JPH09236208A - Fluid-feeding device in combined multiboilers system - Google Patents

Fluid-feeding device in combined multiboilers system

Info

Publication number
JPH09236208A
JPH09236208A JP6724196A JP6724196A JPH09236208A JP H09236208 A JPH09236208 A JP H09236208A JP 6724196 A JP6724196 A JP 6724196A JP 6724196 A JP6724196 A JP 6724196A JP H09236208 A JPH09236208 A JP H09236208A
Authority
JP
Japan
Prior art keywords
boiler
fluid
control valve
fluid supply
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6724196A
Other languages
Japanese (ja)
Inventor
Kazunobu Inoue
一信 井上
Kenji Sakiyama
健二 崎山
Noriaki Nagai
記章 長井
Shigeaki Nishioka
茂昭 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP6724196A priority Critical patent/JPH09236208A/en
Publication of JPH09236208A publication Critical patent/JPH09236208A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To lessen in number the fluid-feeding devices which in feeding a fluid, such as water, fuel, or air for combustion, have been necessary individually for boilers so that the cost of the system as a whole can be lowered. SOLUTION: Each of boilers 1 is connected to a win fluid-feeding line 10 with a control valve 13 in the connection line. A fluid-feeding device 12 is connected with the main fluid-feeding line 10 and a pressure-controlling device 14 for keeping constant the fluid pressure in the main fluid-feeding line 10 on the discharge side of the fluid-feeding device 12 is provided. By opening or closing control of a control valve 13 belonging to the boiler 1 at work a fluid fed thereto is controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、ボイラの多缶設
置システムにおける流体供給装置に関するものである。
ここでいう流体とは、ボイラに供給する給水や、ボイラ
のバーナに供給する燃焼用空気や燃料(液体燃料,気体
燃料)である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid supply device in a boiler multi-can installation system.
The fluid referred to here is feed water supplied to the boiler, or combustion air or fuel (liquid fuel or gas fuel) supplied to the burner of the boiler.

【0002】[0002]

【従来の技術】周知のように、ボイラの多缶設置システ
ムとは、ボイラを複数台設置し、それらのボイラに共通
のスチームヘッダに圧力検出器を設けて負荷の状態を把
握し、負荷量に応じて予め設定しておいた起動順序に従
って必要台数を順次燃焼に移行させ、負荷変動があれ
ば、その負荷変動に合わせてボイラを燃焼・停止させる
ことにより、負荷に追随させるようにしたものである。
2. Description of the Related Art As is well known, a multi-can installation system for a boiler is to install a plurality of boilers, install a pressure detector on a steam header common to those boilers, and grasp the load condition to determine the load amount. In order to follow the load, the required number of units are sequentially switched to combustion according to the preset starting order according to the above, and if there is a load change, the boiler is burned and stopped according to the load change. Is.

【0003】前記多缶設置システムにおいて、各ボイラ
には個別に給水や燃焼用空気、燃料の供給が行なわれる
ため、ボイラには、1台ごとに給水ポンプや送風機、燃
料ポンプが必要となる。
In the multi-can installation system, each boiler is individually supplied with water, combustion air, and fuel, so that each boiler requires a water supply pump, a blower, and a fuel pump.

【0004】更に、前記多缶設置システム全体に共通の
給水タンクや、燃料タンクを備えたものにおいては、こ
の給水タンクや、燃料タンクと各ボイラの給水ポンプや
燃料ポンプの間の距離が長くなる傾向にあり、各ボイラ
の給水ポンプや燃料ポンプの吸込み側での圧力損失が大
きくなると各ボイラの給水ポンプや燃料ポンプでは、給
水や燃料を十分に吸引してボイラに供給することができ
ない。そこで、各ポンプの吸込み側の配管を太いものと
し、圧力損失を緩和したり、タンク側に補助ポンプを設
ける必要がある。特に架空配管を行なって、前記給水タ
ンクや、燃料タンクからボイラ側に送液を行なう場合に
は、タンク液位から架空配管までの高さ分の吸込揚程が
必要となり、ボイラ側の給水ポンプや燃料ポンプだけで
は吸引し難く、補助ポンプ等を用いて液体を圧送する必
要があった。尚、ここでいう架空配管とは、タンクに接
続される配管のうち、タンク液位より高い位置に添わせ
た配管のことである。
Further, in the case where the water supply tank and the fuel tank common to the whole multi-can installation system are provided, the distance between the water supply tank and the fuel tank and the water supply pump of each boiler or the fuel pump becomes long. When the pressure loss on the suction side of each water supply pump or fuel pump of each boiler increases, the water supply pump or fuel pump of each boiler cannot sufficiently suck water or fuel to supply it to the boiler. Therefore, it is necessary to make the suction side pipe of each pump thick to reduce the pressure loss and to provide an auxiliary pump on the tank side. In particular, when aerial piping is used and liquid is sent from the water tank or fuel tank to the boiler side, a suction pumping height corresponding to the height from the tank liquid level to the aerial piping is required. It was difficult to suck the liquid only with the fuel pump, and it was necessary to pump the liquid by using an auxiliary pump or the like. The aerial piping referred to here is a piping connected to the tank at a position higher than the tank liquid level.

【0005】即ち、従来のシステムでは、ボイラ毎に給
水ポンプ,燃料ポンプ,送風機等の他、電気配線等が必
要であり、システムの複雑化、高コスト化の原因となっ
ている。
That is, in the conventional system, in addition to a water supply pump, a fuel pump, a blower, etc., each boiler requires electric wiring and the like, which causes the system to become complicated and costly.

【0006】[0006]

【発明が解決しようとする課題】この発明が解決しよう
とする課題は、このようなボイラ多缶設置システムにお
いて、給水や燃料、燃焼用空気等の流体を供給するため
に個別に必要であった流体供給装置を減少させ、システ
ム全体のコストの上昇を抑えることにある。
The problems to be solved by the present invention were individually required in such a boiler multi-can installation system in order to supply fluids such as water supply, fuel and combustion air. The object is to reduce the number of fluid supply devices and suppress an increase in the cost of the entire system.

【0007】[0007]

【課題を解決するための手段】この発明は、上述の課題
に鑑みてなされたもので、低コストで、構造の簡略化を
達成したボイラの多缶設置システムにおける流体供給装
置を提供することを目的とし、具体的には、ボイラを複
数台設置し、負荷量に応じてボイラの運転台数を制御す
るボイラの多缶設置システムにおいて、各ボイラをそれ
ぞれ制御弁を介して流体供給主経路に接続し、前記流体
供給主経路に流体供給装置を接続するとともに、この流
体供給装置の吐出側における流体供給主経路の流体圧力
を一定に保持する圧力制御手段を設けてなり、運転中の
ボイラに対応する前記制御弁を開閉制御することにより
各ボイラへの流体の供給を制御するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to provide a fluid supply device for a multi-can installation system of a boiler, which is low in cost and has a simplified structure. Specifically, in a boiler multi-can installation system in which multiple boilers are installed and the number of operating boilers is controlled according to the load amount, each boiler is connected to the main fluid supply route via a control valve. In addition, a fluid supply device is connected to the fluid supply main route, and pressure control means for maintaining a constant fluid pressure in the fluid supply main route on the discharge side of the fluid supply device is provided, which corresponds to a boiler in operation. By controlling the opening and closing of the control valve, the supply of fluid to each boiler is controlled.

【0008】また、この発明は、各ボイラをそれぞれ定
流量制御弁を介して流体供給主経路に接続し、前記流体
供給主経路にボイラの運転時に起動する流体供給装置を
接続し、運転中のボイラに対応する前記定流量制御弁を
開閉制御することにより各ボイラへの流体の供給を制御
するものである。
Further, according to the present invention, each boiler is connected to a fluid supply main path through a constant flow control valve, and a fluid supply device which is activated when the boiler is operated is connected to the fluid supply main path to operate the boiler. The supply of fluid to each boiler is controlled by controlling the opening and closing of the constant flow rate control valve corresponding to the boiler.

【0009】上述の構成によれば、各ボイラに接続した
制御弁のうち、運転するボイラに対応する制御弁を開放
することにより、各ボイラに対して適正な量の流体を供
給する。
According to the above construction, among the control valves connected to each boiler, the control valve corresponding to the operating boiler is opened to supply an appropriate amount of fluid to each boiler.

【0010】[0010]

【発明の実施の形態】この発明の実施の形態は、ボイラ
を複数台設置し、負荷量に応じてボイラの運転台数を制
御するボイラの多缶設置システムにおいて適用されるも
ので、各ボイラをそれぞれ制御弁を介して流体供給主経
路に接続し、前記流体供給主経路に流体供給装置を接続
するとともに、圧力制御手段によって、この流体供給主
経路における流体供給装置の吐出圧力を一定に保持する
ように制御し、運転中のボイラに対応する前記制御弁を
開制御することにより、各ボイラに対して適正な量の流
体を供給する。
BEST MODE FOR CARRYING OUT THE INVENTION The embodiment of the present invention is applied to a multi-can installation system for boilers in which a plurality of boilers are installed and the number of operating boilers is controlled according to the load amount. Each of them is connected to a fluid supply main path via a control valve, a fluid supply apparatus is connected to the fluid supply main path, and the discharge pressure of the fluid supply apparatus in this fluid supply main path is kept constant by the pressure control means. In this way, by controlling the opening of the control valve corresponding to the operating boiler, an appropriate amount of fluid is supplied to each boiler.

【0011】ここでいう、前記多缶設置システムは、ボ
イラの負荷を検出して、この負荷に応じてボイラの運転
台数を自動的に決定し、制御する所謂自動台数制御装置
を備えた多缶設置システムのみならず、ボイラの負荷の
検出は、人が行い、この負荷に応じてボイラの運転台数
を決定して運転する多缶設置システムを含む。また、こ
こでいうボイラは、蒸気ボイラのみならず温水ボイラを
も含む。また、この発明において、前記給水ポンプの吐
出側の圧力を一定に制御する手段としては、ポンプの回
転数を増減させることによって吐出側の圧力を一定に制
御するインバータ装置や、吐出側配管に接続して下流側
の圧力を一定に保つ定圧制御弁を含む。更に、運転中の
ボイラに対応する制御弁の開閉制御は、ボイラ自体の制
御装置によるものの他、自動台数制御装置によって行な
う場合も含んでいる。
The multi-can installation system referred to here is equipped with a so-called automatic number control device for detecting the load on the boiler and automatically determining and controlling the number of operating boilers according to the load. Not only the installation system, but also the load of the boiler is detected by a person, and a multi-can installation system in which the number of boilers to be operated is determined and operated according to the load is included. The boiler here includes not only a steam boiler but also a hot water boiler. Further, in the present invention, the means for controlling the discharge side pressure of the water supply pump to be constant is connected to an inverter device for controlling the discharge side pressure to be constant by increasing or decreasing the number of revolutions of the pump, and to the discharge side piping It also includes a constant pressure control valve that keeps the pressure on the downstream side constant. Further, the opening / closing control of the control valve corresponding to the boiler in operation includes not only the control device of the boiler itself but also the automatic unit control device.

【0012】[0012]

【実施例】以下、この発明を流体として水、即ち給水系
に適用した第1の実施例を、図1に基づいて説明する。
尚、図1は、この発明の第1実施例の配管系統を説明す
るための図面である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment in which the present invention is applied to water as a fluid, that is, a water supply system will be described below with reference to FIG.
1 is a drawing for explaining the piping system of the first embodiment of the present invention.

【0013】図面において、ボイラ(1) は、複数台(図
示した実施例では4台)設置してあり、各ボイラ(1) に
は加熱用の燃焼装置(2) を備えている。各ボイラ(1) は
共通のスチームヘッダ(3) に蒸気管(4) を介して接続し
てある。このスチームヘッダ(3) には、内部の蒸気圧力
を検出する圧力検出器(5) を設けてある。
In the drawing, a plurality of boilers (1) are installed (four in the illustrated embodiment), and each boiler (1) is provided with a combustion device (2) for heating. Each boiler (1) is connected to a common steam header (3) via a steam pipe (4). The steam header (3) is provided with a pressure detector (5) for detecting the internal steam pressure.

【0014】台数制御装置(6) は、この圧力検出器(5)
の圧力検出信号に基づいて、各ボイラ(1) の燃焼・停止
を制御するが、この際の各ボイラ(1) の起動順序は、予
め設定しておいた順序に従う。又、各ボイラ(1) にはそ
れぞれ運転制御装置(7) を備えてあり、各ボイラ(1)の
燃焼制御、安全制御、或いは給水制御等は、個々にこの
運転制御装置(7) によって行なう。
The unit number control device (6) uses the pressure detector (5).
Combustion / stop of each boiler (1) is controlled on the basis of the pressure detection signal of (1). At this time, the starting order of each boiler (1) follows the preset order. Further, each boiler (1) is equipped with an operation control device (7), and combustion control, safety control, water supply control, etc. of each boiler (1) are individually performed by this operation control device (7). .

【0015】各ボイラ(1) は、給水タンク(9) から延び
る給水ライン(10)に対して、それぞれ給水分岐管(11)を
介して接続してあり、この給水ライン(10)の上流側に
は、給水ポンプ(12)を接続してある。従って、各ボイラ
(1) への給水は、前記給水ライン(10)の上流側に接続し
た給水ポンプ(12)により、前記給水ライン(10)から、各
ボイラ(1) のそれぞれに対応する給水分岐管(11)を介し
て行なわれる。更に、この給水ライン(10)から各ボイラ
(1) に分岐する給水分岐管(11)には、給水制御弁(13)を
設けてあり、各給水制御弁(13)は、各ボイラ(1) に設け
てある水位検出器(図示せず)の水位検出信号に基づい
て前記運転制御装置(7) によって制御し、各ボイラ(1)
の缶内の水位レベルがほぼ一定になるようにオン−オフ
制御する。この第1実施例では、給水系に適用した実施
例を示すもので、従って、流体供給主経路は給水ライン
(10)であり、この流体供給主経路に接続する流体供給装
置は給水ポンプ(12)であり、また、流体供給主経路と各
ボイラ(1) との間に接続する制御弁は、給水制御弁(13)
である。
Each boiler (1) is connected to a water supply line (10) extending from a water supply tank (9) via a water supply branch pipe (11), and the upstream side of this water supply line (10). A water supply pump (12) is connected to the. Therefore, each boiler
The water supply to (1) is performed by the water supply pump (12) connected to the upstream side of the water supply line (10) from the water supply line (10) to the water supply branch pipe (11) corresponding to each boiler (1). ) Via. Furthermore, from this water supply line (10)
A water supply control valve (13) is installed in the water supply branch pipe (11) that branches into (1), and each water supply control valve (13) is equipped with a water level detector (not shown) installed in each boiler (1). Control) by the operation control device (7) based on the water level detection signal of
The on-off control is performed so that the water level in the can is almost constant. This first embodiment shows an embodiment applied to a water supply system, and therefore the main fluid supply route is the water supply line.
(10), the fluid supply device connected to this fluid supply main path is the water supply pump (12), and the control valve connected between the fluid supply main path and each boiler (1) is the water supply control Valve (13)
It is.

【0016】また、この給水ライン(10)には、給水ポン
プ(12)の吐出側における給水ライン(10)中の圧力を一定
に制御する圧力調整装置(14)を設けてある。この第1実
施例における圧力調整装置(14)は、給水ライン(10)にお
ける給水ポンプ(12)の吐出側の圧力を検出する圧力検出
器(15)と、この圧力検出器(15)の出力に基づいて前記給
水ポンプ(12)の回転数を制御する制御回路(16)とで構成
される。この制御回路(16)には、前記給水ポンプ(12)の
回転数を制御するためのインバータ回路を内蔵する。ま
た、この給水ポンプ(12)の稼動・停止は、前記台数制御
装置(6) によって行い、各燃料制御弁(25)並びに給水制
御弁(13)は、対応するボイラ(1) の運転制御装置(7) に
よって行う。
Further, the water supply line (10) is provided with a pressure adjusting device (14) for controlling the pressure in the water supply line (10) on the discharge side of the water supply pump (12) to be constant. The pressure adjusting device (14) in the first embodiment comprises a pressure detector (15) for detecting the pressure on the discharge side of the water supply pump (12) in the water supply line (10) and the output of this pressure detector (15). And a control circuit (16) for controlling the rotation speed of the water supply pump (12) based on the above. The control circuit (16) contains an inverter circuit for controlling the rotation speed of the water supply pump (12). Further, the operation / stop of the water supply pump (12) is performed by the unit control device (6), and the fuel control valves (25) and the water supply control valve (13) are operated by the operation control device of the corresponding boiler (1). Perform according to (7).

【0017】以上の構成において、前記給水ポンプ(12)
は、多缶設置システム全体の運転開始時には起動し、前
記圧力調整装置(14)によって給水ライン(10)における吐
出側の圧力が一定となるように制御される。そして、多
缶設置システムへの負荷要求により所定台数のボイラ
(1) の運転が開始されると、前記給水制御弁(13)は、運
転状態の各ボイラ(1) の運転制御装置(7) によって、開
放される。ここで各給水制御弁(13)は、その上流側の給
水ライン(10)の圧力、即ち給水ポンプ(12)の吐出側の圧
力を一定に制御してあるため、給水制御弁(13)の開時間
に対応した給水が行なわれ、従って、前記運転制御装置
(7) による水位制御も確実に行なわれる。
In the above structure, the water supply pump (12)
Is activated at the start of operation of the entire multi-can installation system, and is controlled by the pressure adjusting device (14) so that the pressure on the discharge side in the water supply line (10) becomes constant. Then, according to the load request to the multi-can installation system, a predetermined number of boilers
When the operation of (1) is started, the water supply control valve (13) is opened by the operation control device (7) of each boiler (1) in the operating state. Here, each water supply control valve (13), since the pressure of the upstream water supply line (10), that is, the discharge side pressure of the water supply pump (12) is controlled to be constant, the water supply control valve (13) Water is supplied corresponding to the opening time, and therefore the operation control device
The water level control by (7) is also performed reliably.

【0018】また、この給水ライン(10)が、前記のよう
な架空配管部(10') を有するものである場合、この架空
配管部(10') よりも上流側の、給水タンク(9) 側に設け
た給水ポンプ(12)によって、流体としての水を圧送する
ようにしているため、この架空配管部(10') による給水
ポンプ(12)の吸込み側の圧力損失は発生せず、給水ポン
プ(12)の吸込揚程を考慮する必要が無い。また、このよ
うな架空配管部(10')を給水ポンプ(12)の吐出側とする
ことにより、架空配管部(10') 内の空気抜きを行なう必
要が無くなる。
When the water supply line (10) has the above-mentioned overhead piping section (10 '), the water supply tank (9) at the upstream side of this overhead piping section (10'). Since water as a fluid is pumped by the water supply pump (12) provided on the side, there is no pressure loss on the suction side of the water supply pump (12) due to this overhead piping (10 '), and the water supply It is not necessary to consider the suction head of the pump (12). Further, by using such an overhead piping section (10 ') as the discharge side of the water supply pump (12), it is not necessary to vent the air inside the overhead piping section (10').

【0019】尚、この第1実施例では、前記流体供給装
置としての給水ポンプ(12)を1台として例示している
が、メンテナンス時等にこの流体供給装置が停止する場
合や、故障等の場合に停止した場合を考慮して、補助用
の流体供給装置を設けるのが好ましい。
In the first embodiment, the water supply pump (12) as the fluid supply device is illustrated as one unit, but when the fluid supply device is stopped at the time of maintenance or the like, or when there is a failure or the like. In consideration of the case where it stops in some cases, it is preferable to provide an auxiliary fluid supply device.

【0020】次に、この発明の第2実施例について図2
を参照しながら説明する。尚、図2は、この発明の第2
実施例の配管系統を説明するための図面である。この第
2実施例は、燃焼系統にこの発明を適用した実施例を示
すもので、この燃焼系統においては、燃料(気体燃料、
液体燃料)と燃焼用空気を供給するものである。従っ
て、この第2実施例においての流体供給主経路は、燃料
供給ライン(20)と空気供給ライン(21)である。即ち、第
1実施例同様に、各ボイラ(1) の燃焼装置(2) は、燃料
タンク(22)から延び、途中に燃料ポンプ(23)を備えた燃
料供給ライン(20)に対して燃料分岐管(24)を介して接続
してあり、それぞれの燃料分岐管(24)には燃料制御弁(2
5)を接続してある。また、前記各燃焼装置(2) は、送風
機(26)から延びる空気供給ライン(21)に対して、空気分
岐管(27)を介して接続してあり、この空気分岐管(27)に
は締切ダンパ等の空気制御弁(28)を接続してある。即
ち、この第2実施例においては、燃料系統における流体
供給主経路は燃料供給ライン(20)であり、流体供給装置
は燃料供給ライン(20)の上流側に接続した燃料ポンプ(2
3)であり、流体供給主経路と各ボイラ(1) との間の制御
弁は燃料制御弁(25)である。また、燃焼用空気系統にお
ける流体供給主経路は空気供給ライン(21)であり、流体
供給装置は空気供給ライン(21)の上流側に接続した送風
機(26)であり、流体供給主経路と各ボイラ(1) との間の
制御弁は空気制御弁(28)である。また、各流体供給主経
路には、各流体供給装置の吐出側における流体供給主経
路内の圧力を一定に制御するは、圧力調整装置を設けて
ある。即ち、燃料供給ライン(20)には、燃料ポンプ(23)
の吐出側における燃料供給ライン(20)中の圧力を一定に
制御する燃料圧力調整装置(29)を設けてあり、また、空
気供給ライン(21)には、送風機(26)の吐出側における空
気供給ライン(21)中の圧力を一定に制御する空気圧力調
整装置(30)を設けてある。この第2実施例における燃料
圧力調整装置(29)、並びに空気圧力調整装置(30)は、前
記第1実施例同様の構成であり、前記燃料圧力調整装置
(29)は、燃料供給ライン(20)における燃料ポンプ(23)の
吐出側の圧力を検出する燃料圧力検出器(31)と、この燃
料圧力検出器(31)の出力に基づいて前記燃料ポンプ(23)
の回転数を制御する制御回路(32)とで構成され、空気圧
力調整装置(30)は、空気供給ライン(21)における送風機
(26)の吐出側の圧力を検出する空気圧力検出器(33)と、
この空気圧力検出器(33)の出力に基づいて前記送風機(2
6)の回転数を制御する制御回路(34)とで構成される。前
記の各制御回路(32)(34)には、前記燃料ポンプ(23)、送
風機(26)の回転数を制御するためのインバータ回路を内
蔵する。また、燃料ポンプ(23)、送風機(26)の稼動・停
止は、前記台数制御装置(6) によって行い、各燃料制御
弁(25)並びに空気制御弁(28)は、それぞれ、対応するボ
イラ(1) の運転制御装置(7) によって行う。この第2実
施例においても、前述のように運転中のボイラ(1) に対
応する燃料制御弁(25)並びに空気制御弁(28)を開閉制御
することによって、各ボイラ(1) の燃焼装置(2) に燃
料、並びに燃焼用空気を供給する。
Next, a second embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. Incidentally, FIG. 2 shows a second embodiment of the present invention.
It is drawing for demonstrating the piping system of an Example. The second embodiment shows an embodiment in which the present invention is applied to a combustion system. In this combustion system, fuel (gas fuel,
Liquid fuel) and combustion air are supplied. Therefore, the main fluid supply route in this second embodiment is the fuel supply line (20) and the air supply line (21). That is, as in the first embodiment, the combustion device (2) of each boiler (1) extends from the fuel tank (22) to the fuel supply line (20) equipped with the fuel pump (23) on the way. Each fuel branch pipe (24) is connected via a branch pipe (24).
5) is connected. Further, each combustion device (2) is connected to the air supply line (21) extending from the blower (26) through an air branch pipe (27), and this air branch pipe (27) is An air control valve (28) such as a deadline damper is connected. That is, in the second embodiment, the main fluid supply route in the fuel system is the fuel supply line (20), and the fluid supply device is connected to the fuel pump (2) connected to the upstream side of the fuel supply line (20).
3), and the control valve between the main fluid supply path and each boiler (1) is the fuel control valve (25). The main fluid supply route in the combustion air system is the air supply line (21), the fluid supply device is the blower (26) connected to the upstream side of the air supply line (21), and the fluid supply main route and each The control valve to and from the boiler (1) is the air control valve (28). Further, each fluid supply main path is provided with a pressure adjusting device for controlling the pressure in the fluid supply main path on the discharge side of each fluid supply apparatus to be constant. That is, the fuel pump (23) is connected to the fuel supply line (20).
A fuel pressure adjusting device (29) is provided to control the pressure in the fuel supply line (20) on the discharge side of the air supply line (21), and the air supply line (21) includes air on the discharge side of the blower (26). An air pressure adjusting device (30) for controlling the pressure in the supply line (21) to be constant is provided. The fuel pressure adjusting device (29) and the air pressure adjusting device (30) in the second embodiment have the same configurations as in the first embodiment, and the fuel pressure adjusting device
(29) is a fuel pressure detector (31) for detecting the discharge side pressure of the fuel pump (23) in the fuel supply line (20), and the fuel pump based on the output of this fuel pressure detector (31) (twenty three)
And a control circuit (32) for controlling the number of rotations of the air pressure adjusting device (30), the air blower in the air supply line (21).
An air pressure detector (33) that detects the discharge side pressure of (26),
Based on the output of the air pressure detector (33), the blower (2
6) and a control circuit (34) for controlling the rotation speed. Each of the control circuits (32) and (34) includes an inverter circuit for controlling the rotation speed of the fuel pump (23) and the blower (26). Further, the fuel pump (23) and the blower (26) are operated / stopped by the unit control device (6), and each fuel control valve (25) and air control valve (28) respectively corresponds to the boiler ( This is performed by the operation control device (7) in 1). Also in the second embodiment, as described above, by controlling the opening and closing of the fuel control valve (25) and the air control valve (28) corresponding to the operating boiler (1), the combustion device of each boiler (1) is controlled. Supply fuel and combustion air to (2).

【0021】ここで、各ボイラ(1) 、或は一部のボイラ
(1) の燃焼装置(2) が、前述のようなオン−オフ制御
(2位置制御)のものではなく、各ボイラ(1) 、或は一
部のボイラ(1) が、三位置制御のもの、即ち、高燃焼量
・低燃焼量・停止の3つの制御位置で制御するものにお
いては、前記燃料制御弁(25)の下流側(即ち、ボイラ
側)に、高燃焼用、低燃焼用の2つの燃料流路を形成
し、各燃料流路のそれぞれに高燃焼用,低燃焼用の制御
弁を接続し、各制御弁を前記ボイラ(1) 側の運転制御装
置(7) によって選択的に開閉制御することにより燃料供
給量を切り替える。一方、この際の燃焼用空気の調整に
ついては、前記空気制御弁(28)の下流側に、ダンパ等の
流量制御手段を設け、この流量制御手段を前記ボイラ
(1) 側の運転制御装置(7) によって開閉制御することに
より空気供給量を調整すればよい。
Here, each boiler (1) or a part of the boilers
The combustion device (2) of (1) is not the on-off control (two-position control) as described above, but each boiler (1) or a part of the boilers (1) has three-position control. In the case of controlling at three control positions of high combustion amount, low combustion amount, and stop, for high combustion and low combustion on the downstream side (that is, the boiler side) of the fuel control valve (25). 2 fuel passages are formed, and control valves for high combustion and low combustion are connected to each fuel passage, and each control valve is selected by the operation control device (7) on the side of the boiler (1). The fuel supply amount is switched by controlling the opening and closing of the fuel. On the other hand, regarding the adjustment of the combustion air at this time, a flow control means such as a damper is provided on the downstream side of the air control valve (28), and the flow control means is used for the boiler.
The air supply amount may be adjusted by controlling the opening and closing by the operation control device (7) on the (1) side.

【0022】次に、この発明の第3実施例について図3
を参照しながら説明する。尚、図3は、この発明の第3
実施例の配管系統を説明するための図面である。この第
3実施例においては、前記の第1,第2実施例のように
流体供給装置を制御することにより吐出側の圧力を一定
にする代わりに、各ボイラと流体供給主経路との間の制
御弁の入り口において、流量を一定に制御する定流量弁
を利用したものである。この第3実施例は、前記第1実
施例同様に給水系統に適用したもので、具体的には、前
記給水ライン(10)から、各ボイラ(1) のそれぞれに対応
する給水分岐管(11)に、給水制御弁(13)と定流量制御弁
(40)を直列に接続している。この場合も前記実施例と同
様に各ボイラ(1) によって個別に開閉制御される給水制
御弁(13)を開放すると、この給水制御弁(13)を流れる給
水は、前記定流量制御弁(40)によって一定の流量に制御
されているため、各ボイラ(1) への流体の供給(給水)
を安定して行なうことができる。
Next, the third embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. Incidentally, FIG. 3 shows the third embodiment of the present invention.
It is drawing for demonstrating the piping system of an Example. In the third embodiment, the pressure on the discharge side is made constant by controlling the fluid supply device as in the first and second embodiments, but instead between each boiler and the main fluid supply route. At the entrance of the control valve, a constant flow valve that controls the flow rate at a constant rate is used. The third embodiment is applied to a water supply system as in the first embodiment, and specifically, from the water supply line (10) to the water supply branch pipes (11) corresponding to the respective boilers (1). ), The water supply control valve (13) and the constant flow control valve
(40) is connected in series. Also in this case, when the water supply control valve (13) that is individually controlled to be opened and closed by each boiler (1) is opened as in the case of the above-described embodiment, the water supply flowing through this water supply control valve (13) becomes the constant flow control valve (40). ), The fluid is supplied to each boiler (1) because it is controlled to a constant flow rate.
Can be performed stably.

【0023】[0023]

【発明の効果】この発明は、以上のような構成であるの
で、ボイラの運転台数に関らず、流体供給装置の吐出側
の圧力を一定に調節し、各ボイラ側の制御弁を個別に開
閉制御することにより、各ボイラの運転状況に応じて所
定の流体を、各ボイラに供給することができ、ボイラの
多缶設置システムにおける流体供給装置の低コスト化、
構造の簡略化を実現することができる。即ち、複数台の
ボイラに対して小数台の流体供給装置のみで流体を供給
することが可能であり、流体供給装置の台数の削減、流
体供給配管及び配線等の簡素化を実現して、極めて低コ
ストのシステムを提供することができる。また、ボイラ
の運転状況を検出し、吐出側圧力を一定に制御している
ので、制御弁の開時間による流量は一定となり、常時、
供給量を適正に維持することができるため、水位制御や
燃焼制御の各制御も正常に行なうことができる。
EFFECTS OF THE INVENTION Since the present invention has the above-described structure, the pressure on the discharge side of the fluid supply device is adjusted to a constant value regardless of the number of operating boilers, and the control valves on each boiler side are individually controlled. By controlling the opening and closing, a predetermined fluid can be supplied to each boiler according to the operating status of each boiler, and the cost of the fluid supply device in the multi-can installation system of the boiler can be reduced.
It is possible to realize simplification of the structure. That is, it is possible to supply fluid to a plurality of boilers with only a small number of fluid supply devices, reduce the number of fluid supply devices, simplify fluid supply piping and wiring, and A low cost system can be provided. Further, since the operation status of the boiler is detected and the discharge side pressure is controlled to be constant, the flow rate due to the opening time of the control valve is constant, and
Since the supply amount can be appropriately maintained, each control of the water level control and the combustion control can be normally performed.

【0024】更にこの発明によれば、架空配管を行なう
場合にも、流体供給装置は最低限の台数で済むため、容
易であり、配管の自由度が高い。また、ボイラ側に個別
に流体供給装置を設ける必要がないため、その吸入側の
配管の圧損を考慮する必要が無くなり、配管を細くでき
るため、配管も低コストで行える。以上のようにこの発
明によれば、イニシャルコスト,ランニングコストに優
れたボイラ多缶設置システムを構成することができる。
Further, according to the present invention, even when performing overhead piping, the number of fluid supply devices can be minimized, which is easy and the flexibility of piping is high. Further, since it is not necessary to separately provide the fluid supply device on the boiler side, it is not necessary to consider the pressure loss of the suction side pipe, and the pipe can be made thin, so that the pipe can be manufactured at low cost. As described above, according to the present invention, it is possible to configure a boiler multi-can installation system excellent in initial cost and running cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例の配管系統を説明するた
めの図面である。
FIG. 1 is a drawing for explaining a piping system of a first embodiment of the present invention.

【図2】この発明の第2実施例の配管系統を説明するた
めの図面である。
FIG. 2 is a drawing for explaining a piping system according to a second embodiment of the present invention.

【図3】この発明の第3実施例の配管系統を説明するた
めの図面である。
FIG. 3 is a drawing for explaining a piping system of a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

(1) ボイラ (10) 給水ライン(流体供給主経路) (12) 給水ポンプ(流体供給装置) (13) 給水制御弁(制御弁) (14) 圧力調整装置 (20) 燃料供給ライン(流体供給主経路) (21) 空気供給ライン(流体供給主経路) (23) 燃料ポンプ(流体供給装置) (25) 燃料制御弁(制御弁) (26) 送風機(流体供給装置) (28) 空気制御弁(制御弁) (29) 燃料圧力調整装置(圧力調整装置) (30) 空気圧力調整装置(圧力調整装置) (40) 定流量制御弁 (1) Boiler (10) Water supply line (main fluid supply route) (12) Water supply pump (fluid supply device) (13) Water supply control valve (control valve) (14) Pressure regulator (20) Fuel supply line (fluid supply) (Main path) (21) Air supply line (main fluid supply path) (23) Fuel pump (fluid supply device) (25) Fuel control valve (control valve) (26) Blower (fluid supply device) (28) Air control valve (Control valve) (29) Fuel pressure regulator (pressure regulator) (30) Air pressure regulator (pressure regulator) (40) Constant flow control valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西岡 茂昭 愛媛県松山市堀江町7番地 三浦工業株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigeaki Nishioka 7 Horie-cho, Matsuyama-shi, Ehime Miura Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ(1) を複数台設置し、負荷量に応
じてボイラ(1) の運転台数を制御するボイラの多缶設置
システムにおいて、各ボイラ(1) をそれぞれ制御弁(13)
を介して流体供給主経路(10)に接続し、前記流体供給主
経路(10)に流体供給装置(12)を接続するとともに、この
流体供給装置(12)の吐出側における流体供給主経路(10)
の流体圧力を一定に保持する圧力調整装置(14)を設けて
なり、運転中のボイラ(1) に対応する前記制御弁(13)を
開閉制御することにより各ボイラ(1) への流体の供給を
制御することを特徴とするボイラの多缶設置システムに
おける流体供給装置。
1. A multi-can installation system for a boiler, wherein a plurality of boilers (1) are installed and the number of operating boilers (1) is controlled according to the load amount. Each boiler (1) is equipped with a control valve (13).
Through the fluid supply main path (10), the fluid supply main path (10) is connected to the fluid supply device (12), the fluid supply main path on the discharge side of the fluid supply device (12) ( Ten)
Is equipped with a pressure adjusting device (14) for maintaining the fluid pressure of the boiler at a constant level, and by controlling the opening and closing of the control valve (13) corresponding to the operating boiler (1), the fluid flow to each boiler (1) is controlled. A fluid supply device for a multi-can installation system of a boiler, characterized by controlling supply.
【請求項2】 ボイラ(1) を複数台設置し、負荷量に応
じてボイラ(1) の運転台数を制御するボイラの多缶設置
システムにおいて、各ボイラ(1) をそれぞれ制御弁(13)
並びに定流量制御弁(40)を介して流体供給主経路(10)に
接続し、前記流体供給主経路(10)にボイラ(1) の運転時
に起動する流体供給装置(12)を接続し、運転中のボイラ
(1) に対応する前記制御弁(13)を開閉制御することによ
り各ボイラ(1) への流体の供給を制御することを特徴と
するボイラの多缶設置システムにおける流体供給装置。
2. In a boiler multi-can installation system in which a plurality of boilers (1) are installed and the number of operating boilers (1) is controlled according to the load amount, each boiler (1) has its own control valve (13).
Also, connected to the fluid supply main path (10) through the constant flow control valve (40), the fluid supply main path (10) is connected to the fluid supply device (12) which is activated when the boiler (1) is operated, Boiler in operation
A fluid supply device in a multi-can installation system for a boiler, wherein the supply of fluid to each boiler (1) is controlled by controlling the opening and closing of the control valve (13) corresponding to (1).
JP6724196A 1996-02-28 1996-02-28 Fluid-feeding device in combined multiboilers system Pending JPH09236208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6724196A JPH09236208A (en) 1996-02-28 1996-02-28 Fluid-feeding device in combined multiboilers system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6724196A JPH09236208A (en) 1996-02-28 1996-02-28 Fluid-feeding device in combined multiboilers system

Publications (1)

Publication Number Publication Date
JPH09236208A true JPH09236208A (en) 1997-09-09

Family

ID=13339234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6724196A Pending JPH09236208A (en) 1996-02-28 1996-02-28 Fluid-feeding device in combined multiboilers system

Country Status (1)

Country Link
JP (1) JPH09236208A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034291A (en) * 2000-07-13 2002-01-31 Miura Co Ltd Method for controlling speed of electric motor and method for controlling boiler
JP2005016829A (en) * 2003-06-26 2005-01-20 Miura Co Ltd Number control method for boiler
JP2006234359A (en) * 2005-02-28 2006-09-07 Miura Co Ltd Boiler control method
JP2020051651A (en) * 2018-09-25 2020-04-02 三浦工業株式会社 Boiler system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002034291A (en) * 2000-07-13 2002-01-31 Miura Co Ltd Method for controlling speed of electric motor and method for controlling boiler
JP2005016829A (en) * 2003-06-26 2005-01-20 Miura Co Ltd Number control method for boiler
JP4505850B2 (en) * 2003-06-26 2010-07-21 三浦工業株式会社 Number control method of boiler
JP2006234359A (en) * 2005-02-28 2006-09-07 Miura Co Ltd Boiler control method
JP4529731B2 (en) * 2005-02-28 2010-08-25 三浦工業株式会社 Boiler control method
JP2020051651A (en) * 2018-09-25 2020-04-02 三浦工業株式会社 Boiler system

Similar Documents

Publication Publication Date Title
JPH09236208A (en) Fluid-feeding device in combined multiboilers system
CN109737090A (en) Multi-machine parallel connection blower system and its control method
JPH10141766A (en) Hot water supply device
JP2002081606A (en) Method for controlling boiler
JP2002013701A (en) Method for controlling the number of boiler
JP2962541B2 (en) Ventilation pressure control device for ventilation line for multi-can boiler
JP2722308B2 (en) Water supply system for multi-can boiler
JP2973849B2 (en) Method for determining air volume switching in combustion device
JPH0268449A (en) Bypass mixing type hot water feeder
JP2951694B2 (en) Water heater
JPH026968B2 (en)
JP2589778B2 (en) Bath equipment
JP3207415B2 (en) Gas water heater
JP2951695B2 (en) Water heater
JP3798083B2 (en) Combustion device
JP3237679B2 (en) Oil-cooked hot water boiler system
JPH10169904A (en) Control system for boiler
JP2005140426A (en) Connection type hot water supply device
JP3800412B2 (en) Linked hot water system
JPS6332224A (en) Heat supply system
JPH08291913A (en) Combustion apparatus
JPH03247955A (en) Hot water supplying system
KR20040106652A (en) Hot Water Supply System
JPH11212656A (en) Pressure governing mechanism
JP3117953B2 (en) Water heater