JPH09233869A - Vibrating device - Google Patents

Vibrating device

Info

Publication number
JPH09233869A
JPH09233869A JP8036528A JP3652896A JPH09233869A JP H09233869 A JPH09233869 A JP H09233869A JP 8036528 A JP8036528 A JP 8036528A JP 3652896 A JP3652896 A JP 3652896A JP H09233869 A JPH09233869 A JP H09233869A
Authority
JP
Japan
Prior art keywords
vibrating body
vibration
vibrating
bending vibration
longitudinal vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8036528A
Other languages
Japanese (ja)
Inventor
Koji Akata
弘司 赤田
Masami Sugimori
正巳 杉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8036528A priority Critical patent/JPH09233869A/en
Publication of JPH09233869A publication Critical patent/JPH09233869A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect the behavior of the elliptic motion of a vibrating body accurately and to obtains the excellent driving performance by detecting the amplitudes of the bending vibration and the vertical vibration of the vibrating body formed by forming a stack of an electromechanical energy converting element ands an elastic body. SOLUTION: At electrode parts 1g and 1h of an electrode layer provided at both surface of a vibrating body, sensor electrode parts 1h-1 and 1h-1, which becomes the signal output parts for mechanical-electrical energy conversion, and insulating parts 1g-2 and 1h-2 are formed. The sensor electrode parts 1g-1 and 1h-1 and the electrode parts 1g and 1h are not conducted, respectively. When alternating voltages are applied to the electrode parts 1e and 1f and the electrode parts 1f and 1g, the output voltages of the sensor electrode parts 1h-1 and and the sensor electrode 1g-1 and the amplitudes of the bending vibration and the vertical vibration are detected. Thus, the behavior of the elliptic motion of the vibrating body can be accurately detected, and the excellent driving performance can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、振動を利用した振
動装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vibration device utilizing vibration.

【0002】[0002]

【従来の技術】従来、この種のモータとしては、例えば
特開昭61−251490号、特開昭61−3517
6、特開平6−133568号公報に開示されるものが
あった。これらの公報によれば、進行波タイプの超音波
モータで弾性体の振動振幅をセンサ相等を設けることに
より検出し、入力周波数を変化させたり、入力電圧を制
御したりすることで安定な駆動特性を得ようとする装置
であった。
2. Description of the Related Art Conventionally, as a motor of this type, for example, Japanese Patent Laid-Open Nos. 61-251490 and 61-3517.
6, there is one disclosed in JP-A-6-133568. According to these publications, a traveling wave type ultrasonic motor detects a vibration amplitude of an elastic body by providing a sensor phase or the like, and a stable drive characteristic is obtained by changing an input frequency or controlling an input voltage. It was a device to obtain.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の装置は実際に振動体が行っている楕円運動の振幅は検
出できても楕円の形状は検出できない。例えば周波数を
可変すると、楕円の振幅が小さくなったのか、楕円の形
状が変化したのか判断することができない。また、超音
波モータの速度を制御するために入力周波数を変化させ
ることが行われるが、周波数によっては突然加速したり
停止してしまうなどの不安定な要素も考えられる。
However, these devices can detect the amplitude of the elliptical motion actually performed by the vibrating body, but cannot detect the shape of the ellipse. For example, if the frequency is changed, it cannot be determined whether the amplitude of the ellipse has decreased or the shape of the ellipse has changed. Further, although the input frequency is changed in order to control the speed of the ultrasonic motor, unstable factors such as sudden acceleration and stop may be considered depending on the frequency.

【0004】また、定在波型の超音波モータにおいて
も、上下方向に変位する振動子の振動の振幅だけを検出
していたのでは安定した駆動特性で速度制御することが
難しい。
Also in the standing wave type ultrasonic motor, it is difficult to control the speed with stable drive characteristics by detecting only the amplitude of the vibration of the vibrator which is displaced in the vertical direction.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、電気
−機械エネルギー変換素子と弾性体を積層してなる振動
体と、前記変換素子の複数の信号入力部に位相の異なる
交番信号を供給し、前記振動体を屈曲振動と縦振動させ
て両振動の合成により作用部を楕円運動させ、前記振動
体に接触した接触体と前記振動体とを相対移動可能とす
る振動装置において、前記振動体の前記屈曲振動と前記
縦振動の振幅を検出する検出手段を設けた振動装置を特
徴とする。
According to a first aspect of the present invention, a vibrating body formed by laminating an electro-mechanical energy conversion element and an elastic body, and alternating signals having different phases are applied to a plurality of signal input portions of the conversion element. In the vibrating device, which supplies the vibrating body, causes the vibrating body to longitudinally vibrate, and causes the action portion to make an elliptical motion by combining the two vibrations, and makes the contact body in contact with the vibrating body and the vibrating body relatively movable. The vibrating device is provided with a detection means for detecting the amplitudes of the bending vibration and the longitudinal vibration of the vibrating body.

【0006】請求項2の発明は、電気−機械エネルギー
変換素子と弾性体を積層してなる振動体と、前記変換素
子の複数の信号入力部に位相の異なる交番信号を供給
し、前記振動体を屈曲振動と縦振動させて両振動の合成
により作用部を楕円運動させ、前記振動体に接触した接
触体と前記振動体とを相対移動可能とする振動装置にお
いて、前記振動体の前記屈曲振動と前記縦振動の振幅を
検出する検出手段と、前記検出手段の出力に基づき前記
変換素子の複数の信号入力部への供給信号の強さのバラ
ンスを変える制御手段を設けた振動装置を特徴とする。
According to a second aspect of the present invention, a vibrating body formed by laminating an electro-mechanical energy conversion element and an elastic body, and alternating signals having different phases are supplied to a plurality of signal input portions of the conversion element, and the vibrating body is provided. A bending vibration of the vibrating body and a longitudinal vibration of the vibrating body to cause an elliptical motion of the action part by combining the two vibrations, thereby allowing the contact body in contact with the vibrating body and the vibrating body to move relative to each other. And a detecting device for detecting the amplitude of the longitudinal vibration, and a vibrating device provided with a control device for changing the balance of the strengths of the signals supplied to the plurality of signal input parts of the conversion element based on the output of the detecting device. To do.

【0007】請求項3の発明は、電気−機械エネルギー
変換素子と弾性体を積層してなる振動体と、前記変換素
子の複数の信号入力部に位相の異なる交番信号を供給
し、前記振動体を屈曲振動と縦振動させて両振動の合成
により作用部を楕円運動させ、前記振動体に接触した接
触体と前記振動体とを相対移動可能とする振動装置にお
いて、前記振動体の前記屈曲振動と前記縦振動の振幅を
検出する検出手段と、前記検出手段の出力に基づき前記
変換素子の複数の信号入力部への供給信号の位相を変え
る制御手段を設けた振動装置を特徴とする。
According to a third aspect of the present invention, a vibrating body formed by laminating an electro-mechanical energy converting element and an elastic body, and alternating signals having different phases are supplied to a plurality of signal input portions of the converting element, and the vibrating body is provided. A bending vibration of the vibrating body and a longitudinal vibration of the vibrating body to cause an elliptical motion of the action part by combining the two vibrations, thereby allowing the contact body in contact with the vibrating body and the vibrating body to move relative to each other. And a detecting device for detecting the amplitude of the vertical vibration, and a vibrating device provided with control means for changing the phases of the signals supplied to the plurality of signal input parts of the conversion element based on the output of the detecting device.

【0008】請求項4の発明は、前記振動体に前記屈曲
振動の節となる位置が複数箇所できるように前記変換素
子は配設し、前記複数の節の位置に機械−電気エネルギ
ー変換の為の複数の信号出力部を配置し、前記信号出力
部からの出力に基づき前記屈曲振動及び縦振動の振幅を
検出した振動装置を特徴とする。
According to a fourth aspect of the present invention, the conversion element is arranged in the vibrating body so that a plurality of positions of the bending vibration can be provided, and mechanical-electrical energy conversion is performed at the plurality of nodes. And a plurality of signal output sections are arranged, and the amplitude of the bending vibration and the longitudinal vibration is detected based on the output from the signal output section.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例)図1において1は振動体で、リン青銅、黄銅
等で板状に形成された弾性体1cの両主面に、一対の板
状のエネルギー変換素子としての圧電素子1a,1bが
加圧接着されている。また、振動体1の両主面にはニッ
ケル、銅等の導電材料が蒸着され、電極層が形成されて
いる。電極層は振動体1の長手方向を2分する位置に絶
縁分割して形成されており電気−気化エネルギー変換の
為の信号入力部となる4つの電極部1e〜1hからなっ
ている。さらに、電極部1g,1hには、図2が示すよ
うに、機械−電気エネルギー変換の為の信号出力部とな
るセンサ電極部1g−1,1h−1および絶縁部1g−
2,1h−2が形成されてセンサ電極部1g−1,1h
−1と電極部1g,1hとはそれぞれ非導通となってい
る。またセンサ電極部1g−1,1h−1の主要部の位
置は、後述の駆動子の貼付位置の真裏面に形成されてい
る。またセンサ電極部1g−1,1h−1は主要部の一
部分から振動体1の振動モードの節部近傍(振動体1の
長手方向中央付近)へ導かれている。弾性体1cには張
り出し部1c−1,1c−2があり、この張り出し部の
中央部に係合穴1c−3,1c−4が設けられている。
張り出し部の位置は振動体1の振動モードの節部近傍と
なっており、振動モードへの悪影響を回避している。さ
らに電極部1e〜1hおよびセンサ電極1g−1,1h
−1および弾性体1cには合計7本の端子部1dが半田
付け等により取り付けられている。それらの位置は前述
と同様の理由により節部近傍となっている。
(Embodiment) In FIG. 1, reference numeral 1 is a vibrating body, and a pair of plate-shaped piezoelectric elements 1a and 1b as energy conversion elements are provided on both main surfaces of an elastic body 1c formed of phosphor bronze, brass or the like in a plate shape. Pressure bonded. Further, a conductive material such as nickel or copper is vapor-deposited on both main surfaces of the vibrating body 1 to form electrode layers. The electrode layer is formed by insulation division at a position that divides the longitudinal direction of the vibrating body 1 into two parts, and is composed of four electrode portions 1e to 1h which are signal input portions for electric-vaporization energy conversion. Further, as shown in FIG. 2, the electrode portions 1g and 1h have sensor electrode portions 1g-1 and 1h-1 and insulating portions 1g- which serve as signal output portions for mechanical-electrical energy conversion.
2, 1h-2 are formed and the sensor electrode portions 1g-1, 1h are formed.
-1 and the electrode portions 1g and 1h are not electrically connected to each other. The positions of the main parts of the sensor electrode portions 1g-1 and 1h-1 are formed directly on the back surface of the attachment position of the driver, which will be described later. Further, the sensor electrode portions 1g-1 and 1h-1 are led from a part of the main portion to the vicinity of the node of the vibration mode of the vibrating body 1 (near the center of the vibrating body 1 in the longitudinal direction). The elastic body 1c has projecting portions 1c-1 and 1c-2, and engaging holes 1c-3 and 1c-4 are provided at the center of the projecting portions.
The position of the overhanging portion is in the vicinity of the node of the vibration mode of the vibrating body 1 to avoid adverse effects on the vibration mode. Further, the electrode portions 1e to 1h and the sensor electrodes 1g-1 and 1h
-1 and the elastic body 1c are attached with a total of seven terminal portions 1d by soldering or the like. The positions are near the nodes for the same reason as described above.

【0010】2a,2dはフェノール樹脂、エポキシ樹
脂等で形成された1対の駆動子であり、より高い駆動力
を得るために振動体の振動モードの腹部の位置に接着等
により取り付けられる。
Reference numerals 2a and 2d are a pair of driver elements made of a phenol resin, an epoxy resin or the like, and are attached by adhesion or the like to the position of the antinode of the vibration mode of the vibrating body in order to obtain a higher driving force.

【0011】3はリン青銅等で形成された加圧バネで、
張り出し部3a,3bが形成され、その張り出し部には
それぞれ係合穴3a−1,3b−1が設けられている。
また加圧バネ3の長手方向両端部には折り曲げ部3c−
1,3c−2が設けられている。さらに加圧バネ3の中
央部には、幅方向に凸部3dが形成されている。
Reference numeral 3 is a pressure spring made of phosphor bronze or the like,
Overhangs 3a and 3b are formed, and the overhangs are provided with engagement holes 3a-1 and 3b-1, respectively.
The pressure spring 3 has bent portions 3c-at both ends in the longitudinal direction.
1, 3c-2 are provided. Further, a convex portion 3d is formed in the center of the pressing spring 3 in the width direction.

【0012】4はステンレス鋼等で形成された接触体と
してのガイドレールである。
Reference numeral 4 is a guide rail as a contact body made of stainless steel or the like.

【0013】5はローラで、ローラを支持する支持棒5
aが圧入等の周知の方法で取り付けられている。
Reference numeral 5 denotes a roller, which is a support rod 5 for supporting the roller.
a is attached by a known method such as press fitting.

【0014】6はプラスチックモールド加工されたケー
スで、係合軸部6a,6bが設けられ、それらの根元に
はストッパ6c,6dが設けられている。またケース6
の長手方向両端上部にはガイドレール4よりもやや大き
い幅を持つ溝部6g,6hが設けられている。またケー
ス6の一部に溝部6iが設けられている。さらにケース
6の幅方向両端部には溝部6e,6fが設けられてい
る。
Reference numeral 6 denotes a case molded by plastic molding, in which engaging shaft portions 6a and 6b are provided, and stoppers 6c and 6d are provided at the bases thereof. Case 6
Grooves 6g and 6h having a width slightly larger than that of the guide rail 4 are provided at upper ends of both ends in the longitudinal direction. A groove 6i is provided in a part of the case 6. Further, grooves 6e and 6f are provided at both ends in the width direction of the case 6.

【0015】7はプラスチックモールド加工されたキャ
ップで、支持棒5aを軸支する軸受溝(不図示)と係合
軸部6a,6bが挿入される穴部(不図示)が設けられ
ている。さらにキャップ7の幅方向両端部には係止爪を
有した挾持片7a,7bが設けられている。
Reference numeral 7 denotes a plastic-molded cap, which is provided with a bearing groove (not shown) that axially supports the support rod 5a and a hole (not shown) into which the engaging shaft portions 6a and 6b are inserted. Further, at both ends of the cap 7 in the width direction, holding pieces 7a and 7b having locking claws are provided.

【0016】次に各部品の相互関係について説明する。Next, the mutual relation of each component will be described.

【0017】ケース6に設けられた係合軸部6a,6b
にそれぞれ加圧バネ3に設けられた係合穴3a−1,3
b−1係合(挿入)させる。そのとき加圧バネ3の張り
出し部3a,3bがやや係合軸方向に折り曲げられてお
り、係合軸部6a,6bと係合穴3a−1,3b−1の
嵌合ガタをなくしている。そして折れ曲がり部3c−
1,3c−2がケースの底面に接触するまで加圧バネ6
はスライドされて止まる。加圧バネ6の最大たわみ量は
張り出し部3a,3bがケース6のストッパ6c,6d
に突き当たるまでたわむようになっている。
Engaging shafts 6a, 6b provided on the case 6
The engagement holes 3a-1, 3 provided in the pressure spring 3 respectively.
b-1 Engage (insert). At this time, the protruding portions 3a and 3b of the pressure spring 3 are bent in the engagement axis direction to some extent, thereby eliminating the fitting backlash between the engagement shaft portions 6a and 6b and the engagement holes 3a-1 and 3b-1. . And the bent portion 3c-
Pressing spring 6 until 1, 3c-2 contacts the bottom of the case
Slides and stops. The maximum amount of deflection of the pressure spring 6 is such that the projecting portions 3a and 3b are the stoppers 6c and 6d of the case 6.
It bends until it hits.

【0018】つぎに振動体1の弾性体1cに設けられた
係合穴1c−3,1c−4にそれぞれケース6の係合軸
部6a,6bを挿通する。そのとき張り出し部1c−1
が係合軸方向に若干折り曲げられており、係合軸6a,
6bと係合穴1c−3,1c−4の嵌合ガタをなくして
いる。そして振動体1の圧電素子1bに加圧バネ3の凸
部3dに接触するまで、振動体1がスライドされる。
Next, the engaging shaft portions 6a and 6b of the case 6 are inserted into the engaging holes 1c-3 and 1c-4 provided in the elastic body 1c of the vibrating body 1, respectively. At that time, overhanging part 1c-1
Is slightly bent in the direction of the engaging shaft, and the engaging shaft 6a,
The fitting backlash between 6b and the engaging holes 1c-3 and 1c-4 is eliminated. Then, the vibrating body 1 is slid until the piezoelectric element 1b of the vibrating body 1 contacts the convex portion 3d of the pressure spring 3.

【0019】ローラ5に圧入等の方法で取り付けられた
支持棒5aの両端部がキャップ7に設けられた軸受部
(不図示)に装着固定される。
Both ends of the support rod 5a attached to the roller 5 by a method such as press fitting are attached and fixed to bearing portions (not shown) provided on the cap 7.

【0020】加圧バネ3と振動体1が取り付けられたケ
ース6と、ローラ5が取り付けられたケース7が、ロー
ラ5の面と駆動子2a,2bの面でガイドレール4を挟
みこむようにして取り付けられる。その際に、キャップ
7に設けられた係止爪を有する挟持片7a,7bがケー
ス6の溝6e,6fにガイドされて、スナップフィット
により取り付けられる。またそのときに、ケース6の係
合軸6a,6bとキャップ7に設けられた穴部(不図
示)と係合しキャップ7がケース6と位置決めされる。
さらにガイドレール4はケース6の溝6g,6hにより
幅方向への移動が規制される。
A case 6 to which the pressure spring 3 and the vibrating body 1 are attached and a case 7 to which the roller 5 is attached are attached so that the guide rail 4 is sandwiched between the surface of the roller 5 and the surfaces of the drivers 2a and 2b. To be At this time, the holding pieces 7a, 7b having the locking claws provided on the cap 7 are guided by the grooves 6e, 6f of the case 6 and attached by snap fitting. At that time, the engagement shafts 6a and 6b of the case 6 are engaged with the holes (not shown) provided in the cap 7, and the cap 7 is positioned with respect to the case 6.
Further, movement of the guide rail 4 in the width direction is restricted by the grooves 6g and 6h of the case 6.

【0021】電極部1e〜1h、センサ電極部1g−
1,1h−1及び弾性体1cに設けられた端子部1dは
リード線もしくはフレキシブルプリント基板に半田付け
され、リード線もしくはフレキシブルプリント基板がケ
ース6に設けられた溝6iよりケース6の外部へ引き出
され、リード線もしくはフレキシブルプリント基板を外
部の駆動回路に結線することによって、給電とセンシン
グが可能となる。
Electrode portions 1e to 1h, sensor electrode portion 1g-
1, 1h-1 and the terminal portion 1d provided on the elastic body 1c are soldered to a lead wire or a flexible printed board, and the lead wire or the flexible printed board is pulled out of the case 6 from a groove 6i provided in the case 6. By connecting the lead wire or the flexible printed circuit board to an external drive circuit, power supply and sensing can be performed.

【0022】本実施の形態の振動装置の駆動原理につい
て説明する。
The driving principle of the vibration device according to the present embodiment will be described.

【0023】図3は、圧電素子の圧電効果を示した図で
ある。同図において10は圧電素子で、図の上方から下
方へ分極処理がなされている(図中矢印の方向)。ま
た、圧電素子の両面には電極部10a,10bが蒸着処
理により施されている。
FIG. 3 is a diagram showing the piezoelectric effect of the piezoelectric element. In the figure, reference numeral 10 denotes a piezoelectric element, which is subjected to a polarization process from above to below in the figure (in the direction of the arrow in the figure). Electrodes 10a and 10b are provided on both surfaces of the piezoelectric element by vapor deposition.

【0024】図3(a)は、電極部10aに+電位、電
極部10bに−電位を印加したときの様子を示した図で
ある。この場合圧電素子には、電極部10aから電極部
10bの方向つまり分極方向と順方向に電界が印加され
るので圧電素子は分極方向に対して垂直の方向に伸び、
電界の大きさに応じた伸び量が発生する。
FIG. 3A is a diagram showing a state when a + potential is applied to the electrode portion 10a and a − potential is applied to the electrode portion 10b. In this case, since an electric field is applied to the piezoelectric element in the direction from the electrode portion 10a to the electrode portion 10b, that is, in the forward direction with respect to the polarization direction, the piezoelectric element extends in the direction perpendicular to the polarization direction.
An amount of expansion is generated according to the magnitude of the electric field.

【0025】図3(b)は電極部10aに−電位、電極
部10bに+電位を印加したときの様子を示した図であ
る。この場合圧電素子には、電極部10bから電極部1
0aの方向つまり分極方向と逆方向に電界が印加される
ので圧電素子は分極方向に対して垂直の方向に縮み、電
界の大きさに応じた縮み量が発生する。
FIG. 3 (b) is a diagram showing a state when a negative potential is applied to the electrode portion 10a and a positive potential is applied to the electrode portion 10b. In this case, the piezoelectric element includes electrodes 10b to 1
Since the electric field is applied in the direction of 0a, that is, in the direction opposite to the polarization direction, the piezoelectric element contracts in the direction perpendicular to the polarization direction, and a contraction amount corresponding to the magnitude of the electric field occurs.

【0026】図3(c)は圧電素子を分極方向に対して
垂直方向に、外力により伸ばしたときの様子を示した図
である。この場合は電極部10aに+電位、電極部10
bに−電位が生じ、伸び量に応じた電位差が発生する。
FIG. 3C is a diagram showing a state where the piezoelectric element is extended by an external force in a direction perpendicular to the polarization direction. In this case, a positive potential is applied to the electrode portion 10a,
A negative potential is generated at b, and a potential difference corresponding to the amount of elongation is generated.

【0027】図3(d)は圧電素子を分極方向に対して
垂直方向に、外力により縮めたときの様子を示した図で
ある。この場合は電極部10aに−電位、電極部10b
に+電位が生じ、縮み量に応じた電位差が発生する。
FIG. 3 (d) is a view showing a state in which the piezoelectric element is contracted in the direction perpendicular to the polarization direction by an external force. In this case, a negative potential is applied to the electrode portion 10a, and the electrode portion 10b
, A positive potential is generated, and a potential difference corresponding to the amount of shrinkage is generated.

【0028】本実施の形態の振動装置の振動体はこれら
の圧電現象を利用して駆動子に楕円運動が発生するよう
に定在波を励起しようとしたものである。
The vibrating body of the vibrating device according to the present embodiment is intended to excite a standing wave by using these piezoelectric phenomena so that an elliptic motion is generated in the driver.

【0029】図4は振動装置の振動体の側面図である。
圧電素子1aは図の下方から上方へ分極処理が施され、
圧電素子1bは図の上方から下方へ分極処理が施されて
いる。また、弾性体1cはグラウンドに接続されてい
る。このように構成された振動体1に、図5に示すよう
に電極部1eと1hに同位相、同振幅の交番電圧VA
印加し、電極部1fと1gに同位相、同振幅の交番電圧
Bを印加(ただし、電極部1eと1hへの交番電圧と
は位相が異なる)すると、圧電効果によって振動体が種
々の挙動を繰り広げる。たとえば図5の時間t1におけ
る圧電振動子の挙動は、電極部1e〜1hには同値で+
の電圧が印加されるので、図6(c)が示すように縮み
が生じる。図5の時間t2における圧電振動子の挙動
は、電極部1e,1hには+の電圧が印加され、電極部
1f,1gには−の電圧で電極部1e,1hへの印加電
圧と絶対値が同値の電圧が印加されるので、図6(d)
が示すように屈曲する。
FIG. 4 is a side view of the vibrating body of the vibrating device.
The piezoelectric element 1a is polarized from the bottom to the top in the figure,
The piezoelectric element 1b is polarized from the upper side to the lower side in the figure. The elastic body 1c is connected to the ground. As shown in FIG. 5, an alternating voltage V A having the same phase and the same amplitude is applied to the electrode portions 1e and 1h, and the alternating voltage V A having the same phase and the same amplitude is applied to the electrode portions 1f and 1g. When the voltage V B is applied (however, the phase is different from the alternating voltage applied to the electrode portions 1e and 1h), the vibrating body develops various behaviors due to the piezoelectric effect. For example, the behavior of the piezoelectric vibrator at time t 1 in FIG.
Since the voltage is applied, contraction occurs as shown in FIG. The behavior of the piezoelectric vibrator at time t 2 in FIG. 5 is that a positive voltage is applied to the electrode portions 1e and 1h and a negative voltage is applied to the electrode portions 1f and 1g, and the voltage applied to the electrode portions 1e and 1h is absolute. Since the voltage having the same value is applied, FIG.
Bend as shown.

【0030】図5の時間t3における圧電振動子の挙動
は、電極部1e〜1hには同値で−の電圧が印加される
ので、図6(a)が示すように伸びが生じる。図5の時
間t4における振動体の挙動は、電極部1e,1hには
−の電圧が印加され、電極部1f,1gには+の電圧で
電極部1e,1hへの印加電圧と絶対値が同値の電圧が
印加されるので、図6(b)が示すように屈曲する。
The behavior of the piezoelectric vibrator at the time t 3 in FIG. 5 is that the same negative voltage is applied to the electrode portions 1e to 1h, so that the extension occurs as shown in FIG. 6 (a). The behavior of the vibrating body at time t 4 in FIG. 5 is as follows: a negative voltage is applied to the electrode portions 1e and 1h, and a positive voltage is applied to the electrode portions 1f and 1g, and the absolute value and the applied voltage to the electrode portions 1e and 1h. Since a voltage of the same value is applied, the wire bends as shown in FIG.

【0031】以上のことから連続的な時間で挙動を見る
と、振動体は伸縮運動(縦振動)と屈曲運動(横振動)
が合成された挙動を示し、駆動子2a,2bは楕円軌道
を描くことになる。そして駆動子2a,2bの楕円軌道
の回転方向は一致している。また、交番電圧VAとVB
位相を逆転させると楕円軌道の回転方向は上記方向と逆
方向になる。
From the above, when observing the behavior in continuous time, the vibrating body has a stretching motion (longitudinal vibration) and a bending motion (lateral vibration).
Shows the combined behavior, and the driver elements 2a and 2b draw an elliptical orbit. The rotation directions of the elliptical orbits of the driver elements 2a and 2b are the same. Further, when reversing the phase of the alternating voltage V A and V B the direction of rotation of the elliptical orbit becomes the direction opposite to the direction.

【0032】以上のようにして楕円運動を行う駆動子2
a,2bにガイドレール等の摺動部材を押圧すると、駆
動力が発生し、ガイドレール等の摺動部材と駆動子とが
相対的に移動可能となる。ガイドレールを固定すれば、
当然ながら振動体が移動することになる。又、その逆も
実施できる。
The driver 2 that makes an elliptic motion as described above.
When a sliding member such as a guide rail is pressed against a and 2b, a driving force is generated, and the sliding member such as the guide rail and the driver can be relatively moved. If you fix the guide rail,
Of course, the vibrating body will move. The reverse is also possible.

【0033】本発明の振動装置の、横振動と縦振動の検
出方法について説明する。
A method of detecting lateral vibration and longitudinal vibration of the vibration device of the present invention will be described.

【0034】圧電効果により圧電素子が変形するとその
変形量に応じた圧電が発生することは上述した。そこで
振動装置の振動体に、駆動用電極とは別に圧電素子の変
形量を監視できるセンサ電極部を設け、横振動と縦振動
を検出する方法を考えた。横振動(屈曲振動)の任意の
時間での大きさは、任意の時間での電極部1eと1hへ
の印加電圧による圧電素子の伸び量(もしくは縮み量)
と電極部1fと1gへの印加電圧による圧電素子の縮み
量(もしくは伸び量)で決まる。つまりセンサ電極部1
h−1の出力電圧SAとセンサ電極1g−1の出力電圧
Bの差で表現することができる。
As described above, when the piezoelectric element is deformed by the piezoelectric effect, the piezoelectric element is generated according to the amount of deformation. Therefore, a method of detecting a lateral vibration and a longitudinal vibration by providing a sensor electrode portion capable of monitoring the deformation amount of the piezoelectric element separately from the driving electrode on the vibrating body of the vibrating device was considered. The magnitude of lateral vibration (flexural vibration) at any time is the amount of expansion (or contraction) of the piezoelectric element due to the voltage applied to the electrode portions 1e and 1h at any time.
And the amount of contraction (or expansion) of the piezoelectric element due to the voltage applied to the electrode portions 1f and 1g. That is, the sensor electrode unit 1
It can be expressed by the difference between the h-1 of the output voltage S A and output voltage S B of the sensor electrode 1 g-1.

【0035】また縦振動の任意の時間での大きさは、任
意の時間での電極部1eと1hへの印加電圧による圧電
素子の伸び量(もしくは縮み量)と電極部1fと1gへ
の印加電圧による圧電素子の縮み量(もしくは伸び量)
で決まる。つまりセンサ電極部1h−1の出力電圧SA
とセンサ電極1g−1の出力電圧SBの和で表現するこ
とができる。
The magnitude of the longitudinal vibration at any time is determined by the amount of expansion (or contraction) of the piezoelectric element due to the voltage applied to the electrodes 1e and 1h and the amount of application to the electrodes 1f and 1g at any time. The amount of contraction (or expansion) of the piezoelectric element due to voltage
Is determined by That is, the output voltage S A of the sensor electrode portion 1h-1
And the output voltage S B of the sensor electrode 1g-1.

【0036】図7は振動体1の電極部1e,1hに図5
に示す交番電圧VAを印加し、電極部1f,1gに図5
に示す交番電圧VBを印加したときの、センサ電極部1
g−1の出力電圧SBとセンサ電極部1g−1の出力電
圧SAおよび横振動を表すSA−SBと縦振動を表すSA
Bの電圧波形を示している。
FIG. 7 shows the electrode portions 1e and 1h of the vibrating body 1 as shown in FIG.
5 is applied to the electrode portions 1f and 1g by applying the alternating voltage V A shown in FIG.
The sensor electrode unit 1 when the alternating voltage V B shown in FIG.
g-1 output voltage S B , sensor electrode portion 1 g-1 output voltage S A, lateral vibration S A −S B, and vertical vibration S A +
The voltage waveform of S B is shown.

【0037】SA+SBを横軸、SA−SBを縦軸にとり、
時間に沿って曲線を描かせると図8のようになる。この
曲線は正しく、駆動子の楕円軌道を表現したものであ
る。
S A + S B is the horizontal axis and S A -S B is the vertical axis,
FIG. 8 shows a curve drawn along time. This curve is correct and represents the elliptic orbit of the driver.

【0038】以上のように、センサ電極部1h−1の出
力電圧SAとセンサ電極部1g−1の出力電圧SBを検出
することで、横振動と縦振動の挙動がわかり、駆動子の
楕円軌道が表現できることがわかる。
As described above, by detecting the output voltage S A of the sensor electrode portion 1h-1 and the output voltage S B of the sensor electrode portion 1g-1, the behaviors of the lateral vibration and the longitudinal vibration can be understood, and the driver It can be seen that an elliptical orbit can be expressed.

【0039】ところで、楕円運動の波頭の接線速度は、
楕円軌道の形状によって異なる。たとえば、図9(a)
の楕円軌道のP1点での接線速度に対して、図9(b)
の楕円軌道のP2点での接線速度は遅くなり、図9
(c)の楕円軌道のP3点での接線速度は速くなる。し
たがって、図9の楕円軌道が駆動子の動きだとするなら
ば、楕円軌道の形状を変化させることによって、ガイド
レール等の摺動部材との相対速度を変化させることがで
きるということである。
By the way, the tangential velocity of the wave front of the elliptic motion is
It depends on the shape of the elliptical orbit. For example, FIG. 9 (a)
9 (b) for the tangential velocity at the point P 1 of the elliptical orbit of
The tangential velocity at point P 2 of the elliptic orbit of becomes slower,
The tangential velocity at point P 3 of the elliptical orbit of (c) becomes faster. Therefore, if the elliptical orbit of FIG. 9 is the movement of the driver, it is possible to change the relative speed with respect to the sliding member such as the guide rail by changing the shape of the elliptical orbit.

【0040】そこで、電極部 1e,1hへの印加交番
電圧VAと、電極部1f,1gへの印加交番電圧VBの位
相差および振幅比を変えることで、駆動子の楕円軌道の
形状を変化させ、摺動部材との相対速度を変化させるこ
とを考えた。
Therefore, by changing the phase difference and the amplitude ratio of the alternating voltage V A applied to the electrode portions 1e and 1h and the alternating voltage V B applied to the electrode portions 1f and 1g, the shape of the elliptical orbit of the driver is changed. It was considered to change it and to change the relative speed with the sliding member.

【0041】まず、VAとVBの振幅を一定(SAとSB
振幅も原理的に一定)にして、位相差を変化させたとき
の楕円軌道を描かせると、図10〜12のようになる。
First, when the amplitudes of V A and V B are made constant (the amplitudes of S A and S B are also constant in principle) and an elliptical orbit is drawn when the phase difference is changed, FIGS. become that way.

【0042】図10におけるVAとVBの位相差をα(S
AとSBのの位相差も原理的にα、0°<α<180
°)、図11におけるVAとVBの位相差をβ(SAとSB
の位相差も原理的にβ、0°<β<180°)、図12
におけるVAとVBの位相差をγ(SAとSBの位相差も原
理的にγ、0°<γ<180°)とすると、β>αとす
ることによって、楕円軌道の形状は位相差αのときとく
らべて縦長になる。また、γ<αとすることによって、
楕円軌道の形状は位相差αのときとくらべて縦長とな
る。
The phase difference between V A and V B in FIG. 10 is α (S
In principle, the phase difference between A and S B is α, 0 ° <α <180
), And the phase difference between V A and V B in FIG. 11 is β (S A and S B
In principle, the phase difference of β is 0, 0 ° <β <180 °), and FIG.
Let γ be the phase difference between V A and V B at γ (the phase difference between S A and S B is also γ, 0 ° <γ <180 ° in principle), by setting β> α, the shape of the elliptical orbit becomes It becomes vertically longer than when the phase difference is α. Also, by setting γ <α,
The shape of the elliptical orbit is longer than that when the phase difference is α.

【0043】以上のことから、VAとVBの振幅を一定に
して、位相差を変化させると、楕円軌道の形状が変わ
り、楕円軌道の波頭の接線速度が変化する。つまり、駆
動子の楕円軌道の接線速度を変化させ、ガイドレール等
の摺動部材との相対速度を任意に変化させることができ
る。
From the above, when the amplitudes of V A and V B are kept constant and the phase difference is changed, the shape of the elliptical orbit changes and the tangential velocity of the wave front of the elliptical orbit changes. That is, the tangential velocity of the elliptical orbit of the driver can be changed to arbitrarily change the relative velocity with the sliding member such as the guide rail.

【0044】つぎに、VAとVBの位相差を90°に設定
し、VAとVBの振幅比を変化させると、図13、図1
4、図15のようになる。
Next, when the phase difference between V A and V B is set to 90 ° and the amplitude ratio between V A and V B is changed, FIG. 13 and FIG.
4, as shown in FIG.

【0045】印加交番電圧の振幅に応じたセンサ電極部
の出力電圧SAとSBの振幅を、図13においてそれぞれ
1,b1、図14においてそれぞれa2,b2、図15に
おいてa3,b3とする。
The amplitudes of the output voltages S A and S B of the sensor electrode portion according to the amplitude of the applied alternating voltage are a 1 and b 1 in FIG. 13, a 2 and b 2 in FIG. 14, and a in FIG. 3 and b 3 .

【0046】|a1|=|a2|=|a3|=|b1|>|
2|>|b3|となるように印加交番電圧の振幅を調整
して、各々の楕円軌道を比較すると、b1のときとくら
べて、b2のときの楕円軌道の形状はやや細長くなる。
また、b3の場合はさらに細長い形状になる。
| A 1 | = | a 2 | = | a 3 | = | b 1 |> |
When the amplitude of the applied alternating voltage is adjusted so that b 2 |> | b 3 | and the respective elliptical orbits are compared, the shape of the elliptical orbit at b 2 is slightly slender compared to that at b 1. Become.
Also, the more elongated shape in the case of b 3.

【0047】以上のことから、VAとVBの位相差を90
°に設定し、VAとVBの振幅比を変化させると、楕円軌
道の形状が変わり、楕円軌道の波頭の接線速度が変化す
る。つまり、駆動子の楕円軌道の接線速度を変化させ、
ガイドレール等の摺動部材との相対速度を任意に変化さ
せることができる。
From the above, the phase difference between V A and V B is 90
When the angle is set to 0 and the amplitude ratio of V A and V B is changed, the shape of the elliptical orbit changes and the tangential velocity of the wave front of the elliptical orbit changes. In other words, by changing the tangential velocity of the elliptical orbit of the driver,
The relative speed with respect to a sliding member such as a guide rail can be arbitrarily changed.

【0048】次に制御に関する構成を示す。Next, the configuration relating to control will be shown.

【0049】図16は、本発明の実施の形態を示す回路
ブロック図である。
FIG. 16 is a circuit block diagram showing an embodiment of the present invention.

【0050】発振器21から出力された駆動周波数より
高い高周波信号を分周器22,23に所定の周波数に分
周し、駆動周波数に変換してドライバA24,ドライバ
B25に出力する。ドライバA24,B25は、分周器
から得た信号を増幅して超音波モータ1に印加する(具
体的には上述したように圧電素子の電極部へ印加される
ものである)。また、超音波モータに信号が印加される
と、コイル24aとコイル25bと圧電素子の間で共振
し、ドライバA24,B25へ入力した電圧より高い電
圧が圧電素子に印加されることになる。この時の圧電素
子の挙動に応じたセンサ電極部からの出力電圧を検出
し、加算回路27によってA+Bを行い縦振動を検出
し、減算回路28によってA−Bを行い屈曲(横)振動
を検出する。検出された縦振動と屈曲(横)振動は、位
相比較器29と振幅比較器30に送られそれぞれ比較し
た結果をマイクロコンピュータ26に出力する。マイク
ロコンピュータ26は、入力した位相差と振幅差から楕
円の挙動を判断し、移相器31、ドライバB25にそれ
ぞれ楕円の挙動を調整するように信号を出力する。
A high frequency signal having a frequency higher than the driving frequency output from the oscillator 21 is frequency-divided by the frequency dividers 22 and 23 into a predetermined frequency, converted into a driving frequency, and output to the driver A24 and the driver B25. The drivers A24 and B25 amplify the signal obtained from the frequency divider and apply it to the ultrasonic motor 1 (specifically, it is applied to the electrode portion of the piezoelectric element as described above). When a signal is applied to the ultrasonic motor, the coil 24a, the coil 25b, and the piezoelectric element resonate, and a voltage higher than the voltage input to the drivers A24 and B25 is applied to the piezoelectric element. The output voltage from the sensor electrode portion according to the behavior of the piezoelectric element at this time is detected, A + B is detected by the adder circuit 27 to detect longitudinal vibration, and AB is detected by the subtractor circuit 28 to detect bending (transverse) vibration. To do. The detected longitudinal vibration and bending (transverse) vibration are sent to the phase comparator 29 and the amplitude comparator 30, and the comparison results are output to the microcomputer 26. The microcomputer 26 determines the behavior of the ellipse from the input phase difference and amplitude difference, and outputs a signal to the phase shifter 31 and the driver B25 so as to adjust the behavior of the ellipse.

【0051】例えば、振幅比較器30は図17(a)の
様にサイン波関数で示されるA+B、A−Bの信号をそ
れぞれ半波整流し、直流成分に変換して振幅値に変換し
マイコン26でA/D変換を行い比較する。
For example, the amplitude comparator 30 half-wave rectifies the signals A + B and A−B represented by the sine wave function as shown in FIG. 17A, converts them into DC components, and converts them into amplitude values. At 26, A / D conversion is performed and comparison is performed.

【0052】そこで、得られた振幅比より移相器31に
よって入力信号AとBの位相差を変える。例えば、図1
8の様に発振器21からのクロックをカウンタA22
a,カウンタB23aに入力する前にカウンタB23a
の方の初期値を設定しカウンタA22aとの位相差を設
定する。この後、クロックをカウンタA,Bに入力し所
定の比較値と比較し一致したらカウンタA,Bをクリア
する。これによって初期値分、常に位相がずれることに
なる。比較器A、B22b,23bから得られた信号を
分周器22c,23cで分周しデューティー比50%の
矩形波に変換してドライバA24,ドライバB25に出
力する。これによって駆動信号の位相差を任意に変更す
ることができる。
Therefore, the phase shifter 31 changes the phase difference between the input signals A and B based on the obtained amplitude ratio. For example, FIG.
As shown in 8, the clock from the oscillator 21 is supplied to the counter A22.
a, the counter B23a before input to the counter B23a
Is set to the initial value, and the phase difference from the counter A22a is set. After that, the clock is input to the counters A and B, compared with a predetermined comparison value, and when they match, the counters A and B are cleared. As a result, the phase always shifts by the initial value. The signals obtained from the comparators A, B 22b, 23b are frequency-divided by the frequency dividers 22c, 23c, converted into rectangular waves having a duty ratio of 50%, and output to the drivers A24, B25. Thereby, the phase difference of the drive signal can be arbitrarily changed.

【0053】また、位相比較器29は図17(b)の様
にA+B、A−Bをヒステリシスコンパレータで基準値
と比較し矩形波に変換する。変換された矩形波をEXO
R29cを通し位相差分の時間だけONする信号を作
り、その時間内のマイコン内の基準クロックの数によっ
て位相差を判断することができる。
Further, the phase comparator 29 compares A + B and A−B with a reference value by a hysteresis comparator as shown in FIG. 17B, and converts it into a rectangular wave. EXO converted square wave
A signal that is turned on for the phase difference time through R29c is generated, and the phase difference can be determined by the number of reference clocks in the microcomputer within that time.

【0054】また、得られた位相差より、マイコン26
はドライバB25に印加される電圧を変更して楕円の挙
動を調整する。例えば、ドライバBの電源はDC/DC
コンバータ25aによって決定している。この場合、D
C/DCコンバータの出力する電圧を制御するために図
19のコンパレータ26bによって出力する電圧をマイ
コンの出力する電圧で制御することができる。
From the obtained phase difference, the microcomputer 26
Adjusts the behavior of the ellipse by changing the voltage applied to the driver B25. For example, the power source of the driver B is DC / DC
It is determined by the converter 25a. In this case, D
In order to control the voltage output by the C / DC converter, the voltage output by the comparator 26b in FIG. 19 can be controlled by the voltage output by the microcomputer.

【0055】上記の説明により、実際に楕円の挙動(軌
跡)を調整することが可能となり、超音波モータの速度
制御を安定して行うことができる。
From the above description, the behavior (trajectory) of the ellipse can be actually adjusted, and the speed control of the ultrasonic motor can be stably performed.

【0056】[0056]

【発明の効果】請求項1の発明によれば、振動体の楕円
運動の挙動を正確に検出することができ、良好な駆動性
能を得る為の制御を可能とすることができる。
According to the first aspect of the present invention, the behavior of the elliptic motion of the vibrating body can be accurately detected, and the control for obtaining good driving performance can be realized.

【0057】請求項2の発明によれば、振動体の楕円運
動の挙動を正確に検出することができ、更にはその検出
結果により楕円運動の楕円軌道の形を変えることにより
速度制御が可能となる。
According to the second aspect of the present invention, the behavior of the elliptic motion of the vibrating body can be accurately detected, and the speed can be controlled by changing the shape of the elliptical orbit of the elliptic motion according to the detection result. Become.

【0058】請求項3の発明によれば、振動体の楕円運
動の挙動を正確に検出することができ、更にはその検出
結果により楕円運動の楕円軌道の形を変えることにより
速度制御が可能となる。
According to the third aspect of the present invention, the behavior of the elliptic motion of the vibrating body can be accurately detected, and the speed can be controlled by changing the shape of the elliptical orbit of the elliptic motion according to the detection result. Become.

【0059】請求項4の発明によれば、振動体の屈曲振
動と縦振動とを正確に検出することができる。
According to the invention of claim 4, the bending vibration and the longitudinal vibration of the vibrating body can be accurately detected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施の形態の振動装置の構成を示す分解斜視
図。
FIG. 1 is an exploded perspective view showing a configuration of a vibrating device according to an embodiment.

【図2】図1の振動装置の振動体のセンサ電極部を示す
図。
FIG. 2 is a diagram showing a sensor electrode portion of a vibrating body of the vibrating device of FIG.

【図3】圧電効果を示す説明図。FIG. 3 is an explanatory diagram showing a piezoelectric effect.

【図4】図1の振動装置の振動体の側面図。FIG. 4 is a side view of a vibrating body of the vibrating device of FIG.

【図5】図1の振動装置の振動体に印加される交番電圧
波形を示す図。
5 is a diagram showing an alternating voltage waveform applied to a vibrating body of the vibration device of FIG.

【図6】図1の振動装置の振動体の挙動を示す図。FIG. 6 is a diagram showing the behavior of a vibrating body of the vibrating device of FIG. 1.

【図7】図1の振動装置の振動体のセンサ電極部の出力
電圧波形と、横(屈曲)振動と縦振動を表す電圧波形を
示す図。
7 is a diagram showing an output voltage waveform of a sensor electrode portion of a vibrating body of the vibrating device of FIG. 1 and voltage waveforms representing lateral (flexural) vibration and longitudinal vibration.

【図8】横(屈曲)振動と縦振動を表す電圧波形を合成
した図。
FIG. 8 is a diagram in which voltage waveforms representing lateral (flexural) vibration and longitudinal vibration are combined.

【図9】楕円軌道の形状と波頭の接線速度を示す図。FIG. 9 is a diagram showing the shape of an elliptical orbit and the tangential velocity of a wave crest.

【図10】印加電圧の位相差および振幅比を変化させた
ときのセンサ電極部の出力電圧波形と、横振動・縦振動
の様子を示す図。
FIG. 10 is a diagram showing an output voltage waveform of a sensor electrode unit when changing a phase difference and an amplitude ratio of applied voltages and states of lateral vibration and longitudinal vibration.

【図11】印加電圧の位相差および振幅比を変化させた
ときのセンサ電極部の出力電圧波形と、横振動・縦振動
の様子を示す図。
FIG. 11 is a diagram showing an output voltage waveform of the sensor electrode unit when the phase difference and the amplitude ratio of the applied voltage are changed, and the states of horizontal vibration and vertical vibration.

【図12】印加電圧の位相差および振幅比を変化させた
ときのセンサ電極部の出力電圧波形と、横振動・縦振動
の様子を示す図。
FIG. 12 is a diagram showing an output voltage waveform of the sensor electrode unit when the phase difference and the amplitude ratio of the applied voltage are changed, and the states of horizontal vibration and vertical vibration.

【図13】印加電圧の位相差および振幅比を変化させた
ときのセンサ電極部の出力電圧波形と、横振動・縦振動
の様子を示す図。
FIG. 13 is a diagram showing an output voltage waveform of a sensor electrode unit when changing a phase difference and an amplitude ratio of applied voltages and states of lateral vibration and longitudinal vibration.

【図14】印加電圧の位相差および振幅比を変化させた
ときのセンサ電極部の出力電圧波形と、横振動・縦振動
の様子を示す図。
FIG. 14 is a diagram showing an output voltage waveform of a sensor electrode unit when changing a phase difference and an amplitude ratio of applied voltages and states of lateral vibration and longitudinal vibration.

【図15】印加電圧の位相差および振幅比を変化させた
ときのセンサ電極部の出力電圧波形と、横振動・縦振動
の様子を示す図。
FIG. 15 is a diagram showing an output voltage waveform of the sensor electrode unit when the phase difference and the amplitude ratio of the applied voltage are changed, and states of horizontal vibration and vertical vibration.

【図16】本実施の形態の振動装置の制御回路を示す
図。
FIG. 16 is a diagram showing a control circuit of the vibration device according to the present embodiment.

【図17】図16の振動装置の制御回路の一部を示す回
路図。
17 is a circuit diagram showing a part of a control circuit of the vibration device of FIG.

【図18】図16の振動装置の制御回路の一部を示す回
路図とタイムチャート。
18 is a circuit diagram and a time chart showing a part of a control circuit of the vibration device in FIG.

【図19】図16の振動装置の制御回路の一部を示す回
路図。
19 is a circuit diagram showing a part of a control circuit of the vibration device of FIG.

【符号の説明】[Explanation of symbols]

1 振動体 2a,2b 駆動子 4 接触体としてのガイドレール 1e〜1h 電気−機械エネルギー変換の為の信号入力
部としての電極部 1g−1,1h−1 機械−電気エネルギー変換の為の
信号入力部としてのセンサ電極部 VA,VB 印加交番電圧 SA,SB センサ電極部出力電圧 26 マイクロコンピュータ
DESCRIPTION OF SYMBOLS 1 Vibrating body 2a, 2b Driver 4 Guide rail as a contact body 1e-1h Electrode part as a signal input part for electric-mechanical energy conversion 1g-1, 1h-1 Signal input for mechanical-electrical energy conversion Electrode section V A , V B applied alternating voltage S A , S B sensor electrode section output voltage 26 Microcomputer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気−機械エネルギー変換素子と弾性体
を積層してなる振動体と、前記変換素子の複数の信号入
力部に位相の異なる交番信号を供給し、前記振動体を屈
曲振動と縦振動させて両振動の合成により作用部を楕円
運動させ、前記振動体に接触した接触体と前記振動体と
を相対移動可能とする振動装置において、 前記振動体の前記屈曲振動と前記縦振動の振幅を検出す
る検出手段を設けたことを特徴とする振動装置。
1. A vibrating body formed by laminating an electro-mechanical energy conversion element and an elastic body, and alternating signals having different phases are supplied to a plurality of signal input portions of the conversion element, thereby causing the vibrating body to undergo bending vibration and longitudinal vibration. In a vibrating device that vibrates to cause an elliptical motion of the action part by combining both vibrations and makes the contact body in contact with the vibrating body and the vibrating body relatively movable, the bending vibration and the longitudinal vibration of the vibrating body A vibrating device comprising a detection means for detecting an amplitude.
【請求項2】 電気−機械エネルギー変換素子と弾性体
を積層してなる振動体と、前記変換素子の複数の信号入
力部に位相の異なる交番信号を供給し、前記振動体を屈
曲振動と縦振動させて両振動の合成により作用部を楕円
運動させ、前記振動体に接触した接触体と前記振動体と
を相対移動可能とする振動装置において、 前記振動体の前記屈曲振動と前記縦振動の振幅を検出す
る検出手段と、 前記検出手段の出力に基づき前記変換素子の複数の信号
入力部への供給信号の強さのバランスを変える制御手段
を設けたことを特徴とする振動装置。
2. A vibrating body formed by laminating an electro-mechanical energy converting element and an elastic body, and alternating signals having different phases are supplied to a plurality of signal input portions of the converting element so that the vibrating body is subjected to bending vibration and longitudinal vibration. In a vibrating device that vibrates to cause an elliptical motion of the action part by combining both vibrations and makes the contact body in contact with the vibrating body and the vibrating body relatively movable, the bending vibration and the longitudinal vibration of the vibrating body A vibrating device comprising: a detection unit that detects an amplitude; and a control unit that changes a balance of strengths of signals supplied to a plurality of signal input units of the conversion element based on an output of the detection unit.
【請求項3】 電気−機械エネルギー変換素子と弾性体
を積層してなる振動体と、前記変換素子の複数の信号入
力部に位相の異なる交番信号を供給し、前記振動体を屈
曲振動と縦振動させて両振動の合成により作用部を楕円
運動させ、前記振動体に接触した接触体と前記振動体と
を相対移動可能とする振動装置において、 前記振動体の前記屈曲振動と前記縦振動の振幅を検出す
る検出手段と、 前記検出手段の出力に基づき前記変換素子の複数の信号
入力部への供給信号の位相を変える制御手段を設けたこ
とを特徴とする振動装置。
3. A vibrating body formed by laminating an electro-mechanical energy conversion element and an elastic body, and alternating signals having different phases are supplied to a plurality of signal input portions of the conversion element, so that the vibrating body is subjected to bending vibration and longitudinal vibration. In a vibrating device that vibrates to cause an elliptical motion of the action part by combining both vibrations and makes the contact body in contact with the vibrating body and the vibrating body relatively movable, the bending vibration and the longitudinal vibration of the vibrating body A vibrating device comprising: a detection unit that detects an amplitude; and a control unit that changes a phase of a signal supplied to a plurality of signal input units of the conversion element based on an output of the detection unit.
【請求項4】 前記振動体は前記屈曲振動の節となる位
置が複数箇所できるように前記変換素子は配設され、前
記複数の節の位置に機械−電気エネルギー変換の為の前
記複数の信号出力部を配置し、前記信号出力部からの出
力に基づき前記屈曲振動及び縦振動の振幅を検出したこ
とを特徴とする請求項1,2または3記載の振動装置。
4. The transducer is arranged such that the vibrating body has a plurality of positions that serve as nodes of the flexural vibration, and the plurality of signals for mechanical-electrical energy conversion are provided at the positions of the plurality of nodes. 4. The vibrating device according to claim 1, wherein an output section is arranged and the amplitudes of the bending vibration and the longitudinal vibration are detected based on the output from the signal output section.
JP8036528A 1996-02-23 1996-02-23 Vibrating device Withdrawn JPH09233869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8036528A JPH09233869A (en) 1996-02-23 1996-02-23 Vibrating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8036528A JPH09233869A (en) 1996-02-23 1996-02-23 Vibrating device

Publications (1)

Publication Number Publication Date
JPH09233869A true JPH09233869A (en) 1997-09-05

Family

ID=12472304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8036528A Withdrawn JPH09233869A (en) 1996-02-23 1996-02-23 Vibrating device

Country Status (1)

Country Link
JP (1) JPH09233869A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258279A (en) * 2000-03-10 2001-09-21 Nikon Corp Driver for vibration actuator
WO2004088830A1 (en) * 2003-03-31 2004-10-14 Seiko Epson Corporation Piezoelectric actuator drive method, piezoelectric actuator drive device, electronic clock, electronic device, piezoelectric actuator drive device control program, and storage medium
JP2006158052A (en) * 2004-11-26 2006-06-15 Olympus Imaging Corp Ultrasonic motor
KR100680307B1 (en) * 2005-05-20 2007-02-07 삼성전기주식회사 Piezoelectric Vibrator and Ultrasonic Motor Having Piezoelectric Vibrator
JP2009086691A (en) * 2002-06-05 2009-04-23 Nokia Corp Piezoelectric actuator for digital camera optical system
JP2012249521A (en) * 2012-09-18 2012-12-13 Seiko Epson Corp Piezoelectric actuator
JP2014121697A (en) * 2012-12-21 2014-07-03 Samsung Electro-Mechanics Co Ltd Piezoelectric vibration module
JP2017070916A (en) * 2015-10-08 2017-04-13 ミネベアミツミ株式会社 Oscillator with elastic member and oscillation generator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258279A (en) * 2000-03-10 2001-09-21 Nikon Corp Driver for vibration actuator
JP2009086691A (en) * 2002-06-05 2009-04-23 Nokia Corp Piezoelectric actuator for digital camera optical system
WO2004088830A1 (en) * 2003-03-31 2004-10-14 Seiko Epson Corporation Piezoelectric actuator drive method, piezoelectric actuator drive device, electronic clock, electronic device, piezoelectric actuator drive device control program, and storage medium
EP1526634A1 (en) * 2003-03-31 2005-04-27 Seiko Epson Corporation Piezoelectric actuator drive method, piezoelectric actuator drive device, electronic clock, electronic device, piezoelectric actuator drive device control program, and storage medium
EP1526634A4 (en) * 2003-03-31 2005-06-08 Seiko Epson Corp Piezoelectric actuator drive method, piezoelectric actuator drive device, electronic clock, electronic device, piezoelectric actuator drive device control program, and storage medium
US7119475B2 (en) 2003-03-31 2006-10-10 Seiko Epson Corporation Driving method of piezoelectric actuator, driving apparatus of piezoelectric actuator, electronic watch, electronics, control program of piezoelectric actuator, and storage medium
JP2006158052A (en) * 2004-11-26 2006-06-15 Olympus Imaging Corp Ultrasonic motor
KR100680307B1 (en) * 2005-05-20 2007-02-07 삼성전기주식회사 Piezoelectric Vibrator and Ultrasonic Motor Having Piezoelectric Vibrator
JP2012249521A (en) * 2012-09-18 2012-12-13 Seiko Epson Corp Piezoelectric actuator
JP2014121697A (en) * 2012-12-21 2014-07-03 Samsung Electro-Mechanics Co Ltd Piezoelectric vibration module
JP2017070916A (en) * 2015-10-08 2017-04-13 ミネベアミツミ株式会社 Oscillator with elastic member and oscillation generator
US10432074B2 (en) 2015-10-08 2019-10-01 Minebea Co., Ltd. Vibrator unit and vibration generator

Similar Documents

Publication Publication Date Title
JP4261964B2 (en) Vibration type driving device and control system
US5783899A (en) Ultrasonic vibration motor and method for performing coarse and fine movements
US20040189150A1 (en) Vibration-type driving device, control apparatus for controlling the driving of the vibration-type driving device, and electronic equipment having the vibration-type driving device and the control apparatus
JP5979817B2 (en) Vibration wave drive
US6140750A (en) Actuator using electromechanical transducer and apparatus employing the actuator
US5955819A (en) Standing-wave vibration motor
US5917268A (en) Vibration driven motor
JP2006522579A (en) Near-resonant wide-range electromechanical motor
JPH09233869A (en) Vibrating device
JPH10210775A (en) Driver for oscillatory actuator and lens driver
JPH10304687A (en) Driver for oscillatory actuator, and device using oscillatory actuator as drive source
JPH07241090A (en) Ultrasonic motor
US6020673A (en) Drive method and drive device of vibration actuator
JPH1052072A (en) Vibration actuator
JPH0888985A (en) Controller for oscillating-wave driving apparatus
JPH07170768A (en) Ultrasonic motor
JPH06233560A (en) Ultrasonic actuator
US9240746B2 (en) Driving apparatus for vibration-type actuator
JPH08168274A (en) Vibration device and ultrasonic motor
JPH05184172A (en) Ultrasonic oscillator
CN113014134B (en) Drive control apparatus, drive apparatus, and drive control method
JP3401092B2 (en) Ultrasonic motor drive
JP4593266B2 (en) Vibrator
JP3401096B2 (en) Ultrasonic motor drive
JP3390525B2 (en) Ultrasonic motor drive circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030506