear diffraction grating (hereinafter referred to as a diffraction grating).
5 and the adhesive layer 6 for fixing the second transparent body 71 and the diffraction grating 5 to each other.

【0021】屈折率分布レンズ3の両端面3a,3bの
うち、少なくとも入出力光ファイバ1,21,22,2
3側の端面3bは光軸に対して斜めに研磨されている。
また、第1の透明体81の凸球面81aと第2の透明体
71の凹球面71aの曲率半径は実質的に等しい。入力
光ファイバ1及び出力光ファイバ21,22,23の端
面20も斜めに研磨され、屈折率分布レンズに3に固定
されている。第1の透明体81は屈折率レンズ3の一端
3aに密着固定されており、第1の透明体81と第2の
透明体71はそれぞれ凸球面81aと凹球面71aが互
いに密着した状態で調整され、固着されている。
Of the two end faces 3a, 3b of the gradient index lens 3, at least the input / output optical fibers 1, 22, 22, 2 are provided.
The end surface 3b on the 3 side is polished obliquely with respect to the optical axis.
Further, the convex spherical surface 81a of the first transparent body 81 and the concave spherical surface 71a of the second transparent body 71 have substantially the same radius of curvature. The end faces 20 of the input optical fiber 1 and the output optical fibers 21, 22, 23 are also obliquely polished and fixed to 3 on the gradient index lens. The first transparent body 81 is closely fixed to one end 3a of the refractive index lens 3, and the first transparent body 81 and the second transparent body 71 are adjusted in a state where the convex spherical surface 81a and the concave spherical surface 71a are in close contact with each other. It has been fixed.

【0022】次に、上記構成を有する光合分波器を光分
波器として使用する場合の動作について説明する。な
お、光合波器として使用する場合の動作は、光の進行方
向を逆にして考えればよい。例えば、3チャンネルの信
号をそれぞれ異なる波長λ1,λ2,λ3の光で波長多重
し、入力光ファイバ1を介して伝送する。波長多重光は
屈折率分布レンズ3により平行光となり、回折格子5に
第1の透明体81及び第2の透明体71を介して入射す
る。回折格子5は、各波長λ1,λ2,λ3に応じてそれ
ぞれ異なった方向に入射光を分離(回折)し、反射す
る。回折された各波長λ1,λ2,λ3の光は、再び第2
の透明体71及び第1の透明体81を介して屈折率分布
レンズ3で集光され、それぞれ出力光ファイバ21,2
2,23に結合され、波長分離された波長λ1,λ2,λ
3の光はそれぞれ異なった出力光ファイバ21,22,
23中を伝送する。
Next, the operation when the optical multiplexer / demultiplexer having the above-mentioned configuration is used as an optical demultiplexer will be described. The operation when used as an optical multiplexer may be considered by reversing the traveling direction of light. For example, three-channel signals are wavelength-multiplexed with lights having different wavelengths λ1, λ2, and λ3, and the signals are transmitted through the input optical fiber 1. The wavelength-multiplexed light becomes parallel light by the gradient index lens 3 and enters the diffraction grating 5 via the first transparent body 81 and the second transparent body 71. The diffraction grating 5 separates (diffracts) the incident light in different directions according to the wavelengths λ1, λ2, and λ3, and reflects it. The diffracted lights of the respective wavelengths λ1, λ2, λ3 are returned to the second light again.
Is collected by the gradient index lens 3 via the transparent body 71 and the first transparent body 81 of the output optical fibers 21 and 2, respectively.
Wavelengths λ1, λ2, λ separated by wavelength
The three lights are different output optical fibers 21, 22,
It transmits in 23.

【0023】次に、第1の実施形態における光合分波器
の製造方法を図2に示す。図2の(a)に示すように、
あらかじめ所定形状に成形した入力光ファイバ1、出力
光ファイバ21,22,23、屈折率分布レンズ3、回
折格子5、第1の透明体81及び第2の透明体71を用
意しておく。特に、第1の透明体81及び第2の透明体
71は、それらの逆形状を有する金型を用いてガラス等
の光学材料をプレス加工により成形する。次に、(b)
に示すように、まず回折格子5と第2の透明体71を接
着層6により接着固定する。また、第1の透明体81と
入力光ファイバ1及び出力光ファイバ21,22,23
をそれぞれ屈折率分布レンズ3の両端に配置し、固定す
る。この工程では、出力光ファイバ21,22,23を
直線状に配列し入力光ファイバ1とともに屈折率分布レ
ンズ3の光軸付近に配置固定する以外は特段の厳密な光
軸調整は不要である。
Next, FIG. 2 shows a method of manufacturing the optical multiplexer / demultiplexer according to the first embodiment. As shown in (a) of FIG.
The input optical fiber 1, the output optical fibers 21, 22, and 23, the gradient index lens 3, the diffraction grating 5, the first transparent body 81, and the second transparent body 71 which are molded in a predetermined shape in advance are prepared. In particular, the first transparent body 81 and the second transparent body 71 are formed by pressing an optical material such as glass by using a mold having an inverse shape thereof. Next, (b)
First, the diffraction grating 5 and the second transparent body 71 are bonded and fixed by the adhesive layer 6 as shown in FIG. Further, the first transparent body 81, the input optical fiber 1, and the output optical fibers 21, 22, 23
Are arranged at both ends of the gradient index lens 3 and fixed. In this step, no particular strict optical axis adjustment is required except that the output optical fibers 21, 22, 23 are linearly arranged and fixed together with the input optical fiber 1 near the optical axis of the gradient index lens 3.

【0024】次に、(c)に示すように、第2の透明体
71の凹球面71aと第1の透明体81の凸球面81a
との間に潤滑性のある紫外線硬化樹脂を塗布した状態
で、第2の透明体71と第1の透明体81を互いに押し
つけるような力を加えながら両者を突き合わせて光軸調
整を行う。この際、凹球面71aと凸球面81aの略球
面形状の曲率半径は等しいので、互いの端面が密着した
状態となる。このため、回折格子5に対して、波長分散
方向(図の矢印Aの方向)、あおり方向(図の矢印Bの
方向)及び格子面内での回転方向(図の矢印Cの方向)
の3軸の調整時でも常に第2の透明体71と第1の透明
体81は密着接触した状態となる。この様にして入力光
ファイバ1からの波長λ1,λ2,λ3の各信号光が回折
格子5によって波長分離され、それぞれ出力光ファイバ
21,22,23に結合するように光軸調整を行う。光
軸調整の後、凹球面71aと凸球面81aの接触部分に
紫外線を照射し、紫外線硬化樹脂を硬化させ、第1の透
明体81と第2の透明体71を接着する。
Next, as shown in (c), the concave spherical surface 71a of the second transparent body 71 and the convex spherical surface 81a of the first transparent body 81.
In the state in which the ultraviolet curable resin having lubricity is applied between and, the optical axes are adjusted by abutting the second transparent body 71 and the first transparent body 81 against each other while applying a force to press them against each other. At this time, since the concave spherical surface 71a and the convex spherical surface 81a have substantially the same radius of curvature, the end surfaces thereof are in close contact with each other. Therefore, with respect to the diffraction grating 5, a wavelength dispersion direction (direction of arrow A in the drawing), a tilt direction (direction of arrow B in the drawing), and a rotation direction in the grating plane (direction of arrow C in the drawing).
Even when the three axes are adjusted, the second transparent body 71 and the first transparent body 81 are always in close contact with each other. In this way, the optical axes of the signal lights of the wavelengths λ1, λ2, and λ3 from the input optical fiber 1 are wavelength-separated by the diffraction grating 5 and are coupled to the output optical fibers 21, 22, and 23, respectively. After the optical axis is adjusted, the contact portion between the concave spherical surface 71a and the convex spherical surface 81a is irradiated with ultraviolet rays to cure the ultraviolet curable resin and bond the first transparent body 81 and the second transparent body 71.

【0025】次に、第1の実施形態における他の構成例
を図3に示す。図3に示す光合分波器は、図1に示す光
合分波器と比較して、第1の透明体81と第2の透明体
71の相互に密着する面81aと71aの凹凸が逆であ
る点が異なる。このように、相互に密着する面81aと
71aの凹凸を逆にしても同様の効果が得られることは
いうまでもない。
Next, another example of the configuration of the first embodiment is shown in FIG. The optical multiplexer / demultiplexer shown in FIG. 3 is different from the optical multiplexer / demultiplexer shown in FIG. 1 in that the surfaces 81a and 71a of the first transparent body 81 and the second transparent body 71, which are in close contact with each other, have opposite concavities and convexities. There are some differences. It goes without saying that the same effect can be obtained even if the concavities and convexities of the surfaces 81a and 71a that are in close contact with each other are reversed.

【0026】(第2の実施形態)次に、本発明の光合分
波器及びその製造方法の第2の実施形態を図4から図6
を参照しつつ説明する。図4は本発明の光合分波器の第
2の実施形態の一構成例を示す断面図であり、図5はそ
の製造方法を示す工程図である。また、図6は第2の実
施形態の他の構成例を示す断面図である。
(Second Embodiment) Next, a second embodiment of the optical multiplexer / demultiplexer and the manufacturing method thereof according to the present invention will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 4 is a cross-sectional view showing a structural example of the second embodiment of the optical multiplexer / demultiplexer of the present invention, and FIG. 5 is a process drawing showing the manufacturing method thereof. Further, FIG. 6 is a cross-sectional view showing another configuration example of the second embodiment.

【0027】図4に示す光合分波器は、入力光ファイバ
1と、例えば3本の出力光ファイバ21,22,23
と、一面が凸状の略球面(以下、凸球面とする)31a
であり、コリメートレンズの役割を果たす屈折率分布レ
ンズ31と、屈折率分布レンズ31の凸球面31aに対
向する凹状の略球面(以下、凹球面とする)71aを有
する透明体71と、回折格子5と、透明体71と回折格
子5とを固定する接着層6等で構成されている。
The optical multiplexer / demultiplexer shown in FIG. 4 has an input optical fiber 1 and, for example, three output optical fibers 21, 22, 23.
And a substantially spherical surface with one convex surface (hereinafter referred to as a convex spherical surface) 31a
And a transparent body 71 having a refractive index distribution lens 31 serving as a collimating lens, a concave substantially spherical surface (hereinafter, referred to as a concave spherical surface) 71a facing the convex spherical surface 31a of the refractive index distribution lens 31, and a diffraction grating. 5 and an adhesive layer 6 for fixing the transparent body 71 and the diffraction grating 5 and the like.

【0028】屈折率分布レンズ31の端面31bは光軸
に対して斜めに研磨されている。また、屈折率分布レン
ズ31の凸球面31aと透明体71の凹球面71aの曲
率半径は実質的に等しい。入力光ファイバ1及び出力光
ファイバ21,22,23の端面20も斜めに研磨さ
れ、屈折率分布レンズに31に固定されている。屈折率
レンズ31と透明体71はそれぞれ凸球面31aと凹球
面71aが互いに密着した状態で調整され、固着されて
いる。特に、凸球面31aを有する屈折率分布レンズ3
1は、研磨等の工程で端面を凸面化した「先球屈折率分
布レンズ」として容易に入手可能な光部品であり、この
凸球面31aの曲率半径に合わせて透明体71の凹球面
71aの曲率を等しくしておくことにより、第1の実施
形態と比較して透明体82を必要としない、安定で部品
点数の少ない小型の光合分波器及び作製法を実現するこ
とができる。
The end surface 31b of the gradient index lens 31 is polished obliquely with respect to the optical axis. The radius of curvature of the convex spherical surface 31a of the gradient index lens 31 and the radius of curvature of the concave spherical surface 71a of the transparent body 71 are substantially equal. The end faces 20 of the input optical fiber 1 and the output optical fibers 21, 22, 23 are also obliquely polished and fixed to 31 on the gradient index lens. The refractive index lens 31 and the transparent body 71 are adjusted and fixed in a state where the convex spherical surface 31a and the concave spherical surface 71a are in close contact with each other. In particular, the gradient index lens 3 having the convex spherical surface 31a
Reference numeral 1 denotes an optical component that is easily available as a “front spherical gradient index lens” having a convex end surface in a process such as polishing. The concave spherical surface 71a of the transparent body 71 is formed according to the radius of curvature of the convex spherical surface 31a. By setting the curvatures to be equal, it is possible to realize a stable and compact optical multiplexer / demultiplexer that does not require the transparent body 82 as compared with the first embodiment and has a small number of components.

【0029】次に、第2の実施形態における光合分波器
の製造方法を図5に示す。図5の(a)に示すように、
あらかじめ所定形状に成形した入力光ファイバ1、出力
光ファイバ21,22,23、屈折率分布レンズ31、
回折格子5及び透明体71を用意しておく。特に、透明
体71は、その逆形状を有する金型を用いてガラス等の
光学材料をプレス加工により成形する。次に、(b)に
示すように、まず回折格子5と透明体71を接着層6に
より接着固定する。また、入力光ファイバ1及び出力光
ファイバ21,22,23を屈折率分布レンズ31の端
面31b側に配置し、固定する。この工程では、出力光
ファイバ21,22,23を直線状に配列し入力光ファ
イバ1とともに屈折率分布レンズ31の光軸付近に配置
固定する以外は特段の厳密な光軸調整は不要である。
Next, FIG. 5 shows a method of manufacturing the optical multiplexer / demultiplexer according to the second embodiment. As shown in FIG.
An input optical fiber 1, an output optical fiber 21, 22, 23, a gradient index lens 31, which are formed in a predetermined shape in advance,
The diffraction grating 5 and the transparent body 71 are prepared. In particular, the transparent body 71 is formed by pressing an optical material such as glass by using a mold having an inverse shape. Next, as shown in (b), the diffraction grating 5 and the transparent body 71 are first bonded and fixed by the adhesive layer 6. Further, the input optical fiber 1 and the output optical fibers 21, 22, 23 are arranged on the end surface 31b side of the gradient index lens 31 and fixed. In this step, no particular strict optical axis adjustment is required except that the output optical fibers 21, 22, and 23 are linearly arranged and fixed together with the input optical fiber 1 near the optical axis of the gradient index lens 31.

【0030】次に、(c)に示すように、透明体71の
凹球面71aと屈折率分布レンズ31の凸球面31aと
の間に潤滑性のある紫外線硬化樹脂を塗布した状態で、
透明体71と屈折率分布レンズ31を互いに押しつける
ような力を加えながら両者を突き合わせて光軸調整を行
う。この際、凹球面71aと凸球面31aの略球面形状
の曲率半径は等しいので、互いの端面が密着した状態と
なる。このため、回折格子5に対して、波長分散方向
(図の矢印Aの方向)、あおり方向(図の矢印Bの方
向)及び格子面内での回転方向(図の矢印Cの方向)の
3軸の調整時でも常に透明体71と屈折率分布レンズ3
1は密着接触した状態となる。この様にして入力光ファ
イバ1からの波長λ1,λ2,λ3の各信号光が回折格子
5によって波長分離され、それぞれ出力光ファイバ2
1,22,23に結合するように光軸調整を行う。光軸
調整の後、凹球面71aと凸球面31aの接触部分に紫
外線を照射し、紫外線硬化樹脂を硬化させ、屈折率分布
レンズ31と透明体71を接着する。
Next, as shown in (c), a UV-curable resin having lubricity is applied between the concave spherical surface 71a of the transparent body 71 and the convex spherical surface 31a of the gradient index lens 31,
The optical axis is adjusted by abutting the transparent body 71 and the gradient index lens 31 against each other while applying a force to press them against each other. At this time, since the concave spherical surface 71a and the convex spherical surface 31a have substantially the same radius of curvature, the end surfaces thereof are in close contact with each other. Therefore, with respect to the diffraction grating 5, there are three wavelength dispersion directions (direction of arrow A in the figure), tilting directions (direction of arrow B in the figure), and rotation directions in the grating plane (direction of arrow C in the figure). Even when the axis is adjusted, the transparent body 71 and the gradient index lens 3 are always used.
1 is in a state of close contact. In this way, the signal lights of the wavelengths λ1, λ2, and λ3 from the input optical fiber 1 are wavelength-separated by the diffraction grating 5, and the output optical fiber 2
The optical axis is adjusted so as to be coupled to 1, 22, 23. After adjusting the optical axis, ultraviolet rays are irradiated to the contact portion between the concave spherical surface 71a and the convex spherical surface 31a to cure the ultraviolet curable resin, and the gradient index lens 31 and the transparent body 71 are bonded.

【0031】次に、第2の実施形態における他の構成例
を図6に示す。図6に示す光合分波器は、図4に示す光
合分波器と比較して、屈折率分布レンズ31と透明体7
1の相互に密着する面31aと71aの凹凸が逆である
点が異なる。このように、相互に密着する面31aと7
1aの凹凸を逆にしても同様の効果が得られることはい
うまでもない。
Next, another configuration example of the second embodiment is shown in FIG. Compared with the optical multiplexer / demultiplexer shown in FIG. 4, the optical multiplexer / demultiplexer shown in FIG. 6 has a gradient index lens 31 and a transparent body 7.
The difference is that the concavities and convexities of the surfaces 31a and 71a that are in close contact with each other are opposite. In this way, the surfaces 31a and 7 which are in close contact with each other are
It goes without saying that the same effect can be obtained by reversing the unevenness of 1a.

【0032】(第3の実施形態)次に、本発明の光合分
波器及びその製造方法の第3の実施形態を図7及び図8
を参照しつつ説明する。図7は本発明の光合分波器の第
3の実施形態の一構成例を示す断面図であり、図8は第
3の実施形態の他の構成例を示す断面図である。
(Third Embodiment) Next, a third embodiment of the optical multiplexer / demultiplexer and the manufacturing method thereof according to the present invention will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 7 is a sectional view showing a configuration example of the third embodiment of the optical multiplexer / demultiplexer of the present invention, and FIG. 8 is a sectional view showing another configuration example of the third embodiment.

【0033】図7に示す光合分波器は、入力光ファイバ
1と、例えば3本の出力光ファイバ21,22,23
と、コリメートレンズの役割を果たす屈折率分布レンズ
3と、屈折率分布レンズ3の一端3a側に設けられ、一
面が凸状の略球面(以下、凸球面とする)81aである
透明体81と、一端に凸球面81aに対向する凹状の略
球面(以下、凹球面とする)50aを有し、他端に回折
格子51及び反射膜52が設けられた回折素子50等で
構成されている。
The optical multiplexer / demultiplexer shown in FIG. 7 has an input optical fiber 1 and, for example, three output optical fibers 21, 22, 23.
And a refractive index distribution lens 3 which plays a role of a collimating lens, and a transparent body 81 which is provided on one end 3a side of the refractive index distribution lens 3 and has one convex surface (a convex spherical surface) 81a. A diffractive element 50 having a concave substantially spherical surface (hereinafter, referred to as a concave spherical surface) 50a facing the convex spherical surface 81a at one end and a diffraction grating 51 and a reflective film 52 at the other end is configured.

【0034】屈折率分布レンズ3の両端面3a,3bの
うち、少なくとも入出力光ファイバ1,21,22,2
3側の端面3bは光軸に対して斜めに研磨されている。
また、透明体81の凸球面81aと回折素子50の凹球
面50aの曲率半径は実質的に等しい。入力光ファイバ
1及び出力光ファイバ21,22,23の端面20も斜
めに研磨され、屈折率分布レンズに3に固定されてい
る。透明体81は屈折率レンズ3の一端3aに密着固定
されており、透明体81と回折素子50はそれぞれ凸球
面81aと凹球面50aが互いに密着した状態で調整さ
れ、固着されている。
Of the both end faces 3a, 3b of the gradient index lens 3, at least the input / output optical fibers 1, 12, 22, 2
The end surface 3b on the 3 side is polished obliquely with respect to the optical axis.
The radius of curvature of the convex spherical surface 81a of the transparent body 81 and the radius of curvature of the concave spherical surface 50a of the diffraction element 50 are substantially equal. The end faces 20 of the input optical fiber 1 and the output optical fibers 21, 22, 23 are also obliquely polished and fixed to 3 on the gradient index lens. The transparent body 81 is closely fixed to the one end 3a of the refractive index lens 3, and the transparent body 81 and the diffractive element 50 are adjusted and fixed so that the convex spherical surface 81a and the concave spherical surface 50a are in close contact with each other.

【0035】次に、第3の実施形態における光合分波器
の製造方法について説明する(上記図2に示す第1の実
施形態から明らかであるため図面を省略する)。図2に
示す第1の実施形態と同様に、あらかじめ所定形状に成
形した入力光ファイバ1、出力光ファイバ21,22,
23、屈折率分布レンズ3、回折素子50及び透明体8
1を用意しておく。特に、回折素子50及び透明体81
は、その逆形状を有する金型を用いてガラス等の光学材
料をプレス加工により成形することが好ましい。次に、
入力光ファイバ1及び出力光ファイバ21,22,23
を屈折率分布レンズ3の端面3b側に配置し、固定す
る。この工程では、出力光ファイバ21,22,23を
直線状に配列し入力光ファイバ1とともに屈折率分布レ
ンズ3の光軸付近に配置固定する以外は特段の厳密な光
軸調整は不要である。
Next, a method of manufacturing the optical multiplexer / demultiplexer according to the third embodiment will be described (the drawing is omitted because it is clear from the first embodiment shown in FIG. 2). Similar to the first embodiment shown in FIG. 2, the input optical fiber 1 and the output optical fibers 21, 22 and 22, which have been molded into a predetermined shape in advance.
23, gradient index lens 3, diffractive element 50, and transparent body 8
Have 1 ready. In particular, the diffractive element 50 and the transparent body 81
It is preferable to mold an optical material such as glass by pressing using a mold having the opposite shape. next,
Input optical fiber 1 and output optical fibers 21, 22, 23
Is arranged on the end face 3b side of the gradient index lens 3 and fixed. In this step, no particular strict optical axis adjustment is required except that the output optical fibers 21, 22, 23 are linearly arranged and fixed together with the input optical fiber 1 near the optical axis of the gradient index lens 3.

【0036】さらに、回折素子50の凹球面50aと透
明体81の凸球面81aとの間に潤滑性のある紫外線硬
化樹脂を塗布した状態で、回折素子50と透明体81を
互いに押しつけるような力を加えながら両者を突き合わ
せて光軸調整を行う。この際、凹球面50aと凸球面8
1aの略球面形状の曲率半径は等しいので、互いの端面
が密着した状態となる。このため、回折格子51に対し
て、波長分散方向(図7の矢印Aの方向)、あおり方向
(図7の矢印Bの方向)及び格子面内での回転方向(図
7の矢印Cの方向)の3軸の調整時でも常に回折素子5
0と透明体81は密着接触した状態となる。この様にし
て入力光ファイバ1からの波長λ1、λ2、λ3の各信号
光が回折格子51によって波長分離され、それぞれ出力
光ファイバ21、22、23に結合するように光軸調整
を行う。光軸調整の後、凹球面50aと凸球面81aの
接触部分に紫外線を照射し、紫外線硬化樹脂を硬化さ
せ、回折素子50と透明体81を接着する。
Further, a force for pressing the diffractive element 50 and the transparent body 81 against each other in a state where a UV-curable resin having lubricity is applied between the concave spherical surface 50a of the diffractive element 50 and the convex spherical surface 81a of the transparent body 81. The optical axis is adjusted by abutting them while adding. At this time, the concave spherical surface 50a and the convex spherical surface 8
Since the radii of curvature of the substantially spherical shape of 1a are equal, the end faces of each la are in close contact with each other. Therefore, with respect to the diffraction grating 51, a wavelength dispersion direction (direction of arrow A in FIG. 7), a tilt direction (direction of arrow B in FIG. 7), and a rotation direction in the grating plane (direction of arrow C in FIG. 7). ) Even when adjusting the three axes, the diffraction element 5 is always
0 and the transparent body 81 are in close contact with each other. In this way, the signal axes of the wavelengths λ1, λ2, and λ3 from the input optical fiber 1 are wavelength-separated by the diffraction grating 51, and the optical axes are adjusted so as to be coupled to the output optical fibers 21, 22, and 23, respectively. After adjusting the optical axis, ultraviolet rays are applied to the contact portion between the concave spherical surface 50a and the convex spherical surface 81a to cure the ultraviolet curable resin and bond the diffractive element 50 and the transparent body 81.

【0037】次に、第3の実施形態における他の構成例
を図8に示す。図8に示す光合分波器は、図7に示す光
合分波器と比較して、回折素子50と透明体81の相互
に密着する面50aと81aの凹凸が逆である点が異な
る。このように、相互に密着する面50aと81aの凹
凸を逆にしても同様の効果が得られることはいうまでも
ない。
Next, another configuration example of the third embodiment is shown in FIG. The optical multiplexer / demultiplexer shown in FIG. 8 is different from the optical multiplexer / demultiplexer shown in FIG. 7 in that the surfaces 50a and 81a of the diffractive element 50 and the transparent body 81, which are in close contact with each other, have opposite concavities and convexities. It goes without saying that similar effects can be obtained even if the concavities and convexities of the surfaces 50a and 81a that are in close contact with each other are reversed.

【0038】(第4の実施形態)次に、本発明の光合分
波器及びその製造方法の第4の実施形態を図9及び図1
0を参照しつつ説明する。図9は本発明の光合分波器の
第4の実施形態の一構成例を示す断面図であり、図10
は第4の実施形態の他の構成例を示す断面図である。
(Fourth Embodiment) Next, a fourth embodiment of the optical multiplexer / demultiplexer and the manufacturing method thereof according to the present invention will be described with reference to FIGS.
This will be described with reference to FIG. FIG. 9 is a sectional view showing a configuration example of the fourth embodiment of the optical multiplexer / demultiplexer of the present invention.
[Fig. 8] is a cross-sectional view showing another configuration example of the fourth embodiment.

【0039】図9に示す光合分波器は、入力光ファイバ
1と、例えば3本の出力光ファイバ21,22,23
と、一面が凸状の略球面(以下、凸球面とする)31a
であり、コリメートレンズの役割を果たす屈折率分布レ
ンズ31と、一端に屈折率分布レンズ31の凸球面31
aに対向する凹状の略球面(以下、凹球面とする)50
aを有し、他端に回折格子51及び反射膜52が設けら
れた回折素子50等で構成されている。
The optical multiplexer / demultiplexer shown in FIG. 9 has an input optical fiber 1 and, for example, three output optical fibers 21, 22, 23.
And a substantially spherical surface with one convex surface (hereinafter referred to as a convex spherical surface) 31a
And the gradient index lens 31 serving as a collimating lens, and the convex spherical surface 31 of the gradient index lens 31 at one end.
Concave spherical surface (hereinafter referred to as concave spherical surface) 50 facing a.
It is composed of a diffractive element 50 having a and having a diffraction grating 51 and a reflective film 52 at the other end.

【0040】屈折率分布レンズ31の端面31bは光軸
に対して斜めに研磨されている。また、屈折率分布レン
ズ31の凸球面31aと回折素子50の凹球面50aの
曲率半径は実質的に等しい。入力光ファイバ1及び出力
光ファイバ21,22,23の端面20も斜めに研磨さ
れ、屈折率分布レンズに31に固定されている。屈折率
レンズ31と回折素子50はそれぞれ凸球面31aと凹
球面50aが互いに密着した状態で調整され、固着され
ている。
The end surface 31b of the gradient index lens 31 is polished obliquely with respect to the optical axis. Further, the convex spherical surface 31a of the gradient index lens 31 and the concave spherical surface 50a of the diffractive element 50 have substantially the same radius of curvature. The end faces 20 of the input optical fiber 1 and the output optical fibers 21, 22, 23 are also obliquely polished and fixed to 31 on the gradient index lens. The refractive index lens 31 and the diffractive element 50 are adjusted and fixed such that the convex spherical surface 31a and the concave spherical surface 50a are in close contact with each other.

【0041】次に、第4の実施形態における光合分波器
の製造方法について説明する(上記図5に示す第2の実
施形態から明らかであるため図面を省略する)。図5に
示す第2の実施形態と同様に、あらかじめ所定形状に成
形した入力光ファイバ1、出力光ファイバ21,22,
23、屈折率分布レンズ31、回折素子50を用意して
おく。特に、回折素子50は、その逆形状を有する金型
を用いてガラス等の光学材料をプレス加工により成形す
ることが好ましい。次に、入力光ファイバ1及び出力光
ファイバ21,22,23を屈折率分布レンズ31の端
面31b側に配置し、固定する。この工程では、出力光
ファイバ21,22,23を直線状に配列し入力光ファ
イバ1とともに屈折率分布レンズ31の光軸付近に配置
固定する以外は特段の厳密な光軸調整は不要である。
Next, a method of manufacturing the optical multiplexer / demultiplexer according to the fourth embodiment will be described (the drawing is omitted because it is clear from the second embodiment shown in FIG. 5). Similar to the second embodiment shown in FIG. 5, the input optical fiber 1 and the output optical fibers 21, 22 and 22, which are molded in a predetermined shape in advance.
23, the gradient index lens 31, and the diffraction element 50 are prepared. In particular, it is preferable that the diffractive element 50 be formed by pressing an optical material such as glass by using a mold having an inverse shape. Next, the input optical fiber 1 and the output optical fibers 21, 22, 23 are arranged on the end face 31b side of the gradient index lens 31 and fixed. In this step, no particular strict optical axis adjustment is required except that the output optical fibers 21, 22, and 23 are linearly arranged and fixed together with the input optical fiber 1 near the optical axis of the gradient index lens 31.

【0042】さらに、回折素子50の凹球面50aと屈
折率分布レンズ31の凸球面31aとの間に潤滑性のあ
る紫外線硬化樹脂を塗布した状態で、回折素子50と屈
折率分布レンズ31を互いに押しつけるような力を加え
ながら両者を突き合わせて光軸調整を行う。この際、凹
球面50aと凸球面31aの略球面形状の曲率半径は等
しいので、互いの端面が密着した状態となる。このた
め、回折格子51に対して、波長分散方向(図9の矢印
Aの方向)、あおり方向(図9の矢印Bの方向)及び格
子面内での回転方向(図9の矢印Cの方向)の3軸の調
整時でも常に回折素子50と屈折率分布レンズ31は密
着接触した状態となる。この様にして入力光ファイバ1
からの波長λ1,λ2,λ3の各信号光が回折格子51に
よって波長分離され、それぞれ出力光ファイバ21,2
2,23に結合するように光軸調整を行う。光軸調整の
後、凹球面50aと凸球面31aの接触部分に紫外線を
照射し、紫外線硬化樹脂を硬化させ、回折素子50と屈
折率分布レンズ31を接着する。この様な構成により光
ファイバ1,21〜23を除く光部品を最小限の2個と
することができる。また、回折素子50は作製ばらつき
の少ない部品となるため、特性がさらに安定した光合分
波器を得ることができる。
Further, the diffractive element 50 and the gradient index lens 31 are mutually attached in a state in which a UV curable resin having lubricity is applied between the concave spherical surface 50a of the diffractive element 50 and the convex spherical surface 31a of the gradient index lens 31. The optical axis is adjusted by abutting the two while applying a pressing force. At this time, since the concave spherical surface 50a and the convex spherical surface 31a have substantially the same radius of curvature, the end surfaces thereof are in close contact with each other. Therefore, with respect to the diffraction grating 51, the wavelength dispersion direction (direction of arrow A in FIG. 9), the tilt direction (direction of arrow B in FIG. 9), and the rotation direction in the grating plane (direction of arrow C in FIG. 9). Even when the three axes are adjusted, the diffractive element 50 and the gradient index lens 31 are always in close contact with each other. In this way, the input optical fiber 1
The respective signal lights of wavelengths λ1, λ2, and λ3 from are separated into wavelengths by the diffraction grating 51, and output optical fibers 21 and 2, respectively.
The optical axis is adjusted so that the optical axis is coupled to the optical axes 2 and 23. After the optical axis adjustment, the contact portion between the concave spherical surface 50a and the convex spherical surface 31a is irradiated with ultraviolet rays to cure the ultraviolet curable resin, and the diffractive element 50 and the gradient index lens 31 are bonded. With such a configuration, the number of optical components other than the optical fibers 1, 21 to 23 can be reduced to a minimum of two. Further, since the diffractive element 50 is a component with little manufacturing variation, it is possible to obtain an optical multiplexer / demultiplexer with more stable characteristics.

【0043】次に、第4の実施形態における他の構成例
を図10に示す。図10に示す光合分波器は、図9に示
す光合分波器と比較して、回折素子50と屈折率分布レ
ンズ31の相互に密着する面50aと31aの凹凸が逆
である点が異なる。このように、相互に密着する面50
aと31aの凹凸を逆にしても同様の効果が得られるこ
とはいうまでもない。
Next, another configuration example of the fourth embodiment is shown in FIG. The optical multiplexer / demultiplexer shown in FIG. 10 is different from the optical multiplexer / demultiplexer shown in FIG. 9 in that the surfaces 50a and 31a of the diffractive element 50 and the gradient index lens 31, which are in close contact with each other, have opposite concavities and convexities. . In this way, the surfaces 50 that are in close contact with each other
It goes without saying that the same effect can be obtained even if the concavities and convexities of a and 31a are reversed.

【0044】(第5の実施形態)次に、本発明の光合分
波器の第5の実施形態について図11を参照しつつ説明
する。図11は本発明の光合分波器の第4の実施形態の
一構成例を示す断面図である。図11に示すように、屈
折率分布レンズ3及び第1の透明体81の外側に鏡筒9
が設けられている。さらに、カバー10が、その内壁と
第1の透明体72及び回折格子5と接することなく包み
こむように設けられている。カバー10と鏡筒9とは接
触部11で固定され、パッケージ化されている。この様
な構成により、特性に最も影響を与える部位である回折
格子5とその周囲部分に、パッケージングする際の応力
が直接加えられず、レーザ溶接等で起こる固定箇所の変
形による光合分波器の光学特性への影響を低減すること
ができ、安定したモジュール構成とすることができる。
なお、各部位の固定方法としては、カバー10と鏡筒9
をレーザ溶接する方法が最も望ましいが、半田付けや接
着による固定も可能である。
(Fifth Embodiment) Next, a fifth embodiment of the optical multiplexer / demultiplexer of the present invention will be described with reference to FIG. FIG. 11 is a sectional view showing a configuration example of the fourth embodiment of the optical multiplexer / demultiplexer of the present invention. As shown in FIG. 11, the lens barrel 9 is provided outside the gradient index lens 3 and the first transparent body 81.
Is provided. Further, the cover 10 is provided so as to enclose the inner wall of the cover 10 without coming into contact with the first transparent body 72 and the diffraction grating 5. The cover 10 and the lens barrel 9 are fixed by a contact portion 11 and packaged. With such a configuration, the stress at the time of packaging is not directly applied to the diffraction grating 5 and its surrounding portion, which are the portions that most affect the characteristics, and the optical multiplexer / demultiplexer due to the deformation of the fixed portion caused by laser welding or the like. It is possible to reduce the influence on the optical characteristics of, and to make a stable module configuration.
The method of fixing each part is as follows: the cover 10 and the lens barrel 9
The most preferable method is laser welding, but fixing by soldering or adhesion is also possible.

【0045】なお、上記各実施形態では、紫外線硬化樹
脂を用いて透明体71,81、屈折率分布レンズ31、
回折素子50等の接着を行ったが、固定法として、透明
体71,81、屈折率分布レンズ31及び回折素子50
の光の通過しない側面部に金属メッキを施し、光軸調整
の後にレーザ溶接や半田付け等を行う方法を用いてもよ
い。いずれの方法であっても、光軸調整作業を円滑に行
うことができ、かつ固定時においても光軸ずれがないた
め、波長設定精度が高く、伝送損失が少なく、各光部品
が互いに密着した一体型光学系による特性の安定した小
型の光合分波器を得ることができる。
In each of the above embodiments, the transparent body 71, 81, the gradient index lens 31,
Although the diffractive element 50 and the like are adhered, as a fixing method, the transparent bodies 71 and 81, the gradient index lens 31 and the diffractive element 50
It is also possible to use a method in which a side surface portion through which light does not pass is plated with metal, and laser welding or soldering is performed after adjusting the optical axis. With either method, the optical axis adjustment work can be performed smoothly, and since there is no optical axis deviation even when fixed, wavelength setting accuracy is high, transmission loss is small, and each optical component is in close contact with each other. It is possible to obtain a compact optical multiplexer / demultiplexer with stable characteristics by the integrated optical system.

【0046】また、平面回折格子5、51の代りに、曲
面回折格子、平面曲線回折格子、凹面回折格子等を用い
ることにより、屈折率分布レンズ3,31を省略するこ
とができる。これらの場合、コリメート用のレンズが不
要となり、光合分波器を構成する部品の点数が少なくな
り、構成がさらに簡単になると共に、光合分波器全体を
小型化することができる。また、各光部品間の接着に
は、屈折率が整合した透明接着剤を用いることはいうま
でもない。ガラス系の材料を用いる場合、近接する部位
での屈折率差が比屈折率差で0.03以下であれば、反
射率は−40dB以下とすることができる。
Further, the refractive index distribution lenses 3 and 31 can be omitted by using a curved diffraction grating, a plane curved diffraction grating, a concave diffraction grating or the like instead of the flat diffraction gratings 5 and 51. In these cases, a lens for collimation is not required, the number of parts constituting the optical multiplexer / demultiplexer is reduced, the configuration is further simplified, and the entire optical multiplexer / demultiplexer can be downsized. Needless to say, a transparent adhesive having a matching refractive index is used for bonding the optical components. When a glass-based material is used, the reflectance can be set to -40 dB or less if the difference in the refractive index between adjacent portions is 0.03 or less in the relative refractive index difference.

【0047】さらに、透明体71又は回折素子50の凸
球面71a,50aの曲率中心付近に回折格子5,51
の中心を配置することにより、光軸調整の際に入射光を
常に回折格子5,51の有効中心部に入射させることが
できる。そのため、光軸調整による光軸の傾きによって
も、入射光が回折格子5,51からずれないという効果
が得られる。
Further, the diffraction gratings 5, 51 are provided near the centers of curvature of the transparent bodies 71 or the convex spherical surfaces 71a, 50a of the diffraction element 50.
By arranging the center of the diffraction grating, the incident light can be always incident on the effective central portions of the diffraction gratings 5 and 51 when the optical axis is adjusted. Therefore, it is possible to obtain the effect that the incident light does not deviate from the diffraction gratings 5 and 51 even if the optical axis is tilted by adjusting the optical axis.

【0048】[0048]

【発明の効果】以上のように、本発明の第1の光合分波
器は、波長多重光信号及び波長の異なる複数の光信号を
入出力するための複数の光ファイバと、光ファイバによ
り伝送された波長多重光信号をそれぞれの波長の光信号
に分離し又は複数の光信号を波長多重させる回折格子
と、光ファイバにより入出力される光信号を回折格子に
コリメートする屈折率分布レンズと、回折格子の格子面
上に設けられ、屈折率分布レンズ側の面が凹又は凹状の
略球面である第1の透明体と、屈折率分布レンズの回折
格子側に設けられ、第1の透明体の凹状又は凸状の略球
面に密着する凸状又は凹状の略球面を有する第2の透明
体とを具備する。そのため、光ファイバと回折格子の間
の光学系に凹状の略球面と凸状の略球面で構成された球
面軸受による光軸調整機構が形成されているため、きわ
めて容易に光軸を調整することができる。また、光軸調
整時において、常に第1及び第2の透明体の凹状又は凸
状の略球面が密着しているため、各光学部品の位置関係
が安定し、各工学部品、特に第1及び第2の透明体の固
定が容易になる。さらに、固定作業の際、各部位が動き
にくいため、一旦調整した回折格子の軸がずれることは
なく、波長設定精度が高くなり伝送損失も小さくなる。
As described above, according to the first optical multiplexer / demultiplexer of the present invention, a plurality of optical fibers for inputting and outputting a wavelength-multiplexed optical signal and a plurality of optical signals having different wavelengths are transmitted by the optical fibers. Diffraction grating that separates the wavelength-multiplexed optical signal into optical signals of respective wavelengths or wavelength-multiplexes a plurality of optical signals, and a refractive index distribution lens that collimates the optical signals input and output by the optical fiber to the diffraction grating, A first transparent body provided on the grating surface of the diffraction grating and having a concave or concave substantially spherical surface on the side of the gradient index lens, and a first transparent body provided on the diffraction grating side of the gradient index lens. And a second transparent body having a convex or concave substantially spherical surface that comes into close contact with the concave or convex substantially spherical surface. Therefore, an optical axis adjustment mechanism is formed in the optical system between the optical fiber and the diffraction grating by a spherical bearing composed of a concave substantially spherical surface and a convex substantially spherical surface, so that the optical axis can be adjusted very easily. You can Further, when adjusting the optical axis, the concave or convex substantially spherical surfaces of the first and second transparent bodies are always in close contact with each other, so that the positional relationship of each optical component is stable, and each engineering component, especially the first and second The fixing of the second transparent body becomes easy. Further, during the fixing work, since each part is hard to move, the axis of the diffraction grating once adjusted does not shift, the wavelength setting accuracy becomes high, and the transmission loss becomes small.

【0049】また、本発明の第2の光合分波器は、波長
多重光信号及び波長の異なる複数の光信号を入出力する
ための複数の光ファイバと、光ファイバにより伝送され
た波長多重光信号をそれぞれの波長の光信号に分離し又
は複数の光信号を波長多重させる回折格子と、回折格子
側の面は凸状又は凹状の略球面であり、光ファイバによ
り入出力される光信号を回折格子にコリメートする屈折
率分布レンズと、回折格子の格子面上に設けられ、屈折
率分布レンズ側の面が屈折率分布レンズの凸状又は凹状
の略球面と密着する凹状又は凸状の略球面である透明体
とを具備する。すなわち、屈折率分布レンズが上記第1
の光合分波器における第1の透明体を兼ねるため透明体
が1個ですみ、上記第1の光合分波器の効果に加えて、
部品点数が少なくなるという効果を有する。
The second optical multiplexer / demultiplexer of the present invention comprises a plurality of optical fibers for inputting / outputting a wavelength-multiplexed optical signal and a plurality of optical signals having different wavelengths, and a wavelength-multiplexed optical signal transmitted by the optical fiber. A diffraction grating for separating signals into optical signals of respective wavelengths or wavelength-multiplexing a plurality of optical signals, and a surface on the side of the diffraction grating is a convex or concave substantially spherical surface, and an optical signal input / output by an optical fiber is A refractive index distribution lens that collimates the diffraction grating, and a concave or convex shape provided on the grating surface of the diffraction grating and having a surface on the refractive index distribution lens side in close contact with the convex or concave substantially spherical surface of the refractive index distribution lens. And a transparent body that is a spherical surface. That is, the gradient index lens is the first
Since it also serves as the first transparent body in the optical multiplexer / demultiplexer, only one transparent body is required. In addition to the effect of the first optical multiplexer / demultiplexer,
This has the effect of reducing the number of parts.

【0050】また、本発明の第3の光合分波器は、波長
多重光信号及び波長の異なる複数の光信号を入出力する
ための複数の光ファイバと、一方の端面に回折格子が形
成され、他方の端面が凹状又は凸状の略球面であり、光
ファイバにより伝送された波長多重光信号をそれぞれの
波長の光信号に分離し又は複数の光信号を波長多重させ
る回折素子と、光ファイバにより入出力される光信号を
回折素子にコリメートする屈折率分布レンズと、屈折率
分布レンズの回折素子側に設けられ、回折素子の凹状又
は凸状の略球面に密着する凸状又は凹状の略球面を有す
る透明体とを具備する。すなわち、上記第1の光合分波
器における第2の透明体と回折格子が一体化されている
ため透明体が1個ですみ、上記第1の光合分波器の効果
に加えて、部品点数が少なくなるという効果を有する。
In the third optical multiplexer / demultiplexer of the present invention, a plurality of optical fibers for inputting and outputting the wavelength division multiplexed optical signal and a plurality of optical signals having different wavelengths and a diffraction grating are formed on one end face. , The other end surface is a concave or convex substantially spherical surface, and a diffractive element for separating the wavelength-multiplexed optical signal transmitted by the optical fiber into optical signals of respective wavelengths or wavelength-multiplexing a plurality of optical signals, and an optical fiber A refractive index distribution lens that collimates an optical signal input and output by a diffractive element, and a convex or concave shape that is provided on the diffractive element side of the refractive index distribution lens and adheres to a concave or convex substantially spherical surface of the diffractive element. And a transparent body having a spherical surface. That is, since the second transparent body and the diffraction grating in the first optical multiplexer / demultiplexer are integrated, only one transparent body is required. In addition to the effect of the first optical multiplexer / demultiplexer, the number of parts is increased. Has the effect of being less.

【0051】また、本発明の第4の光合分波器は、波長
多重光信号及び波長の異なる複数の光信号を入出力する
ための複数の光ファイバと、一方の端面に回折格子が形
成され、他方の端面が凹状又は凸状の略球面であり、光
ファイバにより伝送された波長多重光信号をそれぞれの
波長の光信号に分離し又は複数の光信号を波長多重させ
る回折素子と、回折素子側の端面が回折素子の凹状又は
凸状の略球面に密着する凸状又は凹状の略球面であり、
光ファイバにより入出力される光信号を回折素子にコリ
メートする屈折率分布レンズとを具備する。すなわち、
屈折率分布レンズが上記第1の光合分波器における第1
の透明体を兼ね、第2の透明体と回折格子が一体化され
ているため透明体が不要となり、上記第1から第3の光
合分波器の効果に加えて、さらに部品点数が少なくなる
という効果を有する。
Further, the fourth optical multiplexer / demultiplexer of the present invention has a plurality of optical fibers for inputting and outputting a wavelength division multiplexed optical signal and a plurality of optical signals having different wavelengths, and a diffraction grating formed on one end face thereof. A diffractive element for separating the wavelength-multiplexed optical signal transmitted by the optical fiber into optical signals of respective wavelengths or for wavelength-multiplexing a plurality of optical signals, the other end face being a concave or convex substantially spherical surface The end face on the side is a convex or concave substantially spherical surface that closely adheres to the concave or convex substantially spherical surface of the diffraction element,
A refractive index distribution lens for collimating an optical signal input / output by an optical fiber to a diffractive element. That is,
The gradient index lens is the first in the first optical multiplexer / demultiplexer.
The second transparent body and the diffraction grating are integrated, and the transparent body is unnecessary, and in addition to the effects of the first to third optical multiplexers / demultiplexers, the number of parts is further reduced. Has the effect.

【0052】また、少なくとも回折格子及びそれを支持
する透明体又は回折素子をその内壁と接触しないように
収納し得る内部空間を有する筐体を具備することによ
り、特性に最も影響を与える部位である回折格子とその
周囲部分に、パッケージングする際の応力が直接加えら
れず、レーザ溶接等で起こる固定箇所の変形による光合
分波器の光学特性への影響を低減することができ、安定
したモジュール構成とすることができる。
Further, by providing a housing having an internal space capable of accommodating at least the diffraction grating and the transparent body or the diffraction element supporting the diffraction grating so as not to contact the inner wall of the diffraction grating, it is the portion that most affects the characteristics. Since stress during packaging is not directly applied to the diffraction grating and its surroundings, it is possible to reduce the influence on the optical characteristics of the optical multiplexer / demultiplexer due to the deformation of the fixed part caused by laser welding etc., and a stable module It can be configured.

【0053】一方、本発明の第1の光合分波器の製造方
法は、波長多重光信号及び波長の異なる複数の光信号を
入出力するための複数の光ファイバと、光ファイバによ
り伝送された波長多重光信号をそれぞれの波長の光信号
に分離し又は複数の光信号を波長多重させる回折格子
と、光ファイバにより入出力される光信号を回折格子に
コリメートする屈折率分布レンズとを具備する光合分波
器の製造方法であって、回折格子の格子面上に屈折率分
布レンズ側の面が凹状又は凸状の略球面である第1の透
明体を設け、屈折率分布レンズの回折格子側に第1の透
明体の凹状又は凸状の略球面に密着する凸状又は凹状の
略球面を有する第2の透明体を設け、凹状の略球面と凸
状の略球面の間に紫外線硬化樹脂を充填し、互いに密着
した状態で光軸調整を行い、光軸調整終了後、紫外線を
凹状の略球面と凸状の略球面の接触部に照射して固定す
る。そのため、光ファイバを直線状に配列し屈折率分布
レンズの光軸付近に配置固定する以外は特段の厳密な光
軸調整は不要となる。また、第2の透明体の凹状の略球
面と第1の透明体の凸状の略球面との間に潤滑性のある
紫外線硬化樹脂を塗布した状態で、第2の透明体と第1
の透明体を互いに押しつけるような力を加えながら両者
を突き合わせてることにより、きわめて容易に光軸調整
を行うことができる。また、光軸調整時において、常に
第1及び第2の透明体の凹状又は凸状の略球面が密着し
ているため、各光学部品の位置関係が安定し、各工学部
品、特に第1及び第2の透明体の固定が容易になる。さ
らに、固定作業の際、各部位が動きにくいため、一旦調
整した回折格子の軸がずれることはなく、得られた光合
分波器の波長設定精度が高くなり伝送損失も小さくな
る。
On the other hand, in the first method of manufacturing an optical multiplexer / demultiplexer according to the present invention, a plurality of optical fibers for inputting and outputting a wavelength division multiplexed optical signal and a plurality of optical signals having different wavelengths are transmitted through the optical fibers. It is provided with a diffraction grating for separating a wavelength-multiplexed optical signal into optical signals of respective wavelengths or for wavelength-multiplexing a plurality of optical signals, and a refractive index distribution lens for collimating an optical signal input / output by an optical fiber to the diffraction grating. A method of manufacturing an optical multiplexer / demultiplexer, comprising: providing a first transparent body having a concave or convex substantially spherical surface on the grating surface of the diffraction grating on the grating surface of the diffraction grating; A second transparent body having a convex or concave substantially spherical surface that closely adheres to the concave or convex substantially spherical surface of the first transparent body is provided on the side, and ultraviolet curing is performed between the concave and convex substantially spherical surfaces. Adjust the optical axis with resin filled and in close contact with each other Conducted after optical axis adjustment ends, fixed by irradiating ultraviolet rays to the contact portion of the substantially spherical and convex substantially spherical concave. Therefore, except for arranging the optical fibers linearly and arranging and fixing them near the optical axis of the gradient index lens, no special strict optical axis adjustment is required. In addition, a UV-curable resin having lubricity is applied between the concave substantially spherical surface of the second transparent body and the convex substantially spherical surface of the first transparent body, and the second transparent body and the first transparent body
The optical axes can be adjusted very easily by abutting the two transparent bodies while applying a force to push them against each other. Further, when adjusting the optical axis, the concave or convex substantially spherical surfaces of the first and second transparent bodies are always in close contact with each other, so that the positional relationship of each optical component is stable, and each engineering component, especially the first and second The fixing of the second transparent body becomes easy. Further, during the fixing work, since the respective parts are difficult to move, the axis of the diffraction grating once adjusted does not shift, the wavelength setting accuracy of the obtained optical multiplexer / demultiplexer becomes high, and the transmission loss becomes small.

【0054】また、本発明の第2の光合分波器の製造方
法は、波長多重光信号及び波長の異なる複数の光信号を
入出力するための複数の光ファイバと、光ファイバによ
り伝送された波長多重光信号をそれぞれの波長の光信号
に分離し又は複数の光信号を波長多重させる回折格子
と、光ファイバにより入出力される光信号を回折格子に
コリメートする屈折率分布レンズとを具備する光合分波
器の製造方法であって、屈折率分布レンズの回折格子側
の面を凸状又は凹状の略球面に成形し、回折格子の格子
面上に屈折率分布レンズ側の面が屈折率分布レンズの凸
状又は凹状の略球面と密着する凹状又は凸状の略球面で
ある透明体を設け、凹状の略球面と凸状の略球面の間に
紫外線硬化樹脂を充填し、互いに密着した状態で光軸調
整を行い、光軸調整終了後、紫外線を凹状の略球面と凸
状の略球面の接触部に照射して固定する。すなわち、屈
折率分布レンズが上記第1の光合分波器における第1の
透明体を兼ねるため第1の透明体と屈折率分布レンズを
接合する工程が不要となり、上記第1の光合分波器の製
造方法の効果に加えて、部品の接合工程が少なくなると
いう効果を有する。
In the second method of manufacturing an optical multiplexer / demultiplexer of the present invention, a plurality of optical fibers for inputting and outputting a wavelength division multiplexed optical signal and a plurality of optical signals having different wavelengths are transmitted through the optical fibers. It is provided with a diffraction grating for separating a wavelength-multiplexed optical signal into optical signals of respective wavelengths or for wavelength-multiplexing a plurality of optical signals, and a refractive index distribution lens for collimating an optical signal input / output by an optical fiber to the diffraction grating. A method for manufacturing an optical multiplexer / demultiplexer, wherein the surface of the gradient index lens on the side of the diffraction grating is molded into a convex or concave substantially spherical surface, and the surface on the side of the gradient index lens has a refractive index on the grating surface of the diffraction grating. Provide a transparent body that is a concave or convex substantially spherical surface that closely adheres to the convex or concave substantially spherical surface of the distribution lens, fill the space between the concave substantially spherical surface and the convex substantially spherical surface with an ultraviolet curable resin, and adhere to each other. Adjust the optical axis in the state After the completion, ultraviolet is irradiated to the contact portion of the substantially spherical and convex substantially spherical concave fixing. That is, since the gradient index lens also serves as the first transparent body in the first optical multiplexer / demultiplexer, the step of joining the first transparent body and the gradient index lens is unnecessary, and the first optical multiplexer / demultiplexer is used. In addition to the effect of the manufacturing method of (1), it has an effect of reducing the number of parts joining steps.

【0055】また、本発明の第3の光合分波器の製造方
法は、波長多重光信号及び波長の異なる複数の光信号を
入出力するための複数の光ファイバと、光ファイバによ
り伝送された波長多重光信号をそれぞれの波長の光信号
に分離し又は複数の光信号を波長多重させる回折素子
と、光ファイバにより入出力される光信号を回折素子に
コリメートする屈折率分布レンズとを具備する光合分波
器の製造方法であって、回折素子の一方の端面に回折格
子が形成し、他方の端面が凹状又は凸状の略球面を形成
し、屈折率分布レンズの回折素子側に回折素子の凹状又
は凸状の略球面に密着する凸状又は凹状の略球面を有す
る透明体を設け、凹状の略球面と凸状の略球面の間に紫
外線硬化樹脂を充填し、互いに密着した状態で光軸調整
を行い、光軸調整終了後、紫外線を凹状の略球面と凸状
の略球面の接触部に照射して固定する。すなわち、上記
第1の光合分波器における第2の透明体と回折格子が一
体化されているため第2の透明体と回折格子を接合する
工程が不要となり、上記第1の光合分波器の製造方法の
効果に加えて、部品の接合工程が少なくなるという効果
を有する。
In the third method of manufacturing an optical multiplexer / demultiplexer according to the present invention, a plurality of optical fibers for inputting and outputting a wavelength division multiplexed optical signal and a plurality of optical signals having different wavelengths are transmitted through the optical fibers. A diffractive element for separating a wavelength-multiplexed optical signal into optical signals of respective wavelengths or wavelength-multiplexing a plurality of optical signals, and a refractive index distribution lens for collimating an optical signal input / output by an optical fiber to the diffractive element A method of manufacturing an optical multiplexer / demultiplexer, wherein a diffraction grating is formed on one end face of a diffractive element, and the other end face forms a concave or convex substantially spherical surface, and the diffractive element is provided on the diffractive element side of the gradient index lens. Provide a transparent body having a convex or concave substantially spherical surface that closely adheres to the concave or convex substantially spherical surface, and fill the ultraviolet curable resin between the concave substantially spherical surface and the convex substantially spherical surface, and in a state of closely contacting each other. Adjust the optical axis and finish the optical axis adjustment. After, fixed by irradiating ultraviolet rays to the contact portion of the substantially spherical and convex substantially spherical concave. That is, since the second transparent body and the diffraction grating in the first optical multiplexer / demultiplexer are integrated, the step of joining the second transparent body and the diffraction grating is unnecessary, and the first optical multiplexer / demultiplexer is used. In addition to the effect of the manufacturing method of (1), it has an effect of reducing the number of parts joining steps.

【0056】また、本発明の第4の光合分波器の製造方
法は、波長多重光信号及び波長の異なる複数の光信号を
入出力するための複数の光ファイバと、光ファイバによ
り伝送された波長多重光信号をそれぞれの波長の光信号
に分離し又は複数の光信号を波長多重させる回折素子
と、光ファイバにより入出力される光信号を回折素子に
コリメートする屈折率分布レンズとを具備する光合分波
器の製造方法であって、回折素子の一方の端面に回折格
子が形成し、他方の端面が凹状又は凸状の略球面を形成
し、回折素子側の端面を回折素子の凹状又は凸状の略球
面に密着する凸状又は凹状の略球面に形成し、凹状の略
球面と凸状の略球面の間に紫外線硬化樹脂を充填し、互
いに密着した状態で光軸調整を行い、光軸調整終了後、
紫外線を凹状の略球面と凸状の略球面の接触部に照射し
て固定する。すなわち、屈折率分布レンズが上記第1の
光合分波器における第1の透明体を兼ね、第2の透明体
と回折格子が一体化されているため、第1の透明体と屈
折率分布レンズを接合する工程及び第2の透明体と回折
格子を接合する工程が不要となり、上記第1から第3の
光合分波器の製造方法の効果に加えて、さらに部品の接
合工程が少なくなるという効果を有する。
In the fourth method of manufacturing an optical multiplexer / demultiplexer according to the present invention, a plurality of optical fibers for inputting and outputting a wavelength division multiplexed optical signal and a plurality of optical signals having different wavelengths are transmitted through the optical fibers. A diffractive element for separating a wavelength-multiplexed optical signal into optical signals of respective wavelengths or wavelength-multiplexing a plurality of optical signals, and a refractive index distribution lens for collimating an optical signal input / output by an optical fiber to the diffractive element A method of manufacturing an optical multiplexer / demultiplexer, in which a diffraction grating is formed on one end face of a diffraction element, the other end face forms a concave or convex substantially spherical surface, and the end face on the diffraction element side is a concave or Formed into a convex or concave substantially spherical surface that is in close contact with the convex substantially spherical surface, filling the ultraviolet curable resin between the concave substantially spherical surface and the convex substantially spherical surface, and adjusting the optical axis in a state of being in close contact with each other, After the optical axis adjustment,
Ultraviolet rays are radiated and fixed on the contact portion between the concave and convex spherical surfaces. That is, since the refractive index distribution lens also serves as the first transparent body in the first optical multiplexer / demultiplexer, and the second transparent body and the diffraction grating are integrated, the first transparent body and the refractive index distribution lens. It becomes unnecessary to perform the step of joining the two and the step of joining the second transparent body and the diffraction grating, and in addition to the effect of the manufacturing method of the first to third optical multiplexers / demultiplexers, the step of joining the parts is further reduced. Have an effect.

【0057】上記各光合分波器の製造方法において、
(第1及び第2の)透明体及び回折格子を、その形状の
逆相を有する金型によりプレス加工により形成すること
により、各部品の製造工程の簡略化及び製造コスト低減
を図ることができる。
In the method of manufacturing each of the above optical multiplexers / demultiplexers,
By forming the (first and second) transparent body and the diffraction grating by press working with a mold having an opposite phase of the shape, the manufacturing process of each part can be simplified and the manufacturing cost can be reduced. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光合分波器の第1の実施形態の一構成
例を示す断面図
FIG. 1 is a sectional view showing a configuration example of a first embodiment of an optical multiplexer / demultiplexer of the present invention.

【図2】図1に示す光合分波器の製造方法を示す工程図FIG. 2 is a process diagram showing a method for manufacturing the optical multiplexer / demultiplexer shown in FIG.

【図3】第1の実施形態の光合分波器の他の構成例を示
す断面図
FIG. 3 is a cross-sectional view showing another configuration example of the optical multiplexer / demultiplexer according to the first embodiment.

【図4】本発明の光合分波器の第2の実施形態の一構成
例を示す断面図
FIG. 4 is a sectional view showing a configuration example of a second embodiment of the optical multiplexer / demultiplexer of the present invention.

【図5】図4に示す光合分波器の製造方法を示す工程図5A to 5C are process diagrams showing a manufacturing method of the optical multiplexer / demultiplexer shown in FIG.

【図6】第2の実施形態の光合分波器の他の構成例を示
す断面図
FIG. 6 is a cross-sectional view showing another configuration example of the optical multiplexer / demultiplexer according to the second embodiment.

【図7】本発明の光合分波器の第3の実施形態の一構成
例を示す断面図
FIG. 7 is a sectional view showing a configuration example of a third embodiment of the optical multiplexer / demultiplexer of the present invention.

【図8】第3の実施形態の光合分波器の他の構成例を示
す断面図
FIG. 8 is a sectional view showing another configuration example of the optical multiplexer / demultiplexer according to the third embodiment.

【図9】本発明の光合分波器の第4の実施形態の一構成
例を示す断面図
FIG. 9 is a sectional view showing a configuration example of a fourth embodiment of the optical multiplexer / demultiplexer of the present invention.

【図10】第4の実施形態の光合分波器の他の構成例を
示す断面図
FIG. 10 is a cross-sectional view showing another configuration example of the optical multiplexer / demultiplexer according to the fourth embodiment.

【図11】本発明の光合分波器の第5の実施形態の一構
成例を示す断面図
FIG. 11 is a sectional view showing a configuration example of a fifth embodiment of the optical multiplexer / demultiplexer of the present invention.

【図12】従来の光合分波器の構成を示す断面図FIG. 12 is a sectional view showing a configuration of a conventional optical multiplexer / demultiplexer.

【符号の説明】[Explanation of symbols]

1 :入力光ファイバ 3 :屈折率分布レンズ 4 :接着層 5 :回折格子 6 :接着層 9 :鏡筒 10 :カバー 11 :接触部 21 :出力光ファイバ 22 :出力光ファイバ 23 :出力光ファイバ 31 :屈折率分布レンズ 31a:凸又は凹状の略球面 50 :回折素子 71 :第1の透明体 71a:凸又は凹状の略球面 81 :第2の透明体 81a:凸又は凹状の略球面 1: Input optical fiber 3: Refractive index distribution lens 4: Adhesive layer 5: Diffraction grating 6: Adhesive layer 9: Lens barrel 10: Cover 11: Contact part 21: Output optical fiber 22: Output optical fiber 23: Output optical fiber 31 : Refractive index distribution lens 31a: Convex or concave substantially spherical surface 50: Diffraction element 71: First transparent body 71a: Convex or concave substantially spherical surface 81: Second transparent body 81a: Convex or concave substantially spherical surface

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 波長多重光信号及び波長の異なる複数の
光信号を入出力するための複数の光ファイバと、 前記光ファイバにより伝送された波長多重光信号をそれ
ぞれの波長の光信号に分離し又は複数の光信号を波長多
重させる回折格子と、 前記光ファイバにより入出力される光信号を前記回折格
子にコリメートする屈折率分布レンズと、 前記回折格子の格子面上に設けられ、前記屈折率分布レ
ンズ側の面が凹又は凹状の略球面である第1の透明体
と、 前記屈折率分布レンズの前記回折格子側に設けられ、前
記第1の透明体の凹状又は凸状の略球面に密着する凸状
又は凹状の略球面を有する第2の透明体とを具備する光
合分波器。
1. A plurality of optical fibers for inputting and outputting a wavelength-multiplexed optical signal and a plurality of optical signals having different wavelengths, and a wavelength-multiplexed optical signal transmitted by the optical fiber is separated into optical signals of respective wavelengths. Alternatively, a diffraction grating that wavelength-multiplexes a plurality of optical signals, a refractive index distribution lens that collimates the optical signals input and output by the optical fiber to the diffraction grating, and the refractive index provided on the grating surface of the diffraction grating A first transparent body having a concave or concave substantially spherical surface on the side of the distribution lens; and a concave or convex substantially spherical surface of the first transparent body provided on the diffraction grating side of the gradient index lens. An optical multiplexer / demultiplexer comprising a second transparent body having a convex or concave substantially spherical surface that is in close contact with the second transparent body.
【請求項2】 波長多重光信号及び波長の異なる複数の
光信号を入出力するための複数の光ファイバと、 前記光ファイバにより伝送された波長多重光信号をそれ
ぞれの波長の光信号に分離し又は複数の光信号を波長多
重させる回折格子と、 前記回折格子側の面は凸状又は凹状の略球面であり、前
記光ファイバにより入出力される光信号を前記回折格子
にコリメートする屈折率分布レンズと、 前記回折格子の格子面上に設けられ、前記屈折率分布レ
ンズ側の面が前記屈折率分布レンズの前記凸状又は凹状
の略球面と密着する凹状又は凸状の略球面である透明体
とを具備する光合分波器。
2. A plurality of optical fibers for inputting and outputting a wavelength multiplexed optical signal and a plurality of optical signals having different wavelengths, and a wavelength multiplexed optical signal transmitted by the optical fiber is separated into optical signals of respective wavelengths. Or, a diffraction grating for wavelength-multiplexing a plurality of optical signals, the surface on the diffraction grating side is a convex or concave substantially spherical surface, and a refractive index distribution for collimating the optical signal input / output by the optical fiber to the diffraction grating. A lens and a transparent surface provided on the grating surface of the diffraction grating, the surface on the side of the gradient index lens being a concave or convex substantially spherical surface that is in close contact with the convex or concave substantially spherical surface of the gradient index lens. An optical multiplexer / demultiplexer having a body.
【請求項3】 波長多重光信号及び波長の異なる複数の
光信号を入出力するための複数の光ファイバと、 一方の端面に回折格子が形成され、他方の端面が凹状又
は凸状の略球面であり、前記光ファイバにより伝送され
た波長多重光信号をそれぞれの波長の光信号に分離し又
は複数の光信号を波長多重させる回折素子と、 前記光ファイバにより入出力される光信号を前記回折素
子にコリメートする屈折率分布レンズと、 前記屈折率分布レンズの前記回折素子側に設けられ、前
記回折素子の前記凹状又は凸状の略球面に密着する凸状
又は凹状の略球面を有する透明体とを具備する光合分波
器。
3. A plurality of optical fibers for inputting / outputting a wavelength-multiplexed optical signal and a plurality of optical signals having different wavelengths, and a diffraction grating formed on one end face, and the other end face being a concave or convex substantially spherical surface. A diffractive element that separates the wavelength-multiplexed optical signal transmitted by the optical fiber into optical signals of respective wavelengths or wavelength-multiplexes a plurality of optical signals; and A refractive index distribution lens that collimates the element, and a transparent body that is provided on the diffraction element side of the refractive index distribution lens and has a convex or concave substantially spherical surface that is in close contact with the concave or convex substantially spherical surface of the diffraction element. And an optical multiplexer / demultiplexer.
【請求項4】 波長多重光信号及び波長の異なる複数の
光信号を入出力するための複数の光ファイバと、 一方の端面に回折格子が形成され、他方の端面が凹状又
は凸状の略球面であり、前記光ファイバにより伝送され
た波長多重光信号をそれぞれの波長の光信号に分離し又
は複数の光信号を波長多重させる回折素子と、 前記回折素子側の端面が前記回折素子の前記凹状又は凸
状の略球面に密着する凸状又は凹状の略球面であり、前
記光ファイバにより入出力される光信号を前記回折素子
にコリメートする屈折率分布レンズとを具備する光合分
波器。
4. A plurality of optical fibers for inputting / outputting a wavelength-multiplexed optical signal and a plurality of optical signals having different wavelengths, and a diffraction grating formed on one end face, and the other end face being a concave or convex substantially spherical surface. And a diffractive element that separates the wavelength-multiplexed optical signal transmitted by the optical fiber into optical signals of respective wavelengths or wavelength-multiplexes a plurality of optical signals, and the end face on the side of the diffractive element is the concave shape of the diffractive element. Alternatively, an optical multiplexer / demultiplexer having a convex or concave substantially spherical surface that is in close contact with the convex substantially spherical surface, and including a gradient index lens that collimates the optical signal input and output by the optical fiber to the diffraction element.
【請求項5】 前記凹状の略球面と前記凸状の略球面の
曲率半径が等しい請求項1から4のいずれかに記載の光
合分波器。
5. The optical multiplexer / demultiplexer according to claim 1, wherein the concave substantially spherical surface and the convex substantially spherical surface have the same radius of curvature.
【請求項6】 前記光ファイバ端面及び前記屈折率分布
レンズの前記光ファイバ端面と当接する端面を光軸に対
して斜めに研磨し又はカットした請求項1から5のいず
れかに記載の光合分波器。
6. The optical coupling / decoupling device according to claim 1, wherein the optical fiber end surface and the end surface of the gradient index lens contacting the optical fiber end surface are polished or cut obliquely with respect to the optical axis. Wave instrument.
【請求項7】 少なくとも前記回折格子及び前記第2の
透明体をその内壁と接触しないように収納し得る内部空
間を有する筐体を具備する請求項1記載の光合分波器。
7. The optical multiplexer / demultiplexer according to claim 1, further comprising a housing having an internal space capable of accommodating at least the diffraction grating and the second transparent body so as not to contact an inner wall thereof.
【請求項8】 少なくとも前記回折格子及び前記透明体
をその内壁と接触しないように収納し得る内部空間を有
する筐体を具備する請求項2記載の光合分波器。
8. The optical multiplexer / demultiplexer according to claim 2, further comprising a housing having an internal space capable of accommodating at least the diffraction grating and the transparent body so as not to contact an inner wall thereof.
【請求項9】 少なくとも前記回折素子をその内壁と接
触しないように収納し得る内部空間を有する筐体を具備
する請求項3又は4記載の光合分波器。
9. The optical multiplexer / demultiplexer according to claim 3, further comprising a housing having an internal space capable of accommodating at least the diffraction element so as not to contact the inner wall thereof.
【請求項10】 波長多重光信号及び波長の異なる複数
の光信号を入出力するための複数の光ファイバと、前記
光ファイバにより伝送された波長多重光信号をそれぞれ
の波長の光信号に分離し又は複数の光信号を波長多重さ
せる回折格子と、前記光ファイバにより入出力される光
信号を前記回折格子にコリメートする屈折率分布レンズ
とを具備する光合分波器の製造方法であって、 前記回折格子の格子面上に前記屈折率分布レンズ側の面
が凹状又は凸状の略球面である第1の透明体を設け、前
記屈折率分布レンズの前記回折格子側に前記第1の透明
体の凹状又は凸状の略球面に密着する凸状又は凹状の略
球面を有する第2の透明体を設け、前記凹状の略球面と
前記凸状の略球面の間に紫外線硬化樹脂を充填し、互い
に密着した状態で光軸調整を行い、光軸調整終了後、紫
外線を前記凹状の略球面と凸状の略球面の接触部に照射
して固定する光合分波器の製造方法。
10. A plurality of optical fibers for inputting / outputting a wavelength-multiplexed optical signal and a plurality of optical signals having different wavelengths, and a wavelength-multiplexed optical signal transmitted by the optical fiber is separated into optical signals of respective wavelengths. Alternatively, there is provided a method of manufacturing an optical multiplexer / demultiplexer, comprising: a diffraction grating that wavelength-multiplexes a plurality of optical signals; and a refractive index distribution lens that collimates the optical signals input and output by the optical fiber to the diffraction grating, A first transparent body having a concave or convex substantially spherical surface on the side of the gradient index lens is provided on the grating surface of the diffraction grating, and the first transparent body is provided on the diffraction grating side of the gradient index lens. Provide a second transparent body having a convex or concave substantially spherical surface that closely adheres to the concave or convex substantially spherical surface, and fill an ultraviolet curable resin between the concave substantially spherical surface and the convex substantially spherical surface, Optical axis adjustment in close contact with each other Conducted after optical axis adjustment ends, the method for manufacturing an optical demultiplexer for fixing the UV is irradiated to the contact portion of the substantially spherical and convex substantially spherical surface of the concave.
【請求項11】 波長多重光信号及び波長の異なる複数
の光信号を入出力するための複数の光ファイバと、前記
光ファイバにより伝送された波長多重光信号をそれぞれ
の波長の光信号に分離し又は複数の光信号を波長多重さ
せる回折格子と、前記光ファイバにより入出力される光
信号を前記回折格子にコリメートする屈折率分布レンズ
とを具備する光合分波器の製造方法であって、 前記屈折率分布レンズの前記回折格子側の面を凸状又は
凹状の略球面に成形し、前記回折格子の格子面上に前記
屈折率分布レンズ側の面が前記屈折率分布レンズの前記
凸状又は凹状の略球面と密着する凹状又は凸状の略球面
である透明体を設け、前記凹状の略球面と前記凸状の略
球面の間に紫外線硬化樹脂を充填し、互いに密着した状
態で光軸調整を行い、光軸調整終了後、紫外線を前記凹
状の略球面と凸状の略球面の接触部に照射して固定する
光合分波器の製造方法。
11. A plurality of optical fibers for inputting and outputting a WDM optical signal and a plurality of optical signals having different wavelengths, and a WDM optical signal transmitted by the optical fiber is separated into optical signals of respective wavelengths. Alternatively, there is provided a method of manufacturing an optical multiplexer / demultiplexer, comprising: a diffraction grating that wavelength-multiplexes a plurality of optical signals; and a refractive index distribution lens that collimates the optical signals input and output by the optical fiber to the diffraction grating, The surface of the refractive index distribution lens on the side of the diffraction grating is molded into a convex or concave substantially spherical surface, and the surface on the side of the refractive index distribution lens on the grating surface of the diffraction grating is the convex or the surface of the refractive index distribution lens. Provide a transparent body that is a concave or convex substantially spherical surface that is in close contact with the concave substantially spherical surface, fill the space between the concave substantially spherical surface and the convex substantially spherical surface with an ultraviolet curable resin, and keep the optical axis in close contact with each other. Adjust the optical axis Sei After completion, the method for manufacturing an optical demultiplexer for fixing the UV is irradiated to the contact portion of the substantially spherical and convex substantially spherical surface of the concave.
【請求項12】 波長多重光信号及び波長の異なる複数
の光信号を入出力するための複数の光ファイバと、前記
光ファイバにより伝送された波長多重光信号をそれぞれ
の波長の光信号に分離し又は複数の光信号を波長多重さ
せる回折素子と、前記光ファイバにより入出力される光
信号を前記回折素子にコリメートする屈折率分布レンズ
とを具備する光合分波器の製造方法であって、 前記回折素子の一方の端面に回折格子が形成し、他方の
端面が凹状又は凸状の略球面を形成し、前記屈折率分布
レンズの前記回折素子側に前記回折素子の前記凹状又は
凸状の略球面に密着する凸状又は凹状の略球面を有する
透明体を設け、前記凹状の略球面と前記凸状の略球面の
間に紫外線硬化樹脂を充填し、互いに密着した状態で光
軸調整を行い、光軸調整終了後、紫外線を前記凹状の略
球面と凸状の略球面の接触部に照射して固定する光合分
波器の製造方法。
12. A plurality of optical fibers for inputting and outputting a WDM optical signal and a plurality of optical signals having different wavelengths, and a WDM optical signal transmitted by the optical fiber is separated into optical signals of respective wavelengths. Alternatively, a method of manufacturing an optical multiplexer / demultiplexer comprising a diffractive element that wavelength-multiplexes a plurality of optical signals, and a refractive index distribution lens that collimates an optical signal input and output by the optical fiber to the diffractive element, A diffraction grating is formed on one end surface of the diffractive element, and the other end surface forms a concave or convex substantially spherical surface, and the concave or convex substantially concave surface of the diffractive element is provided on the diffractive element side of the gradient index lens. Provide a transparent body having a convex or concave substantially spherical surface that adheres closely to the spherical surface, fill the UV curable resin between the concave substantially spherical surface and the convex substantially spherical surface, and adjust the optical axis in a state of being in close contact with each other. , Optical axis adjustment end After, a method of manufacturing an optical demultiplexer for fixing the UV is irradiated to the contact portion of the substantially spherical and convex substantially spherical surface of the concave.
【請求項13】 波長多重光信号及び波長の異なる複数
の光信号を入出力するための複数の光ファイバと、前記
光ファイバにより伝送された波長多重光信号をそれぞれ
の波長の光信号に分離し又は複数の光信号を波長多重さ
せる回折素子と、前記光ファイバにより入出力される光
信号を前記回折素子にコリメートする屈折率分布レンズ
とを具備する光合分波器の製造方法であって、 前記回折素子の一方の端面に回折格子が形成し、他方の
端面が凹状又は凸状の略球面を形成し、前記回折素子側
の端面を前記回折素子の前記凹状又は凸状の略球面に密
着する凸状又は凹状の略球面に形成し、前記凹状の略球
面と前記凸状の略球面の間に紫外線硬化樹脂を充填し、
互いに密着した状態で光軸調整を行い、光軸調整終了
後、紫外線を前記凹状の略球面と凸状の略球面の接触部
に照射して固定する光合分波器の製造方法。
13. A plurality of optical fibers for inputting and outputting a WDM optical signal and a plurality of optical signals having different wavelengths, and a WDM optical signal transmitted by the optical fiber is separated into optical signals of respective wavelengths. Alternatively, a method of manufacturing an optical multiplexer / demultiplexer comprising a diffractive element that wavelength-multiplexes a plurality of optical signals, and a refractive index distribution lens that collimates an optical signal input and output by the optical fiber to the diffractive element, A diffraction grating is formed on one end surface of the diffractive element, and the other end surface forms a concave or convex substantially spherical surface, and the end surface on the side of the diffractive element is brought into close contact with the concave or convex substantially spherical surface of the diffractive element. Formed into a convex or concave substantially spherical surface, filling an ultraviolet curing resin between the concave substantially spherical surface and the convex substantially spherical surface,
A method of manufacturing an optical multiplexer / demultiplexer in which optical axes are adjusted in a state of being in close contact with each other, and after the optical axis adjustment is completed, ultraviolet rays are applied to and fixed to the contact portions of the concave substantially spherical surface and the convex substantially spherical surface.
【請求項14】 前記第1及び第2の透明体はその形状
の逆相を有する金型によりプレス加工によって形成され
る請求項10記載の光合分波器の製造方法。
14. The method of manufacturing an optical multiplexer / demultiplexer according to claim 10, wherein the first and second transparent bodies are formed by press working with a mold having a phase opposite to that of the first and second transparent bodies.
【請求項15】 前記透明体はその形状の逆相を有する
金型によりプレス加工によって形成される請求項11記
載の光合分波器の製造方法。
15. The method of manufacturing an optical multiplexer / demultiplexer according to claim 11, wherein the transparent body is formed by press working with a die having a phase opposite to that of the transparent body.
【請求項16】 前記回折素子はその形状の逆相を有す
る金型によりプレス加工によって形成される請求項12
又は13記載の光合分波器の製造方法。
16. The diffractive element is formed by pressing with a mold having an opposite phase of its shape.
Or the manufacturing method of the optical multiplexer / demultiplexer according to 13.
JP4454696A 1996-03-01 1996-03-01 Optical multiplexer / demultiplexer and manufacturing method thereof Expired - Fee Related JP3401134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4454696A JP3401134B2 (en) 1996-03-01 1996-03-01 Optical multiplexer / demultiplexer and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4454696A JP3401134B2 (en) 1996-03-01 1996-03-01 Optical multiplexer / demultiplexer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09236724A true JPH09236724A (en) 1997-09-09
JP3401134B2 JP3401134B2 (en) 2003-04-28

Family

ID=12694508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4454696A Expired - Fee Related JP3401134B2 (en) 1996-03-01 1996-03-01 Optical multiplexer / demultiplexer and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3401134B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063367A1 (en) * 1998-06-04 1999-12-09 Varian, Inc. Dispersing optical prism elements with graded index of refraction
EP1038192A2 (en) * 1997-12-13 2000-09-27 Lightchip, Inc. Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
EP1210630A1 (en) * 1999-08-25 2002-06-05 Lightchip, Inc. Wavelength division multiplexer/demultipler using homogeneous refractive index lenses and transmission grating
GB2388670A (en) * 2002-05-18 2003-11-19 Qinetiq Ltd Coupling multicore optic fibre cores to one single core optic fibre
US7817334B2 (en) 2007-02-06 2010-10-19 Seiko Epson Corporation Wavelength conversion element, light source device, image display device, and monitor device
JP6386210B1 (en) * 2018-01-12 2018-09-05 カラーリンク・ジャパン 株式会社 Optical device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1038192A2 (en) * 1997-12-13 2000-09-27 Lightchip, Inc. Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
EP1038192A4 (en) * 1997-12-13 2003-05-21 Lightchip Inc Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
WO1999063367A1 (en) * 1998-06-04 1999-12-09 Varian, Inc. Dispersing optical prism elements with graded index of refraction
EP1210630A1 (en) * 1999-08-25 2002-06-05 Lightchip, Inc. Wavelength division multiplexer/demultipler using homogeneous refractive index lenses and transmission grating
GB2388670A (en) * 2002-05-18 2003-11-19 Qinetiq Ltd Coupling multicore optic fibre cores to one single core optic fibre
US7817334B2 (en) 2007-02-06 2010-10-19 Seiko Epson Corporation Wavelength conversion element, light source device, image display device, and monitor device
JP6386210B1 (en) * 2018-01-12 2018-09-05 カラーリンク・ジャパン 株式会社 Optical device

Also Published As

Publication number Publication date
JP3401134B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
JP4554132B2 (en) Optical wavelength division multiplexer / demultiplexer in which preformed optical components are passively aligned
US20060198576A1 (en) Optical multiplexer/demultiplexer and production method for optical multiplexer/demultiplexer
EP0297437B1 (en) Flexible replica grating and optical multiplexer/demultiplexer using it
JP4311579B2 (en) Optical module and optical wavelength multiplexer / demultiplexer
US10182275B1 (en) Passive optical subassembly with a signal pitch router
US6243513B1 (en) Wavelength division multiplexing/demultiplexing devices using diffractive optic lenses
EP1389845A2 (en) Optical branching and inserting module
US6236780B1 (en) Wavelength division multiplexing/demultiplexing devices using dual diffractive optic lenses
JP3401134B2 (en) Optical multiplexer / demultiplexer and manufacturing method thereof
JP4116400B2 (en) Optical module
CN111684337B (en) Method for manufacturing optical multiplexer/demultiplexer
US6404945B1 (en) Wavelength division multiplexing/demultiplexing devices using homogeneous refractive index lenses
JP4632227B2 (en) Optical module
JP2008209916A (en) Optical multiplexer/demultiplexer and optical transceiver using the same
JP2006259772A (en) Optical multiplexer/demultiplexer
EP0710870B1 (en) Amorphous-silicon pedestal liquid crystal light valve and method for producing same
JP2003043295A (en) Optical module unit and optical module using the same
JPH0886932A (en) Optical multiplexer/demultiplexer
WO2019142358A1 (en) Optical multiplexing-demultiplexing device
JPS61232405A (en) Optical demultiplexer and multiplexer
JPS62253104A (en) Optical element
JPS62245206A (en) Optical element
JP2008241825A (en) Optical multiplexer/demultiplexer
JPS6330806A (en) Optical multiplexer/demultiplexer
JPS62253103A (en) Manufacture of optical element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120221

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees