JPH09233884A - Sensorless and commutatorless dc motor drive - Google Patents

Sensorless and commutatorless dc motor drive

Info

Publication number
JPH09233884A
JPH09233884A JP8041186A JP4118696A JPH09233884A JP H09233884 A JPH09233884 A JP H09233884A JP 8041186 A JP8041186 A JP 8041186A JP 4118696 A JP4118696 A JP 4118696A JP H09233884 A JPH09233884 A JP H09233884A
Authority
JP
Japan
Prior art keywords
rotor
circuit
armature winding
phase
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8041186A
Other languages
Japanese (ja)
Other versions
JP3547890B2 (en
Inventor
Yusuke Yamaoka
祐介 山岡
Tadashi Sato
正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP04118696A priority Critical patent/JP3547890B2/en
Publication of JPH09233884A publication Critical patent/JPH09233884A/en
Application granted granted Critical
Publication of JP3547890B2 publication Critical patent/JP3547890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a driving equipment which, regardless of the stop position of a rotor, can always start up accurately and rapidly a sensorless and commutatorless DC motor wherein induced voltage signals from armature windings are processed by a rotor position signal generating circuit and then a rotor position signal is obtained and then driving current is supplied to the armature windings of respective phases U, V, W, being reversed every other one cycle, six times, and thereby the rotor is driven. SOLUTION: At the time of start-up, a start-up signal generating circuit 17 generates a start-up signal which reverses a rotor every other one cycle, six times, and then fixes the rotor to a stop phase for a specified period of time and then rotates the rotor in the forward direction. The signal is supplied to an armature winding driving circuit 10. When the rotational speed of the rotor increases enough to induce sufficient voltage in armature windings 6, a switching circuit 13 is switched and normal operation is started by a positional signal from a rotor position signal generating circuit 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、情報記録に用い
られるディスク駆動装置に組み込まれているスピンドル
モータ等に使用されるセンサレス無整流子直流モータ駆
動装置に関し、特にそれの起動方式の改良に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensorless commutator DC motor drive device used in a spindle motor or the like incorporated in a disk drive device used for information recording, and more particularly to improvement of its starting method. Is.

【0002】[0002]

【従来の技術】情報記録に用いられるディスク駆動装置
に組み込まれているスピンドルモータには一般に無整流
子直流モータが採用されてきた。スピンドルモータの回
転数を制御をするための位置信号検出方式には従来より
ホール素子によるセンシングで対応するのが主流であっ
た。しかし、モータの小型化、低価格化が進んだため、
近年ホール素子を使わず、モータの固定子巻線と回転子
の相互作用によって生じる誘起電圧によって位置信号を
検出するセンサレス方式が使われるようになってきた。
しかしながらこのセンサレス方式では回転子の回転速度
が零の時、つまり起動時には誘起電圧が生じていないた
め位置信号を検出することができず、転流信号を作り出
すことが困難である。そのため起動時に限ってある特定
の相から励磁を始め、そこから次々と正転シーケンスの
転流を行い強制的に起動する必要がある。
2. Description of the Related Art Generally, a non-commutator DC motor has been adopted as a spindle motor incorporated in a disk drive used for recording information. The position signal detection method for controlling the number of rotations of the spindle motor has hitherto been mainly supported by sensing with a hall element. However, as motors have become smaller and cheaper,
In recent years, a sensorless method has been used in which a position signal is detected by an induced voltage generated by an interaction between a stator winding of a motor and a rotor without using a Hall element.
However, in this sensorless method, the position signal cannot be detected when the rotational speed of the rotor is zero, that is, no induced voltage is generated at the time of startup, and it is difficult to generate a commutation signal. Therefore, it is necessary to start excitation from a specific phase only at the time of starting, and then commutate the forward sequence one after another to forcefully start.

【0003】図7はスピンドルモータとして使用される
センサレス無整流子直流モータの一例を示す平面図、図
8はこのスピンドルモータに装着されたディスク駆動ハ
ブの平面図、図9はこのセンサレス無整流子直流モータ
の駆動装置の構成を示すブロック線図、図10はこのモ
ータの電機子巻線駆動回路を示す回路図、図11はこの
モータ駆動装置の動作を説明するためのタイムチャート
である。
FIG. 7 is a plan view showing an example of a sensorless commutatorless DC motor used as a spindle motor, FIG. 8 is a plan view of a disk drive hub mounted on this spindle motor, and FIG. 9 is this sensorless commutator. FIG. 10 is a block diagram showing the configuration of a drive device for a DC motor, FIG. 10 is a circuit diagram showing an armature winding drive circuit for this motor, and FIG. 11 is a time chart for explaining the operation of this motor drive device.

