JPH09236341A - Method of adjusting temperature and humidity in aircraft ground air conditioner - Google Patents

Method of adjusting temperature and humidity in aircraft ground air conditioner

Info

Publication number
JPH09236341A
JPH09236341A JP8040837A JP4083796A JPH09236341A JP H09236341 A JPH09236341 A JP H09236341A JP 8040837 A JP8040837 A JP 8040837A JP 4083796 A JP4083796 A JP 4083796A JP H09236341 A JPH09236341 A JP H09236341A
Authority
JP
Japan
Prior art keywords
air
temperature
pressure
mixed
conditioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8040837A
Other languages
Japanese (ja)
Other versions
JP2926472B2 (en
Inventor
Takamitsu Ishii
孝光 石井
Akira Takaike
明 高池
Akira Akasaka
亮 赤坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP8040837A priority Critical patent/JP2926472B2/en
Publication of JPH09236341A publication Critical patent/JPH09236341A/en
Application granted granted Critical
Publication of JP2926472B2 publication Critical patent/JP2926472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain arbitrary temperature conditioning air keeping humidity required as the conditioning air with a simplified method without use of a refrigerant such as a chlorofluorocarbon. SOLUTION: Atmospheric air is compressed into pressure feeding air, which is further raised in its pressure into pressure raised air. This is cooled to separate oversaturated water, and thereafter the raised air is rendered to adiabatic expansion with an expansion turbine 8 to produce low temperature air. The oversaturated water in the low temperature air is removed into low temperature saturated air and the air before introduction into the expansion turbine 8 is branched to and mixed in the low temperature saturated air to obtain mixture air which is then raised in temperature. By adjusting the amount of the mixture air temperature and relative humidity of conditioning air obtained after the mixing are adjusted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、航空機用地上空気
調和装置に係わり、特に調和空気の温度及び湿度の調節
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ground air conditioner for aircraft, and more particularly to a method of adjusting temperature and humidity of conditioned air.

【0002】[0002]

【従来の技術】航空機用地上空気調和装置は、冷却又は
加熱した調和空気を航空機の各種電子装置や客室等に供
給して冷房や暖房を行うもので、例えば実公昭60−3
2835号公報や、特開平7−208773号公報に示
されているものが知られている。これらの装置は、牽引
車で牽引されるトレーラー上に駆動源、駆動伝達系統、
冷媒系統、送風系統及び制御系統を搭載して構成されて
いる。そして送風系統は、大気空気を導入して圧送する
圧送機と、圧縮熱を除去するプリクーラーと、大気導入
空気の温度が高い場合にフロン等の冷媒を寒冷源として
冷却するエバポレーターと、大気導入空気の温度が低い
場合に昇温する加熱用ヒーター等とから構成されてい
る。
2. Description of the Related Art Aircraft ground air conditioners supply conditioned or cooled conditioned air to various electronic devices and passenger compartments of an aircraft for cooling and heating.
Those disclosed in Japanese Patent No. 2835 and Japanese Patent Laid-Open No. 7-208773 are known. These devices consist of a drive source, drive train, and drive train on a trailer towed by a tow vehicle.
The system is equipped with a refrigerant system, a ventilation system and a control system. The blower system consists of a pressure feeder that introduces atmospheric air and feeds it under pressure, a precooler that removes the heat of compression, an evaporator that cools a refrigerant such as CFCs as a cold source when the temperature of the air that is introduced into the atmosphere is high, and an atmospheric introduction. It is composed of a heating heater and the like which raises the temperature when the temperature of air is low.

【0003】このような装置における調和空気の温度調
節方法は、導入する大気温度に応じてプリクーラーファ
ンへの冷却風量やエバポレーターで冷媒により送風系統
の空気を冷却することにより連続的に得られる冷水のプ
リクーラーへの吹きかけ量、冷媒系統の負荷及びヒータ
ー負荷の調整等により行われている。
A method for adjusting the temperature of conditioned air in such an apparatus is a chilled water continuously obtained by cooling the air in the blast system with a refrigerant in an evaporator or a cooling air amount to a precooler fan according to the atmospheric temperature to be introduced. This is done by adjusting the amount of sprayed air to the precooler, the refrigerant system load, and the heater load.

【0004】[0004]

【発明が解決しようとする課題】しかし、一般的に冷媒
として使用されるフロンは、地球環境汚染や温暖化の観
点からその使用が規制されてきており、これに代わるも
のが要望されている。仮にこれに代わるものが得られた
としても、上記構成では装置が複雑であり、大型化,重
量増加,牽引性,操作性,運転性,保全性等の問題があ
るばかりでなく、設備費や運転費が嵩むことになる。
However, the use of CFCs, which are generally used as a refrigerant, has been regulated from the viewpoint of global environmental pollution and global warming, and alternatives thereto have been demanded. Even if a substitute could be obtained, the above-mentioned configuration would complicate the device, and would not only cause problems such as large size, weight increase, traction, operability, drivability, maintainability, etc. Operating costs will increase.

【0005】また、上記調和空気の温度調節方法は、単
に温度調節のみを行う方法であり、含有水分量について
は考慮されていない。すなわち、冷房運転時には送風系
統の空気はエバポレーターで冷却され冷水を発生してお
り、調和空気はその温度での飽和湿度(相対湿度100
%)の空気であり、使用先で結露する等の不都合があ
る。
Further, the above-mentioned method for adjusting the temperature of conditioned air is a method in which only temperature adjustment is performed, and the content of water content is not taken into consideration. That is, during the cooling operation, the air in the blower system is cooled by the evaporator to generate cold water, and the conditioned air has a saturated humidity (relative humidity 100) at that temperature.
%) Of the air, and there is a problem such as dew condensation at the place of use.

【0006】そこで本発明は、フロン等の冷媒を使用せ
ず簡単な方法によって、調和空気として要求される湿度
(相対湿度95%以下)を維持しつつ、任意温度の不飽
和調和空気を得ることができる航空機地上空気調和装置
における調温,調湿方法を提供することを目的としてい
る。
Therefore, the present invention provides unsaturated conditioned air at an arbitrary temperature while maintaining the humidity (relative humidity of 95% or less) required for conditioned air by a simple method without using a refrigerant such as CFC. It is an object of the present invention to provide a temperature control / humidity control method for an aircraft ground air conditioner capable of achieving the above.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の航空機用地上空気調和装置における調温,
調湿方法は、大気空気を圧縮して圧送空気とし、該圧送
空気をさらに昇圧して昇圧空気とし、これを冷却して過
飽和水分を分離した後、該昇圧空気を膨張タービンで断
熱膨張させて低温空気を発生させ、該低温空気中の過飽
和水分を除去して低温飽和空気とするとともに、該低温
飽和空気に前記膨張タービン導入前の空気を分岐して混
合空気として混合して昇温し、該混合空気の量を調節す
ることにより、混合後に得られる調和空気の温度及び相
対湿度を調整して、不飽和調和空気を得ることを特徴と
している。また、前記混合空気の量の調節は、前記混合
後に得られる調和空気の温度を検出し、この検出信号を
受けて、所定の調和空気温度になるよう混合空気調節弁
を制御することにより行うことを特徴としている。さら
に、大気条件、調和空気の仕様条件から定まる前記圧送
空気の圧送圧力,昇圧空気の昇圧圧力,流量,調和空気
の温度を制御器に設定しておき、前記各圧力,温度,流
量を検出する各検出器からの検出信号を前記制御器に取
り込み、設定値に基づく計算を行って、前記各圧力,流
量,及び前記混合空気の流量を制御する各制御端の調節
機構を調節することにより系全体の制御を行うことを特
徴としている。
In order to achieve the above object, the temperature control in the aircraft ground air conditioner of the present invention,
The humidity control method is to compress atmospheric air into compressed air, further pressurize the compressed air into pressurized air, cool it to separate supersaturated moisture, and adiabatically expand the pressurized air with an expansion turbine. Generating low-temperature air, removing supersaturated moisture in the low-temperature air to obtain low-temperature saturated air, branching the air before introduction of the expansion turbine to the low-temperature saturated air, mixing as mixed air, and raising the temperature, It is characterized in that unsaturated conditioned air is obtained by adjusting the temperature and relative humidity of the conditioned air obtained after mixing by adjusting the amount of the mixed air. Further, the amount of the mixed air is adjusted by detecting the temperature of the conditioned air obtained after the mixing, and receiving the detection signal to control the mixed air control valve so that the temperature becomes a predetermined conditioned air temperature. Is characterized by. Further, the pumping pressure of the compressed air, the boosting pressure of the boosted air, the flow rate, and the temperature of the conditioned air, which are determined from the atmospheric condition and the specification condition of the conditioned air, are set in the controller, and the pressure, temperature, and flow rate are detected. The detection signal from each detector is taken into the controller, the calculation based on the set value is performed, and the adjusting mechanism at each control end that controls the pressure, the flow rate, and the flow rate of the mixed air is adjusted to adjust the system. The feature is that the entire control is performed.

【0008】[0008]

【発明の実施の形態】以下、本発明を、図面に基づいて
更に詳細に説明する。図1に示す航空機地上空気調和装
置は、必要な量の空気を大気から導入するにあたって塵
埃を除去する空気濾過器1と、空気濾過器1を経て導入
された空気を必要な圧力まで圧送する圧送機2と、圧送
機2で発生した圧送空気から圧縮熱を除去する一次冷却
器3と、一次冷却器3で発生した水を除去する一次水分
離器4と、一次水分離器4から導出した圧送空気をさら
に昇圧するための昇圧機5と、昇圧機5で発生した昇圧
空気から昇圧熱を除去する二次冷却器6と、二次冷却器
6で発生した水を除去する二次水分離器7と、二次水分
離器7から導出した昇圧空気を断熱膨張させて低温空気
を発生させるとともに、その回転力で昇圧機5を駆動す
る膨張タービン8と、膨張タービン8で発生した低温空
気に含有する過飽和の水蒸気,水,霜,氷等を除去する
低温空気濾過器9と、前記圧送機2から導出した圧送空
気の一部を、低温空気濾過器9から導出した低温飽和空
気に混合し調和空気として必要な温度,湿度を調節する
温度湿度調節装置10と、調和空気を空気調和装置から
航空機に送出するフレキシブルホース11と、これら機
器を接続する配管12,13,13′,14,15,1
5′,16,17,17′と、温度湿度調節装置10を
構成する混合空気調節弁20を介して、圧送機2の出口
配管12から分岐して低温空気濾過器9の出口配管17
に接続する混合空気配管21,21′から構成されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in more detail with reference to the drawings. The aircraft ground air conditioner shown in FIG. 1 includes an air filter 1 for removing dust when introducing a required amount of air from the atmosphere, and a pressure feed for pumping the air introduced through the air filter 1 to a required pressure. Machine 2, a primary cooler 3 for removing compression heat from the compressed air generated by the pump 2, a primary water separator 4 for removing water generated by the primary cooler 3, and a primary water separator 4 A booster 5 for further boosting the pressure-fed air, a secondary cooler 6 for removing boosted heat from the boosted air generated by the booster 5, and a secondary water separator for removing water generated by the secondary cooler 6. And the expansion turbine 8 that drives the booster 5 by its rotational force while adiabatically expanding the booster air derived from the secondary water separator 7 to generate low-temperature air, and the low-temperature air generated by the expansion turbine 8. Supersaturated water vapor, water, frost, contained in And a low temperature air filter 9 for removing air and the like, and a part of the compressed air drawn out from the pump 2 is mixed with the low temperature saturated air drawn out from the low temperature air filter 9 to adjust the temperature and humidity required as conditioned air. Temperature and humidity controller 10, flexible hose 11 for sending conditioned air from the air conditioner to the aircraft, and pipes 12, 13, 13 ', 14, 15, 1 connecting these devices
5 ′, 16, 17, 17 ′ and a mixed air control valve 20 constituting the temperature / humidity control device 10, branching from the outlet pipe 12 of the pump 2 and the outlet pipe 17 of the low temperature air filter 9.
It is composed of mixed air pipes 21 and 21 'connected to.

【0009】次に、大気空気の温度を34℃、相対湿度
を80%として、最終的に温度18℃の不飽和調和空気
を得る第1実施例を図1に基づいて説明する。
Next, a first embodiment for obtaining unsaturated conditioned air having a temperature of 18 ° C. at a temperature of 34 ° C. and a relative humidity of 80% will be described with reference to FIG.

【0010】空気濾過器1で塵埃を除去された温度34
℃,相対湿度80%(水分量約0.0275kg/kg
(乾燥空気)),量1700Nm3 /hの大気空気は、
圧送機2に導入され1kg/cm2 G,約115℃に昇
圧,昇温されて配管12に導出され圧送空気として、そ
の大部分が一次冷却器3に導入され空気又は冷却水と熱
交換し38℃に冷却される。このとき配管13を導出す
る圧送空気は、冷却されることにより相対湿度が100
%を超え過飽和状態となるので、この過飽和分の水分は
ドレン水として、邪魔板式,デミスター式,サイクロン
式等周知のドレントラップ機能を持った一次水分離器4
で圧送空気から分離され系外に排出される。
The temperature 34 at which dust is removed by the air filter 1
℃, relative humidity 80% (water content about 0.0275kg / kg
(Dry air)), the amount of atmospheric air of 1700 Nm 3 / h is
Introduced into the pumping machine 2, the pressure is raised to 1 kg / cm 2 G, about 115 ° C., the temperature is raised to the pipe 12, and as compressed air, most of it is introduced into the primary cooler 3 and exchanges heat with air or cooling water. It is cooled to 38 ° C. At this time, the pressure-fed air discharged from the pipe 13 has a relative humidity of 100 due to being cooled.
%, The water is supersaturated, and the water of the supersaturated portion is used as drain water, and the primary water separator 4 has a well-known drain trap function such as baffle plate type, demister type, and cyclone type.
It is separated from the compressed air and discharged to the outside of the system.

【0011】一次水分離器4で水分を除去され、1kg
/cm2 G,38℃下で飽和状態の圧送空気は、配管1
3′を通り、次いで昇圧機5に導入されて1.8kg/
cm2 G,約85℃に昇圧,昇温されて昇圧空気として
導出し、配管14を通り二次冷却器6で、空気又は冷却
水と熱交換し再び38℃に冷却され配管15より導出す
る。そして、ここでも過飽和空気となり、過飽和分の水
分は、ドレン水として前記ドレントラップ機能を持った
二次水分離器7で空気から分離され系外に排出される。
Water is removed by the primary water separator 4 and 1 kg
/ Cm 2 G, pumped air in a saturated state at 38 ° C. is pipe 1
3 ', then introduced into the booster 5 and 1.8 kg /
cm 2 G, the pressure is raised to about 85 ° C., the temperature is raised, and the air is discharged as pressurized air. After passing through the pipe 14, the secondary cooler 6 exchanges heat with air or cooling water and is cooled to 38 ° C. again and is discharged from the pipe 15. . Then, also here, it becomes supersaturated air, and the water of supersaturated amount is separated from the air as the drain water by the secondary water separator 7 having the drain trap function and is discharged out of the system.

【0012】上記のように昇圧,冷却され、過飽和分の
水分を除去された昇圧空気は、配管15′を通り膨張タ
ービン8に導入され断熱膨張により降温降圧し、圧力
0.3kg/cm2 G,温度13℃の低温空気となり配
管16を通って導出し、一次水分離器4,二次水分離器
7と同様なドレントラップ機能と、水分が霜,氷状の固
体となったものを分離除去できる固体分離機能を併せ持
った低温空気濾過器9に導入される。導入される低温空
気はここでも同様に過飽和低温空気であり過飽和分の水
分は、この場合は水としてドレントラップ機能で低温空
気濾過器9からドレン水として系外に排出される。した
がって、配管17から導出する低温空気は、圧力0.3
kg/cm2 G,温度13℃状態での飽和空気(相対湿
度100%=水分量0.0072kg/kg(乾燥空
気))である。
The pressurized air that has been pressurized and cooled as described above and has its supersaturated water content removed is introduced into the expansion turbine 8 through the pipe 15 'and adiabatically expanded to lower the temperature and pressure to a pressure of 0.3 kg / cm 2 G , It becomes low-temperature air with a temperature of 13 ° C and is led out through the pipe 16 to separate the drain trap function similar to the primary water separator 4 and the secondary water separator 7 and the one in which water is frost or ice-like solid. It is introduced into the low temperature air filter 9 which also has a solid separation function that can be removed. The low-temperature air introduced here is also supersaturated low-temperature air, and the water content of supersaturation is discharged as drain water from the low-temperature air filter 9 to the outside of the system in this case by the drain trap function. Therefore, the low temperature air discharged from the pipe 17 has a pressure of 0.3.
Saturated air (relative humidity 100% = water content 0.0072 kg / kg (dry air)) in a state of kg / cm 2 G and temperature of 13 ° C.

【0013】なお、上記低温空気濾過器9は、金網,合
成繊維,ガラス繊維,充填物等を積層したものを用いる
ことができる。また、ヒーターを組み込み固体を融氷す
る構造にしたり、切換え式にすることもできる。
The low temperature air filter 9 may be a laminate of wire mesh, synthetic fiber, glass fiber, filler and the like. Further, it is possible to adopt a structure in which a heater is incorporated to melt solids, or a switchable type.

【0014】一方、圧送機2で、圧力1.0kg/cm
2 G,温度115℃に昇圧,昇温され、導入大気空気と
等量の水分(水分量約0.0275kg/kg(乾燥空
気))を含む圧送空気の一部は、圧送機2の出口配管1
2から分岐し、混合空気配管21,21′,混合空気調
節弁20を通り低温空気濾過器9の出口配管17を導出
する低温空気と混合される。
On the other hand, the pressure of the pump 2 is 1.0 kg / cm.
2 G, the temperature is increased to 115 ° C., the temperature is increased to 115 ° C., and a part of the compressed air containing the same amount of water as the introduced atmospheric air (water content of about 0.0275 kg / kg (dry air)) is part of the outlet pipe of the pump 2. 1
It is branched from 2, and mixed with the low temperature air which passes through the mixed air pipes 21 and 21 'and the mixed air control valve 20 and leads out the outlet pipe 17 of the low temperature air filter 9.

【0015】温度湿度調節装置10は、温度検出器1
8、温度調節計19、混合空気調節弁20から構成され
ている。温度検出器18は、低温空気と混合空気を混合
した後の配管17′に設置され、混合後得られる調和空
気の温度を検出するものである。温度調節計19は、調
和空気の必要温度を設定値として設定し、前記温度検出
器18により検出された調和空気の温度信号18′を受
けて、設定された調和空気の温度になるように混合空気
調節弁20に操作信号19′を送るものである。混合空
気調節弁20は、前記温度調節計19からの操作信号1
9′を受けて弁の開度を調節し混合空気の量を調節する
ものである。
The temperature / humidity adjusting device 10 comprises a temperature detector 1
8, a temperature controller 19, and a mixed air control valve 20. The temperature detector 18 is installed in the pipe 17 'after mixing the low temperature air and the mixed air, and detects the temperature of the conditioned air obtained after the mixing. The temperature controller 19 sets the required temperature of the conditioned air as a set value, receives the temperature signal 18 'of the conditioned air detected by the temperature detector 18, and mixes the temperature of the conditioned air to the set temperature of the conditioned air. An operation signal 19 'is sent to the air control valve 20. The mixed air control valve 20 operates the operation signal 1 from the temperature controller 19.
In response to 9 ', the valve opening is adjusted to adjust the amount of mixed air.

【0016】本実施例の場合、調和空気の温度は18℃
であるから、温度調節計19には設定値として18℃を
設定する。このように設定されると混合空気調節弁20
は、調和空気の温度検出器18で検出した温度信号1
8′を受けた温度調節計19からの操作信号19′によ
り開度調節され、混合後の調和空気温度が設定温度の1
8℃になるように、混合空気量を調節する。
In the case of this embodiment, the temperature of the conditioned air is 18 ° C.
Therefore, the temperature controller 19 is set to 18 ° C. as a set value. With this setting, the mixed air control valve 20
Is the temperature signal 1 detected by the conditioned air temperature detector 18.
The opening is adjusted by the operation signal 19 'from the temperature controller 19 which receives 8', and the conditioned air temperature after mixing is 1 of the set temperature.
The amount of mixed air is adjusted so that it becomes 8 ° C.

【0017】上記調節により、1700Nm3 /hの昇
圧空気の内、1617Nm3 /hは、昇圧機5を経由し
て膨張タービン8に導入冷却され過飽和低温空気として
導出し、過飽和分の水分は低温空気濾過器9で水として
系外に除去され、温度13℃の低温飽和空気(水分量
0.0072kg/kg(乾燥空気))となり配管17
に導出する。
By the above-mentioned adjustment, 1617 Nm 3 / h of the pressurized air of 1700 Nm 3 / h is introduced into the expansion turbine 8 via the booster 5 and cooled to be discharged as supersaturated low temperature air. Water is removed outside the system by the air filter 9 to become low temperature saturated air (water content 0.0072 kg / kg (dry air)) at a temperature of 13 ° C.
Is derived.

【0018】一方、残りの83Nm3 /h,温度115
℃の飽和圧送空気(水分量0.0275kg/kg(乾
燥空気))は、混合空気調節弁20を通り混合空気とし
て前記低温空気濾過器9を導出する低温飽和空気と混合
し、これを昇温してその結果、温度18℃,相対湿度約
82%(水分量0.0082kg/kg(乾燥空気))
に調温,調湿された不飽和調和空気が得られる。
On the other hand, the remaining 83 Nm 3 / h, temperature 115
Saturated pressurized air at a temperature of ℃ (water content 0.0275 kg / kg (dry air)) is mixed with the low temperature saturated air which is discharged from the low temperature air filter 9 as mixed air through the mixed air control valve 20 to raise the temperature. As a result, the temperature was 18 ° C and the relative humidity was about 82% (water content 0.0082 kg / kg (dry air))
It is possible to obtain unsaturated conditioned air whose temperature and humidity have been controlled.

【0019】上記の如く本実施例によれば、昇圧空気を
膨張タービンで断熱膨張させ調和空気として必要な温度
より低い低温空気を発生させ、過飽和分の水分を除去し
た後低温飽和空気として導出し、該低温飽和空気に、膨
張タービン導入前の空気を混合させ昇温することによ
り、航空機用地上調和空気として要求される任意温度で
不飽和の調和空気を、容易に生成することができる。
As described above, according to the present embodiment, the boosted air is adiabatically expanded by the expansion turbine to generate low temperature air having a temperature lower than the required temperature as the conditioned air, the supersaturated water is removed, and then the low temperature saturated air is discharged. By mixing the low temperature saturated air with the air before introducing the expansion turbine and raising the temperature, unsaturated conditioned air at an arbitrary temperature required as ground conditioned air for aircraft can be easily generated.

【0020】なお、本実施例において膨張タービンの入
口,出口における圧力落差に比べて温度落差が小さいの
は、膨張タービン導入空気中の水分量が比較的多く、断
熱膨張で発生した寒冷エネルギーが含有水分の冷却に消
費されるためである。
In this embodiment, the temperature drop is smaller than the pressure drop at the inlet and outlet of the expansion turbine because the amount of water in the air introduced into the expansion turbine is relatively large and the cold energy generated by the adiabatic expansion is contained. This is because the water is consumed for cooling.

【0021】次に、混合空気として、膨張タービン8の
入口配管15′の昇圧空気を使用した本発明の第2実施
例を図2に基づいて説明する。
Next, a second embodiment of the present invention in which the boosted air in the inlet pipe 15 'of the expansion turbine 8 is used as the mixed air will be described with reference to FIG.

【0022】大気温度,相対湿度,空気量,圧送機,昇
圧機,膨張タービンの吐出圧力及び温度、並びに調和空
気温度は第1実施例と同じ条件とし、図1と同じ機能を
有するものには同じ記号を付してその詳細な説明は省略
する。
The atmospheric temperature, the relative humidity, the air amount, the pump, the booster, the discharge pressure and temperature of the expansion turbine, and the conditioned air temperature are the same as those in the first embodiment, and those having the same functions as those in FIG. The same symbols are attached and detailed description thereof is omitted.

【0023】図2において、大気中から導入した170
0Nm3 /hの空気は、圧送機2,一次冷却器3,一次
水分離器4,昇圧機5,二次冷却器6を通り二次水分離
器7に至り、ここで過飽和分の水分が除去されて、圧力
1.8kg/cm2 G,温度38℃の飽和昇圧空気とし
て配管15′に導出する。第1実施例と同様に、混合空
気調節弁20は、調和空気出口配管17′に設けられた
温度検出器18で検出した温度信号18′を受けて、温
度調節計19からの操作信号19′により開度調節さ
れ、混合後の調和空気温度が設定温度の18℃になるよ
うに、混合空気量を調節する。
In FIG. 2, 170 introduced from the atmosphere
The air of 0 Nm 3 / h passes through the pump 2, the primary cooler 3, the primary water separator 4, the booster 5, and the secondary cooler 6 to reach the secondary water separator 7, where the supersaturated water content is increased. After being removed, the saturated pressurized air having a pressure of 1.8 kg / cm 2 G and a temperature of 38 ° C. is led to the pipe 15 ′. Similar to the first embodiment, the mixed air control valve 20 receives the temperature signal 18 'detected by the temperature detector 18 provided in the conditioned air outlet pipe 17', and receives the operation signal 19 'from the temperature controller 19. The opening degree is adjusted by, and the mixed air amount is adjusted so that the conditioned air temperature after mixing reaches the set temperature of 18 ° C.

【0024】上記調節により、1700Nm3 /hの昇
圧空気の内、1360Nm3 /hが膨張タービン8に導
入されて冷却され低温空気濾過器9に至り、ここで過飽
和分の水分が除去されて、温度13℃の低温飽和空気
(水分量0.0072kg/kg(乾燥空気))となり
配管17に導出する。一方、残りの340Nm3 /h,
温度38℃の飽和昇圧空気(水分量0.0152kg/
kg(乾燥空気))は、膨張タービン8の入口配管1
5′から分岐し、混合空気配管21,21′,混合空気
調節弁20を通り、混合空気として低温空気濾過器9を
導出する低温飽和空気と混合しこれを昇温することによ
り、温度18℃,相対湿度約88%(水分量0.008
8kg/kg(乾燥空気))に調温,調湿された不飽和
調和空気が得られる。
By the above adjustment, 1360 Nm 3 / h of the pressurized air of 1700 Nm 3 / h is introduced into the expansion turbine 8 and cooled to reach the low temperature air filter 9, where supersaturated water is removed, It becomes low temperature saturated air (water content 0.0072 kg / kg (dry air)) at a temperature of 13 ° C. and is led to the pipe 17. On the other hand, the remaining 340 Nm 3 / h,
Saturated pressurized air at a temperature of 38 ° C (water content 0.0152 kg /
kg (dry air) is the inlet pipe 1 of the expansion turbine 8.
The temperature is 18 ° C. by branching from 5 ′, passing through the mixed air pipes 21 and 21 ′ and the mixed air control valve 20, mixed with the low temperature saturated air from the low temperature air filter 9 as mixed air and raising the temperature. , Relative humidity about 88% (water content 0.008
It is possible to obtain unsaturated conditioned air whose temperature and humidity are adjusted to 8 kg / kg (dry air).

【0025】次に、図3により第3実施例を説明する。Next, a third embodiment will be described with reference to FIG.

【0026】本実施例は、第1実施例で説明した図1の
装置と構成は同一として、大気空気が温度10℃、相対
湿度を50%として、最終的に温度18℃の不飽和調和
空気を得る場合についての実施例である。さらに、所定
の条件を設定して所要温度,湿度の調和空気を自動的に
供給し得るように、自動制御系統を備えた装置とした場
合である。なお、上記以外の条件、すなわち、空気量,
圧送機の吐出圧力及び膨張タービンの吐出圧力、並びに
調和空気温度は第1実施例と同じ条件とし、図1と同じ
機能を有するものには同じ符号を付してその詳細な説明
は省略する。
This embodiment has the same structure as the apparatus of FIG. 1 described in the first embodiment, and the atmospheric air has a temperature of 10 ° C. and a relative humidity of 50%, and finally, unsaturated conditioned air having a temperature of 18 ° C. This is an example of the case of obtaining Further, it is a case where the device is provided with an automatic control system so that conditioned air having a required temperature and humidity can be automatically supplied by setting a predetermined condition. In addition, conditions other than the above, that is, the amount of air,
The discharge pressure of the pump, the discharge pressure of the expansion turbine, and the conditioned air temperature are set to the same conditions as in the first embodiment, and those having the same functions as those in FIG. 1 are designated by the same reference numerals and detailed description thereof will be omitted.

【0027】制御系としては、第1実施例の装置にさら
に計算機を含む制御器25,大気温度検出器26,湿度
検出器27,圧送,昇圧空気圧力検出器28,29,圧
送,昇圧空気の圧力調節弁30,31を設ける。
As the control system, a controller 25 including a computer in addition to the apparatus of the first embodiment, an atmospheric temperature detector 26, a humidity detector 27, pressure feeding, pressure boosting air pressure detectors 28, 29, pressure feeding, pressure boosting air are supplied. Pressure control valves 30 and 31 are provided.

【0028】上記制御器25に、予め大気条件,調和空
気の仕様等の条件により定まる圧送機2、昇圧機5の出
口圧力等の設定値を入力しておき、各検出器18,2
6,27,28,29より検出した信号を制御器25に
入力し、設定値に基づく計算を行って、各制御端の調節
弁20,30,31の開度を調節することにより系全体
の制御を行う。
To the controller 25, preset values such as the outlet pressure of the pressure transmitter 2 and the booster 5 which are determined by the atmospheric conditions, the conditioned air specifications, etc. are input in advance, and the detectors 18, 2 are supplied.
The signals detected from 6, 27, 28 and 29 are input to the controller 25, the calculation based on the set value is performed, and the opening degree of the control valves 20, 30, 31 at each control end is adjusted to control the entire system. Take control.

【0029】上記装置を運転する場合の制御系の作動
は、例えば次のように行われる。大気温度検出器26,
湿度検出器27で検出された信号が制御器25に入力さ
れ、必要空気量の設定値に基づいて圧送機2の吐出量,
吐出圧力,昇圧機5の吐出圧力を計算し設定する。その
設定値の信号が制御器25から、圧力調節弁30及び3
1に送られて弁開度が調節される。また、温度検出器1
8で検出した温度信号18′が制御器25に入力され、
前記同様、他の信号と併せて計算を行い、混合空気調節
弁20の適切な開度を計算して信号を送り、調節弁20
の開度を調節する。
The operation of the control system when the above device is operated is performed as follows, for example. Atmospheric temperature detector 26,
The signal detected by the humidity detector 27 is input to the controller 25, and the discharge amount of the pump 2 is determined based on the set value of the required air amount.
The discharge pressure and the discharge pressure of the booster 5 are calculated and set. A signal of the set value is sent from the controller 25 to the pressure control valves 30 and 3
1, the valve opening is adjusted. In addition, the temperature detector 1
The temperature signal 18 'detected in 8 is input to the controller 25,
Similar to the above, calculation is performed in combination with other signals, an appropriate opening of the mixed air control valve 20 is calculated, and a signal is sent to the control valve 20.
Adjust the opening of.

【0030】図3において、空気濾過器1で塵埃を除去
された温度10℃,相対湿度50%,(水分量約0.0
038kg/kg乾燥空気)),量1700Nm3 /h
の大気空気は、圧送機2に導入され1.0kg/cm2
G,約95℃に昇圧,昇温されて配管12に導出され圧
送空気として、その大部分が一次冷却器3に導入され1
2℃に冷却される。このとき配管13を導出する圧送空
気の相対湿度は約87%となり、ドレン水は発生しな
い。
In FIG. 3, the temperature at which dust is removed by the air filter 1 is 10 ° C., the relative humidity is 50%, and the water content is about 0.0
038 kg / kg dry air)), amount 1700 Nm 3 / h
Atmospheric air is introduced into the pump 2 and 1.0 kg / cm 2
G, the pressure is raised to about 95 ° C., the temperature is raised, and it is led out to the pipe 12 to be compressed air, most of which is introduced into the primary cooler 3
Cool to 2 ° C. At this time, the relative humidity of the pressure-fed air discharged from the pipe 13 is about 87%, and drain water is not generated.

【0031】一次水分離器4を導出した、上記状態の圧
送空気は、次いで昇圧機5に導入されて1.4kg/c
2 G,約37℃に昇圧,昇温された昇圧空気となり二
次冷却器6で再び12℃に冷却され配管15から導出す
る。そして、ここでは相対湿度が100%を超えて過飽
和空気となり、過飽和分の微量水分はドレン水として二
次水分離器7で昇圧空気から分離され系外に排出され
る。
The compressed air in the above-mentioned state, which has been discharged from the primary water separator 4, is then introduced into the booster 5 to obtain 1.4 kg / c.
m 2 G, the pressure is increased to about 37 ° C., and the temperature of the air is increased, and the air is cooled to 12 ° C. again by the secondary cooler 6 and discharged from the pipe 15. Then, here, the relative humidity exceeds 100% to become supersaturated air, and a trace amount of water of supersaturation is separated as drain water from the boosted air by the secondary water separator 7 and is discharged to the outside of the system.

【0032】さらに、この昇圧空気は、配管15′を通
り膨張タービン8に導入され断熱膨張により降温降圧
し、圧力0.3kg/cm2 G,温度−9℃の低温空気
となって導出し配管16を通って低温空気濾過器9に至
る。この低温空気は、相対湿度が100%を超えた過飽
和空気となり、過飽和分の水分は霜及び氷として析出し
ているので低温空気濾過器9で固体分離機能により捕捉
され低温空気から系外に除去される。したがって、低温
空気濾過器9から配管17に導出した低温空気は、圧力
0.3kg/cm2 G,温度−9℃の飽和低温空気(相
対湿度100%=水分量0.00147kg/kg(乾
燥空気))である。
Further, this boosted air is introduced into the expansion turbine 8 through the pipe 15 'and adiabatic expansion is performed to lower and lower the temperature, leading to low temperature air having a pressure of 0.3 kg / cm 2 G and a temperature of -9 ° C. Through 16 to the low temperature air filter 9. This low-temperature air becomes supersaturated air with relative humidity exceeding 100%, and the water of supersaturation is deposited as frost and ice, and is thus captured by the low-temperature air filter 9 by the solid separation function and removed from the low-temperature air to the outside of the system. To be done. Therefore, the low-temperature air drawn out from the low-temperature air filter 9 to the pipe 17 is saturated low-temperature air having a pressure of 0.3 kg / cm 2 G and a temperature of -9 ° C (relative humidity 100% = water content 0.00147 kg / kg (dry air )).

【0033】一方、圧送機2で、圧力1.0kg/cm
2 G,温度95℃に昇圧,昇温され、導入大気空気と等
量の水分(水分量約0.0038kg/kg(乾燥空
気))を含む圧送空気の一部は、圧送機2の出口配管1
2から分岐し、混合空気配管21,21′,混合空気調
節弁20を通り低温空気濾過器9の出口配管17を導出
する低温飽和空気と混合される。
On the other hand, with the pressure feeder 2, the pressure is 1.0 kg / cm.
2 G, the temperature is raised to 95 ° C., the temperature is raised to 95 ° C., and a part of the compressed air containing the same amount of water as the introduced atmospheric air (water content of about 0.0038 kg / kg (dry air)) is part of the outlet pipe of the pump 2. 1
It is branched from 2 and mixed with the low temperature saturated air which passes through the mixed air pipes 21 and 21 'and the mixed air control valve 20 and leads out the outlet pipe 17 of the low temperature air filter 9.

【0034】本実施例の場合、調和空気の温度は18℃
であるから、制御器25の調和空気の温度は設定値とし
て18℃を設定する。このように設定されると、混合空
気調節弁20は、調和空気の温度検出器18からの温度
信号18′を受けた制御器25からの操作信号により開
度調節され、混合後の調和空気温度が設定温度の18℃
になるように混合空気量を調節する。この調節により、
1700Nm3 /hの昇圧空気の内、1259Nm3
hは昇圧機5を経由して膨張タービン8に導入され冷却
されて低温空気濾過器9に至り、ここで過飽和分の水分
は霜及び氷として捕捉除去され、温度−9℃の低温飽和
空気(水分量0.00147kg/kg(乾燥空気))
となり低温空気濾過器9から配管17に導出する。
In the case of this embodiment, the temperature of the conditioned air is 18 ° C.
Therefore, the temperature of the conditioned air of the controller 25 is set to 18 ° C. as a set value. When set in this manner, the opening degree of the mixed air control valve 20 is adjusted by an operation signal from the controller 25 which receives the temperature signal 18 'from the conditioned air temperature detector 18, and the conditioned air temperature after mixing is adjusted. Is the set temperature of 18 ℃
Adjust the amount of mixed air so that With this adjustment,
Among the pressured air of 1700 Nm 3 / h, 1259 Nm 3 /
h is introduced into the expansion turbine 8 via the booster 5 and cooled to reach the low temperature air filter 9, where water of supersaturated portion is captured and removed as frost and ice, and low temperature saturated air of temperature −9 ° C. ( Water content 0.00147 kg / kg (dry air))
Then, the low temperature air filter 9 is led to the pipe 17.

【0035】一方、配管21へ分岐した残りの441N
3 /h,温度95℃の圧送空気(水分量0.0038
kg/kg(乾燥空気))は、混合空気調節弁20を通
り混合空気として前記低温空気濾過器9を導出する低温
飽和空気と混合し、これを昇温することにより、温度1
8℃,相対湿度約21%(水分量0.00208kg/
kg(乾燥空気))に調温,調湿された不飽和調和空気
が得られる。
On the other hand, the remaining 441N branched to the pipe 21
m 3 / h, temperature 95 ° C compressed air (water content 0.0038
kg / kg (dry air) is mixed with the low temperature saturated air which is led out from the low temperature air filter 9 as the mixed air through the mixed air control valve 20, and the temperature is raised to 1 ° C.
8 ° C, relative humidity about 21% (water content 0.00208 kg /
It is possible to obtain unsaturated conditioned air whose temperature and humidity have been adjusted to kg (dry air).

【0036】なお、上記圧送機2、昇圧機5の吐出量と
吐出圧力についての調整は、これらに付属しているガイ
ドベーンを用いて行うことができる。また、バイパスや
循環経路を設けて調節しても良い。さらにまた、本制御
系は、図2に示したような装置にも全く同様に適用,作
動させることができる。また、本実施例の場合、第1実
施例及び第2実施例に比べ、導入空気中の水分量が比較
的に少ないので、膨張タービン8の入口,出口の温度落
差は大きくなっている。
The discharge amounts and discharge pressures of the pump 2 and the booster 5 can be adjusted by using the guide vanes attached to them. Alternatively, a bypass or a circulation path may be provided for adjustment. Furthermore, the present control system can be applied and operated in exactly the same manner as the device shown in FIG. Further, in the case of this embodiment, the amount of water in the introduced air is relatively small compared to the first and second embodiments, so the temperature difference between the inlet and the outlet of the expansion turbine 8 is large.

【0037】以上説明した各実施例から理解できるよう
に、いかなる条件下でも膨張タービン8を通じ、発生し
た低温飽和空気の温度を、膨張タービンの導入前の空気
を混合することにより、約5℃昇温させれば不飽和(相
対湿度95%以下)の調和空気が得られる。また、混合
空気の取り出し位置は、圧送機を導出してから膨張ター
ビンに導入する前の空気系統の何れの位置からでもよ
く、一次冷却器3の出口配管13,13′、二次冷却器
6の入,出口配管14,15からでもよい。
As can be understood from each of the embodiments described above, the temperature of the low temperature saturated air generated through the expansion turbine 8 is increased by about 5 ° C. by mixing the air before introduction into the expansion turbine under any condition. If heated, unsaturated conditioned air (relative humidity 95% or less) can be obtained. The mixed air may be taken out from any position in the air system after the pump is introduced and before it is introduced into the expansion turbine. The outlet pipes 13 and 13 ′ of the primary cooler 3 and the secondary cooler 6 may be used. It may be from the inlet and outlet pipes 14 and 15.

【0038】また、上記実施例で示した各数値は、本発
明を適用した一例にすぎず、これに限定されるものでは
ない。
The numerical values shown in the above embodiments are merely examples to which the present invention is applied and are not limited to these.

【0039】このように、圧縮昇圧することにより高温
になった空気を、常温程度に冷却して過飽和水分を分離
することにより飽和空気を発生させ、該飽和空気を断熱
膨張させて低温空気を発生させるとともに、該低温空気
中の過飽和水分を除去して低温飽和空気とし、該低温飽
和空気に、前記圧縮昇圧した高温の空気あるいは常温程
度の飽和空気の一部を、その量を調節して混合すること
により、所定の温度及び相対湿度の不飽和調和空気を容
易に得ることができる。
As described above, the air heated to a high temperature by compression and pressure is cooled to about room temperature to separate supersaturated water to generate saturated air, and the saturated air is adiabatically expanded to generate low temperature air. At the same time, the supersaturated water in the low-temperature air is removed to obtain low-temperature saturated air, and the low-temperature saturated air is mixed with a part of the compressed and pressurized high-temperature air or a part of the saturated air at room temperature by adjusting the amount thereof. By doing so, unsaturated conditioned air having a predetermined temperature and relative humidity can be easily obtained.

【0040】また、前記低温飽和空気に混合する高温空
気あるいは飽和空気の量を、前記不飽和調和空気の温度
に応じて調節することにより、所定の温度及び相対湿度
の不飽和調和空気を確実に得ることができる。
Further, by adjusting the amount of the high temperature air or the saturated air mixed with the low temperature saturated air according to the temperature of the unsaturated conditioned air, the unsaturated conditioned air having a predetermined temperature and relative humidity can be surely obtained. Obtainable.

【0041】[0041]

【発明の効果】本発明では、調和空気に必要な温度,湿
度を得るために、調和空気として必要な温度よりも低い
低温空気を膨張タービンで発生させ、過飽和水分を低温
空気濾過器で除去し飽和低温空気として導出し、該低温
飽和空気に膨張タービン導入前の温度の高い空気を混合
昇温し、また、混合後に得られる調和空気の温度を検出
し該検出温度と調和空気として必要な温度に設定された
温度調節計からの操作信号により開度調節される混合空
気調節弁で前記混合空気量を調節するようにしたから、
調和空気として必要な湿度(相対湿度95%以下)を維
持しつつ、任意温度の不飽和調和空気を容易に得ること
ができる。
According to the present invention, in order to obtain the temperature and humidity required for conditioned air, low temperature air lower than the temperature required for conditioned air is generated in the expansion turbine, and supersaturated moisture is removed by the low temperature air filter. Derives as saturated low-temperature air, and mixes the low-temperature saturated air with air having a high temperature before introducing the expansion turbine, and detects the temperature of the conditioned air obtained after mixing to detect the temperature and the temperature required as conditioned air. Since the amount of mixed air is adjusted by the mixed air control valve whose opening is adjusted by the operation signal from the temperature controller set to
It is possible to easily obtain unsaturated conditioned air at an arbitrary temperature while maintaining the humidity (relative humidity of 95% or less) required as conditioned air.

【0042】また、冷房運転時にフロン等の冷媒を使用
しないから、環境を汚染することがなく、また暖房時の
ヒーターを不要とするから動力を低減するとともに冷,
暖房運転毎の切換え操作の必要がなく運転性が向上す
る。
Further, since no refrigerant such as CFC is used during the cooling operation, the environment is not polluted, and a heater for heating is not required, so that power is reduced and cooling is performed.
Operability is improved because there is no need to perform a switching operation for each heating operation.

【0043】さらに、本発明の方法による航空機用地上
空気調和装置は、構成が簡単で、軽量化、小型化が図
れ、牽引性が良くなるとともに、設備費,運転費,保全
費が安価になる。
Further, the aircraft ground air conditioner according to the method of the present invention has a simple structure, can be reduced in weight and size, can be easily towed, and can be reduced in equipment cost, operation cost and maintenance cost. .

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を適用した第1実施例を示す系統図で
ある。
FIG. 1 is a system diagram showing a first embodiment to which the present invention is applied.

【図2】 本発明を適用した第2実施例を示す系統図で
ある。
FIG. 2 is a system diagram showing a second embodiment to which the present invention is applied.

【図3】 本発明を適用した第3実施例を示す系統図で
ある。
FIG. 3 is a system diagram showing a third embodiment to which the present invention is applied.

【符号の説明】[Explanation of symbols]

2…圧送機、5…昇圧機、8…膨張タービン、9…低温
空気濾過器、10…温度湿度調節装置、18…温度検出
器、19…温度調節計、20…混合空気調節弁
2 ... Pressurizer, 5 ... Booster, 8 ... Expansion turbine, 9 ... Low temperature air filter, 10 ... Temperature / humidity control device, 18 ... Temperature detector, 19 ... Temperature controller, 20 ... Mixed air control valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 大気空気を圧縮して圧送空気とし、該圧
送空気をさらに昇圧して昇圧空気とし、これを冷却して
過飽和水分を分離した後、該昇圧空気を膨張タービンで
断熱膨張させて低温空気を発生させ、該低温空気中の過
飽和水分を除去して低温飽和空気とするとともに、該低
温飽和空気に前記膨張タービン導入前の空気を分岐して
混合空気として混合して昇温し、該混合空気の量を調節
することにより、混合後に得られる調和空気の温度及び
相対湿度を調整して、不飽和調和空気を得ることを特徴
とする航空機用地上空気調和装置における調温,調湿方
法。
1. Atmospheric air is compressed into compressed air, and the compressed air is further boosted into pressurized air, which is cooled to separate supersaturated water, and then the pressurized air is adiabatically expanded by an expansion turbine. Generating low-temperature air, removing supersaturated moisture in the low-temperature air to obtain low-temperature saturated air, branching the air before introduction of the expansion turbine to the low-temperature saturated air, mixing as mixed air, and raising the temperature, By adjusting the temperature and relative humidity of the conditioned air obtained after mixing by adjusting the amount of the mixed air, unsaturated conditioned air is obtained, and temperature control and humidity control in an aircraft ground air conditioner are characterized. Method.
【請求項2】 前記混合空気の量の調節は、前記混合後
に得られる調和空気の温度を検出し、この検出信号を受
けて、所定の調和空気温度になるよう混合空気調節弁を
制御することにより行うことを特徴とする請求項1記載
の航空機用地上空気調和装置における調温,調湿方法。
2. The adjustment of the amount of the mixed air is performed by detecting the temperature of the conditioned air obtained after the mixing, and receiving the detection signal to control the mixed air control valve so as to reach a predetermined conditioned air temperature. The temperature control and humidity control method in an aircraft ground air conditioner according to claim 1, wherein
【請求項3】 大気条件、調和空気の仕様条件から定ま
る前記圧送空気の圧送圧力,昇圧空気の昇圧圧力,流
量,調和空気の温度を制御器に設定しておき、前記各圧
力,温度,流量を検出する各検出器からの検出信号を前
記制御器に取り込み、設定値に基づく計算を行って、前
記各圧力,流量,及び前記混合空気の流量を制御する各
制御端の調節機構を調節することにより系全体の制御を
行うことを特徴とする請求項1記載の航空機用地上空気
調和装置における調温,調湿方法。
3. The pressure, the pressure, the flow rate, and the temperature of the conditioned air, which are determined by the atmospheric conditions and the specification conditions of the conditioned air, are set in a controller, and the pressure, temperature, and flow rate are set. The detection signal from each of the detectors for detecting the above is taken into the controller, the calculation based on the set value is performed, and the adjusting mechanism at each control end that controls the pressure, the flow rate, and the flow rate of the mixed air is adjusted. The temperature control / humidity control method in the aircraft ground air conditioner according to claim 1, characterized in that the entire system is controlled thereby.
JP8040837A 1996-02-28 1996-02-28 Temperature and humidity control method for ground air conditioner for aircraft Expired - Lifetime JP2926472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8040837A JP2926472B2 (en) 1996-02-28 1996-02-28 Temperature and humidity control method for ground air conditioner for aircraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8040837A JP2926472B2 (en) 1996-02-28 1996-02-28 Temperature and humidity control method for ground air conditioner for aircraft

Publications (2)

Publication Number Publication Date
JPH09236341A true JPH09236341A (en) 1997-09-09
JP2926472B2 JP2926472B2 (en) 1999-07-28

Family

ID=12591743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8040837A Expired - Lifetime JP2926472B2 (en) 1996-02-28 1996-02-28 Temperature and humidity control method for ground air conditioner for aircraft

Country Status (1)

Country Link
JP (1) JP2926472B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008509842A (en) * 2004-08-16 2008-04-03 エアバス・ドイチュラント・ゲーエムベーハー Air supply to aircraft
WO2010013671A1 (en) * 2008-08-01 2010-02-04 株式会社ニコン Exposure method and system, and device manufacturing method
JP2011521196A (en) * 2008-05-15 2011-07-21 コンセプツ・イーティーアイ・インコーポレーテッド Semi-enclosed air circulation cooling system and positive pressure type snowy cyclone separator therefor
US8225619B2 (en) 2004-07-30 2012-07-24 Mitsubishi Heavy Industries, Ltd Air-refrigerant cooling apparatus with a warm gas defrost bypass pipe
US9016083B2 (en) 2004-11-29 2015-04-28 Mitsubishi Heavy Industries, Ltd. Air refrigerant type freezing and heating apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225619B2 (en) 2004-07-30 2012-07-24 Mitsubishi Heavy Industries, Ltd Air-refrigerant cooling apparatus with a warm gas defrost bypass pipe
JP2008509842A (en) * 2004-08-16 2008-04-03 エアバス・ドイチュラント・ゲーエムベーハー Air supply to aircraft
JP4785850B2 (en) * 2004-08-16 2011-10-05 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Air supply to aircraft
US9016083B2 (en) 2004-11-29 2015-04-28 Mitsubishi Heavy Industries, Ltd. Air refrigerant type freezing and heating apparatus
JP2011521196A (en) * 2008-05-15 2011-07-21 コンセプツ・イーティーアイ・インコーポレーテッド Semi-enclosed air circulation cooling system and positive pressure type snowy cyclone separator therefor
WO2010013671A1 (en) * 2008-08-01 2010-02-04 株式会社ニコン Exposure method and system, and device manufacturing method

Also Published As

Publication number Publication date
JP2926472B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
EP3168154B1 (en) Aircraft air conditioning system with a cabin exhaust air turbine
US5151022A (en) Environmental control system with catalytic filter
KR0163407B1 (en) Environmental control system condensing cycle
CN105163964B (en) Air conditioner for vehicles
CA2979829C (en) Aircraft air conditioning system and method for operating such an aircraft air conditioning system
US4963174A (en) Hybrid vapor cycle/air cycle environmental control system
US7347056B2 (en) Vehicle air-conditioning system
US5024061A (en) Recovery processing and storage unit
US6505474B2 (en) Air conditioning system for airplanes
CN103660850A (en) Air conditioning device for motor vehicle
JPS5963432A (en) Air circulating air cooler
US5628203A (en) Combined cooling and heating process and device for conditioning a room
JPH09236341A (en) Method of adjusting temperature and humidity in aircraft ground air conditioner
CN108128465B (en) Aircraft air conditioning system and method for operating an aircraft air conditioning system
US3222883A (en) Temperature and humidity control systems for enclosures
US6321560B1 (en) Apparatus and method for cooling
JP4110667B2 (en) Air conditioner for aircraft
JPS6032835Y2 (en) Aircraft ground air conditioning system
JP2932060B2 (en) Ground air conditioner for aircraft
CN109649121A (en) On-board air conditioner thermostat
CN215453498U (en) Drying and inflating device for electronic cabinet
JPH08318731A (en) Air conditioner for vehicle mounting engine with supercharger
JPS6032840Y2 (en) Aircraft ground air conditioning system
JPS6230658Y2 (en)
WO2006095022A1 (en) Device for supplying preconditioned air to an aircraft on the ground