JPH09235270A - Production of n-substituted dicarboxylic acid imide - Google Patents

Production of n-substituted dicarboxylic acid imide

Info

Publication number
JPH09235270A
JPH09235270A JP4321796A JP4321796A JPH09235270A JP H09235270 A JPH09235270 A JP H09235270A JP 4321796 A JP4321796 A JP 4321796A JP 4321796 A JP4321796 A JP 4321796A JP H09235270 A JPH09235270 A JP H09235270A
Authority
JP
Japan
Prior art keywords
acid imide
dicarboxylic acid
aqueous solution
reaction
substituted dicarboxylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4321796A
Other languages
Japanese (ja)
Inventor
Hironori Fujita
裕規 藤田
Masaru Kobashi
勝 小橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihachi Chemical Industry Co Ltd
Original Assignee
Daihachi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihachi Chemical Industry Co Ltd filed Critical Daihachi Chemical Industry Co Ltd
Priority to JP4321796A priority Critical patent/JPH09235270A/en
Publication of JPH09235270A publication Critical patent/JPH09235270A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a high-purity N-substituted dicarboxylic acid imide in high yield by halogenating a dicarboxlic acid imide under specific conditions. SOLUTION: An aqueous solution of a dicarboxylic acid imide of the formula (one of R1 to R4 are each H, CH3 or C2 H5 ) is adjusted to pH1 to 7, preferably pH3.5 to 5.5 by adding an inorganic base (e.g. NaOH) and reacted with chlorine or bromine at 15-30 deg.C and subjected to Nhalogenation to give an N-substituted dicarboxylic acid imide. The N-substituted dicarboxylic acid imide (e.g. Nchlorosuccinic acid imide) is left in the most stable pH region and is obtained in high yield and in high purity without inducing the decomposition of the reaction product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、コハク酸イミド等
のジカルボン酸イミドより、N−クロロコハク酸イミド
等のN−置換ジカルボン酸イミドを製造する方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing an N-substituted dicarboxylic acid imide such as N-chlorosuccinimide from a dicarboxylic acid imide such as succinimide.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】N−ク
ロロコハク酸イミドは、陽電荷の塩素源を必要とする反
応の試薬、例えば消毒剤或いは塩素化剤等として有用で
あり、特に抗生物質等の特殊塩素化剤に広く用いられて
いる。このN−クロロコハク酸イミドの製造方法として
は、水酸化ナトリウム溶液中にコハク酸イミドを溶解
し、この水溶液中に塩素を吹き込む方法[J.S.
C.,121巻,2169〜2178頁(1922)]が知られている。し
かしながら、この方法では、反応初期において水溶液が
塩基性であるため、コハク酸イミドが加水分解されるだ
けでなく、生成物であるN−クロロコハク酸イミドも分
解され、収率が低下する問題があった。またN−クロロ
コハク酸イミドの分解で発生する三塩化窒素が、爆発性
でかつ有毒性であるという問題もあった(特公昭62−
20983号公報)。
BACKGROUND OF THE INVENTION N-chlorosuccinimide is useful as a reagent for a reaction requiring a positively charged chlorine source, such as a disinfectant or a chlorinating agent, particularly an antibiotic. Widely used as a special chlorinating agent. As a method for producing this N-chlorosuccinimide, a method of dissolving succinimide in a sodium hydroxide solution and blowing chlorine into this aqueous solution [J. S.
C. , 121, 2169-2178 (1922)] is known. However, in this method, since the aqueous solution is basic at the initial stage of the reaction, not only the succinimide is hydrolyzed but also the product N-chlorosuccinimide is decomposed, and there is a problem that the yield is reduced. It was There is also a problem that nitrogen trichloride generated by decomposition of N-chlorosuccinimide is explosive and toxic (Japanese Patent Publication No. 62-
20983).

【0003】また、特開平6−56772号公報には、
pH3以下のコハク酸イミドの水溶液中に塩素を吹き込
む方法が開示されている。しかし、この方法においても
水溶液が強酸性であるため、生成したN−クロロコハク
酸イミドの一部が分解し、収率が低下する問題があっ
た。特に工業的規模でのN−クロロコハク酸イミドの製
造においては、反応時間が長くなる程、収率の低下は顕
著になる。
Further, Japanese Patent Application Laid-Open No. 6-56772 discloses that
A method of blowing chlorine into an aqueous solution of succinimide having a pH of 3 or less is disclosed. However, even in this method, since the aqueous solution is strongly acidic, there is a problem that a part of the produced N-chlorosuccinimide is decomposed and the yield is reduced. Particularly in the production of N-chlorosuccinimide on an industrial scale, the longer the reaction time, the more remarkable the decrease in yield.

【0004】更に、特開平4−282362号公報に
は、コハク酸イミドの無機酸性水溶液に次亜塩素酸ナト
リウムを作用させる方法が開示されているが、この方法
においても水溶液のpHが1以下の強酸性であり、生成
物の一部が分解し、収率を低下させていた。また原料で
ある次亜塩素酸ナトリウムが濃度12%程度の希薄な水
溶液であるため、反応系全体の水溶液量が増加する。こ
のため生成したN−クロロコハク酸イミドの一部が溶解
して収率低下の要因となるばかりか、一定容量の反応槽
から得られる製品取得量が下がる。即ち、反応槽の容積
効率の低下を招き、前記方法は工業的に不利であった。
Further, Japanese Patent Laid-Open No. 4-28362 discloses a method in which sodium hypochlorite is allowed to act on an inorganic acidic aqueous solution of succinimide. In this method also, the pH of the aqueous solution is 1 or less. It was strongly acidic and part of the product decomposed, lowering the yield. Further, since the raw material sodium hypochlorite is a dilute aqueous solution having a concentration of about 12%, the amount of aqueous solution in the entire reaction system increases. For this reason, not only the produced N-chlorosuccinimide is partially dissolved to cause a decrease in yield, but also the amount of product obtained from a reaction vessel having a fixed capacity is reduced. That is, the volume efficiency of the reaction tank is lowered, and the above method is industrially disadvantageous.

【0005】[0005]

【課題を解決するための手段】本発明者らは、ジカルボ
ン酸イミドをハロゲン化し、N−置換ジカルボン酸イミ
ドを高収率かつ高純度で得ることを目的とし鋭意研究を
行った結果、反応液のpH、反応温度などを制御するこ
とで前記目的を達することを見出し、本発明を完成する
に至った。
DISCLOSURE OF THE INVENTION The present inventors have conducted diligent research to halogenate dicarboxylic acid imides and obtain N-substituted dicarboxylic acid imides in high yield and high purity. The inventors have found that the above object can be achieved by controlling the pH, reaction temperature, etc., and have completed the present invention.

【0006】即ち、本発明によれば、一般式(I):That is, according to the present invention, the general formula (I):

【0007】[0007]

【化2】 Embedded image

【0008】(式中、R1 、R2、R3及びR4は同一又
は異なって、H、CH3 、C2 5 )で示されるジカル
ボン酸イミドの水溶液に、無機塩基を加えて該水溶液の
pHを1〜7に維持しつつかつ15〜30℃の温度で、
塩素または臭素を反応させてN−ハロゲン化することを
特徴とするN−置換ジカルボン酸イミドの製造方法が提
供される。
(In the formula, R 1 , R 2 , R 3 and R 4 are the same or different and H, CH 3 , C 2 H 5 ) An inorganic base is added to an aqueous solution of a dicarboxylic imide. While maintaining the pH of the aqueous solution at 1 to 7 and at a temperature of 15 to 30 ° C,
Provided is a method for producing an N-substituted dicarboxylic acid imide, which comprises reacting chlorine or bromine for N-halogenation.

【0009】[0009]

【発明の実施の形態】本発明に用いられる代表的なジカ
ルボン酸イミドとしては、コハク酸イミドを挙げること
ができ、また代表的なN−置換ジカルボン酸イミドとし
てはN−クロロコハク酸イミドを挙げることができる。
本発明の反応溶液のpHは、3.5〜7、より好ましく
は3.5〜5.5に調整される。これはpH3.5〜7
において、反応物であるジカルボン酸イミド、及び生成
物であるN−置換ジカルボン酸イミドが、化学的に最も
安定であるためである。即ち、pHが前記範囲であれ
ば、塩基性下でのジカルボン酸イミドとN−置換ジカル
ボン酸イミドとの分解、及び強酸性下でのN−置換ジカ
ルボン酸イミドの分解が抑制され、高収率が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION A typical dicarboxylic acid imide used in the present invention is succinimide, and a typical N-substituted dicarboxylic acid imide is N-chlorosuccinimide. You can
The pH of the reaction solution of the present invention is adjusted to 3.5 to 7, more preferably 3.5 to 5.5. This is pH 3.5-7
In the above, the dicarboxylic acid imide which is a reaction product and the N-substituted dicarboxylic acid imide which is a product are chemically most stable. That is, when the pH is within the above range, the decomposition of the dicarboxylic acid imide and the N-substituted dicarboxylic acid imide under a basic condition and the decomposition of the N-substituted dicarboxylic acid imide under a strong acidic condition are suppressed, resulting in a high yield. Is obtained.

【0010】また、前記溶液のpH調整には無機塩基を
用いることができる。無機塩基としては、水酸化ナトリ
ウム、水酸化カリウム、水酸化マグネシウム等のアルカ
リ金属水酸化物、炭酸ナトリウム、炭酸カリウム等のア
ルカリ金属炭酸塩、及び炭酸水素ナトリウム等のアルカ
リ金属炭酸水素塩が挙げられ、特に好ましくは水酸化ナ
トリウム、炭酸ナトリウムである。
An inorganic base can be used to adjust the pH of the solution. Examples of the inorganic base include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and magnesium hydroxide, alkali metal carbonates such as sodium carbonate and potassium carbonate, and alkali metal hydrogen carbonates such as sodium hydrogen carbonate. , And particularly preferably sodium hydroxide and sodium carbonate.

【0011】pH調整に強塩基を使用した場合、ジカル
ボン酸イミドが塩基との接触と同時に分解し、N−置換
ジカルボン酸イミドの収率を低下させるため、弱塩基の
使用が好ましいが、強塩基であっても比較的低濃度であ
れば問題はない。この場合、実用的には塩基濃度10〜
30%、好ましくは10〜20%で用いることができ
る。
When a strong base is used for pH adjustment, the dicarboxylic acid imide is decomposed at the same time when it contacts the base, and the yield of the N-substituted dicarboxylic acid imide is reduced. However, there is no problem if the concentration is relatively low. In this case, the base concentration is practically 10 to 10.
It can be used at 30%, preferably 10 to 20%.

【0012】本発明のN−ハロゲン化反応は、一般式:The N-halogenation reaction of the present invention has the general formula:

【0013】[0013]

【化3】 Embedded image

【0014】(式中、R1、R2、R3及びR4は式(I)
と同義、Xは塩素原子又は臭素原子)で示されるよう
に、ジカルボン酸イミドの水溶液に、塩素または臭素を
導入して行う。この際、ジカルボン酸イミド1モルに対
して1モルのハロゲン化水素が副成される。無機塩基の
添加は、ジカルボン酸イミドの水溶液のpHを所定の範
囲に維持すると同時に、前記ハロゲン化水素の酸受容体
としても機能する。
(Wherein R 1 , R 2 , R 3 and R 4 are of the formula (I)
Synonymous with, X is chlorine atom or bromine atom), and chlorine or bromine is introduced into an aqueous solution of dicarboxylic acid imide. At this time, 1 mol of hydrogen halide is by-produced with respect to 1 mol of dicarboxylic acid imide. The addition of the inorganic base maintains the pH of the aqueous solution of dicarboxylic acid imide within a predetermined range, and at the same time, functions as an acid acceptor of the hydrogen halide.

【0015】無機塩基の添加量は、副成するハロゲン化
水素を受容、即ち中和するのに必要な当量を必要とす
る。また無機塩基の添加は、反応溶液が所定のpH値に
なるように連続的または間隔的に行われる。また、本発
明のN−ハロゲン化反応における温度は、15〜30
℃、好ましくは15〜20℃に調整される。生成物であ
るN−置換ジカルボン酸イミドの分解を抑制するために
は、反応温度は10℃以下が望ましい。しかしながら、
10℃以下で反応を行った場合、生成したN−置換ジカ
ルボン酸イミドが微粉末化し、回収工程での濾過目詰ま
りを起こし、固液分離操作が困難となる。また、生成物
の洗浄操作も困難となり、製品純度が低下する。更に
は、濾過後のN−置換ジカルボン酸イミドの含水量が増
加するため、水分による生成物の分解が増加し製品収
率、製品純度が低下する。従って、反応温度は15℃以
上が好ましい。また、N−置換ジカルボン酸イミドの分
解を抑制するために、反応温度は30℃以下が好まし
い。更に反応温度は生成物の分解を抑制するため、反応
途中に段階的に低下させてもよい。
The amount of the inorganic base added is required to be an equivalent amount necessary for receiving, ie, neutralizing, the hydrogen halide produced as a by-product. The inorganic base is added continuously or at intervals so that the reaction solution has a predetermined pH value. The temperature in the N-halogenation reaction of the present invention is 15 to 30.
C., preferably 15 to 20.degree. In order to suppress the decomposition of the N-substituted dicarboxylic acid imide which is the product, the reaction temperature is preferably 10 ° C or lower. However,
When the reaction is carried out at 10 ° C or lower, the produced N-substituted dicarboxylic acid imide becomes fine powder and causes filter clogging in the recovery step, which makes solid-liquid separation operation difficult. In addition, the washing operation of the product becomes difficult, and the product purity decreases. Furthermore, since the water content of the N-substituted dicarboxylic acid imide after filtration increases, the decomposition of the product due to moisture increases, and the product yield and product purity decrease. Therefore, the reaction temperature is preferably 15 ° C or higher. Further, the reaction temperature is preferably 30 ° C. or lower in order to suppress the decomposition of the N-substituted dicarboxylic acid imide. Further, the reaction temperature may be lowered stepwise during the reaction in order to suppress decomposition of the product.

【0016】更に、本発明に用いるジカルボン酸イミド
水溶液は、飽和水溶液であることが望ましい。不均一溶
液、即ちジカルボン酸イミドが析出した状態でハロゲン
化を行った場合、反応完結が困難で収率が低下する。ま
た、ジカルボン酸イミドの飽和水溶液で反応を行うこと
は、工業的にも反応槽の容積効率が向上するので好まし
い。
Further, the dicarboxylic acid imide aqueous solution used in the present invention is preferably a saturated aqueous solution. When the halogenation is carried out in a heterogeneous solution, that is, in a state where the dicarboxylic acid imide is deposited, it is difficult to complete the reaction and the yield is reduced. Further, it is preferable to carry out the reaction with a saturated aqueous solution of dicarboxylic acid imide, because the volume efficiency of the reaction tank is industrially improved.

【0017】本発明のN−ハロゲン化反応で得られるN
−置換ジカルボン酸イミドとしては、N−クロロコハク
酸イミド、N−ブロモコハク酸イミド、N−クロロ−
3,4−ジメチルコハク酸イミド、N−ブロモ−3,4
−ジメチルコハク酸イミド、N−クロロ−3,4−ジエ
チルコハク酸イミド、N−ブロモ−3,4−ジエチルコ
ハク酸イミド等が挙げられる。
N obtained by the N-halogenation reaction of the present invention
Examples of the -substituted dicarboxylic acid imide include N-chlorosuccinimide, N-bromosuccinimide and N-chloro-
3,4-Dimethylsuccinimide, N-bromo-3,4
-Dimethylsuccinimide, N-chloro-3,4-diethylsuccinimide, N-bromo-3,4-diethylsuccinimide and the like.

【0018】[0018]

【実施例】次に本発明を実施例により詳細に説明する
が、これらの実施例は本発明の範囲を限定するものでは
ない。 実施例1 1リットル6つ口フラスコに攪拌機、温度計、滴下ロー
ト、ガス導入口、ガス出口を取り付け、これに水331
g、コハク酸イミド99g(1モル)を入れ、20℃ま
で冷却した。この時の水溶液はコハク酸イミドの飽和均
一溶液であった。次いで液温を20℃に保ちながら塩素
ガスを水溶液に導入した。塩素ガスの導入と同時に、予
め調整しておいた20%水酸化ナトリウム200gを滴
下ロートより追加し、水溶液のpHを3.5〜5.5に
調整しながら反応を行った。塩素ガス7.1g導入した
時点より水溶液を15℃まで冷却し、更に反応を続け
た。塩素ガス71.9g(1.01モル)は3時間で導
入した。
EXAMPLES Next, the present invention will be described in detail with reference to examples, but these examples do not limit the scope of the present invention. Example 1 A stirrer, a thermometer, a dropping funnel, a gas introduction port, and a gas outlet were attached to a 1-liter 6-necked flask, and water 331 was added thereto.
g and 99 g (1 mol) of succinimide were added, and the mixture was cooled to 20 ° C. The aqueous solution at this time was a saturated homogeneous solution of succinimide. Then, chlorine gas was introduced into the aqueous solution while maintaining the liquid temperature at 20 ° C. Simultaneously with the introduction of chlorine gas, 200 g of 20% sodium hydroxide that had been adjusted in advance was added from a dropping funnel to carry out the reaction while adjusting the pH of the aqueous solution to 3.5 to 5.5. From the time when 7.1 g of chlorine gas was introduced, the aqueous solution was cooled to 15 ° C. and the reaction was continued. 71.9 g (1.01 mol) of chlorine gas was introduced in 3 hours.

【0019】塩素ガス導入終了後、これを5℃まで冷却
しながら30分間の熟成を行い、その後内容物を濾過、
水166gで洗浄して、乾燥したところ、反応生成物で
あるN−クロロコハク酸イミド122.8g(収率9
2.0%)を得た。有効塩素は26.53%(理論値2
6.55%)で、これより算出される製品純度は99.
9%であった。
After the introduction of chlorine gas, the mixture was aged for 30 minutes while cooling it to 5 ° C., and then the contents were filtered,
After washing with 166 g of water and drying, 122.8 g of N-chlorosuccinimide which is a reaction product (yield 9
2.0%) was obtained. Effective chlorine is 26.53% (theoretical value 2
6.55%) and the product purity calculated from this is 99.
It was 9%.

【0020】有効塩素は、生成物に水と酢酸(容量比
1:2)、10%ヨウ化カリウム溶液の混合物を追加
し、10分間放置後、指示薬としてでんぷん溶液を用
い、1/10規定チオ硫酸ナトリウム溶液で滴定して求
めた。反応条件及び結果を表1に示す。
The available chlorine was obtained by adding a mixture of water and acetic acid (volume ratio 1: 2), 10% potassium iodide solution to the product, leaving it for 10 minutes, and using a starch solution as an indicator, 1/10 normal thiol. It was determined by titration with a sodium sulfate solution. Table 1 shows the reaction conditions and results.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例2 水282g、30%水酸化ナトリウム133gを用い、
液温を25℃とした以外は、実施例1と同様にして、N
−クロロコハク酸イミド119.1g(収率89.2
%)を得た。但し、塩素ガス導入量は、3時間で74.
4g(1.05モル)であった。N−クロロコハク酸イ
ミドの有効塩素は26.50%(理論値26.55%)
で、これより算出される製品純度は99.8%であっ
た。
Example 2 Using 282 g of water and 133 g of 30% sodium hydroxide,
In the same manner as in Example 1 except that the liquid temperature was 25 ° C., N
-Chlorosuccinimide 119.1 g (yield 89.2)
%) Was obtained. However, the amount of chlorine gas introduced was 74.
It was 4 g (1.05 mol). Effective chlorine of N-chlorosuccinimide is 26.50% (theoretical value is 26.55%)
The product purity calculated from this was 99.8%.

【0023】反応条件及び結果を表1に示す。 実施例3 1リットル6つ口フラスコに攪拌機、温度計、滴下ロー
ト、ガス導入口、ガス出口を取り付け、これに水331
g、コハク酸イミド99g(1モル)を入れ、20℃ま
で冷却した。この時の水溶液はコハク酸イミドの飽和均
一溶液であった。次いで液温を20℃に保ちながら水溶
液に塩素ガスを導入した。塩素ガスの導入と同時に、予
め調整いておいた30%水酸化ナトリウム80gを滴下
ロートより追加し、水溶液のpHを3以下に調整しなが
ら反応を行った。塩素ガス86.5g(1.22モル)
は3時間で導入した。
The reaction conditions and results are shown in Table 1. Example 3 A 1-liter six-necked flask was equipped with a stirrer, a thermometer, a dropping funnel, a gas introduction port, and a gas outlet, and water 331 was added thereto.
g and 99 g (1 mol) of succinimide were added, and the mixture was cooled to 20 ° C. The aqueous solution at this time was a saturated homogeneous solution of succinimide. Then, chlorine gas was introduced into the aqueous solution while maintaining the liquid temperature at 20 ° C. Simultaneously with the introduction of chlorine gas, 80 g of 30% sodium hydroxide, which had been adjusted in advance, was added from a dropping funnel to carry out the reaction while adjusting the pH of the aqueous solution to 3 or less. Chlorine gas 86.5g (1.22mol)
Was introduced in 3 hours.

【0024】塩素ガス導入終了後、実施例1と同様に処
理して、N−クロロコハク酸イミド120.2g(収率
90.0%)を得た。有効塩素は26.31%(理論値
26.55%)で、これより算出される製品純度は9
9.1%であった。反応条件及び結果を表1に示す。 実施例4 20%水酸化ナトリウム200gを用い、pHを5.5
〜7.0に調製した以外は、実施例3と同様にして、N
−クロロコハク酸イミド114.3g(収率85.6
%)を得た。但し、塩素ガス導入量は、3時間で81.
0g(1.14モル)であった。N−クロロコハク酸イ
ミドの有効塩素は26.37%(理論値26.55%)
で、これより算出される製品純度は99.3%であっ
た。
After the introduction of chlorine gas, the same treatment as in Example 1 was carried out to obtain 120.2 g of N-chlorosuccinimide (yield 90.0%). The available chlorine is 26.31% (theoretical value is 26.55%), and the product purity calculated from this is 9
9.1%. Table 1 shows the reaction conditions and results. Example 4 Using 200 g of 20% sodium hydroxide, the pH was adjusted to 5.5.
N was carried out in the same manner as in Example 3 except that the N was adjusted to 7.0.
-Chlorosuccinimide 114.3 g (yield 85.6)
%) Was obtained. However, the amount of chlorine gas introduced was 81.
It was 0 g (1.14 mol). Effective chlorine of N-chlorosuccinimide is 26.37% (theoretical value is 26.55%)
The product purity calculated from this was 99.3%.

【0025】反応条件及び結果を表1に示す。 実施例5 液温を30℃、pHを3.5〜5.5に調製した以外
は、実施例4と同様にして、N−クロロコハク酸イミド
112.4g(収率84.2%)を得た。但し、塩素ガ
ス導入量は、3時間で72.3g(1.02モル)であ
った。N−クロロコハク酸イミドの有効塩素は26.4
7%(理論値26.55%)で、これより算出される製
品純度は99.7%であった。
The reaction conditions and results are shown in Table 1. Example 5 112.4 g (yield 84.2%) of N-chlorosuccinimide was obtained in the same manner as in Example 4 except that the liquid temperature was adjusted to 30 ° C. and the pH was adjusted to 3.5 to 5.5. It was However, the amount of chlorine gas introduced was 72.3 g (1.02 mol) in 3 hours. The available chlorine of N-chlorosuccinimide is 26.4.
The product purity was 7% (theoretical value: 26.55%), and the product purity calculated from this was 99.7%.

【0026】反応条件及び結果を表1に示す。 比較例1 液温を10℃とした以外は、実施例5と同様にして、N
−クロロコハク酸イミド105.9g(収率79.3
%)を得た。但し、コハク酸イミドの水溶液は不飽和不
均一溶液で、塩素ガス導入量は3時間で89.3g
(1.26モル)であった。N−クロロコハク酸イミド
の有効塩素は26.15%(理論値26.55%)で、
これより算出される製品純度は98.5%であった。
The reaction conditions and results are shown in Table 1. Comparative Example 1 The same procedure as in Example 5 was repeated except that the liquid temperature was changed to 10 ° C.
-Chlorosuccinimide 105.9 g (yield 79.3)
%) Was obtained. However, the aqueous solution of succinimide is an unsaturated heterogeneous solution, and the amount of chlorine gas introduced is 89.3 g in 3 hours.
(1.26 mol). The available chlorine of N-chlorosuccinimide is 26.15% (theoretical value is 26.55%),
The product purity calculated from this was 98.5%.

【0027】反応条件及び結果を表1に示す。 比較例2 水268gを用い、液温を10℃とした以外は、実施例
3と同様にして、N−クロロコハク酸イミド100.2
g(収率75.1%)を得た。但し、コハク酸イミドの
水溶液は不飽和不均一溶液で、塩素ガス導入量は3時間
で98.8g(1.39モル)であった。N−クロロコ
ハク酸イミドの有効塩素は26.24%(理論値26.
55%)で、これより算出される製品純度は98.8%
であった。
The reaction conditions and results are shown in Table 1. Comparative Example 2 N-chlorosuccinimide 100.2 was prepared in the same manner as in Example 3 except that 268 g of water was used and the liquid temperature was 10 ° C.
g (yield 75.1%) was obtained. However, the aqueous solution of succinimide was an unsaturated heterogeneous solution, and the amount of chlorine gas introduced was 98.8 g (1.39 mol) in 3 hours. The available chlorine of N-chlorosuccinimide is 26.24% (theoretical value 26.
55%), and the product purity calculated from this is 98.8%.
Met.

【0028】反応条件及び結果を表1に示す。The reaction conditions and results are shown in Table 1.

【0029】[0029]

【発明の効果】本発明によればジカルボン酸イミドのN
−ハロゲン化反応を、ジカルボン酸イミドの飽和水溶液
に、無機塩基を加えて該水溶液のpHを3.5〜7、好
ましくはpH3.5〜5.5に維持しつつかつ15〜3
0℃、好ましくは15〜20℃の温度で、塩素または臭
素を反応させて行うので、生成物であるN−置換ジカル
ボン酸イミドが最も安定したpH領域に置かれ、生成物
の分解を誘起することなく、高収率かつ高純度のN−置
換ジカルボン酸イミドを製造することができる。
According to the present invention, the N of the dicarboxylic acid imide is
The halogenation reaction is added to a saturated aqueous solution of dicarboxylic acid imide with an inorganic base to maintain the pH of the aqueous solution at 3.5 to 7, preferably pH 3.5 to 5.5, and 15 to 3
Since it is carried out by reacting chlorine or bromine at a temperature of 0 ° C., preferably 15 to 20 ° C., the product N-substituted dicarboxylic acid imide is placed in the most stable pH region and induces decomposition of the product. It is possible to produce a high-yield and high-purity N-substituted dicarboxylic acid imide without having to do so.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年3月18日[Submission date] March 18, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0009】[0009]

【発明の実施の形態】本発明に用いられる代表的なジカ
ルボン酸イミドとしては、コハク酸イミドを挙げること
ができ、また代表的なN−置換ジカルボン酸イミドとし
てはN−クロロコハク酸イミドを挙げることができる。
本発明の反応溶液のpHは、1〜7、好ましくはpH
3.5〜7、より好ましくはpH3.5〜5.5に調整
される。なお、pH3.5〜7であれば、原料であるジ
カルボン酸イミド、及び生成物であるN−置換ジカルボ
ン酸イミド、化学的に最も安定に存在させることがで
きる。即ち、pHが前記範囲であれば、塩基性下でのジ
カルボン酸イミドとN−置換ジカルボン酸イミドの
解、及び強酸性下でのN−置換ジカルボン酸イミドの分
解が抑制され、高収率が得られる。
BEST MODE FOR CARRYING OUT THE INVENTION A typical dicarboxylic acid imide used in the present invention is succinimide, and a typical N-substituted dicarboxylic acid imide is N-chlorosuccinimide. You can
The pH of the reaction solution of the present invention is 1 to 7, preferably pH.
The pH is adjusted to 3.5 to 7, more preferably 3.5 to 5.5 . It should be noted that if the pH is 3.5 to 7, the dicarboxylic acid imide as the raw material and the N-substituted dicarboxylic acid imide as the product can be caused to exist chemically most stably.
Wear. That is, if the pH is above range, minute <br/> solution of dicarboxylic acid imide and N- substituted dicarboxylic acid imide in basic under and decomposition of N- substituted dicarboxylic acid imide of the strongly acidic under suppression And a high yield is obtained.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0015[Correction target item name] 0015

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0015】無機塩基の添加量は、副生するハロゲン化
水素を受容、即ち中和するのに必要な当量を必要とす
る。また無機塩基の添加は、反応溶液が所定のpH値に
なるように連続的または間隔的に行われる。また、本発
明のN−ハロゲン化反応における温度は、15〜30
℃、好ましくは15〜20℃に調整される。生成物であ
るN−置換ジカルボン酸イミドの分解を抑制するために
は、反応温度は10℃以下が望ましい。しかしながら、
10℃以下で反応を行った場合、生成したN−置換ジカ
ルボン酸イミドが微粉末化し、回収工程での濾過目詰ま
りを起こし、固液分離操作が困難となる。また、生成物
の洗浄操作も困難となり、製品純度が低下する。更に
は、濾過後のN−置換ジカルボン酸イミドの含水量が増
加するため、水分による生成物の分解が増加し製品収
率、製品純度が低下する。従って、反応温度は15℃以
上が好ましい。また、N−置換ジカルボン酸イミドの分
解を抑制するために、反応温度は30℃以下が好まし
い。更に反応温度は生成物の分解を抑制するため、反応
途中に段階的に低下させてもよい。
The amount of the inorganic base would require an equivalent amount required hydrogen halide by-produced receptor, i.e. to neutralize. The inorganic base is added continuously or at intervals so that the reaction solution has a predetermined pH value. The temperature in the N-halogenation reaction of the present invention is 15 to 30.
C., preferably 15 to 20.degree. In order to suppress the decomposition of the N-substituted dicarboxylic acid imide which is the product, the reaction temperature is preferably 10 ° C or lower. However,
When the reaction is carried out at 10 ° C or lower, the produced N-substituted dicarboxylic acid imide becomes fine powder and causes filter clogging in the recovery step, which makes solid-liquid separation operation difficult. In addition, the washing operation of the product becomes difficult, and the product purity decreases. Furthermore, since the water content of the N-substituted dicarboxylic acid imide after filtration increases, the decomposition of the product due to moisture increases, and the product yield and product purity decrease. Therefore, the reaction temperature is preferably 15 ° C or higher. Further, the reaction temperature is preferably 30 ° C. or lower in order to suppress the decomposition of the N-substituted dicarboxylic acid imide. Further, the reaction temperature may be lowered stepwise during the reaction in order to suppress decomposition of the product.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】[0029]

【発明の効果】本発明によればジカルボン酸イミドのN
−ハロゲン化反応を、ジカルボン酸イミドの飽和水溶液
に、無機塩基を加えて該水溶液のpHを1〜7、好まし
くはpH3.5〜7、より好ましくはpH3.5〜5.
5に維持しつつかつ15〜30℃、好ましくは15〜2
0℃の温度で、塩素または臭素を反応させて行うので、
生成物であるN−置換ジカルボン酸イミドが最も安定し
たpH領域に置かれ、生成物の分解を誘起することな
く、高収率かつ高純度のN−置換ジカルボン酸イミドを
製造することができる。
According to the present invention, the N of the dicarboxylic acid imide is
The halogenation reaction is carried out by adding an inorganic base to a saturated aqueous solution of dicarboxylic acid imide to adjust the pH of the aqueous solution to 1 to 7,
PH 3.5 to 7, more preferably pH 3.5 to 5.
5 to 15 and 30 ° C., preferably 15 to 2
Since it is carried out by reacting chlorine or bromine at a temperature of 0 ° C,
The product N-substituted dicarboxylic acid imide is placed in the most stable pH region, and it is possible to produce a high yield and high purity N-substituted dicarboxylic acid imide without inducing decomposition of the product.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式(I): 【化1】 (式中、R1 、R2、R3及びR4は同一又は異なって、
H、CH3 、C25 )で示されるジカルボン酸イミド
の水溶液に、無機塩基を加えて該水溶液のpHを1〜7
に維持しつつかつ15〜30℃の温度で、塩素または臭
素を反応させてN−ハロゲン化することを特徴とするN
−置換ジカルボン酸イミドの製造方法。
1. A compound of the general formula (I): (In the formula, R 1 , R 2 , R 3 and R 4 are the same or different,
H, to an aqueous solution of the dicarboxylic acid imide represented by CH 3, C 2 H 5) , by adding an inorganic base the pH of the aqueous solution 1-7
N-halogenated by reacting chlorine or bromine with maintaining the temperature at 15 to 30 ° C.
-A method for producing a substituted dicarboxylic acid imide.
【請求項2】 pHが、3.5〜7である請求項1記載
の方法。
2. The method according to claim 1, wherein the pH is 3.5 to 7.
【請求項3】 pHが、3.5〜5.5である請求項1
又は2記載の方法。
3. The pH is 3.5 to 5.5.
Or the method of 2.
【請求項4】 温度が、15〜20℃である請求項1〜
3記載の方法。
4. The temperature is 15 to 20 ° C.
3. The method according to 3.
【請求項5】 ジカルボン酸イミドの水溶液が、飽和水
溶液である請求項1〜4記載の方法。
5. The method according to claim 1, wherein the aqueous solution of dicarboxylic acid imide is a saturated aqueous solution.
JP4321796A 1996-02-29 1996-02-29 Production of n-substituted dicarboxylic acid imide Pending JPH09235270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4321796A JPH09235270A (en) 1996-02-29 1996-02-29 Production of n-substituted dicarboxylic acid imide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4321796A JPH09235270A (en) 1996-02-29 1996-02-29 Production of n-substituted dicarboxylic acid imide

Publications (1)

Publication Number Publication Date
JPH09235270A true JPH09235270A (en) 1997-09-09

Family

ID=12657758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4321796A Pending JPH09235270A (en) 1996-02-29 1996-02-29 Production of n-substituted dicarboxylic acid imide

Country Status (1)

Country Link
JP (1) JPH09235270A (en)

Similar Documents

Publication Publication Date Title
JP2665826B2 (en) Method for preparing 2,4,6-triiodo-5-amino-N-alkylisophthalamide acid and 2,4,6-triiodo-5-aminoisophthalamide compound
AU707177B2 (en) Process for the preparation of a halosubstituted aromatic acid
JPH07242414A (en) Production of alkali metal iodic salt
JPH09235270A (en) Production of n-substituted dicarboxylic acid imide
JPH0748341A (en) Production of 2-chloro-4-methylsulfonylbenzoic acid
JP3938222B2 (en) Process for producing diiodomethyl-p-tolylsulfone
JP5637729B2 (en) Method for producing iodine monochloride aqueous solution
US5696301A (en) Process for preparing protocatechualdehyde
JP4747660B2 (en) Method for producing dithiosulfate compound
JP2993983B2 (en) Separation method of barium from water-soluble strontium salt
JP3394980B2 (en) Method for producing free hydroxylamine aqueous solution
JP2590227B2 (en) Method for producing diiodomethyl-p-tolylsulfone
JP3167354B2 (en) Method for producing p-toluenesulfonylacetic acid
JP4121497B2 (en) Method for producing hydrazodicarbonamide using biuret as starting material
JP2003104951A (en) Method for producing perfluoroaklylsulfonyl halide
JPH111467A (en) Production of diiodomethyl-p-toluylsulfone
JP3788482B2 (en) Method for producing alkylbenzoyl chloride
JP2613518B2 (en) Method for producing 4,4-dimethoxy-2-butanone
KR20010046567A (en) Process for preparation of the n,n-dicyclohexyl-2-benzothiazole sulfenamide
JPH11302220A (en) Production of chloromethylphenylacetic acid
JPH04145054A (en) 3-halo-2-hydropropyltrialkylammonium halide aqueous solution
JPH1171320A (en) Production of 2,2,6,6-tetrachlorocyclohexanone
JP4338398B2 (en) Method for producing 2-cyanoimino-1,3-thiazolidine
JPH05255238A (en) Production of cysteamine compounds
JPH0344383A (en) Production of 5-trifluoromethyl-2-halomethylbenzothiazoles