【0004】図において、1はスピンドルモータ、2は
16対のNS磁極からなる回転子、3は回転軸、4は駆
動ピン、5は24スロット固定子、6はこの固定子5に
巻回されたU,V,W相からなる電機子巻線、7はディ
スク駆動ハブ、8はチャッキング孔、9は駆動ピン4を
嵌合する位置決め孔、10は電機子巻線駆動回路、11
は回転子位置信号生成回路、12は6進カウンタ、13
は切換回路、14は起動信号生成回路、15は6進カウ
ンタ、16は入力クロック信号に応じて所定タイミング
で6進カウンタ14及び切換回路13にパルス信号を出
力するタイマである。
In the figure, 1 is a spindle motor, 2 is a rotor composed of 16 pairs of NS magnetic poles, 3 is a rotary shaft, 4 is a drive pin, 5 is a 24 slot stator, and 6 is wound around this stator 5. Armature winding composed of U, V, and W phases, 7 a disk drive hub, 8 chucking holes, 9 positioning holes for fitting the drive pins 4, 10 armature winding drive circuit, 11
Is a rotor position signal generation circuit, 12 is a hexadecimal counter, 13
Is a switching circuit, 14 is a start signal generation circuit, 15 is a hexadecimal counter, and 16 is a timer which outputs a pulse signal to the hexadecimal counter 14 and the switching circuit 13 at a predetermined timing according to an input clock signal.

【0005】Vccは直流電源、Gndは接地端子、Tr1
Tr2,Tr3はPチャンネルMOSトランジスタ(以下P
MOSという)、Tr4,Tr5,Tr6はNチャンネルMO
Sトランジスタ(以下NMOSという)、Nr1,Nr2
Nr3,Nr4,Nr5,Nr6はノア素子、Ad1,Ad2,A
d3,Ad4,Ad5,Ad6はアンド素子、Iv1,Iv2,I
v3,Iv4,Iv5,Iv6はインバータ素子、a,b,cは
ハイレベル値H、ローレベル値Lの何れかの値である6
進数各ビット値、Tuw,Tvw,Tvu,Twu,Twv,Tuv
はアンド素子Ad1〜Ad6の出力信号である転流信号、S
cu,Scv,Scwは電流流入駆動用ソース信号、Sku,S
kv,Skwは電流流出駆動用シンク信号である。
Vcc is a direct current power source, Gnd is a ground terminal, Tr 1 ,
Tr 2 and Tr 3 are P channel MOS transistors (hereinafter P
MOS), Tr 4 , Tr 5 , Tr 6 are N-channel MO
S transistor (hereinafter referred to as NMOS), Nr 1 , Nr 2 ,
Nr 3 , Nr 4 , Nr 5 and Nr 6 are NOR elements, Ad 1 , Ad 2 and A
d 3 , Ad 4 , Ad 5 , and Ad 6 are AND elements, Iv 1 , Iv 2 , and I
v 3 , Iv 4 , Iv 5 , and Iv 6 are inverter elements, and a, b, and c are any one of a high level value H and a low level value 6
Each bit value of the base number, T uw , T vw , T vu , T wu , T wv , T uv
Is a commutation signal which is an output signal of the AND elements Ad 1 to Ad 6 , and S
c u , Sc v , and Sc w are source signals for driving the current inflow, Sk u and S
k v and Sk w are current outflow driving sink signals.

【0006】次にその動作について説明する。まず、ス
ピンドルモータ1の定常回転時の動作について説明す
る。モータ1の回転子2が回転中は固定子5の3相Y結
線の電機子巻線6の各U,V,W相には図11に示す相
電圧が誘起され、この各相電圧の差、即ち相間電圧U−
W,W−V,V−Uが回転子位置信号生成回路11に取
り込まれ増幅されスライスされた位置信号Puw,Pwv
vuが6進カウンタ12に出力される。6進カウンタ1
2は入力位置信号Puw,Pwv,Pvuの各立上り、立下り
エッジでカウントアップされ6進信号a,b,cが得ら
れ、切換回路13を介して電機子巻線駆動回路10に印
加される。
Next, the operation will be described. First, the operation of the spindle motor 1 during steady rotation will be described. While the rotor 2 of the motor 1 is rotating, the phase voltages shown in FIG. 11 are induced in the U-, V-, and W-phases of the armature winding 6 of the three-phase Y-connection of the stator 5, and the difference between these phase voltages. , That is, the interphase voltage U−
Position signals P uw , P wv , W, W-V, V-U are taken in by the rotor position signal generation circuit 11, amplified and sliced.
P vu is output to the hexadecimal counter 12. Hexadecimal counter 1
2 is counted up at each of the rising and falling edges of the input position signals P uw , P wv and P vu to obtain hexadecimal signals a, b and c, which are sent to the armature winding drive circuit 10 via the switching circuit 13. Is applied.

【0007】電機子巻線駆動回路10では6進信号a,
b,cが直接或はインバータ素子Iv1,Iv2,Iv3を介
して各アンド素子Ad1〜Ad6に印加され、転流信号Tuw
〜Tuvがノア素子Nr1〜Nr6に出力されて、ノア素子N
r1,Nr2,Nr3からPMOSTr1,Tr2,Tr3にLレベ
ルのソース信号Scu,Scv,Scwが、ノア素子Nr4,N
r5,Nr6からインバータ素子Iv4,Iv5,Iv6を介して
NMOSNr4,Nr5,Nr6にHレベルのシンク信号S
ku,Skv,Skwに印加されて、PMOSTr1,Tr2,T
r3及びNMOSNr4,Nr5,Nr6を順次転流させ、直流
電源Vccからの電流が電機子巻線6の各相に流入し接地
端子Gndに流出する。
In the armature winding drive circuit 10, the hexadecimal signal a,
b and c are applied to each AND element Ad 1 to Ad 6 directly or via the inverter elements Iv 1 , Iv 2 and Iv 3 to generate a commutation signal T uw.
~ T uv is output to the NOR elements Nr 1 to Nr 6 and the NOR elements Nr 1 to Nr 6 are output.
L-level source signals Sc u , Sc v , and Sc w from r 1 , Nr 2 , and Nr 3 to PMOS Tr 1 , Tr 2 , and Tr 3 are transferred to NOR elements Nr 4 and Nr.
H-level sync signal S from r 5 , Nr 6 to NMOS Nr 4 , Nr 5 , Nr 6 via inverter elements Iv 4 , Iv 5 , Iv 6.
applied to k u , Sk v , and Sk w to form PMOS Tr 1 , Tr 2 , T
The r 3 and the NMOSs Nr 4 , Nr 5 and Nr 6 are sequentially commutated, and the current from the DC power supply Vcc flows into each phase of the armature winding 6 and flows out to the ground terminal Gnd.

【0008】次表は交流1周期中の1/6周期毎の各転
流シーケンス(1)(2)(3)(4)(5)(6)における6進信
号、転流信号及びU,V,W相電流の関係を示す。
The following table shows the hexadecimal signal, commutation signal and U in each commutation sequence (1) (2) (3) (4) (5) (6) for each 1/6 cycle in one AC cycle. The relationship between V and W phase currents is shown.

【表1】 [Table 1]

【0009】この表に示すようにこのモータ1の電機子
巻線6への駆動電流はシーケンス(1)から(6)と転流し
6通りで規則的に切り換わり、6回転流すると回転子2
は図7に示す角度θ=π/8だけ回転する。よって回転
子2が1回転するのに16サイクル、計96回の転流を
必要とすることになる。
As shown in this table, the drive current to the armature winding 6 of the motor 1 commutates from the sequence (1) to (6) and is regularly switched in 6 ways.
Rotates by an angle θ = π / 8 shown in FIG. Therefore, 16 cycles, that is, 96 total commutations are required for one rotation of the rotor 2.

【0010】このような方式のモータは自己起動ができ
ないため、起動時には起動信号生成回路14のタイマ1
6により、外部からのクロック信号に応じパルスが6進
カウンタ12に出力されてカウントが開始され、6進信
号a,b,cが切換回路13を介して電機子巻線駆動回
路10に印加される。これにより電機子巻線駆動回路1
0により電機子巻線6がシーケンス(1)→(2)→(3)→
(4)→(5)→(6)の順に切換え転流され、回転子2は強
制的に正転方向に回転起動する。そして、回転子2の回
転速度が上がり電機子巻線6に満足な誘起電圧が得られ
るようになったら、切換回路13が切換えられ回転子位
置信号生成回路11及び6進カウンタ12による定常回
転動作に入る。
Since the motor of this type cannot be self-started, the timer 1 of the start signal generating circuit 14 is started at the time of start.
6, a pulse is output to the hexadecimal counter 12 in response to a clock signal from the outside to start counting, and hexadecimal signals a, b and c are applied to the armature winding drive circuit 10 via the switching circuit 13. It As a result, the armature winding drive circuit 1
0 causes the armature winding 6 to sequence (1) → (2) → (3) →
The commutation is switched in the order of (4) → (5) → (6), and the rotor 2 is forcibly started to rotate in the forward direction. Then, when the rotation speed of the rotor 2 increases and a sufficient induced voltage is obtained in the armature winding 6, the switching circuit 13 is switched and the rotor position signal generating circuit 11 and the hexadecimal counter 12 perform a steady rotation operation. to go into.

【0011】[0011]

【発明が解決しようとする課題】以上のような従来のセ
ンサレス無整流子直流モータ駆動装置では、起動時にお
ける回転子2の磁極位置と、固定子電機子巻線6の励磁
開始相巻線位置との相対位置によっては、適正な正転回
転力が得られなかったり、逆転方向に力が加わったりす
る場合が生じ、正方向に回転が修正されて回転が安定す
るまでに長時間を要するという問題点があった。
In the conventional sensorless commutatorless DC motor driving apparatus as described above, the magnetic pole position of the rotor 2 and the excitation start phase winding position of the stator armature winding 6 at the time of start-up. Depending on the relative position between and, it may not be possible to obtain an appropriate normal rotation force, or a force may be applied in the reverse direction, and it takes a long time for the rotation to be corrected in the positive direction and to stabilize. There was a problem.

【0012】また、このようなセンサレス無整流子直流
モータをディスク駆動装置のスピンドルモータに使用し
た場合、回転子2が常に正転方向(矢印の時計回り方
向)に駆動されているため、図8に示すように停止時に
おいては回転子2に固着された駆動ピン4はディスク駆
動ハブ7の位置決め孔9の回転方向側の端縁に当接して
いる。この状態でモータ1を起動するとディスク駆動ハ
ブ7のヘッドスティクション等の負荷が直に起動時のモ
ータ1にかかり、これを超える駆動力がモータ1に要求
され起動しにくく起動から正常回転まで時間かかるとい
う問題点もあった。
When such a sensorless commutatorless DC motor is used for a spindle motor of a disk drive, the rotor 2 is always driven in the forward direction (clockwise direction indicated by the arrow). As shown in FIG. 5, when stopped, the drive pin 4 fixed to the rotor 2 is in contact with the edge of the positioning hole 9 of the disk drive hub 7 on the rotation direction side. When the motor 1 is started in this state, a load such as head stiction of the disk drive hub 7 is directly applied to the motor 1 at the time of starting, and a driving force exceeding this is required of the motor 1 so that it is difficult to start and it takes time from the start to the normal rotation. There was also the problem of this.

【0013】この発明は上記のような問題点を解消する
ためになされたもので、迅速かつ確実に起動することが
できるセンサレス無整流子直流モータ駆動装置を得るこ
とを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a sensorless commutatorless DC motor drive device that can be started quickly and reliably.

【0014】[0014]

【課題を解決するための手段】この発明に係る無整流子
直流モータ駆動装置は、回転子を逆方向に所定相回転さ
せた後所定時間停止相に固定させてから正転させる起動
信号を生成して電機子巻線駆動回路に供給するようにし
たものである。
A non-commutator DC motor drive device according to the present invention generates a start signal for rotating a rotor in a reverse direction for a predetermined phase, fixing the rotor in a stop phase for a predetermined time, and then rotating the rotor forward. And supplied to the armature winding drive circuit.

【0015】また、回転子を所定相に固定した後、1サ
イクル6転流のうち速かに続けて2転流させて正転させ
る起動信号を生成して電機子巻線駆動回路に供給するよ
うにしたものである。
Further, after the rotor is fixed to a predetermined phase, a start signal for causing two commutations to successively and normally rotate in 6 cycles in one cycle is generated and supplied to the armature winding drive circuit. It was done like this.

【0016】また、回転子を所定相に固定した後、1サ
イクル6転流のうち2転流進んだ相から正転させる起動
信号を生成して電機子巻線駆動回路に供給するようにし
たものである。
Further, after fixing the rotor to a predetermined phase, a start signal for normal rotation is generated from the phase in which two commutations have advanced in one cycle of six commutations and is supplied to the armature winding drive circuit. It is a thing.

【0017】[0017]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.以下、この発明の一実施の形態を図を用
いて説明する。図1はこの実施の形態の構成を示すブロ
ック線図、図2はこの実施の形態の動作を説明するため
のタイムチャート、図3はこの実施の形態におけるモー
タに装着されたディスク駆動ハブの平面図、図4はこの
実施の形態におけるモータのトルクを示す図である。な
お、図7及び図10はこの実施の形態にも適用される。
Embodiment 1. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of this embodiment, FIG. 2 is a time chart for explaining the operation of this embodiment, and FIG. 3 is a plan view of a disk drive hub mounted on a motor in this embodiment. FIG. 4 and FIG. 4 are diagrams showing the torque of the motor in this embodiment. 7 and 10 are also applied to this embodiment.

【0018】図において、3は回転軸、4は駆動ピン、
6は固定子5に巻回されたU,V,W相からなる電機子
巻線、7はディスク駆動ハブ、8はチャッキング孔、9
は駆動ピン4を嵌合する位置決め孔、10は電機子巻線
駆動回路、11は回転子位置信号生成回路、12は6進
カウンタ、13は切換回路、15は6進カウンタで、以
上は図8、図9で示す従来例と同様のものである。17
は起動信号生成回路、18は入力スタート信号及びクロ
ック信号に応じて所定タイミングで6進カウンタ14に
カウントダウン(逆転)、カウントアップ(正転)用ク
ロックパルスCLpを、切換回路13に切換信号を供給
する正逆クロック制御回路である。
In the figure, 3 is a rotary shaft, 4 is a drive pin,
6 is an armature winding composed of U, V, and W phases wound around the stator 5, 7 is a disk drive hub, 8 is a chucking hole, and 9
Is a positioning hole into which the drive pin 4 is fitted, 10 is an armature winding drive circuit, 11 is a rotor position signal generation circuit, 12 is a hexadecimal counter, 13 is a switching circuit, and 15 is a hexadecimal counter. 8 and the same as the conventional example shown in FIG. 17
Is a start signal generation circuit, and 18 is a countdown (reverse rotation) and countup (forward rotation) clock pulse CLp to the hexadecimal counter 14 and a switching signal to the switching circuit 13 at a predetermined timing according to the input start signal and the clock signal. This is a forward / reverse clock control circuit.

【0019】次にその動作について説明する。起動時の
起動モードでは、起動信号生成回路17の正逆クロック
制御回路18へのスタート信号に応じ、切換回路13が
起動モードに切換えられるとともに、カウントダウンの
クロックパルスCLpが6進カウンタ15に出力され
る。それにより6進カウンタ15からのカウントダウン
の6進信号a,b,cが切換回路13を介して電機子巻
線駆動回路10に印加される。これにより電機子巻線駆
動回路10により電機子巻線6がシーケンス(6)→(5)
→(4)→(3)→(2)→(1)の順に切換え転流され、回転
子2は強制的に逆転方向に6転流分、即ち1サイクルだ
け回転する。この逆転カウト領域から一定時間T0の相
固定領域に入り、クロックパルスCLpが印加されなく
なり、シーケンス(1)で転流が停止し、電機子巻線6の
U相とW相にのみ電流が流れ、ロータ2のN極がU相の
固定子極にS極がW相の固定子極に最も近接した位置で
振動しながら停止する。このように逆転カウント期間の
最後の転流シーケンスによってきまる相位置に確実に停
止する。
Next, the operation will be described. In the start-up mode at the time of start-up, the switching circuit 13 is switched to the start-up mode in response to the start signal to the forward / reverse clock control circuit 18 of the start-up signal generation circuit 17, and the countdown clock pulse CLp is output to the hexadecimal counter 15. It As a result, the countdown hexadecimal signals a, b, and c from the hexadecimal counter 15 are applied to the armature winding drive circuit 10 via the switching circuit 13. As a result, the armature winding driving circuit 10 causes the armature winding 6 to perform the sequence (6) → (5).
The commutation is switched in the order of → (4) → (3) → (2) → (1), and the rotor 2 is forcibly rotated in the reverse direction by 6 commutations, that is, one cycle. From this reverse rotation cout region, the phase fixed region of a certain time T 0 is entered, the clock pulse CLp is not applied, the commutation is stopped in the sequence (1), and only the U phase and the W phase of the armature winding 6 have current. As a result, the N pole of the rotor 2 vibrates and stops at a position where the N pole of the rotor 2 is closest to the U-phase stator pole and the S pole is closest to the W-phase stator pole. In this way, the stop is reliably stopped at the phase position determined by the last commutation sequence in the reverse rotation count period.

【0020】この相固定領域で振動が収まる迄1相に相
固定してから正転カウント領域に入り、正逆クロック制
御回路18から正転用のカウントアップのクロックパル
スCLpが短い間隔で2パルス6進カウンタ15に出力
される。それにより6進カウンタ15からのカウントア
ップの6進信号a,b,cが切換回路13を介して電機
子巻線駆動回路10に印加され、電機子巻線駆動回路1
0により電機子巻線6がシーケンス(1)から(2),(3)
に切換え転流され、回転子2は急速に正転方向に回転を
開始する。そして、回転子2の回転速度が上がり電機子
巻線6に満足な誘起電圧が得られるようになったら、正
逆クロック制御回路18からの切換信号により切換回路
13が切換えられ回転子位置信号生成回路11及び6進
カウンタ12による定常モードの回転動作に入る。
After the phase is fixed to one phase until the vibration is subsided in this phase-fixed region, the normal rotation count region is entered, and the forward / reverse clock control circuit 18 counts up the clock pulse CLp for normal rotation in two pulses at short intervals. It is output to the decimal counter 15. Thereby, the count-up hexadecimal signals a, b, and c from the hexadecimal counter 15 are applied to the armature winding drive circuit 10 via the switching circuit 13, and the armature winding drive circuit 1
0 causes armature winding 6 to go from sequence (1) to (2), (3)
The commutation is performed and the rotor 2 rapidly starts rotating in the forward direction. When the rotation speed of the rotor 2 increases and a sufficient induced voltage is obtained in the armature winding 6, the switching circuit 13 is switched by the switching signal from the forward / reverse clock control circuit 18 to generate the rotor position signal. The rotation operation in the steady mode by the circuit 11 and the hexadecimal counter 12 is started.

【0021】この定常モードに切り換えるタイミング、
即ち上記相固定領域及び正転カウント領域時間は、回転
子2のイナーシャ、モータのトルク定数などから設定で
きる。この時1相固定で回転子2の機械的振動が収まる
時間は、回転子のイナーシャを35gcm/sec2、トルク
定数を240gcm/Aとした場合、無負荷時で最大10
0msとすればよい。
Timing of switching to this steady mode,
That is, the phase fixing region and the forward rotation counting region time can be set from the inertia of the rotor 2, the torque constant of the motor, and the like. At this time, when the mechanical vibration of the rotor 2 is settled by fixing the one phase, the maximum is 10 when there is no load when the rotor inertia is 35 gcm / sec 2 and the torque constant is 240 gcm / A.
It should be 0 ms.

【0022】このように回転子2が逆方向に回転して所
定相位置に停止するので、正転を開始する時点では、図
3に示すように回転子2に固着された駆動ピン4はディ
スク駆動ハブ7の位置決め孔9の回転方向側の端縁とは
離れた係合していない位置にあるので、回転子2の回転
開始時の負荷は軽く速かに起動し、起動後の駆動ピン4
が位置決め孔9の回転方向側の端縁にあたる衝撃力によ
りヘッドスティクション等の負荷に打勝ってディスク駆
動ハブ7を回転駆動する。
Since the rotor 2 rotates in the reverse direction and stops at the predetermined phase position in this manner, at the time when the normal rotation is started, the drive pin 4 fixed to the rotor 2 is the disk as shown in FIG. Since the drive hub 7 is located at a position not engaged with and separated from the end of the positioning hole 9 on the rotation direction side of the drive hub 7, the load at the start of rotation of the rotor 2 is lightly and quickly activated, and the drive pin after activation is started. Four
Drives the disk drive hub 7 in rotation by overcoming a load such as head stiction by an impact force that strikes an edge of the positioning hole 9 on the rotation direction side.

【0023】また、図4に示すように、回転子2が転流
シーケンス(1)で停止した位置では転流シーケンス(2)
のトルクは減少途中にあリ、転流シーケンス(3)のよう
な増加傾向にあるトルクをかける方がより強い起動を促
すと考えられる。このため、なるべく速くシーケンス
(3)に転流させるため短い間隔で2個のクロックパルス
CLpが6進カウンタ15に印加される。
Further, as shown in FIG. 4, at the position where the rotor 2 is stopped in the commutation sequence (1), the commutation sequence (2)
It is considered that the torque is increased during the decrease, and a stronger start is promoted by applying the increasing torque as in the commutation sequence (3). Therefore, sequence as fast as possible
In order to commutate to (3), two clock pulses CLp are applied to the hexadecimal counter 15 at short intervals.

【0024】実施の形態2.実施の形態1では相固定後
2個のクロックパルスCLpを6進カウンタ15に印加
して、2回転流するようにしたが、より強いトルクを生
じさせるために、最初から2つ先の転流シーケンスから
始動するようにしてもよい。図5はこの場合の実施の形
態2の動作を説明するためのタイムチャート、図6はこ
の実施の形態におけるモータのトルクを示す図である。
Embodiment 2 FIG. In the first embodiment, two clock pulses CLp after phase fixing are applied to the hexadecimal counter 15 to make two rotations flow. However, in order to generate a stronger torque, two commutations two from the beginning are commutated. You may make it start from a sequence. FIG. 5 is a time chart for explaining the operation of the second embodiment in this case, and FIG. 6 is a diagram showing the motor torque in the present embodiment.

【0025】図より明らかなように、転流シーケンス
(1)で相固定した後、2つ先の転流シーケンス(3)の6
進信号a,b,cが6進カウンタ15から出力されるよ
うクロックパルスCLpが印加され、より強いトルクが
生ずる転流シーケンス(3)で回転子2の回転が開始され
る。そして回転子2の加速が最大となるタイミングで、
その次の転流シーケンス(4)に切り換えられ、更に加速
される。このように転流シーケンスが切換えられること
により、正転カウント領域においてより速い回転子2の
状態で定常モードに切り換えられる。
As is clear from the figure, the commutation sequence
After phase-fixing in (1), 6 in the second commutation sequence (3)
The clock pulse CLp is applied so that the progressive signals a, b, and c are output from the hexadecimal counter 15, and the rotation of the rotor 2 is started in the commutation sequence (3) in which stronger torque is generated. And at the timing when the acceleration of the rotor 2 becomes maximum,
It is switched to the next commutation sequence (4) and further accelerated. By switching the commutation sequence in this manner, the normal mode is switched to the normal mode in the state of the rotor 2 which is faster in the normal rotation count region.

【0026】[0026]

【発明の効果】この発明によるセンサレス無整流子直流
モータ駆動装置は以上説明したように、回転子を逆方向
に所定相回転させた後所定時間停止相に固定させてから
正転させる起動信号を生成して電機子巻線駆動回路に供
給するようにしたので、回転子が確実に正転方向に回転
始動し、かつ、ディスク駆動ハブを駆動するスピンドル
モータとして使用した場合、回転子に固着された駆動ピ
ンが、ディスク駆動ハブの位置決め孔の端縁にあたる衝
撃力が利用でき、ヘッドスティクション等の負荷に打勝
ってディスク駆動ハブを回転駆動できるという効果があ
る。
As described above, the sensorless commutatorless DC motor drive device according to the present invention provides a start signal for rotating the rotor in the reverse direction for a predetermined phase, fixing it in the stationary phase for a predetermined time, and then rotating it forward. Since it is generated and supplied to the armature winding drive circuit, the rotor is surely started to rotate in the forward direction, and when it is used as a spindle motor to drive the disk drive hub, it is fixed to the rotor. The drive pin can utilize the impact force that hits the edge of the positioning hole of the disk drive hub, and there is an effect that the disk drive hub can be rotationally driven by overcoming the load such as head stiction.

【0027】また、回転子を所定相に固定した後、1サ
イクル6転流のうち速かに2転流させて正転させる起動
信号を生成して電機子巻線駆動回路に供給するようにし
たので、回転子の正転開始時に、素早く回転子に強いト
ルクを与えることができ起動が確実かつ速かに行なうこ
とができるという効果がある。
Further, after the rotor is fixed to a predetermined phase, a start signal for making two normal commutations in one cycle and six normal commutations is generated and supplied to the armature winding drive circuit. Therefore, there is an effect that a strong torque can be quickly applied to the rotor at the time of starting the normal rotation of the rotor, and the startup can be performed surely and quickly.

【0028】また、回転子を所定相に固定した後、1サ
イクル6転流のうち2転流進んだ相から正転させる起動
信号を生成して電機子巻線駆動回路に供給するようにし
たので、回転子の正転開始時、直ちに最高のトルクを与
えることができ起動が確実かつ速かに行なうことができ
るという効果がある。
Further, after the rotor is fixed to a predetermined phase, a starting signal for normal rotation is generated from the phase which has advanced two commutations of six commutations in one cycle, and is supplied to the armature winding drive circuit. Therefore, the maximum torque can be immediately applied at the start of the normal rotation of the rotor, and the start-up can be performed reliably and quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1の構成を示すブロッ
ク線図。
FIG. 1 is a block diagram showing a configuration of a first embodiment of the present invention.

【図2】 実施の形態1の動作を説明するためのタイム
チャート。
FIG. 2 is a time chart for explaining the operation of the first embodiment.

【図3】 実施の形態1におけるモータに装着されたデ
ィスク駆動ハブの平面図。
FIG. 3 is a plan view of the disk drive hub mounted on the motor according to the first embodiment.

【図4】 実施の形態1におけるモータのトルクを示す
図。
FIG. 4 is a diagram showing a torque of the motor in the first embodiment.

【図5】 実施の形態2の動作を説明するためのタイム
チャート。
FIG. 5 is a time chart for explaining the operation of the second embodiment.

【図6】 実施の形態2におけるモータのトルクを示す
図。
FIG. 6 is a diagram showing torque of a motor according to the second embodiment.

【図7】 センサレス無整流子直流モータの一例を示す
平面図。
FIG. 7 is a plan view showing an example of a sensorless commutatorless DC motor.

【図8】 従来のディスク駆動装置のディスク駆動ハブ
の平面図。
FIG. 8 is a plan view of a disk drive hub of a conventional disk drive device.

【図9】 従来のセンサレス無整流子直流モータの駆動
装置の構成を示すブロック線図。
FIG. 9 is a block diagram showing a configuration of a conventional sensorless commutatorless DC motor driving device.

【図10】 センサレス無整流子直流モータの電機子巻
線駆動回路を示す回路図。
FIG. 10 is a circuit diagram showing an armature winding drive circuit of a sensorless commutatorless DC motor.

【図11】 センサレス無整流子直流モータ駆動装置の
定常動作を説明するためのタイムチャート。
FIG. 11 is a time chart for explaining a steady operation of the sensorless commutatorless DC motor driving device.

【符号の説明】[Explanation of symbols]

1 スピンドルモータ、2 回転子、5 固定子、6
電機子巻線、10 電機子巻線駆動回路、11 回転子
位置信号生成回路、17 起動信号生成回路。
1 spindle motor, 2 rotors, 5 stators, 6
Armature winding, 10 Armature winding drive circuit, 11 Rotor position signal generation circuit, 17 Start signal generation circuit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 磁極からなる回転子、複数相の電機子巻
線を有する固定子、上記電機子巻線からの誘起電圧信号
を加工して回転子位置信号を生成する回転子位置信号生
成回路、この回路からの回転子位置信号に応じて、駆動
電流を上記各相電機子巻線に切換え供給する電機子巻線
駆動回路、及びモータ起動時にこの電機子巻線駆動回路
に上記回転子位置信号に代え印加される起動信号を生成
する起動信号生成回路を備えたセンサレス無整流子直流
モータ駆動装置において、上記起動信号生成回路は、上
記回転子を逆方向に所定相回転させた後所定時間停止相
に固定させてから正転させるよう、上記電機子巻線駆動
回路に起動信号を供給するよう構成したことを特徴とす
るセンサレス無整流子直流モータ駆動装置。
1. A rotor having magnetic poles, a stator having a plurality of phases of armature windings, and a rotor position signal generation circuit for processing an induced voltage signal from the armature windings to generate a rotor position signal. , An armature winding drive circuit for switching and supplying a drive current to each of the phase armature windings in accordance with a rotor position signal from this circuit, and the rotor position in the armature winding drive circuit when the motor is started. In the sensorless non-commutator DC motor drive device having a start signal generation circuit that generates a start signal applied instead of the signal, the start signal generation circuit causes the rotor to rotate in the reverse direction for a predetermined phase and then for a predetermined time. A sensorless commutatorless DC motor drive device configured to supply a start signal to the armature winding drive circuit so that the armature winding drive circuit is fixed to a stop phase and then rotated normally.
【請求項2】 磁極からなる回転子、3相の電機子巻線
を有する固定子、上記電機子巻線からの誘起電圧信号を
加工して回転子位置信号を生成する回転子位置信号生成
回路、この回路からの回転子位置信号に応じて、駆動電
流を上記各相電機子巻線に1サイクルに6回転流させる
電機子巻線駆動回路、及びモータ起動時にこの電機子巻
線駆動回路に上記回転子位置信号に代え印加される起動
信号を生成する起動信号生成回路を備えたセンサレス無
整流子直流モータ駆動装置において、上記起動信号生成
回路は、上記回転子を所定相に固定した後速かに2回続
けて転流させて正転させるよう、上記電機子巻線駆動回
路に起動信号を供給するよう構成したことを特徴とする
センサレス無整流子直流モータ駆動装置。
2. A rotor having magnetic poles, a stator having three-phase armature windings, and a rotor position signal generating circuit for processing an induced voltage signal from the armature windings to generate a rotor position signal. , An armature winding drive circuit that causes a drive current to flow through the armature windings of each phase six revolutions in one cycle according to a rotor position signal from this circuit, and to the armature winding drive circuit when the motor is started. In a sensorless non-commutator DC motor drive device including a start signal generation circuit that generates a start signal applied instead of the rotor position signal, the start signal generation circuit is a rear speed that fixes the rotor in a predetermined phase. A sensorless commutatorless DC motor drive device characterized in that a starting signal is supplied to the armature winding drive circuit so that the armature winding drive circuit is normally and normally commutated twice.
【請求項3】 磁極からなる回転子、3相の電機子巻線
を有する固定子、上記電機子巻線からの誘起電圧信号を
加工して回転子位置信号を生成する回転子位置信号生成
回路、この回路からの回転子位置信号に応じて、駆動電
流を上記各相電機子巻線に1サイクルに6回転流させる
電機子巻線駆動回路、及びモータ起動時にこの電機子巻
線駆動回路に上記回転子位置信号に代え印加される起動
信号を生成する起動信号生成回路を備えたセンサレス無
整流子直流モータ駆動装置において、上記起動信号生成
回路は、上記回転子を所定相に固定した後2転流進んだ
相から正転させるよう、上記電機子巻線駆動回路に起動
信号を供給するよう構成したことを特徴とするセンサレ
ス無整流子直流モータ駆動装置。
3. A rotor having magnetic poles, a stator having three-phase armature windings, and a rotor position signal generating circuit for processing an induced voltage signal from the armature windings to generate a rotor position signal. , An armature winding drive circuit that causes a drive current to flow through the armature windings of each phase six revolutions in one cycle according to a rotor position signal from this circuit, and to the armature winding drive circuit when the motor is started. In a sensorless non-commutator DC motor drive device including a start signal generation circuit that generates a start signal that is applied instead of the rotor position signal, the start signal generation circuit fixes the rotor to a predetermined phase and then A sensorless commutatorless DC motor drive device configured to supply a start signal to the armature winding drive circuit so as to perform normal rotation from a phase in which commutation has advanced.
JP04118696A 1996-02-28 1996-02-28 Sensorless DC motor drive without commutator Expired - Fee Related JP3547890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04118696A JP3547890B2 (en) 1996-02-28 1996-02-28 Sensorless DC motor drive without commutator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04118696A JP3547890B2 (en) 1996-02-28 1996-02-28 Sensorless DC motor drive without commutator

Publications (2)

Publication Number Publication Date
JPH09233884A true JPH09233884A (en) 1997-09-05
JP3547890B2 JP3547890B2 (en) 2004-07-28

Family

ID=12601399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04118696A Expired - Fee Related JP3547890B2 (en) 1996-02-28 1996-02-28 Sensorless DC motor drive without commutator

Country Status (1)

Country Link
JP (1) JP3547890B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202294A (en) * 2006-01-26 2007-08-09 Valeo Thermal Systems Japan Corp Drive control method and controller of sensorless/brushless motor
KR20160069031A (en) * 2014-12-05 2016-06-16 현대오트론 주식회사 Apparatus and method for driving three phase motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202294A (en) * 2006-01-26 2007-08-09 Valeo Thermal Systems Japan Corp Drive control method and controller of sensorless/brushless motor
KR20160069031A (en) * 2014-12-05 2016-06-16 현대오트론 주식회사 Apparatus and method for driving three phase motor

Also Published As

Publication number Publication date
JP3547890B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US5572097A (en) Method and apparatus for starting polyphase dc motor
JP2010035288A (en) Single-phase brushless dc motor drive circuit
JP2000278989A (en) Synchronous motor driving device
JP2002223583A (en) Brushless motor driving device
US6218794B1 (en) Spindle motor startup method and apparatus
JP3547890B2 (en) Sensorless DC motor drive without commutator
US6429614B1 (en) Method and device for controlling an electronically commutated polyphase D.C. motor
JPH11341872A (en) Method for starting sensorless synchronous servomotor and controller thereof
JP4291976B2 (en) Starting method of brushless / sensorless DC motor
JPH07236261A (en) Brushless motor
JP3299559B2 (en) Drive circuit for two-phase unipolar sensorless motor
JPS61189185A (en) Controller of brushless motor
JP2653586B2 (en) Brushless DC motor
KR100858540B1 (en) Method for controlling BLDC motor for inverter airconditioner
KR20000000837U (en) Drive Circuit of Brushless DC Motor
JP3110843B2 (en) Starting method of sensorless multi-phase DC motor
JP3105557B2 (en) Motor device
JPH0670578A (en) Brushless motor control circuit
JP2934257B2 (en) Servo device
JPH06315293A (en) Driving equipment for permanent magnet type motor
JP2958360B2 (en) Synchronous brushless DC motor
JP2005304255A (en) Motor drive circuit
JP4522059B2 (en) Motor driving apparatus and motor driving method
JPH11146680A (en) Driver for multiphase motor
JP4291977B2 (en) Brushless and sensorless DC motor drive system

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees