JPH09234187A - Living body activity-measuring device - Google Patents

Living body activity-measuring device

Info

Publication number
JPH09234187A
JPH09234187A JP8044437A JP4443796A JPH09234187A JP H09234187 A JPH09234187 A JP H09234187A JP 8044437 A JP8044437 A JP 8044437A JP 4443796 A JP4443796 A JP 4443796A JP H09234187 A JPH09234187 A JP H09234187A
Authority
JP
Japan
Prior art keywords
light receiving
receiving elements
activity
line
read
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8044437A
Other languages
Japanese (ja)
Inventor
Hideo Kawaguchi
英夫 川口
Hiroari Fukunishi
宏有 福西
Makoto Tokioka
良 時岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8044437A priority Critical patent/JPH09234187A/en
Publication of JPH09234187A publication Critical patent/JPH09234187A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device comprising plural light receiving elements disposed as an array in the same plane by performing operation of reading information of the light receiving elements in order at the same timing for setting space resolution and/or view field changeable. SOLUTION: An optical detector comprising plural light receiving elements 201 (11, 12, 13...) each integrated with a gate switch 202 is provided with a horizontal direction reading control device (H-device) 203 and a vertical direction reading control device (V-device) 204. The gate switch 202 on the first line is opened by the V-device 204, and simultaneously, the gate switches 202 are opened from the first line on in order by the H-device 203. Next, designation by the V-device 204 is changed to the gate switch 202 on the second line, and the gate switches 202 are similarly opened from the first line on by the H-device 203, so the light receiving elements 201 in each line are read in order. Since all the light receiving elements 201 are read similarly, activity of a living body is measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、生体の活動を光学
的に計測する装置、とりわけ脳神経系の活動を膜電位感
受性色素を用いて光学的に計測する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for optically measuring the activity of a living body, and more particularly to a device for optically measuring the activity of the cranial nerve system using a membrane potential sensitive dye.

【0002】[0002]

【従来の技術】脳神経系の活動を膜電位感受性色素を用
いて光学的に観測する場合、従来、フォトダイオード等
の受光素子一つ一つに専用の電流・電圧(I / V)変換
器と増幅器を繋いだ(即ち、受光素子の数と I / V 変
換器、増幅器の数が同じ)同時サンプルホールド方式の
計測システムを用いていた(例えば Biol. Cybern., 6
7, 501-509, 1992)。この方式の利点は、10 kHz 以上
の高速サンプリングが可能で、同時に各受光素子間に時
間遅れのない読み出しが実現できることである。しか
し、この同時サンプルホールド方式の計測システムは、
受光素子数が数千を越えると、コストや I / V 変換器
・増幅器の結線・容積等の問題で実現が困難になる。そ
こで、例えば 16,384 個の受光素子を持つ脳神経活動の
計測システム(日本物理学会誌, 47(9), 707-712, 199
2)(文献1)では、受光素子に蓄積された電荷を順次
読み出して行くスキャニング方式を採用して必要な I /
V 変換器・増幅器の数を削減し、商業的に成り立つシ
ステムを実現している。
2. Description of the Related Art Conventionally, in the case of optically observing the activity of the cranial nerve system using a membrane potential sensitive dye, a dedicated current / voltage (I / V) converter is provided for each light receiving element such as a photodiode. A simultaneous sample-and-hold type measurement system with connected amplifiers (that is, the same number of light receiving elements, I / V converters, and amplifiers) was used (eg Biol. Cybern., 6
7, 501-509, 1992). The advantage of this method is that high-speed sampling of 10 kHz or more is possible, and at the same time, it is possible to realize readout with no time delay between each light receiving element. However, this simultaneous sample and hold measurement system
If the number of light receiving elements exceeds several thousand, it will be difficult to realize due to problems such as cost, I / V converter / amplifier wiring, and volume. Therefore, for example, a system for measuring cranial nerve activity with 16,384 light receiving elements (Journal of the Physical Society of Japan, 47 (9), 707-712, 199)
2) In (Reference 1), the scanning method in which the charges accumulated in the light receiving element are sequentially read out is adopted to achieve the required I /
By reducing the number of V converters and amplifiers, we have realized a commercially viable system.

【0003】[0003]

【発明が解決しようとする課題】ところで、脳神経活動
の観測において必要となる空間分解能と視野は、対象と
する試料および観測目的により多様である。例えば、モ
ルモットの大脳皮質聴覚野において、この領野全体の活
動を俯瞰しその特性を抽出することを目的とした観測で
は 100 〜 220 μm の空間分解能と 3 〜 5 mm 角の視
野が必要である(Biol. Cybern., 67, 501-509, 1992)
(文献2)。この場合の光学的計測に必要な受光素子の
数は 128 〜 2,500 である。一方、脳の構成要素である
神経細胞(直径 10 〜 25 μm)の空間分解能で上記聴
覚野を詳細に観測する場合、必要な受光素子数は 14,40
0 〜 250,000 になる。したがって、脳神経活動の計測
システムで実現できる空間分解能と視野は観測試料と観
測目的に応じて柔軟に対応できることが望ましい。この
要求に答える方法の一つに、受光素子数の異なる光検出
部分(カメラ部分)を複数用意してこれらを使い分ける
方法が考えられる。しかしながら、この方法はコストが
掛かるため現実的ではない。現在のところ、観測条件に
応じて空間分解能あるいは視野が可変である実用的な脳
神経活動の計測システムは未だない。
By the way, the spatial resolution and visual field required for observing cranial nerve activity vary depending on the target sample and the purpose of observation. For example, in the auditory cortex of the cerebral cortex of the guinea pig, observations aimed at overlooking the activity of the entire area and extracting its characteristics require a spatial resolution of 100 to 220 μm and a visual field of 3 to 5 mm square ( Biol. Cybern., 67, 501-509, 1992)
(Reference 2). In this case, the number of light receiving elements required for optical measurement is 128 to 2,500. On the other hand, when observing the auditory cortex in detail with the spatial resolution of nerve cells (diameter 10 to 25 μm), which is a constituent of the brain, the required number of light receiving elements is 14,40.
It will be between 0 and 250,000. Therefore, it is desirable that the spatial resolution and visual field that can be realized by the measurement system of cranial nerve activity can flexibly correspond to the observation sample and the observation purpose. As one of the methods for responding to this request, a method of preparing a plurality of light detection portions (camera portions) having different numbers of light receiving elements and using them properly can be considered. However, this method is costly and not practical. At present, there is no practical measurement system of cranial nerve activity whose spatial resolution or visual field is variable according to the observation conditions.

【0004】本発明は上記問題に鑑みてなされたもので
あり、その課題は、観測条件に応じて空間分解能あるい
は視野が可変である実用的な生体活動の計測システムを
提供することにある。
The present invention has been made in view of the above problems, and an object thereof is to provide a practical biological activity measuring system in which the spatial resolution or the visual field is variable according to the observation conditions.

【0005】[0005]

【課題を解決するための手段】本発明の計測装置の全体
構成を図5に示す。この構成の基本的動作は上記文献2
のFig.1とその説明文のとおりである。
FIG. 5 shows the overall configuration of the measuring device of the present invention. The basic operation of this configuration is described in Reference 2 above.
Fig. 1 and its explanation.

【0006】本発明における生体(脳神経)活動の計測
の特徴は、図1に示すように、計測装置の光検出器にお
いて受光素子をグループ化して読み出す点にある。従来
のスキャニング方式は、図1(a) に番号順で示すよう
に、全ての受光素子101を一つ一つ順に読み出してい
た。これに対し本発明の方法は、図1(b) に示すよう
に、水平および垂直方向に2つずつ4つの受光素子のグ
ループを作り、このグループを単位として順に読み出す
方式である。ここで、該グループを成す受光素子の数は
4 つ(2 × 2)に限らず、9(3 × 3)、16(4 × 4)
あるいは 6(2 × 3)等任意でよい。
A feature of the measurement of the living body (cranial nerve) activity in the present invention is that the light receiving elements are grouped and read out in the photodetector of the measuring device, as shown in FIG. In the conventional scanning method, all the light receiving elements 101 are read out one by one, as shown in the order of numbers in FIG. On the other hand, the method of the present invention is a method in which two groups of four light receiving elements are formed in the horizontal and vertical directions as shown in FIG. Here, the number of light receiving elements forming the group is
Not limited to 4 (2 x 2), 9 (3 x 3), 16 (4 x 4)
Alternatively, it may be 6 (2 × 3) or the like.

【0007】本発明の方法の利点は、第一に、同一の光
検出部分を用いながら測定条件に応じて容易に見掛け上
の受光素子数を変えることができる点にある。したがっ
て、受光素子数の異なる光検出部分を複数用意する必要
がなく、安価に計測システムを提供することが可能とな
る。第二に、グループ化した受光素子を順次読み出すこ
とで全体の読み出し回数を減らせるため一画面の走査時
間が短くなり、計測システムの時間分解能が向上する点
にある。つまり、N 個の受光素子を一つのグループとす
れば、従来のスキャニング方式と比べ時間分解能を 1/N
にすることができる。
The advantage of the method of the present invention is, firstly, that the apparent number of light receiving elements can be easily changed according to the measurement conditions while using the same photodetecting portion. Therefore, it is not necessary to prepare a plurality of light detection portions having different numbers of light receiving elements, and the measurement system can be provided at low cost. Secondly, by sequentially reading the grouped light receiving elements, the total number of times of reading can be reduced, so that the scanning time for one screen is shortened and the time resolution of the measurement system is improved. In other words, if N light-receiving elements are grouped together, the time resolution is 1 / N compared to the conventional scanning method.
Can be

【0008】ここで、脳神経活動の計測システムにおけ
る理想的な時間分解能は 100 オs 以下である。これは、
神経情報が、神経細胞の発生する活動電位(膜電位変化
約 100 mV、時間幅数 ms)を媒体としているためであ
る。ところが、スキャニング方式による計測システムで
は、その時間分解能は受光素子の数によって決まる。つ
まり、受光素子数が多ければ多いほど読み出しに時間が
掛かり、一画面の走査時間、即ち時間分解能が悪くな
る。一方、計測システムの空間分解能は、同一視野の観
測の場合、受光素子数が多ければ多いほど向上する。し
たがって、スキャニング方式の計測システムにおいて時
間分解能と空間分解能はトレードオフの関係にあると言
ってよい。そこで、計測時の時間分解能を空間分解能よ
り優先し、例えば 100 μs と設定すると、光検出部分
の受光素子数は一定であるため、逆にグループ化すべき
受光素子の数を決めることができる。
Here, the ideal time resolution in the system for measuring cranial nerve activity is 100 s or less. this is,
This is because the nerve information uses the action potential generated by nerve cells (membrane potential change of about 100 mV, time width of several ms) as a medium. However, in the scanning system, the time resolution is determined by the number of light receiving elements. That is, the larger the number of light receiving elements, the longer it takes to read out, and the scanning time for one screen, that is, the time resolution becomes worse. On the other hand, the spatial resolution of the measurement system improves as the number of light receiving elements increases in the case of observation in the same field of view. Therefore, it can be said that there is a trade-off relationship between the temporal resolution and the spatial resolution in the scanning measurement system. Therefore, if the time resolution at the time of measurement is prioritized over the spatial resolution, and is set to 100 μs, for example, the number of light receiving elements in the light detecting portion is constant, and conversely, the number of light receiving elements to be grouped can be determined.

【0009】なお、この様な多数の画素(受光素子はモ
ニタ側から見ると画素と表現できる)を持つ計測装置に
より生体の活動を計測した場合、観測結果のモニタの実
時間性確保も課題である。この解決の方法として、図4
(a)、(b) および (c) に示す様な、予め指定した少数の
画素(例えば総画素数の 1/10)で構成したパターンを
用いて表示することで、観測実験者に観測結果の特徴を
ほぼ実時間で把握させることができる。
When the activity of a living body is measured by a measuring device having such a large number of pixels (the light receiving element can be expressed as a pixel when viewed from the monitor side), it is also a problem to secure real-time monitoring of the observation result. is there. As a method of solving this, FIG.
The observation results are displayed to the observation experimenter by using a pattern composed of a small number of pixels specified in advance (for example, 1/10 of the total number of pixels) as shown in (a), (b) and (c). The characteristics of can be grasped almost in real time.

【0010】上記の方法により、本発明の目的である、
観測条件に応じて空間分解能あるいは視野が可変である
実用的な脳神経活動の計測システムを提供することが可
能となる。
By the above method, it is an object of the present invention,
It is possible to provide a practical cranial nerve activity measurement system in which the spatial resolution or the visual field is variable according to the observation conditions.

【0011】[0011]

【発明の実施の形態】本発明に掛かる、受光素子をグル
ープ化して順次読み出す方式について、図面を参照しな
がら詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A method of grouping light receiving elements and sequentially reading the light receiving elements according to the present invention will be described in detail with reference to the drawings.

【0012】まず、図2 に基板上の各々の受光素子 20
1 (図中 11、12、13 …)にゲートスイッチ 202 を集
積した光検出器の概略を示す。この光検出器の水平方向
読み出し制御装置 203 と垂直方向読み出し制御装置 20
4 の作動手順を以下の様に設定すると受光素子をグルー
プ化して順次読み出すことが可能となる。図2におい
て、205は制御信号線(水平方向)、206は制御信号線
(垂直方向)、207は信号出力線、208は制御クロック信
号である。
First, FIG. 2 shows each of the light receiving elements 20 on the substrate.
1 (11, 12, 13 ... In the figure) shows an outline of a photodetector in which a gate switch 202 is integrated. This photodetector has a horizontal readout controller 203 and a vertical readout controller 20.
By setting the operation procedure of 4 as follows, it is possible to group the light receiving elements and read them sequentially. In FIG. 2, 205 is a control signal line (horizontal direction), 206 is a control signal line (vertical direction), 207 is a signal output line, and 208 is a control clock signal.

【0013】次に比較のため、従来のスキャニング方式
を図3(a) に示す。初めに垂直方向読み出し制御装置
(例えば、垂直シフトレジスタ)を用いて1列目のゲー
トスイッチ(例えば、MOS-FET、図中 I)を開け、同時
に水平方向読み出し制御装置(例えば、水平シフトレジ
スタ)により1列目から順次ゲートスイッチ(図中 i→
ii → iii …)を開ける。すると1列目の受光素子
(例えば、フォトダイオード)が順次(図中 11 → 12
→ 13 …)読み出される。次に、垂直方向読み出し制御
装置の指定を2列目のゲートスイッチ(図中 II)に変
え、同時に水平方向読み出し制御装置により1列目から
順次ゲートスイッチ(図中 i → ii → iii …)を開け
る。すると2列目の受光素子が順次(図中 21 → 22 →
23 …)読み出される。これを繰り返すことで、全ての
受光素子を順次読み出すことができる。
For comparison, a conventional scanning method is shown in FIG. 3 (a). First, open the first row gate switch (eg, MOS-FET, I in the figure) using the vertical direction read control device (eg, vertical shift register), and at the same time, read the horizontal direction read control device (eg, horizontal shift register). The gate switches (i →
ii → iii…). Then, the light receiving elements (for example, photodiodes) in the first row are sequentially (11 → 12 in the figure).
→ 13…) Read out. Next, the designation of the vertical read control device is changed to the gate switch in the second row (II in the figure), and at the same time, the gate switch (i → ii → iii in the figure) is sequentially changed from the first row by the horizontal read control apparatus. Open. Then, the light receiving elements in the second row are sequentially (21 → 22 →
23…) Read out. By repeating this, all the light receiving elements can be sequentially read.

【0014】本発明のスキャニング方式に関する実施の
一例を図3(b) に示す。初めに垂直方向読み出し制御装
置を用いて1列目および2列目のゲートスイッチ(図中
A)を開け、同時に水平方向読み出し制御装置により1
列目から順次、2列分のゲートスイッチ(図中 a → b
→ c …)を開ける。すると受光素子が4つずつグルー
プとなって順次(図中 11,12,21,22 → 12,14,23,24 →
15,16,25,26 …)読み出される。次に、垂直方向読み
出し制御装置の指定を3列目および4列目のゲートスイ
ッチ(図中 B)に変え、同時に水平方向読み出し制御装
置により1列目から順次、2列分のゲートスイッチ(図
中 a → b → c …)を開ける。すると受光素子が4つ
ずつ順次(図中 31,32,41,42 → 33,34,43,44 → 35,3
6,45,46…)読み出される。これを繰り返すことで、全
ての受光素子を4つずつグループ化して順次読み出すこ
とができる。
An example of the scanning system of the present invention is shown in FIG. 3 (b). First, using the vertical read controller, the gate switches in the first and second columns (in the figure
A) open, and at the same time 1 by the horizontal readout controller
Gate switches for two rows in sequence from the second row (a → b in the figure)
→ Open c…). Then, the light receiving elements are grouped into groups of four (11,12,21,22 → 12,14,23,24 →
15,16,25,26…) Read out. Next, the designation of the vertical read control device is changed to the gate switches in the third and fourth columns (B in the figure), and at the same time, the horizontal read control device sequentially starts from the first column and the gate switches for the two columns (see the figure). Open the inside a → b → c…). Then, four light-receiving elements are sequentially arranged (31, 32, 41, 42 → 33, 34, 43, 44 → 35, 3 in the figure).
6,45,46 ...) Read out. By repeating this, all the light receiving elements can be grouped into four groups and sequentially read out.

【0015】本発明に掛かる、予め指定した受光素子か
ら読み出した情報を実質的に実時間で表示する方式につ
いて、図面を参照しながら説明する。
A method according to the present invention for displaying information read from a predesignated light receiving element substantially in real time will be described with reference to the drawings.

【0016】図4(a) は、 光検出器 401 上の受光素子
101 の中から水平および垂直方向に等間隔(例えば、1
0 個の受光素子毎に1つ)に抽出・指定した受光素子の
情報を、観測結果表示画面 402 上で繋ぎ合わせて実質
的に実時間で表示する方式の概略である。この方式によ
り観測実験者に観測結果の特徴をほぼ実時間で把握させ
ることが可能となる。
FIG. 4A shows a light receiving element on the photodetector 401.
Equally spaced horizontally and vertically from within 101 (for example, 1
It is an outline of a method of displaying information of the light receiving elements extracted and designated as one for every 0 light receiving elements on the observation result display screen 402 in substantially real time. This method enables the observation experimenter to understand the characteristics of the observation result in almost real time.

【0017】図4(b) は、 光検出器上の受光素子の中
から一部分(例えば、10 × 10 個の部分)を抽出・指
定し、その部分の受光素子の情報を観測結果表示画面上
に実質的に実時間で表示する方式の概略である。
In FIG. 4B, a part (for example, 10 × 10 parts) is extracted and designated from the light-receiving elements on the photodetector, and the information of the light-receiving elements at that portion is displayed on the observation result display screen. It is an outline of a method of displaying in real time substantially.

【0018】図4(c) は、 光検出器上の受光素子の中
から一部分(例えば、5 × 5 個の部分)を複数箇所
(例えば4箇所)抽出・指定し、その部分の受光素子の
情報を観測結果表示画面上に実質的に実時間で表示する
方式の概略である。
In FIG. 4 (c), a part (for example, 5 × 5 parts) of a light receiving element on a photodetector is extracted and designated at a plurality of points (for example, 4 points), and the light receiving element of the part is extracted. It is an outline of a method of displaying information on an observation result display screen substantially in real time.

【0019】[0019]

【発明の効果】本発明の方法により、同一の光検出部分
を用いながら測定条件に応じて容易に見掛け上の受光素
子数を変えることが可能となる。したがって、受光素子
数の異なる光検出部分を複数用意する必要がなく、安価
に計測システムを提供することができる。また、グルー
プ化した受光素子を順次読み出すことで全体の読み出し
回数を減らせるため一画面の走査時間が短くなり、計測
システムの時間分解能を向上させることが可能となる。
つまり、N 個の受光素子を一つのグループとすれば、従
来のスキャニング方式と比べ時間分解能を 1/N にする
ことができる。
According to the method of the present invention, it is possible to easily change the apparent number of light receiving elements according to the measurement conditions while using the same light detecting portion. Therefore, it is not necessary to prepare a plurality of light detecting portions having different numbers of light receiving elements, and the measurement system can be provided at low cost. Further, by sequentially reading the grouped light receiving elements, the total number of times of reading can be reduced, so that the scanning time for one screen can be shortened and the time resolution of the measurement system can be improved.
In other words, if N light-receiving elements are grouped together, the time resolution can be reduced to 1 / N as compared with the conventional scanning method.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a) は、脳神経活動の計測システムにおいて、
全ての受光素子を一つ一つ順に読み出す従来のスキャニ
ング方式を示す模式図、(b) は、本発明に掛かる、計測
システムの光検出部分において受光素子をグループ化
し、このグループを単位として順に読み出す方式の例を
示す模式図。
FIG. 1 (a) shows a measurement system of cranial nerve activity,
(B) is a schematic diagram showing a conventional scanning method in which all the light-receiving elements are read out one by one, and the light-receiving elements are grouped in the light detection portion of the measurement system according to the present invention, and the groups are read out in order. The schematic diagram which shows the example of a system.

【図2】基板上の各々の受光素子にゲートスイッチを集
積した光検出器の概略を示す模式図。
FIG. 2 is a schematic diagram showing an outline of a photodetector in which a gate switch is integrated in each light receiving element on a substrate.

【図3】(a) は、水平および垂直方向読み出し制御装置
を用いた従来のスキャニング方式を示す模式図、(b)
は、本発明に掛かる、水平および垂直方向読み出し制御
装置を制御して受光素子をグループ化し、このグループ
を単位として順に読み出す方式の実施例を示す模式図。
FIG. 3 (a) is a schematic diagram showing a conventional scanning method using a horizontal and vertical direction readout control device, (b).
FIG. 6 is a schematic diagram showing an embodiment of a system according to the present invention in which the light-receiving elements are grouped by controlling the horizontal and vertical direction read control devices and the groups are sequentially read.

【図4】(a) は、本発明に掛かる、予め指定した画素で
構成された、観測結果の実質的な実時間表示方式の実施
の一例を示す模式図、(b) は、本発明に掛かる、予め指
定した画素で構成された、観測結果の実質的な実時間表
示方式の別の実施例を示す模式図、(c) は、本発明に掛
かる、予め指定した画素で構成された、観測結果の実質
的な実時間表示方式の別の実施例を示す模式図。
FIG. 4 (a) is a schematic diagram showing an example of an implementation of a substantially real-time display system of observation results, which is composed of predesignated pixels according to the present invention, and FIG. A schematic diagram showing another embodiment of a substantially real-time display system of observation results, which is composed of pre-designated pixels, (c) is, according to the present invention, composed of pre-designated pixels, The schematic diagram which shows another Example of the substantially real-time display system of an observation result.

【図5】本発明の計測装置の全体構成図。FIG. 5 is an overall configuration diagram of a measuring device of the present invention.

【符号の説明】[Explanation of symbols]

101 … 受光素子、201 … 受光素子、202 … ゲートス
イッチ、203 … 水平方向読み出し制御装置、204 … 垂
直方向読み出し制御装置、205 … 制御信号線(水平方
向)、206 … 制御信号線(垂直方向)、207 … 信号出
力線、208 … 制御クロック信号、401 … 光検出器、40
2 … 観測結果表示画面。
101 ... Light receiving element, 201 ... Light receiving element, 202 ... Gate switch, 203 ... Horizontal direction read control device, 204 ... Vertical direction read control device, 205 ... Control signal line (horizontal direction), 206 ... Control signal line (vertical direction) , 207 ... Signal output line, 208 ... Control clock signal, 401 ... Photodetector, 40
2… Observation result display screen.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】同一平面上にアレイ状に配置された複数の
受光素子を有し、かつ個々の該受光素子を特定する手段
を有する光検出器を具備した生体の活動を光学的に観測
する装置において、同一のタイミングで複数の該受光素
子の情報を読み出す操作を順次行うことで、空間分解能
および/または視野を可変とすることを特徴とする生体
活動の計測装置。
1. The activity of a living body is optically observed, which comprises a photodetector having a plurality of light receiving elements arranged in an array on the same plane, and having means for specifying each of the light receiving elements. In the apparatus, a spatial activity and / or a visual field are made variable by sequentially performing an operation of reading out information of a plurality of the light receiving elements at the same timing, and the biological activity measuring apparatus.
【請求項2】個々の該受光素子を特定する2つの読み出
し制御手段を用いて、同一のタイミングで情報を読み出
す複数の該受光素子を指定する操作を順次行うことを特
徴とする請求項1記載の計測装置。
2. The operation for designating a plurality of light receiving elements for reading out information at the same timing is sequentially performed by using two read control means for specifying each of the light receiving elements. Measuring device.
【請求項3】同一平面上にアレイ状に配置された複数の
受光素子を有し、かつ個々の該受光素子を特定する手段
を有する光検出器を具備した生体の活動を光学的に観測
する装置において、該光検出器に含まれる該受光素子の
総数より少ない数の予め指定した該受光素子から読み出
した情報を実質的に実時間で表示することを特徴とする
生体活動の計測装置。
3. An optical activity of a living body having a plurality of light receiving elements arranged in an array on the same plane and having a photodetector having means for specifying each light receiving element is optically observed. In the apparatus, the biological activity measuring apparatus is characterized in that the information read from a predetermined number of the light receiving elements smaller than the total number of the light receiving elements included in the photodetector is displayed substantially in real time.
JP8044437A 1996-03-01 1996-03-01 Living body activity-measuring device Pending JPH09234187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8044437A JPH09234187A (en) 1996-03-01 1996-03-01 Living body activity-measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8044437A JPH09234187A (en) 1996-03-01 1996-03-01 Living body activity-measuring device

Publications (1)

Publication Number Publication Date
JPH09234187A true JPH09234187A (en) 1997-09-09

Family

ID=12691474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8044437A Pending JPH09234187A (en) 1996-03-01 1996-03-01 Living body activity-measuring device

Country Status (1)

Country Link
JP (1) JPH09234187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309896A (en) * 2000-04-28 2001-11-06 Japan Science & Technology Corp Method of imaging and equipment for imaging
JP2011255185A (en) * 2010-06-10 2011-12-22 Biosense Webster (Israel) Ltd Operator-controlled map point density

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309896A (en) * 2000-04-28 2001-11-06 Japan Science & Technology Corp Method of imaging and equipment for imaging
JP2011255185A (en) * 2010-06-10 2011-12-22 Biosense Webster (Israel) Ltd Operator-controlled map point density

Similar Documents

Publication Publication Date Title
JP4565044B2 (en) Imaging apparatus and imaging system
JP3138957B2 (en) Test apparatus for pixel sensor circuit, focal plane image scanner array test method, and image scanner array
CN109758169A (en) Radiation imaging apparatus
US3465293A (en) Detector array controlling mos transistor matrix
EP0519007A1 (en) Multisensor high-resolution camera
JP2008507874A (en) Imaging device
JP2011196992A (en) Infrared solid-state imaging device
CA2082884A1 (en) High speed imaging apparatus
JP2001189891A (en) Method for reading sensor element of sensor, and sensor
US6839407B2 (en) Arrangement of sensor elements
US8049880B2 (en) System and method for time resolved spectroscopy
JP4451509B2 (en) Fluorescence measuring device and apparatus using such a device
JPH09234187A (en) Living body activity-measuring device
JP2001359000A (en) Image sensor
JP4564702B2 (en) Imaging apparatus and imaging system
JPH11502995A (en) Multiplexer circuit
EP1621870A2 (en) Multiplexed optical detection system
JPH11225289A (en) Edge detection solid-state image pickup device and edge detection method by driving the solid-state image pickup device
US20050103979A1 (en) Temporal source analysis using array detectors
Potter et al. High-speed CCD movie camera with random pixel selection for neurobiology research
Paolini et al. Dual‐channel diffractometer utilizing linear image sensor charge‐coupled devices
JP3723045B2 (en) Imaging method and imaging apparatus
JP4914548B2 (en) Photoelectric conversion cell, imaging device, imaging method, and driving method of imaging device
JP2001272334A (en) Two-dimensional optical heterodyne scanning detection system
JP4574988B2 (en) Focal plane detector