JPH09234489A - Restoration method for polluted ground water and soil - Google Patents
Restoration method for polluted ground water and soilInfo
- Publication number
- JPH09234489A JPH09234489A JP8043368A JP4336896A JPH09234489A JP H09234489 A JPH09234489 A JP H09234489A JP 8043368 A JP8043368 A JP 8043368A JP 4336896 A JP4336896 A JP 4336896A JP H09234489 A JPH09234489 A JP H09234489A
- Authority
- JP
- Japan
- Prior art keywords
- groundwater
- layer
- soil
- underground
- pollutants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003673 groundwater Substances 0.000 title claims abstract description 65
- 239000002689 soil Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims description 19
- 241000894006 Bacteria Species 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 10
- 235000015097 nutrients Nutrition 0.000 claims abstract description 10
- 239000001301 oxygen Substances 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 9
- 239000003344 environmental pollutant Substances 0.000 claims description 46
- 231100000719 pollutant Toxicity 0.000 claims description 46
- 229920006395 saturated elastomer Polymers 0.000 claims description 45
- 230000000593 degrading effect Effects 0.000 claims description 8
- 238000011109 contamination Methods 0.000 claims description 3
- 239000000356 contaminant Substances 0.000 abstract description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 14
- 238000000354 decomposition reaction Methods 0.000 abstract description 5
- 238000000746 purification Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 description 8
- 238000005086 pumping Methods 0.000 description 7
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 150000004045 organic chlorine compounds Chemical class 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 241001148470 aerobic bacillus Species 0.000 description 4
- 239000004927 clay Substances 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 108010074633 Mixed Function Oxygenases Proteins 0.000 description 2
- 102000008109 Mixed Function Oxygenases Human genes 0.000 description 2
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229950011008 tetrachloroethylene Drugs 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 241001468161 Acetobacterium Species 0.000 description 1
- 108010061397 Ammonia monooxygenase Proteins 0.000 description 1
- 241000193464 Clostridium sp. Species 0.000 description 1
- 241000203353 Methanococcus Species 0.000 description 1
- 241001302042 Methanothermobacter thermautotrophicus Species 0.000 description 1
- 241000294108 Methanothrix sp. Species 0.000 description 1
- 241000193459 Moorella thermoacetica Species 0.000 description 1
- 241000187488 Mycobacterium sp. Species 0.000 description 1
- 241000605121 Nitrosomonas europaea Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000589755 Pseudomonas mendocina Species 0.000 description 1
- 241001041887 Pseudomonas putida F1 Species 0.000 description 1
- 108010075474 Toluene dioxygenase Proteins 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 108010009977 methane monooxygenase Proteins 0.000 description 1
- 230000000696 methanogenic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- -1 phosphates Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、トリクロロエチレ
ン、テトラクロロエチレンなどの有機塩素化合物や廃油
などの汚染物質によって汚染された土壌、地下水を修
復、浄化する技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for repairing and purifying soil and groundwater contaminated with organic chlorine compounds such as trichloroethylene and tetrachloroethylene and pollutants such as waste oil.
【0002】[0002]
【従来の技術】このような汚染土壌、地下水から汚染物
質を取り除く浄化方法として、最近、バイオテクロノジ
ーを利用したバイオレメディエーション(原位置バイオ
レメディエーションとも呼ばれる。)が注目を集めてい
る。バイオレメディエーションは、土壌中に生息する微
生物の機能を利用して汚染物質を分解し無害化する技術
であり、土壌生態系が本来有している浄化機能を人為的
に強化し利用するものである。2. Description of the Related Art Recently, bioremediation (also called in-situ bioremediation) utilizing biotechnology has been attracting attention as a purification method for removing pollutants from such contaminated soil and groundwater. Bioremediation is a technology that decomposes and detoxifies pollutants by utilizing the function of microorganisms that live in the soil, and artificially enhances and uses the purification function originally possessed by the soil ecosystem. .
【0003】図3は、従来のバイオレメディエーション
技術による浄化方法の一例を模式的に示すものである。
図中符号2は飽和層であり地下水が流れている。この方
法では、有機塩素化合物や油分などの汚染物質で汚染さ
れた地下汚染箇所1の近傍の飽和層2に二本以上の井戸
3,4を掘削する。地下水流5の下流側に掘削された揚
水井戸4から揚水した地下水の少なくとも一部を基質添
加手段6に導き、分解菌の生育基質であるメタンやフェ
ノール、空気(酸素)、および栄養源等を加え、これを
上流側に掘削された注入井戸3へ注入し、循環する。こ
れにより飽和層2等に存在する汚染物質分解菌の活性を
高め、汚染物質の分解、除去を効率よく行うことがで
き、コストパフォーマンスの高い修復方法とされてい
る。FIG. 3 schematically shows an example of a purification method by a conventional bioremediation technique.
Reference numeral 2 in the figure is a saturated layer in which groundwater flows. In this method, two or more wells 3 and 4 are excavated in the saturated layer 2 in the vicinity of the underground contaminated site 1 contaminated with pollutants such as organic chlorine compounds and oil. At least a part of the groundwater pumped from the pumping well 4 drilled on the downstream side of the groundwater flow 5 is guided to the substrate adding means 6 to supply methane, phenol, air (oxygen), and nutrient sources which are growth substrates for the degrading bacteria. In addition, this is injected into the injection well 3 drilled on the upstream side and circulated. As a result, the activity of the pollutant-degrading bacteria present in the saturated layer 2 and the like can be enhanced, and the pollutant can be efficiently decomposed and removed, and the restoration method has high cost performance.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このバ
イオレメディエーションによる浄化方法にあっては、ト
リクロロエチレンなどの有機塩素化合物の汚染物質は原
液状で存在していたり、粘土質や土壌中の有機物に吸着
されているものも多く、徐々にこれらが地下水中に離脱
してくるため、除去に比較的長時間を要する欠点があ
る。また、地下水が飽和の状態で存在する飽和層での汚
染物質の分解、除去は可能であるが、地下水が不飽和で
空気等が存在する間隙がある不飽和層での分解、除去は
困難であるなどの問題を有している。However, in this purification method by bioremediation, pollutants of organic chlorine compounds such as trichlorethylene are present in a liquid state or are adsorbed by clay and organic matter in soil. Many of them are removed, and these are gradually released into the groundwater, which has the disadvantage that it takes a relatively long time to remove them. In addition, although it is possible to decompose and remove pollutants in the saturated layer where groundwater is saturated, it is difficult to decompose and remove in the unsaturated layer where the groundwater is unsaturated and there is a gap where air etc. exist. There is such a problem.
【0005】本発明の課題は、バイオレメディエーショ
ンによる浄化、修復を行う際、短時間で分解、除去が可
能であり、かつ不飽和層の汚染物質の分解除去も可能と
する方法の提供にある。An object of the present invention is to provide a method capable of decomposing and removing in a short time when purifying and repairing by bioremediation and also capable of decomposing and removing contaminants in an unsaturated layer.
【0006】[0006]
【課題を解決するための手段】前記課題を解決するため
に請求項1に係る発明は、汚染物質で汚染された地下汚
染箇所の近傍の飽和層に複数の井戸を掘削するととも
に、該地下汚染箇所の近傍に2以上の水平電極を上下方
向に離間して埋設し、各水平電極間に電圧を加えつつ、
地下水流下流側に位置する井戸から地下水を揚水し、該
地下水の少なくとも一部に酸素、土壌中の汚染物質分解
菌の栄養源、および基質のうち少なくとも一種を添加し
た後、前記地下汚染箇所の地下水流上流側に位置する井
戸から飽和層に注入することを特徴とする汚染地下水、
土壌の修復方法である。請求項2に係る発明は、前記地
下汚染箇所と前記水平電極との間にドレインを設けるこ
とを特徴とする請求項1記載の汚染地下水、土壌の修復
方法である。請求項3に係る発明は、土壌中の飽和層と
不飽和層との境界の上部と下部にそれぞれ水平電極を埋
設し、かつ地下汚染箇所と水平電極との間の不飽和層に
ドレインを設けることを特徴とする請求項2記載の汚染
地下水、土壌の修復方法である。請求項4に係る発明
は、土壌中の飽和層と不透水層との境界の上部と下部に
それぞれ水平電極を埋設し、かつ地下汚染箇所と水平電
極との間の不透水層にドレインを設けることを特徴とす
る請求項2記載の汚染地下水、土壌の修復方法である。In order to solve the above-mentioned problems, the invention according to claim 1 excavates a plurality of wells in a saturated layer in the vicinity of an underground polluted site contaminated with pollutants, and the underground pollution. By embedding two or more horizontal electrodes in the vicinity of the place while vertically separating them, and applying a voltage between each horizontal electrode,
Groundwater is pumped from a well located on the downstream side of the groundwater flow, and after adding at least one of oxygen, a nutrient source of pollutant-decomposing bacteria in soil, and a substrate to at least a part of the groundwater, Contaminated groundwater, characterized by injecting into the saturated layer from a well located upstream of the groundwater flow,
It is a soil restoration method. The invention according to claim 2 is the method for repairing contaminated groundwater and soil according to claim 1, characterized in that a drain is provided between the underground pollution location and the horizontal electrode. In the invention according to claim 3, horizontal electrodes are buried in the upper part and the lower part of the boundary between the saturated layer and the unsaturated layer in the soil, respectively, and the drain is provided in the unsaturated layer between the underground pollution point and the horizontal electrode. The method for repairing contaminated groundwater and soil according to claim 2. In the invention according to claim 4, horizontal electrodes are buried in the upper part and the lower part of the boundary between the saturated layer and the impermeable layer in the soil, respectively, and the drain is provided in the impermeable layer between the underground pollution point and the horizontal electrode. The method for repairing contaminated groundwater and soil according to claim 2.
【0007】[0007]
【発明の実施の形態】以下、本発明を詳しく説明する。
図1は、本発明による汚染地下水、土壌の修復方法の一
例を示すものである。この例では、有機塩素化合物や廃
油などの汚染物質で汚染された地下汚染箇所1の近傍の
飽和層12に複数の井戸21,22を掘削し、地下汚染
箇所1の近傍に4つの水平電極24,25,26,27
を互いに離間させて層状に埋設するとともに、不飽和層
11中の地下汚染箇所1と水平電極24との間および不
透水層13中の地下汚染箇所1と水平電極27との間に
それぞれドレイン28,29を設け、かつ地下汚染箇所
1の地下水流5下流側の井戸22から揚水した地下水を
基質添加手段23へ導入した後、地下汚染箇所1の地下
水流5上流側の井戸21から飽和層12へ注水し、循環
させるように概略構成されている。BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below.
FIG. 1 shows an example of a method for repairing contaminated groundwater and soil according to the present invention. In this example, a plurality of wells 21 and 22 are drilled in the saturated layer 12 near the underground pollution point 1 contaminated with pollutants such as organic chlorine compounds and waste oil, and four horizontal electrodes 24 are provided near the underground pollution point 1. , 25, 26, 27
Are buried in layers separated from each other, and the drain 28 is provided between the underground pollution point 1 in the unsaturated layer 11 and the horizontal electrode 24 and between the underground pollution point 1 in the impermeable layer 13 and the horizontal electrode 27, respectively. , 29 are provided and groundwater pumped from the well 22 on the downstream side of the groundwater flow 5 at the underground pollution point 1 is introduced into the substrate adding means 23, and then the well 21 on the upstream side of the groundwater flow 5 at the underground pollution point 1 to the saturated layer 12 It is roughly configured to inject water into and circulate it.
【0008】この地下汚染箇所1の地層は、地下水流5
に示すように地下水が流れている飽和層12と、その上
層の不飽和層11と、飽和層12の下にある不透水層1
3とからなっている。汚染物質は不飽和層11や飽和層
12に多く、特にそれぞれの地層の境界部分に多く存在
しており、離脱し難い状態で存在している。トリクロロ
エチレンなどの有機塩素化合物の汚染物質は、地層の境
界部分に原液状で蓄積していたり、粘土質や土壌中の有
機物に吸着されており、このため飽和層12では、汚染
物質が徐々に地下水中に離脱し、この地下水中には汚染
物質が含有されている。[0008] The stratum at this underground pollution point 1 is composed of a groundwater flow 5
The saturated layer 12 in which groundwater flows, the unsaturated layer 11 above it, and the impermeable layer 1 below the saturated layer 12
It consists of three. A large amount of pollutants is present in the unsaturated layer 11 and the saturated layer 12, especially in the boundary portion of each stratum, and is present in a state where it is difficult to separate. Contaminants of organochlorine compounds such as trichlorethylene are accumulated in the liquid state at the boundary of the stratum, or are adsorbed by clay and organic matter in the soil. Therefore, in the saturated layer 12, the pollutants are gradually added to groundwater. The groundwater contained pollutants.
【0009】前記井戸21,22は、地下汚染箇所1の
近傍の飽和層12に十分達する深さに掘削されている。
井戸21,22は2本以上設けられ、少なくとも地下汚
染箇所1の地下水流5上流側と地下水流5下流側に設け
られている。地下汚染箇所1の地下水流5下流側に設け
られた井戸22には揚水パイプが底の近くまで挿入され
ており、ポンプで地下水を揚水できるようになってい
る。また地下汚染箇所1の地下水流5上流側に設けられ
た井戸21は、ここから飽和層12に注水できるように
構成されており、例えば透水性パイプが挿入されてい
る。井戸21,22は、地下汚染箇所1よりも地下水流
5上流側に少なくとも1本の注水用の井戸21が設けら
れ、かつこれよりも下流側に揚水用の井戸22が設けら
れていればよく、井戸の本数や設置位置は適宜変更可能
である。The wells 21 and 22 are excavated to a depth enough to reach the saturated layer 12 near the underground pollution site 1.
Two or more wells 21 and 22 are provided, and are provided at least on the upstream side of the groundwater flow 5 and on the downstream side of the groundwater flow 5 in the underground pollution site 1. A pumping pipe is inserted into the well 22 provided on the downstream side of the groundwater flow 5 at the underground pollution point 1 up to near the bottom so that the pump can pump the groundwater. Further, the well 21 provided upstream of the groundwater flow 5 in the underground pollution place 1 is configured so that water can be poured into the saturated layer 12 from here, and a water-permeable pipe is inserted, for example. The wells 21 and 22 may be provided with at least one well 21 for water injection on the upstream side of the groundwater flow 5 with respect to the underground pollution point 1 and a well 22 for pumping water on the downstream side. The number of wells and the installation positions can be changed as appropriate.
【0010】前記水平電極24,25,26,27は、
導電体を水平方向に伸びるように埋設してなるもので、
材質や形状は特に限定されない。例えば図2に示すよう
に、地中に幅30cm、長さ2〜5mの水平な溝状の穴
を堀り、これにグラファイト等からなる電極板31を挿
入して構成することができる。また電極板31の周囲の
隙間に木炭、炭素粒32などを詰めてもよい。あるいは
不導体からなる本体の外側に金属線や金属網を取り付け
た電極体を用いてもよい。水平電極24,25,26,
27は2つ以上設けられ、これらは上下方向に離間して
層状に設けられる。特に、不飽和層11と飽和層12と
の境界付近は汚染物質が蓄積しやすいので、この境界近
傍の上部および下部にそれぞれ水平電極24,25を設
けるのが好ましい。また飽和層12と不透水層13との
境界付近にも汚染物資が蓄積し易いので、この境界近傍
の上部および下部にもそれぞれ水平電極26,27を設
けるのが好ましい。The horizontal electrodes 24, 25, 26 and 27 are
A conductor is embedded so as to extend in the horizontal direction.
The material and shape are not particularly limited. For example, as shown in FIG. 2, a horizontal groove-like hole having a width of 30 cm and a length of 2 to 5 m is dug in the ground, and an electrode plate 31 made of graphite or the like may be inserted into the hole. Further, charcoal, carbon particles 32, etc. may be filled in the gap around the electrode plate 31. Alternatively, an electrode body in which a metal wire or a metal net is attached to the outside of the body made of a non-conductor may be used. Horizontal electrodes 24, 25, 26,
Two or more 27 are provided, and these are provided in layers in the vertical direction with a space therebetween. In particular, since pollutants are likely to accumulate near the boundary between the unsaturated layer 11 and the saturated layer 12, it is preferable to provide horizontal electrodes 24 and 25 at the upper part and the lower part near the boundary, respectively. Further, since pollutants easily accumulate near the boundary between the saturated layer 12 and the impermeable layer 13, it is preferable to provide the horizontal electrodes 26 and 27 at the upper and lower parts of the boundary, respectively.
【0011】これらの水平電極24,25,26,27
には、直流電流が加えられるが、陽極(+)と陰極
(−)とを交互に配置させることが好ましい。この例で
は、不飽和層11と飽和層12との境界近傍の上部の水
平電極24が陽極(+)、下部の水平電極25が陰極
(−)、飽和層12と不透水層13との境界近傍の上部
の水平電極26が陽極(+)、下部の水平電極27が陰
極(−)となるように電流が加えられている。各層の境
界を挟む2つの水平電極24,25(26,27)間に
加える電圧は、汚染物質の離脱、移動を促進させること
ができ、しかもロスが生じない範囲とされ、地中の導電
性に応じて数V〜数百Vの範囲で適宜変更してよい。ま
た、水平電極24,25,26,27の数および設置位
置は、注水用の井戸21よりも地下水流5下流側の飽和
層12中に、汚染物質を効率よく離脱、移動できるよう
に構成するのが好ましく、地下の汚染状態や地下水流5
に応じて適宜設定してよい。また水平電極24,25,
26,27の正負を随時切り替えてもよい。These horizontal electrodes 24, 25, 26, 27
A direct current is applied to, but it is preferable that the anodes (+) and the cathodes (−) are alternately arranged. In this example, the upper horizontal electrode 24 near the boundary between the unsaturated layer 11 and the saturated layer 12 is the anode (+), the lower horizontal electrode 25 is the cathode (−), and the boundary between the saturated layer 12 and the impermeable layer 13 is the same. An electric current is applied so that the upper horizontal electrode 26 in the vicinity and the lower horizontal electrode 27 become the anode (+) and the cathode (−), respectively. The voltage applied between the two horizontal electrodes 24, 25 (26, 27) sandwiching the boundary of each layer is within the range where the desorption and movement of the pollutants can be promoted and the loss does not occur. Depending on the situation, it may be appropriately changed within the range of several V to several hundred V. Further, the number and the installation positions of the horizontal electrodes 24, 25, 26, 27 are configured so that the pollutants can be efficiently separated and moved into the saturated layer 12 on the downstream side of the groundwater flow 5 with respect to the water injection well 21. It is preferable that the underground pollution state and groundwater flow 5
It may be appropriately set according to The horizontal electrodes 24, 25,
The positive and negative of 26 and 27 may be switched at any time.
【0012】前記ドレイン28,29は、汚染物質を吸
着できる吸着体からなっている。ドレイン28,29は
地下汚染箇所1から飽和層12以外の部分へ離脱した汚
染物質を効率よく吸着できるように配するのが好まし
く、この例では不飽和層11中の地下汚染箇所1と水平
電極24との間、および不透水層13中の地下汚染箇所
1と水平電極27との間に設けられている。汚染物質を
吸着した吸着体は、適宜取り出して処理し、好ましくは
再利用できるようになっている。ドレイン28,29
は、離脱した汚染物質を集めて処理できるように構成さ
れたものであればよく、吸着体に限らず、例えば揚水用
の井戸を用い汚染物質を水とともに地上に揚水するよう
に構成してもよい。ドレインの数や設置位置は適宜変更
可能であり、また飽和層にドレインを設けても構わな
い。The drains 28 and 29 are made of an adsorbent capable of adsorbing contaminants. It is preferable that the drains 28 and 29 are arranged so as to efficiently adsorb pollutants that have desorbed from the underground pollution point 1 to a portion other than the saturated layer 12. In this example, the underground pollution point 1 and the horizontal electrode in the unsaturated layer 11 are arranged. 24, and between the underground contamination point 1 in the impermeable layer 13 and the horizontal electrode 27. The adsorbent having adsorbed the contaminants can be appropriately taken out, treated, and preferably reused. Drains 28, 29
Is not limited to the adsorbent and may be configured to pump the pollutants to the ground together with water, for example, by using a well for pumping water, as long as it is configured to collect and treat the separated pollutants. Good. The number and installation position of the drains can be changed as appropriate, and the drains may be provided in the saturated layer.
【0013】前記基質添加手段23は、揚水用の井戸2
2から揚水された地下水が、注水用の井戸21から飽和
層12へ注水される前に、この地下水の少なくとも一部
に対して、土壌中に生息している汚染物質分解菌の生育
基質であるメタンやフェノール等、空気(酸素)、およ
び栄養源(窒素源、リン酸塩などの無機塩類など)のう
ち少なくとも1種を添加するものであり、地上に設けら
れている。ここで地下水に添加される物質は、処理しよ
うとする汚染物質の種類および土壌中に存在する汚染物
質分解菌の種類に応じて、この汚染物質を分解できる汚
染物質分解菌の活性を高めるのに好適な物質が選択され
る。The substrate adding means 23 is a well 2 for pumping water.
Before the groundwater pumped from 2 is poured into the saturated layer 12 from the well 21 for water injection, it is a growth substrate for pollutant-degrading bacteria inhabiting the soil for at least a part of this groundwater. At least one of methane, phenol, etc., air (oxygen), and nutrient sources (nitrogen source, inorganic salts such as phosphates, etc.) is added, and it is provided on the ground. The substance added to the groundwater here is used to enhance the activity of the pollutant-degrading bacteria that can decompose this pollutant, depending on the type of pollutant to be treated and the type of pollutant-degrading bacteria present in the soil. A suitable substance is selected.
【0014】例えば、テトラクロロエチレンやトリクロ
ロエチレンなどの有機塩素化合物は、土壌中あるいは嫌
気性汚泥などに生息している嫌気性菌、例えば、Fathep
ureら(Fathepure,B.Z.,Nengu,J.P. and Boyd,S.A.: Ap
pl. Environ. Microbiol.,53,2671-2674(1987);Fathep
ure,B.Z. and Boyd,S.A.: Appl. Environ. Microbiol.,
54,2976-2980(1988))により報告された嫌気性細菌(Me
thanosarucina sp.,Methanosarucina metai, Methanosa
rucina acetivorans, Methanothrix sp., Dechlorinati
ng bacterium DCB-1, Methanosarucina sp.DCM)、Bela
yら(Belay,N.and Daniels,L.:Appl. Environ. Microbi
ol.,53,1604-1609(1987))により報告されたメタン生成
細菌(Methanococcus thermolithotrophics, M. thermo
deltae, Methanobacterium thermoautotrophicum)、Eg
liら(Egli,C.E., Tschan,T.,Scholtz,R.S., Cook,A.M.
and Leisinger,T.: Appl. Environ. Microbiol.,54,28
19-2824(1988))により報告された硫酸還元細菌など(D
esulfobacterium autotrophicum, Acetobacterium wood
ii, Clostridium thermoaceticum)、Galliら(Galli,
R. and McCaryt,P.L.:Appl. Environ. Microbiol.,55,8
37-844(1989))により報告された嫌気性細菌(Clostrid
ium sp.TCA2B株)、矢口ら(矢口久美子、渡辺学、平田
一郎、伊東武、浜田昭:水質汚濁研究,14,479-486(199
1))により報告されたグラム陰性テトラクロロエチレン
分解細菌T株などの細菌によって分解することができ
る。したがって、地下汚染箇所1の近傍の土壌中にこれ
らの嫌気性菌が生息している場合には、基質添加手段2
3において、地下水に酸素を加えずに基質および栄養源
を添加するのが好ましく、これにより嫌気性菌の活性を
高めて汚染物質の分解除去を促進することができる。For example, organochlorine compounds such as tetrachloroethylene and trichlorethylene are anaerobic bacteria that inhabit soil or anaerobic sludge, for example, Fathep.
ure et al (Fathepure, BZ, Nengu, JP and Boyd, SA: Ap
Pl. Environ. Microbiol., 53,2671-2674 (1987); Fathep
ure, BZ and Boyd, SA: Appl. Environ. Microbiol.,
54,2976-2980 (1988)) reported anaerobic bacteria (Me
thanosarucina sp., Methanosarucina metai, Methanosa
rucina acetivorans, Methanothrix sp., Dechlorinati
ng bacterium DCB-1, Methanosarucina sp.DCM), Bela
y et al. (Belay, N. and Daniels, L.:Appl. Environ. Microbi
ol., 53, 1604-1609 (1987)), a methanogenic bacterium (Methanococcus thermolithotrophics, M. thermo)
deltae, Methanobacterium thermoautotrophicum), Eg
li et al. (Egli, CE, Tschan, T., Scholtz, RS, Cook, AM
and Leisinger, T .: Appl. Environ. Microbiol., 54,28
19-2824 (1988)) and other sulfate-reducing bacteria (D
esulfobacterium autotrophicum, Acetobacterium wood
ii, Clostridium thermoaceticum), Galli et al. (Galli,
R. and McCaryt, PL: Appl. Environ. Microbiol., 55,8
37-844 (1989)) reported anaerobic bacteria (Clostrid
ium sp.TCA2B strain), Yaguchi et al. (Kumiko Yaguchi, Manabu Watanabe, Ichiro Hirata, Takeshi Ito, Akira Hamada: Water Pollution Research, 14,479-486 (199)
It can be degraded by bacteria such as the Gram-negative tetrachloroethylene-degrading bacterium T strain reported in 1)). Therefore, when these anaerobic bacteria inhabit the soil near the underground contamination point 1, the substrate addition means 2
In 3, it is preferable to add a substrate and a nutrient source to groundwater without adding oxygen, which can enhance the activity of anaerobic bacteria and accelerate the decomposition and removal of pollutants.
【0015】また、トリクロロエチレンは、土壌中や好
気的汚泥中などに生息している好気性菌、例えば、Fox
ら(Fox,B.G. et al.:Biochemistry, 26, 6419-6427(19
90))によって報告された各種微生物(Pseudomonas men
docina, P. putida F1, Nitrosomonas europaea, Mycob
acterium sp.など)によって分解することができる。し
たがって、地下汚染箇所1の近傍の土壌中にこれらの好
気性菌が生息している場合には、基質添加手段23にお
いて、地下水に酸素、基質、および栄養源を添加するの
が好ましく、これにより好気性菌の活性を高めて汚染物
質の分解除去を促進することができる。これら各種の好
気性菌においてトリクロロエチレンの分解に直接関与す
る酵素の活性誘導基質を循環する地下水に添加してもよ
く、これにより土壌中の各好気性菌の分解能を高めるこ
とができる。このような活性誘導基質としては、好気性
菌が有する分解酵素がメタンモノオキシゲナーゼである
場合にはメタン、分解酵素がトルエンモノオキシゲナー
ゼまたはトルエンジオキシゲナーゼである場合にはトル
エン、フェノール類、分解酵素がアンモニアモノオキシ
ゲナーゼである場合にはアンモニア、分解酵素がプロパ
ンモノオキシゲナーゼである場合にはプロパンがそれぞ
れ用いられる。Trichlorethylene is an aerobic bacterium that lives in soil or aerobic sludge, for example, Fox.
Et al. (Fox, BG et al .: Biochemistry, 26, 6419-6427 (19
90)) reported by various microorganisms (Pseudomonas men
docina, P. putida F1, Nitrosomonas europaea, Mycob
acterium sp. etc.) can be decomposed. Therefore, when these aerobic bacteria inhabit the soil in the vicinity of the underground pollution site 1, it is preferable to add oxygen, a substrate, and a nutrient source to the groundwater in the substrate adding means 23. The activity of aerobic bacteria can be increased to accelerate the decomposition and removal of pollutants. In these various aerobic bacteria, an activity-inducing substrate of an enzyme directly involved in the decomposition of trichlorethylene may be added to the circulating groundwater, which can enhance the ability of each aerobic bacteria in the soil to decompose. Such activity-inducing substrates include methane when the degrading enzyme possessed by the aerobic bacterium is methane monooxygenase, and toluene, phenols and degrading enzymes when the degrading enzyme is toluene monooxygenase or toluene dioxygenase. Ammonia is used in the case of ammonia monooxygenase, and propane is used in the case of the decomposing enzyme being propane monooxygenase.
【0016】また汚染物質の処理に関与する汚染物質分
解菌を循環する地下水に添加してもよく、そうすれば飽
和層12に存在する汚染物質分解菌の数が増加して汚染
物質の分解、除去がさらに促進される。さらに、必要に
応じて循環する地下水に界面活性剤を少量添加すること
により、地中の粘土などに強固に吸着している汚染物質
を地下水中に極めて効果的に離脱させることができる。In addition, pollutant-decomposing bacteria involved in the treatment of pollutants may be added to the circulating groundwater, whereby the number of pollutant-decomposing bacteria existing in the saturated layer 12 increases and the pollutant is decomposed, Removal is further promoted. Furthermore, by adding a small amount of a surfactant to the circulating groundwater as necessary, the contaminants strongly adsorbed to the clay in the ground can be very effectively released into the groundwater.
【0017】地下汚染箇所1の周囲に、このような設備
構成を構築してバイオレメディエーションにより地下汚
染箇所1の修復、すなわち汚染物質の分解除去を行うに
は、水平電極24,25間、および水平電極26,27
間に電圧を加えつつ、揚水用の井戸22から地下水を揚
水し、これを基質添加手段23へ導入した後、再び注水
用の井戸21から飽和層12へ注水して、地下水を循環
させる。In order to repair the underground pollution point 1 by bioremediation, that is, to decompose and remove pollutants, by constructing such an equipment structure around the underground pollution point 1, between the horizontal electrodes 24 and 25, and horizontally. Electrodes 26, 27
Groundwater is pumped from the well 22 for pumping while applying a voltage in between, and after introducing this into the substrate adding means 23, water is again poured from the well 21 for water injection into the saturated layer 12 to circulate groundwater.
【0018】そして、基質添加手段23で地下水に酸
素、基質、栄養源等が添加され、これらが飽和層12に
導入されることにより、土壌中に生息する汚染物質分解
菌の活性が高められ、汚染物質が効率よく分解、除去さ
れる。また水平電極24,25,26,27に電圧を加
えることにより、粘土質や土壌中の有機物に吸着されて
いた汚染物質の離脱、移動が促進されるので、汚染物質
の分解除去を短時間で行うことができる。また汚染物質
の離脱が困難であった不飽和層11や不透水層13中に
存在する汚染物質も分解、除去することが可能となる。Then, the substrate adding means 23 adds oxygen, a substrate, a nutrient source, etc. to the groundwater and introduces them into the saturated layer 12 to enhance the activity of the pollutant degrading bacteria inhabiting the soil, Pollutants are efficiently decomposed and removed. In addition, by applying a voltage to the horizontal electrodes 24, 25, 26, 27, desorption and removal of pollutants adsorbed to clay and organic matter in the soil are promoted, so that the pollutants can be decomposed and removed in a short time. It can be carried out. Further, it becomes possible to decompose and remove the contaminants existing in the unsaturated layer 11 and the impermeable layer 13, which were difficult to remove the contaminants.
【0019】また不飽和層11と飽和層12の境界付近
は汚染物質が蓄積し易いので、この境界の上部および下
部にそれぞれ水平電極24,25を設けることにより、
汚染物質の離脱を効果的に行うことができる。同様に飽
和層12と不透水層13の境界付近も汚染物質が蓄積し
易いので、この境界の上部および下部にそれぞれ水平電
極26,27を設けることにより、汚染物質の離脱を効
果的に行うことができる。そしてこれらの水平電極2
4,25,26,27に電圧を加えることにより飽和層
12中へ離脱しへ移動した汚染物質は、汚染物質分解菌
により分解、除去される。また不飽和層11および不透
水層13中へ離脱、移動した汚染物質は、ドレイン2
8,29によって吸着され、適宜処理される。Further, since pollutants are likely to accumulate near the boundary between the unsaturated layer 11 and the saturated layer 12, horizontal electrodes 24 and 25 are provided at the upper and lower portions of this boundary, respectively.
It is possible to effectively remove the pollutants. Similarly, contaminants are likely to accumulate near the boundary between the saturated layer 12 and the impermeable layer 13. Therefore, by disposing the horizontal electrodes 26 and 27 above and below this boundary, respectively, the contaminants can be effectively removed. You can And these horizontal electrodes 2
The pollutants that have desorbed into the saturated layer 12 and moved to by applying a voltage to 4, 25, 26, and 27 are decomposed and removed by the pollutant-decomposing bacteria. In addition, the contaminants that have desorbed and moved into the unsaturated layer 11 and the impermeable layer 13 are drained.
It is adsorbed by 8, 29 and appropriately processed.
【0020】[0020]
【発明の効果】以上説明したように、請求項1に係る発
明によれば、汚染物質で汚染された地下汚染箇所の近傍
の飽和層に複数の井戸を掘削して、地下水流下流側に位
置する井戸から地下水を揚水し、該地下水の少なくとも
一部に酸素、土壌中の汚染物質分解菌の栄養源、および
基質のうち少なくとも一種を添加した後、前記地下汚染
箇所の地下水流上流側に位置する井戸から飽和層に注入
することにより、飽和層の地下水を循環させ、この循環
する地下水によって飽和層に酸素や、土壌中の汚染物質
分解菌の栄養源、あるいは基質を導入するので、土壌中
に生息する汚染物質分解菌の活性が高められ、同時に、
地下汚染箇所の近傍に2以上の水平電極を上下方向に離
間して埋設し、各水平電極間に電圧を加えることによ
り、汚染物質の離脱、移動を促進することができるの
で、汚染地下水、土壌の浄化、修復を短時間で行うこと
ができ、不飽和層中の汚染物質の除去も可能である。As described above, according to the invention of claim 1, a plurality of wells are excavated in the saturated layer in the vicinity of the underground polluted portion contaminated with pollutants, and the wells are located on the downstream side of the groundwater flow. Pumping groundwater from the well, adding oxygen, at least one of a nutrient source for pollutant-degrading bacteria in the soil, and a substrate to at least a part of the groundwater, and then arranging the groundwater upstream of the underground pollution point The groundwater in the saturated layer is circulated by injecting it into the saturated layer from the well, and oxygen and the nutrient source of pollutant degrading bacteria in the soil or the substrate are introduced into the saturated layer by this circulating groundwater. The activity of pollutant degrading bacteria inhabiting
By embedding two or more horizontal electrodes in the vicinity of the underground pollutant in the vertical direction with a space between them, and applying a voltage between each horizontal electrode, it is possible to promote the removal and movement of pollutants. It is possible to purify and restore water in a short time, and it is also possible to remove contaminants in the unsaturated layer.
【0021】請求項2に係る発明によれば、地下汚染箇
所と前記水平電極との間にドレインを設けることによ
り、水平電極に電圧を加えることによって地下汚染箇所
から脱離した汚染物質をドレインで効率良く集めて処理
することができる。請求項3に係る発明によれば、土壌
中の飽和層と不飽和層との境界の上部と下部にそれぞれ
水平電極を埋設し、かつ地下汚染箇所と水平電極との間
の不飽和層にドレインを設けることにより、飽和層と不
飽和層との境界付近に蓄積された汚染物質を効果的に離
脱させることができ、かつ地下汚染箇所から不飽和層へ
離脱、移動した汚染物質もドレインで集めて処理するこ
とができるので、汚染地下水、土壌の浄化、修復を効果
的に行うことができる。請求項4に係る発明によれば、
土壌中の飽和層と不透水層との境界の上部と下部にそれ
ぞれ水平電極を埋設し、かつ地下汚染箇所と水平電極と
の間の不透水層にドレインを設けることにより、飽和層
と不透水層との境界付近に蓄積された汚染物質を効果的
に離脱させることができ、かつ地下汚染箇所から不透水
層へ離脱、移動した汚染物質もドレインで集めて処理す
ることができるので、汚染地下水、土壌の浄化、修復を
効果的に行うことができる。According to the second aspect of the present invention, the drain is provided between the underground pollutant and the horizontal electrode so that the pollutant desorbed from the underground pollutant by applying a voltage to the horizontal electrode is drained. It can be efficiently collected and processed. According to the invention of claim 3, horizontal electrodes are buried in the upper part and the lower part of the boundary between the saturated layer and the unsaturated layer in the soil, respectively, and the drain is formed in the unsaturated layer between the underground pollution point and the horizontal electrode. By setting up, the pollutants accumulated near the boundary between the saturated layer and the unsaturated layer can be effectively released, and the contaminants that have desorbed and moved from the underground pollution location to the unsaturated layer are also collected at the drain. Therefore, it is possible to effectively purify and restore contaminated groundwater and soil. According to the invention of claim 4,
By burying horizontal electrodes above and below the boundary between the saturated layer and the impermeable layer in the soil, and by providing drains in the impermeable layer between the underground pollution point and the horizontal electrode, the saturated layer and the impermeable layer are formed. The pollutants accumulated near the boundary with the layer can be effectively released, and the pollutants that have separated from the underground pollution location to the impermeable layer and moved can also be collected and treated at the drain. It can effectively purify and repair soil.
【図1】 本発明による汚染地下水、土壌の修復方法の
一例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an example of a method for repairing contaminated groundwater and soil according to the present invention.
【図2】 水平電極の例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a horizontal electrode.
【図3】 従来の汚染地下水、土壌の修復方法の一例を
示す概略構成図である。FIG. 3 is a schematic configuration diagram showing an example of a conventional method for repairing contaminated groundwater and soil.
1…地下汚染箇所、5…地下水流、11…不飽和層、1
2…飽和層、13…不透水層、21,22…井戸、2
4,25,26,27…水平電極、28,29…ドレイ
ン。1 ... Underground pollution location, 5 ... Groundwater flow, 11 ... Unsaturated layer, 1
2 ... Saturated layer, 13 ... Impermeable layer, 21, 22 ... Well, 2
4, 25, 26, 27 ... Horizontal electrodes, 28, 29 ... Drains.
Claims (4)
傍の飽和層に複数の井戸を掘削するとともに、該地下汚
染箇所の近傍に2以上の水平電極を上下方向に離間して
埋設し、各水平電極間に電圧を加えつつ、地下水流下流
側に位置する井戸から地下水を揚水し、該地下水の少な
くとも一部に酸素、土壌中の汚染物質分解菌の栄養源、
および基質のうち少なくとも一種を添加した後、前記地
下汚染箇所の地下水流上流側に位置する井戸から飽和層
に注入することを特徴とする汚染地下水、土壌の修復方
法。1. A plurality of wells are excavated in a saturated layer in the vicinity of an underground polluted point contaminated with pollutants, and two or more horizontal electrodes are buried vertically apart in the vicinity of the underground polluted point, While applying a voltage between the horizontal electrodes, groundwater is pumped from a well located on the downstream side of the groundwater flow, oxygen is at least a part of the groundwater, a nutrient source for pollutant degrading bacteria in the soil,
And at least one of the substrates are added, and then the method is performed by injecting into a saturated layer from a well located on the upstream side of the groundwater flow at the underground pollution location into the saturated layer.
にドレインを設けることを特徴とする請求項1記載の汚
染地下水、土壌の修復方法。2. The method for remediating contaminated groundwater and soil according to claim 1, wherein a drain is provided between the underground contamination location and the horizontal electrode.
部と下部にそれぞれ水平電極を埋設し、かつ地下汚染箇
所と水平電極との間の不飽和層にドレインを設けること
を特徴とする請求項2記載の汚染地下水、土壌の修復方
法。3. A horizontal electrode is embedded above and below a boundary between a saturated layer and an unsaturated layer in soil, and a drain is provided in the unsaturated layer between the underground pollution point and the horizontal electrode. The method for remediating contaminated groundwater and soil according to claim 2.
部と下部にそれぞれ水平電極を埋設し、かつ地下汚染箇
所と水平電極との間の不透水層にドレインを設けること
を特徴とする請求項2記載の汚染地下水、土壌の修復方
法。4. A horizontal electrode is buried above and below the boundary between the saturated layer and the impermeable layer in soil, and a drain is provided in the impermeable layer between the underground pollution point and the horizontal electrode. The method for remediating contaminated groundwater and soil according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04336896A JP3374232B2 (en) | 1996-02-29 | 1996-02-29 | How to restore contaminated groundwater and soil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04336896A JP3374232B2 (en) | 1996-02-29 | 1996-02-29 | How to restore contaminated groundwater and soil |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09234489A true JPH09234489A (en) | 1997-09-09 |
JP3374232B2 JP3374232B2 (en) | 2003-02-04 |
Family
ID=12661912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04336896A Expired - Fee Related JP3374232B2 (en) | 1996-02-29 | 1996-02-29 | How to restore contaminated groundwater and soil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3374232B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010088497A (en) * | 2001-07-27 | 2001-09-28 | 김수삼 | Injection of nutrients and TEAs for bioremediation by electrical field method |
JP2014228360A (en) * | 2013-05-21 | 2014-12-08 | 国立大学法人秋田大学 | Decontamination device and decontamination method of radioactive contamination soil |
CN108906852A (en) * | 2018-07-09 | 2018-11-30 | 北京中岩大地科技股份有限公司 | A kind of low-permeability saliferous offscum in alkali removes saline and alkaline method |
-
1996
- 1996-02-29 JP JP04336896A patent/JP3374232B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010088497A (en) * | 2001-07-27 | 2001-09-28 | 김수삼 | Injection of nutrients and TEAs for bioremediation by electrical field method |
JP2014228360A (en) * | 2013-05-21 | 2014-12-08 | 国立大学法人秋田大学 | Decontamination device and decontamination method of radioactive contamination soil |
CN108906852A (en) * | 2018-07-09 | 2018-11-30 | 北京中岩大地科技股份有限公司 | A kind of low-permeability saliferous offscum in alkali removes saline and alkaline method |
CN108906852B (en) * | 2018-07-09 | 2021-07-06 | 北京中岩大地科技股份有限公司 | Method for removing salt and alkali from low-permeability salt-containing alkali waste residue |
Also Published As
Publication number | Publication date |
---|---|
JP3374232B2 (en) | 2003-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112642854B (en) | Method for repairing heavy metal organic compound polluted soil by combining electric, aeration and liquid injection | |
JP2006346567A (en) | In-situ purification method of contaminated soil | |
KR100798763B1 (en) | The method to remediate pol(petroleum, oil, lubricant) contaminated soil by in-situ thermal desorption approach, and the apparatus for the same | |
CN114275873A (en) | Polluted underground water repairing system and method | |
JP3374232B2 (en) | How to restore contaminated groundwater and soil | |
KR101378763B1 (en) | Method for purifying contaminated groundwater with bacteria and permeable reactive barrier used for purifying | |
JP3374230B2 (en) | How to restore contaminated groundwater and soil | |
JP5063115B2 (en) | How to remove pollutants from contaminated soil | |
JP3374228B2 (en) | How to restore contaminated groundwater and soil | |
JP3401660B2 (en) | How to restore contaminated groundwater and soil | |
JP2005052733A (en) | In situ cleaning device for oil pollution soil | |
KR100667465B1 (en) | The clean-up and remediation equipment of contaminated ground mixed with cohesionless and cohesive soils by electro flushing reactive pile technology | |
JPH10277531A (en) | Method for cleaning contaminated soil by circulation of ground water | |
JP3401661B2 (en) | How to restore contaminated groundwater and soil | |
JP3374229B2 (en) | How to restore contaminated groundwater and soil | |
JP4713777B2 (en) | Purification method for poorly permeable ground | |
JP3374231B2 (en) | How to restore contaminated groundwater and soil | |
JP3975426B2 (en) | Contamination purification system for volatile organic compounds and its operation method | |
CN102218443A (en) | Novel electric microorganism injecting process | |
JP2004154670A (en) | Method for cleaning contaminated soil | |
KR20100087852A (en) | A barrier system and remediation method of contaminated soil using ground freezing | |
JP4292921B2 (en) | Purification method and system for hardly air permeable and contaminated soil | |
JP2006007182A (en) | In situ bioremediation construction method accompanied by preculture, and system therefor | |
US11759836B2 (en) | Electrokinetic-aeration-liquid injection combined remediation method for compound contaminated soil containing heavy metals and organic substances | |
JP2007105594A (en) | Restoration method for oil-contaminated soil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20021015 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091129 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |