JPH09233027A - Optical transmitter-receiver - Google Patents
Optical transmitter-receiverInfo
- Publication number
- JPH09233027A JPH09233027A JP8032280A JP3228096A JPH09233027A JP H09233027 A JPH09233027 A JP H09233027A JP 8032280 A JP8032280 A JP 8032280A JP 3228096 A JP3228096 A JP 3228096A JP H09233027 A JPH09233027 A JP H09233027A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- signal
- output
- station
- control signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Optical Communication System (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、信号の伝送路とし
て光ファイバを使用する光通信用の光送受信装置に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transceiver for optical communication which uses an optical fiber as a signal transmission path.
【0002】[0002]
【従来の技術】図4は従来の光送受信装置を対向で使用
した場合の構成を示すブロック図である。図4において
1は自局、2は自局1の相手局、3は自局1と相手局2
と結ぶ伝送路である光ファイバ、4は光ファイバ3から
の光信号を入力として光電変換を行う自局の受光回路、
5は自局の受光回路4の出力信号を増幅する自局の前置
増幅回路、6は自局の前置増幅回路5の出力信号を所望
の振幅に増幅する自局のAGC増幅回路、7は自局のA
GC増幅回路6の出力信号からクロック成分を抽出する
自局のタイミング抽出回路、8は自局のAGC増幅回路
6の出力信号を自局のタイミング抽出回路7の出力信号
を元に識別再生しデータ信号とクロック信号を出力する
自局の識別再生回路、9は自局の受光回路4及び自局の
前置増幅回路5及び自局のAGC増幅回路6及び自局の
タイミング抽出回路7及び自局の識別再生回路8からな
る自局の受信部、10は自局1からの光出力が温度変動
の影響を受けなくする自局の光出力温度補償回路、11
は自局1からの光出力レベルを一定に保たせる自局の光
出力制御回路、12は自局の光出力温度補償回路10及
び自局の光出力制御回路11からの出力に従って動作す
る自局の光出力駆動回路、13は自局の光出力駆動回路
12により駆動される自局の発光回路、14は自局の光
出力温度補償回路10及び自局の光出力制御回路11及
び自局の光出力駆動回路12及び自局の発光回路13か
らなる自局の送信部、15は光ファイバ3を介して自局
の送信部14と接続される相手局の受信部、16は光フ
ァイバ3を介して自局の受信部9と接続される相手局の
送信部、17は自局の識別再生回路8の出力信号を出力
する自局のデータ出力端子、18は自局の光出力駆動回
路12と接続される自局のデータ入力端子、19は相手
局の受信部15に接続される相手局のデータ出力端子、
20は相手局の送信部16に接続される相手局のデータ
入力端子である。2. Description of the Related Art FIG. 4 is a block diagram showing a configuration of a conventional optical transmitter / receiver used in opposition. In FIG. 4, 1 is own station, 2 is partner station of own station 1, 3 is own station 1 and partner station 2
An optical fiber 4 which is a transmission line connecting to the optical fiber 4 is a light receiving circuit of its own station which performs photoelectric conversion using the optical signal from the optical fiber 3 as an input,
5 is a preamplifier circuit of the own station that amplifies the output signal of the light receiving circuit 4 of the own station, 6 is an AGC amplifier circuit of the own station that amplifies the output signal of the preamplifier circuit 5 of the own station to a desired amplitude, 7 Is my station A
The timing extraction circuit of the own station that extracts the clock component from the output signal of the GC amplification circuit 6, and 8 identifies and reproduces the output signal of the AGC amplification circuit 6 of the own station based on the output signal of the timing extraction circuit 7 of the own station Identification and reproduction circuit of own station for outputting signal and clock signal, 9 is light receiving circuit 4 of own station, preamplification circuit 5 of own station, AGC amplification circuit 6 of own station, timing extraction circuit 7 of own station and own station The receiving section of the own station, which comprises the identification and reproduction circuit 8 of 10, the optical output temperature compensating circuit of the own station for preventing the optical output from the own station 1 from being affected by the temperature fluctuation, 11
Is an optical output control circuit of the own station that keeps the optical output level from the own station 1 constant, and 12 is an own station that operates according to the outputs from the optical output temperature compensation circuit 10 of the own station and the optical output control circuit 11 of the own station. Optical output drive circuit, 13 is a light emitting circuit of its own station driven by the optical output drive circuit 12 of its own station, 14 is an optical output temperature compensation circuit 10 of its own station, an optical output control circuit 11 of its own station, and an optical output control circuit of its own station The transmitter of the own station, which is composed of the optical output drive circuit 12 and the light emitting circuit 13 of the own station, 15 is the receiver of the partner station connected to the transmitter 14 of the own station via the optical fiber 3, and 16 is the optical fiber 3. The transmitting section of the partner station connected to the receiving section 9 of the own station through, 17 is the data output terminal of the own station for outputting the output signal of the identification reproduction circuit 8 of the own station, and 18 is the optical output drive circuit 12 of the own station Data input terminal of own station connected to Data output terminal of the partner station to be continued,
Reference numeral 20 is a data input terminal of the partner station connected to the transmitter 16 of the partner station.
【0003】次に動作について説明する。まず自局の受
信部9について説明する。相手局の送信部16より発せ
られた光信号は自局の受光回路4にて受光され電流信号
に変換されたのち自局の前置増幅回路5により電圧信号
に変換される。この電圧信号は自局のAGC増幅回路6
により一定の振幅を持つ電圧信号に増幅される。この自
局のAGC増幅回路6の出力電圧信号は自局のタイミン
グ抽出回路7によりクロック成分が抽出されクロック成
分信号が出力される。また自局のAGC増幅回路6の出
力電圧信号は自局のタイミング抽出回路7のクロック成
分信号を元に自局の識別再生回路8によってデータ信号
として自局のデータ出力端子17から外部へ出力され
る。次に自局の送信部14について説明する。外部より
自局のデータ入力端子18から入力されたデータ信号は
自局の光出力駆動回路12に入力され自局の発光回路1
3が駆動し光出力として光ファイバ3に出力される。自
局の発光回路13は通常レーザダイオードで構成されて
おり、レーザダイオードの特性である光電変換効率の温
度変動による光出力の変動を抑えるため自局の光出力制
御回路11を、また同じくレーザダイオードの特性であ
る微分量子効率の温度変動による光出力の消光比変動を
抑えるため自局の光出力温度補償回路10を設け、自局
の光出力駆動回路12により自局の発光回路13を駆動
させる必要があ。レーザダイオードは一般に図5のよう
な電流−光出力変換特性を持ち、温度変動に伴い同図
(a)〜(c)に示すように微分量子効率a1〜a3及
び閾値電流Ith1〜Ith3が変動する。そのためレ
ーザダイオードを駆動した場合に良質な光出力波形を得
るためには、その周囲温度における微分量子効率に見合
った変調電流Imod1〜Imod3および閾値電流に
見合ったバイアス電流Ib1〜Ib3をレーザダイオー
ドに流すことが必要となる。図6は従来において、レー
ザダイオードを使用した自局の送信部14の構成であ
り、21はレーザダイオードモジュール、22はレーザ
ダイオード、23はモニタフォトダイオード、24は平
滑化コンデンサ、25は平均光出力レファレンス電圧、
26は変調電流温度補償用感温素子である。図5におけ
る最大光出力PoutPkPkを均一に保つため変調電
流温度補償用感温素子26等を使用した自局の光出力温
度補償回路10によって変調電流Imodを補償する。
また平均光出力PoutAveが均一に保つため自局の
光出力制御回路11によりバイアス電流Ibを制御す
る。次に相手局の受信部15および相手局の送信部16
はそれぞれ前述の自局の受信部9および自局の送信部1
4と同様の働きをするため動作の説明は省略する。Next, the operation will be described. First, the receiving unit 9 of the own station will be described. The optical signal emitted from the transmitting unit 16 of the partner station is received by the light receiving circuit 4 of the own station, converted into a current signal, and then converted into a voltage signal by the preamplifier circuit 5 of the own station. This voltage signal is the AGC amplifier circuit 6 of the own station.
Is amplified to a voltage signal having a constant amplitude. A clock component is extracted from the output voltage signal of the AGC amplifier circuit 6 of the own station by the timing extraction circuit 7 of the own station and the clock component signal is output. The output voltage signal of the AGC amplifier circuit 6 of the own station is output from the data output terminal 17 of the own station to the outside as a data signal by the identification and reproduction circuit 8 of the own station based on the clock component signal of the timing extraction circuit 7 of the own station. It Next, the transmitter 14 of the own station will be described. A data signal externally input from the data input terminal 18 of the local station is input to the optical output drive circuit 12 of the local station and the light emitting circuit 1 of the local station.
3 is driven and is output to the optical fiber 3 as an optical output. The light emitting circuit 13 of the own station is usually composed of a laser diode, and in order to suppress the fluctuation of the optical output due to the temperature fluctuation of the photoelectric conversion efficiency which is the characteristic of the laser diode, the light output control circuit 11 of the own station is also used. In order to suppress the fluctuation of the extinction ratio of the optical output due to the temperature fluctuation of the differential quantum efficiency, which is the characteristic of the optical output temperature compensation circuit 10 of the own station, the optical output drive circuit 12 of the own station drives the light emitting circuit 13 of the own station. Need to. The laser diode generally has a current-light output conversion characteristic as shown in FIG. 5, and the differential quantum efficiencies a1 to a3 and the threshold currents Ith1 to Ith3 change with temperature changes as shown in FIGS. . Therefore, in order to obtain a good optical output waveform when the laser diode is driven, the modulation currents Imod1 to Imod3 corresponding to the differential quantum efficiency at the ambient temperature and the bias currents Ib1 to Ib3 corresponding to the threshold current are passed through the laser diode. Will be required. FIG. 6 shows a conventional configuration of the transmitting unit 14 of the own station using a laser diode, 21 is a laser diode module, 22 is a laser diode, 23 is a monitor photodiode, 24 is a smoothing capacitor, and 25 is an average light output. Reference voltage,
Reference numeral 26 is a temperature sensitive element for compensating the modulation current temperature. In order to keep the maximum optical output PoutPkPk in FIG. 5 uniform, the optical output temperature compensating circuit 10 of the own station using the temperature sensitive element 26 for temperature compensation of the modulating current compensates the modulating current Imod.
Further, in order to keep the average light output PoutAve uniform, the light output control circuit 11 of the own station controls the bias current Ib. Next, the receiver 15 of the partner station and the transmitter 16 of the partner station
Are respectively the receiving unit 9 of the own station and the transmitting unit 1 of the own station described above.
Since it has the same function as that of 4, the description of the operation is omitted.
【0004】[0004]
【発明が解決しようとする課題】上述のように発光回路
で通常使用するレーザダイオードはその特性に応じた制
御あるいは補償を行う必要があり、またレーザダイオー
ドの特性は個別個別でバラツキがあるためそれぞれに応
じた調整を行う必要があり大量に光送受信装置を製造す
る場合に非効率的であるという問題があった。また光フ
ァイバを伝送路として用いた通信において適切な送信光
出力の決定はその伝送路の距離に応じて行うが、伝送距
離を測定するためには光ファイバの長さを直接計測する
か、若しくは光ファイバに光を注入しその光の跳ね返り
を計測して距離を算出するという面倒な処理が必要であ
った。As described above, the laser diode normally used in the light emitting circuit needs to be controlled or compensated according to its characteristic, and the characteristic of the laser diode varies from individual to individual. Therefore, there is a problem that it is inefficient when manufacturing a large number of optical transmitter / receivers because it is necessary to make adjustments according to the above. Further, in communication using an optical fiber as a transmission line, the appropriate transmission light output is determined according to the distance of the transmission line, but in order to measure the transmission distance, the length of the optical fiber is directly measured, or It is necessary to inject light into the optical fiber and measure the bounce of the light to calculate the distance, which is a troublesome process.
【0005】本発明はこのような従来の問題点を解決す
るものであり、レーザダイオードの個別特性に応じた調
整の手間を軽減することができ、また伝送路として用い
る光ファイバの長さを容易に測定することができる光送
受信装置を提供することを目的とするものである。The present invention solves the above-mentioned conventional problems, can reduce the labor of adjustment according to the individual characteristics of the laser diode, and can easily reduce the length of the optical fiber used as the transmission path. It is an object of the present invention to provide an optical transmitter / receiver capable of performing various measurements.
【0006】[0006]
【課題を解決するための手段】第1の発明による光送受
信装置では、例えば相手局から発せられる光出力につい
ては従来の方式のように相手局の送信部では光出力の制
御及び補償を行わず、自局の受信部側にて自局の受光回
路の出力電流を平均化した電圧信号及び自局のAGC増
幅回路のゲインレベル信号を用いて制御信号を生成し、
その制御信号をデータ信号と多重して相手局に伝送し、
相手局内で制御信号を元に送信部の光出力を制御するよ
うにした。In the optical transmitter-receiver according to the first aspect of the invention, for example, with respect to the optical output emitted from the partner station, the transmitter of the partner station does not control or compensate for the light output as in the conventional system. , A control signal is generated using a voltage signal obtained by averaging the output current of the light receiving circuit of the own station and a gain level signal of the AGC amplifier circuit of the own station on the receiving section of the own station
The control signal is multiplexed with the data signal and transmitted to the other station,
The optical output of the transmitter is controlled based on the control signal in the partner station.
【0007】また、第2の発明による光送受信装置で
は、例えば相手局から発せられる光出力については従来
の方式のように相手局の送信部では光出力の制御及び補
償を行わず、自局の受信部側にて自局の受光回路の出力
電流を平均化した電圧信号及び自局のAGC増幅回路の
中段出力の交流成分を抽出した電圧信号を用いて制御信
号を生成し、その制御信号をデータ信号と多重して相手
局に伝送し、相手局内で制御信号を元に送信部の光出力
を制御するようにした。In the optical transmitter / receiver according to the second aspect of the invention, for example, with respect to the optical output emitted from the partner station, the transmitter of the partner station does not control or compensate for the optical output as in the conventional system, and the optical output of the own station is controlled. The receiving unit generates a control signal using the voltage signal obtained by averaging the output current of the light receiving circuit of the own station and the voltage signal obtained by extracting the AC component of the middle output of the AGC amplifier circuit of the own station, and outputs the control signal. The data signal is multiplexed and transmitted to the partner station, and the optical output of the transmitter is controlled based on the control signal in the partner station.
【0008】また、第3の発明による光送受信装置で
は、自局ではデータ信号に時間差検出信号を多重したも
のを送信させ、相手局では受信した時間差検出信号をそ
のまま再びデータと多重して送信させ、自局では先に発
した時間差検出信号と返ってきた時間差検出信号との時
間差を測定することにより、ファイバの伝送距離を算出
できるようした。Further, in the optical transmitter / receiver according to the third aspect of the present invention, the local station transmits a data signal multiplexed with the time difference detection signal, and the partner station transmits the received time difference detection signal again as it is with the data. In the local station, the transmission distance of the fiber can be calculated by measuring the time difference between the previously generated time difference detection signal and the returned time difference detection signal.
【0009】[0009]
実施の形態1 図1はこの発明の実施の形態1を対向で使用した場合の
構成を示すブロック図であり、図において、27は自局
の受信部に付随する分離回路、35は自局の受光回路4
の出力する電流信号を平均化し平均値信号を出力する自
局の平均化回路、36は自局の平均化回路35の出力信
号に対応する基準信号を生成する自局の第1の基準レベ
ル生成回路、37は自局の平均化回路35の出力信号と
自局の第1の基準レベル生成回路36の出力信号とを比
較しその差分に応じた電圧信号を出力する自局の第1の
比較回路、38は自局のAGC増幅回路6のゲインレベ
ル信号に対応する基準信号を生成する自局の第2の基準
レベル生成回路、39は自局のAGC増幅回路6のゲイ
ンレベル信号と自局の第2の基準レベル生成回路38の
出力信号とを比較しその差分に応じた電圧信号を出力す
る自局の第2の比較回路、40は自局の第1の比較回路
37および自局の第2の比較回路39の出力信号を元に
相手局の光出力を制御する為の制御信号を出力する自局
の制御信号生成回路、29は自局の平均化回路35、自
局の第1の基準レベル生成回路36、自局の第1の比較
回路37、自局の第2の基準レベル生成回路38、自局
の第2の比較回路39、自局の制御信号生成回路40か
らなる自局の制御信号生成部、41は自局の受信部に付
随する分離回路27の出力信号の一つである制御信号を
復元する自局の制御信号復元回路、42は自局の制御信
号復元回路41の出力信号をもとに自局の光出力駆動回
路12における変調電流を駆動させる自局の変調電流駆
動回路、43は自局の制御信号復元回路41の出力信号
をもとに自局の光出力駆動回路12におけるバイアス電
流を駆動させる自局のバイアス電流駆動回路、28は自
局の制御信号復元回路41、自局の変調電流駆動回路4
2、自局のバイアス電流駆動回路43からなる自局の制
御信号処理部、30は自局の送信部に付随する多重回
路、31は相手局の受信部に付随する分離回路、35は
相手局の受信部15の出力信号をもとに制御信号を生成
する相手局の制御信号生成部、46は相手局の受信部に
付随する分離回路31の出力信号の一つである制御信号
を復元する相手局の制御信号復元回路、47は相手局の
制御信号復元回路46の出力信号をもとに相手局の光出
力駆動回路44における変調電流を駆動させる相手局の
変調電流駆動回路、48は相手局の制御信号復元回路4
6の出力信号をもとに相手局の光出力駆動回路44にお
けるバイアス電流を駆動させる相手局のバイアス電流駆
動回路、32は相手局の制御信号復元回路46、相手局
の変調電流駆動回路47、相手局のバイアス電流駆動回
路48からなる相手局の制御信号処理部、34は相手局
の送信部に付随する多重回路である。Embodiment 1 FIG. 1 is a block diagram showing a configuration when Embodiment 1 of the present invention is used in a facing manner, in which 27 is a separation circuit attached to a receiving unit of the own station, and 35 is an own station. Light receiving circuit 4
The averaging circuit of the own station for averaging the current signal output by the device and outputting the average value signal, 36 is the first reference level generation of the own station for generating the reference signal corresponding to the output signal of the averaging circuit 35 of the own station A circuit, 37, compares the output signal of the averaging circuit 35 of the own station with the output signal of the first reference level generation circuit 36 of the own station, and outputs a voltage signal according to the difference, the first comparison of the own station. Reference numeral 38 is a circuit, 38 is a second reference level generation circuit of the own station that generates a reference signal corresponding to the gain level signal of the AGC amplification circuit 6 of the own station, and 39 is a gain level signal of the AGC amplification circuit 6 of the own station and the own station. Of the second reference level generating circuit 38 and outputs a voltage signal corresponding to the difference between the output signals of the second reference level generating circuit 38 and the second comparing circuit 40 of its own station, and 40 is the first comparing circuit 37 of its own station and that of its own station. Based on the output signal of the second comparison circuit 39, the optical output of the other station A control signal generation circuit of its own station for outputting a control signal for controlling, 29 is an averaging circuit 35 of its own station, a first reference level generation circuit 36 of its own station, a first comparison circuit 37 of its own station, A control signal generation unit of the station, which includes a second reference level generation circuit 38 of the station, a second comparison circuit 39 of the station, and a control signal generation circuit 40 of the station, and 41 is a separation associated with the reception unit of the station. The control signal restoration circuit of the own station for restoring the control signal which is one of the output signals of the circuit 27, 42 is the modulation in the optical output drive circuit 12 of the own station based on the output signal of the control signal restoration circuit 41 of the own station A modulation current drive circuit of its own station for driving a current, 43 is a bias current drive circuit of its own station for driving a bias current in the optical output drive circuit 12 of its own station based on the output signal of the control signal restoration circuit 41 of its own station , 28 is the control signal restoration circuit 41 of the own station, Adjusting the current drive circuit 4
2, a control signal processing unit of the own station including the bias current drive circuit 43 of the own station, 30 a multiplexing circuit associated with the transmission unit of the own station, 31 a separation circuit associated with the reception unit of the other station, and 35 the other station The control signal generator of the partner station, which generates a control signal based on the output signal of the receiver 15 of FIG. 1, restores the control signal which is one of the output signals of the separation circuit 31 attached to the receiver of the partner station. The control signal restoration circuit of the partner station, 47 is the modulation current drive circuit of the partner station that drives the modulation current in the optical output drive circuit 44 of the partner station based on the output signal of the control signal restoration circuit 46 of the partner station, and 48 is the partner Station control signal restoration circuit 4
A bias current drive circuit of the partner station for driving the bias current in the optical output drive circuit 44 of the partner station based on the output signal of 6; 32, a control signal restoration circuit 46 of the partner station; a modulation current drive circuit 47 of the partner station, The control signal processing unit of the partner station, which is composed of the bias current drive circuit 48 of the partner station, and 34 is a multiplexing circuit attached to the transmitter of the partner station.
【0010】次に動作について説明する。まず自局の制
御信号生成部29について説明する。図5のレーザダイ
オードの光電変換効率の温度特性図について既に述べた
ようにレーザダイオードはその周囲の温度変動に伴い閾
値電流及び微分量子効率が変動するため、レーザダイオ
ードから発せられる平均光出力及び最大光出力を一定に
保つには温度変動に応じてバイアス電流及び変調電流を
増減しなければならない。そこで目的の平均光出力が得
られている状態における、自局の受光回路4の受光素子
電流を自局の平均化回路35によって平均化したことに
よって得られる平均電位と同じ電位を自局の第1の基準
レベル生成回路36にて生成しておき、ある状態におけ
る自局の平均化回路35の出力電位とを自局の第1の基
準レベル生成回路36の出力電位とを自局の第1の比較
回路37にてそれらの大小関係の比較を行う。また目的
の最大光出力が得られている状態における、自局のAG
C増幅回路6のゲインレベルと同じ電位を自局の第2の
基準レベル生成回路38にて生成しておき、ある状態に
おける自局のAGC増幅回路6のゲインレベルと自局の
第2の基準レベル生成回路38の出力電位とを自局の第
2の比較回路39にてそれらの大小関係の比較を行う。
次に自局の第1の比較回路37及び自局の第2の比較回
路39の出力を元に自局の制御信号生成回路40にて制
御信号を生成する。制御信号には、仮に平均光出力が目
的のレベルを得ていないため自局の第1の基準レベル生
成回路36の出力電位が自局の平均化回路35の出力電
位を上回っている場合は相手局の光出力駆動回路44で
のバイアス電流を多くさせるという情報を持たせ、また
逆に平均光出力が目的のレベルを超えているため自局の
平均化回路35の出力電位が自局の第1の基準レベル生
成回路36の出力電位を上回っている場合は相手局の光
出力駆動回路44でのバイアス電流を少なくさせるとい
う情報を持たせ、平均光出力が目的のレベルならば現在
のバイアス電流を保つような情報を持たせる。また仮に
最大光出力が目的のレベルを得ていないため自局の第2
の基準レベル生成回路38の出力電位が自局のAGC増
幅回路6のゲインレベルを上回っている場合は相手局の
光出力駆動回路44での変調電流を多くさせるという情
報を持たせ、また逆に最大光出力が目的のレベルを超え
ているため自局のAGC増幅回路6のゲインレベルが自
局の第2の基準レベル生成回路38の出力電位を上回っ
ている場合は相手局の光出力駆動回路44での変調電流
を少なくさせるという情報を持たせ、最大光出力が目的
のレベルならば現在の変調電流を保つような情報を持た
せる。Next, the operation will be described. First, the control signal generation unit 29 of its own station will be described. As described above with respect to the temperature characteristic diagram of the photoelectric conversion efficiency of the laser diode of FIG. 5, since the threshold current and the differential quantum efficiency of the laser diode change with the temperature change of the surroundings, the average light output and the maximum value emitted from the laser diode are increased. In order to keep the light output constant, the bias current and the modulation current have to be increased or decreased according to the temperature variation. Therefore, the same potential as the average potential obtained by averaging the light receiving element current of the light receiving circuit 4 of the own station by the averaging circuit 35 of the own station in the state where the desired average light output is obtained 1 is generated by the reference level generating circuit 36 of the first station, and the output potential of the averaging circuit 35 of the own station in a certain state and the output potential of the first reference level generating circuit 36 of the own station are the first potential of the own station. The comparison circuit 37 compares the magnitude relationship. Also, when the target maximum optical output is obtained, the AG
The same potential as the gain level of the C amplification circuit 6 is generated by the second reference level generation circuit 38 of the own station, and the gain level of the AGC amplification circuit 6 of the own station in a certain state and the second reference level of the own station are generated. The output potential of the level generation circuit 38 is compared by the second comparison circuit 39 of its own station in terms of their magnitude relationship.
Next, the control signal generation circuit 40 of the own station generates a control signal based on the outputs of the first comparison circuit 37 of the own station and the second comparison circuit 39 of the own station. If the output potential of the first reference level generation circuit 36 of the own station exceeds the output potential of the averaging circuit 35 of the own station because the average optical output does not reach the target level in the control signal, the other party Information is given to increase the bias current in the optical output drive circuit 44 of the station, and conversely, since the average optical output exceeds the target level, the output potential of the averaging circuit 35 of the own station is the same as that of the own station. When the output potential of the reference level generating circuit 36 of 1 is exceeded, information is given to reduce the bias current in the optical output drive circuit 44 of the other station, and if the average optical output is the target level, the current bias current is obtained. To have information that keeps If the maximum optical output does not reach the target level,
If the output potential of the reference level generation circuit 38 of is higher than the gain level of the AGC amplifier circuit 6 of the own station, information to increase the modulation current in the optical output drive circuit 44 of the other station is added, and vice versa. When the gain level of the AGC amplifier circuit 6 of the own station exceeds the output potential of the second reference level generating circuit 38 of the own station because the maximum optical output exceeds the target level, the optical output drive circuit of the other station Information for reducing the modulation current at 44 is provided, and information for maintaining the current modulation current is provided if the maximum optical output is the target level.
【0011】生成された制御信号は自局の送信部に付随
する多重回路30にて自局のデータ入力端子18からの
データ信号と多重され、自局の送信部14にて電気信号
を光信号に変換し、光ファイバ3を通じて相手局の受信
部15に伝送される。相手局の受信部15に伝送された
光信号は相手局の受信部15にて光信号を電気信号に変
換し、先に自局の送信部に付随する多重回路30の出力
信号と同一の多重信号に再生される。再生された多重信
号は相手局の分離回路31にてデータ信号と制御信号に
分離され、データ信号は相手局のデータ出力端子19
へ、また制御信号は相手局の制御信号処理部32へ伝送
される。制御信号は相手局の制御信号復元回路46によ
りバイアス電流の制御に関する情報と変調電流の制御に
関する情報とに復元され、それぞれの情報により相手局
のバイアス電流駆動回路48及び相手局の変調電流駆動
回路47を通じて相手局の光出力駆動回路44における
バイアス電流及び変調電流が制御される。以上の処理に
より相手局の発光回路45には常に最適なバイアス電流
及び変調電流が流れるよう制御されることにより、相手
局2からの光信号を常に目的の状態に保つことができ
る。また以上の説明と同様に、自局の送信部14につい
ては相手局2により制御を行うことにより自局1からの
光信号を常に目的の状態に保つことができる。The generated control signal is multiplexed with the data signal from the data input terminal 18 of the own station by the multiplexing circuit 30 attached to the transmitter of the own station, and the transmitter 14 of the own station transmits the electric signal as an optical signal. And is transmitted to the receiving unit 15 of the partner station via the optical fiber 3. The optical signal transmitted to the receiving unit 15 of the partner station is converted into an electric signal by the receiving unit 15 of the partner station, and the same optical signal as the output signal of the multiplexing circuit 30 attached to the transmitter of the own station is first multiplexed. The signal is played back. The reproduced multiplexed signal is separated into a data signal and a control signal by the separation circuit 31 of the partner station, and the data signal is the data output terminal 19 of the partner station.
And the control signal is transmitted to the control signal processing unit 32 of the partner station. The control signal is restored by the control signal restoration circuit 46 of the partner station into information relating to the control of the bias current and information relating to the control of the modulation current, and the bias current drive circuit 48 of the partner station and the modulation current drive circuit of the partner station are restored by the respective information. Via 47, the bias current and the modulation current in the optical output drive circuit 44 of the partner station are controlled. By the above processing, the light emitting circuit 45 of the partner station is controlled so that the optimum bias current and modulation current always flow, so that the optical signal from the partner station 2 can always be kept in a desired state. Further, similarly to the above description, by controlling the transmitter 14 of the own station by the partner station 2, the optical signal from the own station 1 can always be kept in a target state.
【0012】実施の形態2 図2はこの発明の実施の形態2を対向で使用した場合の
構成を示すブロック図であり、図において、49は自局
のAGC増幅回路6の出力信号をピーク値検波し直流電
圧信号を出力する自局の交流成分検出回路である。実施
の形態1では変調電流を制御するため自局のAGC増幅
回路6のゲインレベルを利用したが、実施の形態2では
自局のAGC増幅回路6内部で増幅の状態がリニアであ
るアンプ中段の増幅信号波を取り出し自局の交流成分検
出回路49にて増幅信号波の交流成分の振幅値を電圧信
号化したものを利用した。実施の形態1の方法ではゲイ
ンレベルは入力信号の振幅の変動に対して変化するがそ
の変化量が小さく制御誤差が生まれやすいが、実施の形
態2の方法によるとある程度増幅された大きな信波を利
用するため制御誤差を少なくできる。Embodiment 2 FIG. 2 is a block diagram showing a configuration when Embodiment 2 of the present invention is used in a facing manner, in which 49 is the peak value of the output signal of the AGC amplifier circuit 6 of its own station. It is an AC component detection circuit of its own station that detects and outputs a DC voltage signal. In the first embodiment, the gain level of the AGC amplifier circuit 6 of its own station is used to control the modulation current. However, in the second embodiment, the amplification level of the AGC amplifier circuit 6 of its own station is linear in the middle stage of the amplifier. The amplified signal wave was taken out, and the amplitude component of the AC component of the amplified signal wave was converted into a voltage signal by the AC component detection circuit 49 of its own station. In the method of the first embodiment, the gain level changes with respect to the fluctuation of the amplitude of the input signal, but the change amount is small and a control error is likely to occur. However, the method of the second embodiment produces a large amplified wave to some extent. Since it is used, the control error can be reduced.
【0013】実施の形態3 図3はこの発明の実施の形態3を示すブロック図であ
り、図において、50は光ファイバの伝送時間を得るた
めの時間差検出信号を出力する自局の時間差検出信号発
出回路、51は自局の時間差検出信号発出回路50及び
自局の受信部に付随する分離回路27に接続される自局
の時間差検出信号検出回路、52は自局の時間差検出信
号検出回路51からの出力をもとに光ファイバの伝送距
離を算出し伝送距離を表す電圧信号を出力する自局の伝
送距離算出回路、53は自局の時間差検出信号検出回路
51の出力電圧信号を外部に出力する自局の第1の検出
信号出力端子、54は自局の伝送距離算出回路52の出
力電圧信号を外部に出力する自局の第2の検出信号出力
端子である。自局の時間差検出信号発出回路50では、
ある時刻T1にて自局の送信部に付随する多重回路30
及び自局の時間差検出信号検出回路51に時間差検出信
号を出力する。自局の送信部に付随する多重回路30に
出力された時間差検出信号は、自局の送信部14及び光
ファイバ3及び相手局の受信部15及び相手局の受信部
に付随する分離回路31及び相手局の送信部に付随する
多重回路34及び相手局の送信部16及び光ファイバ3
及び自局の受信部9を通じて自局の受信部に付随する分
離回路27に伝送される。そして自局の受信部に付随す
る分離回路27から自局の時間差検出信号検出回路51
に時間差検出信号が出力された時刻をT2とする。次に
自局の時間差検出信号検出回路51では、自局の時間差
検出信号発出回路50から時間差検出信号が入力された
時刻T1と自局の受信部に付随する分離回路27から自
局の時間差検出信号検出回路51に時間差検出信号が出
力された時刻T2によって自局1と相手局2との間の光
ファイバ3を往復する時間を得て、その時間差信号を自
局の伝送距離算出回路52及び自局の第1の検出信号出
力端子53に出力する。自局の伝送距離算出回路52で
は自局の時間差検出信号検出回路51から入力された時
間差信号を元に伝送距離を算出し伝送距離の情報を持つ
信号を自局の第2の検出信号出力端子54に出力する。Third Embodiment FIG. 3 is a block diagram showing a third embodiment of the present invention. In the figure, reference numeral 50 designates a time difference detection signal of its own station which outputs a time difference detection signal for obtaining a transmission time of an optical fiber. An output circuit, 51 is a time difference detection signal output circuit 50 of its own station, and a time difference detection signal detection circuit of its own station connected to the separation circuit 27 attached to the receiving section of its own station, and 52 is a time difference detection signal detection circuit 51 of its own station. The transmission distance calculation circuit of the own station, which calculates the transmission distance of the optical fiber based on the output from and outputs the voltage signal indicating the transmission distance, 53 is the output voltage signal of the time difference detection signal detection circuit 51 of the own station to the outside. The first detection signal output terminal of the own station for outputting, 54 is the second detection signal output terminal of the own station for outputting the output voltage signal of the transmission distance calculation circuit 52 of the own station to the outside. In the time difference detection signal issuing circuit 50 of the own station,
At a certain time T1, the multiplexing circuit 30 attached to the transmitter of the own station
And a time difference detection signal to the time difference detection signal detection circuit 51 of its own station. The time difference detection signal output to the multiplexing circuit 30 associated with the transmitter of the own station is the separation circuit 31 associated with the transmitter 14 of the own station, the optical fiber 3, the receiver 15 of the partner station, and the receiver of the partner station. Multiplexing circuit 34 associated with the transmitter of the partner station, transmitter 16 of the partner station, and optical fiber 3
And transmitted to the separation circuit 27 attached to the receiving unit of the own station through the receiving unit 9 of the own station. The time difference detection signal detection circuit 51 of the own station is separated from the separation circuit 27 attached to the receiving unit of the own station.
The time at which the time difference detection signal is output is T2. Next, in the time difference detection signal detection circuit 51 of the own station, time T1 when the time difference detection signal is input from the time difference detection signal issuing circuit 50 of the own station and the time difference detection of the own station from the separation circuit 27 attached to the receiving unit of the own station. At time T2 when the time difference detection signal is output to the signal detection circuit 51, the time for reciprocating the optical fiber 3 between the own station 1 and the partner station 2 is obtained, and the time difference signal is calculated by the transmission distance calculation circuit 52 of the own station. The signal is output to the first detection signal output terminal 53 of the own station. The transmission distance calculation circuit 52 of the own station calculates the transmission distance based on the time difference signal input from the time difference detection signal detection circuit 51 of the own station, and outputs a signal having information of the transmission distance to the second detection signal output terminal of the own station. To 54.
【0014】[0014]
【発明の効果】第1の発明によれば、従来の方式のよう
に相手局の送信部では光出力の制御及び補償を行わず、
自局の受信部側にて自局の受光回路の出力電流を平均化
した電圧信号及び自局のAGC増幅回路のゲインレベル
信号を用いて制御信号を生成し、その制御信号をデータ
信号と多重して相手局に伝送し、相手局内で制御信号を
元に相手局の送信部を制御することにより、レーザダイ
オード特性の個別バラツキに応じた相手局の送信部の調
整が不要になる。According to the first aspect of the present invention, unlike the conventional method, the transmission section of the partner station does not control or compensate the optical output,
A control signal is generated on the receiving side of the own station using the voltage signal obtained by averaging the output current of the light receiving circuit of the own station and the gain level signal of the AGC amplifier circuit of the own station, and the control signal is multiplexed with the data signal. Then, by transmitting to the partner station and controlling the transmitter of the partner station based on the control signal in the partner station, it is not necessary to adjust the transmitter of the partner station according to the individual variations of the laser diode characteristics.
【0015】また、第2の発明によれば、従来の方式の
ように相手局の送信部では光出力の制御及び補償を行わ
ず、自局の受信部側にて自局の受光回路の出力電流を平
均化した電圧信号及び自局のAGC増幅回路の中段出力
の交流成分を検出した電圧信号を用いて制御信号を生成
し、その制御信号をデータ信号と多重して相手局に伝送
し、相手局内で制御信号を元に相手局の送信部を制御す
ることにより、レーザダイオード特性の個別バラツキに
応じた相手局の送信部の調整が不要になる。According to the second aspect of the invention, unlike the conventional method, the transmitting section of the partner station does not control and compensate the optical output, and the receiving section of the own station outputs the output of the light receiving circuit of the own station. A control signal is generated using the voltage signal obtained by averaging the current and the voltage signal obtained by detecting the AC component of the middle output of the AGC amplifier circuit of the own station, and the control signal is multiplexed with the data signal and transmitted to the other station, By controlling the transmitter of the partner station based on the control signal in the partner station, it becomes unnecessary to adjust the transmitter of the partner station according to the individual variation of the laser diode characteristics.
【0016】また、第3の発明によれば、自局ではデー
タ信号に時間差検出信号を多重したものを送信させ、相
手局では受信した時間差検出信号をそのまま再びデータ
と多重して送信させ、自局では先に発した時間差検出信
号と返ってきた時間差検出信号との時間差を測定するこ
とにより、ファイバの伝送距離を算出できる。According to the third aspect of the invention, the local station transmits a data signal multiplexed with the time difference detection signal, and the partner station transmits the received time difference detection signal again without multiplexing with the data. At the station, the transmission distance of the fiber can be calculated by measuring the time difference between the time difference detection signal that has been emitted earlier and the time difference detection signal that has been returned.
【図1】この発明による光送受信装置の実施の形態1を
示すブロック図である。FIG. 1 is a block diagram showing a first embodiment of an optical transceiver according to the present invention.
【図2】この発明による光送受信装置の実施の形態2を
示すブロック図である。FIG. 2 is a block diagram showing a second embodiment of an optical transceiver according to the present invention.
【図3】この発明による光送受信装置の実施の形態3を
示すブロック図である。FIG. 3 is a block diagram showing a third embodiment of an optical transceiver according to the present invention.
【図4】従来の光送受信装置を示すブロック図である。FIG. 4 is a block diagram showing a conventional optical transceiver.
【図5】レーザダイオードの光電変換効率の温度特性図
である。FIG. 5 is a temperature characteristic diagram of photoelectric conversion efficiency of a laser diode.
【図6】従来方式におけるレーザダイオード駆動回路図
である。FIG. 6 is a laser diode drive circuit diagram in a conventional method.
1 自局 2 相手局 3 光ファイバ 4 自局の受光回路 5 自局の前置増幅回路 6 自局のAGC増幅回路 7 自局のタイミング抽出回路 8 自局の識別再生回路 9 自局の受信部 10 自局の光出力温度補償回路 11 自局の光出力制御回路 12 自局の光出力駆動回路 13 自局の発光回路 14 自局の送信部 15 相手局の受信部 16 相手局の送信部 17 自局のデータ出力端子 18 自局のデータ入力端子 19 相手局のデータ出力端子 20 相手局のデータ入力端子 21 レーザダイオードモジュール 22 レーザダイオード 23 モニタフォトダイオード 24 平滑化コンデンサ 25 平均光出力レファレンス電圧 26 変調電流温度補償用感温素子 27 自局の受信部に付随する分離回路 28 自局の制御信号処理部 29 自局の制御信号生成部 30 自局の送信部に付随する多重回路 31 相手局の受信部に付随する分離回路 32 相手局の制御信号処理部 33 相手局の制御信号生成部 34 相手局の送信部に付随する多重回路 35 自局の平均化回路 36 自局の第1の基準レベル生成回路 37 自局の第1の比較回路 38 自局の第2の基準レベル生成回路 39 自局の第2の比較回路 40 自局の制御信号生成回路 41 自局の制御信号復元回路 42 自局の変調電流駆動回路 43 自局のバイアス電流駆動回路 44 相手局の光出力駆動回路 45 相手局の発光回路 46 相手局の制御信号復元回路 47 相手局の変調電流駆動回路 48 相手局のバイアス電流駆動回路 49 自局の交流成分検出回路 50 自局の時間差検出信号発出回路 51 自局の時間差検出信号検出回路 52 自局の伝送距離算出回路 53 自局の第1の検出信号出力端子 54 自局の第2の検出信号出力端子 1 Own station 2 Opposite station 3 Optical fiber 4 Light receiving circuit of own station 5 Preamplifier circuit of own station 6 AGC amplifier circuit of own station 7 Timing extraction circuit of own station 8 Identification and reproduction circuit of own station 9 Receiver section of own station 10 Optical output temperature compensation circuit of own station 11 Optical output control circuit of own station 12 Optical output drive circuit of own station 13 Light emitting circuit of own station 14 Transmitter of own station 15 Receiver of other station 16 Transmitter of other station 17 Data output terminal of own station 18 Data input terminal of own station 19 Data output terminal of partner station 20 Data input terminal of partner station 21 Laser diode module 22 Laser diode 23 Monitor photodiode 24 Smoothing capacitor 25 Average optical output reference voltage 26 Modulation Current temperature compensating temperature sensitive element 27 Separation circuit attached to receiving section of own station 28 Control signal processing section of own station 29 Control signal generating section of own station 30 Multiplexing Circuit Associated with Transmitting Section of Own Station 31 Separation Circuit Associated with Receiving Section of Other Station 32 Control Signal Processing Section of Other Station 33 Control Signal Generating Section of Other Station 34 Multiplexing Circuit Associated with Transmission Section of Other Station 35 Averaging circuit of own station 36 First reference level generating circuit of own station 37 First comparing circuit of own station 38 Second reference level generating circuit of own station 39 Second comparing circuit of own station 40 Own station Control signal generation circuit 41 Control signal restoration circuit of own station 42 Modulation current drive circuit of own station 43 Bias current drive circuit of own station 44 Optical output drive circuit of partner station 45 Light emission circuit of partner station 46 Control signal restoration circuit of partner station 47 Modulation current drive circuit of partner station 48 Bias current drive circuit of partner station 49 AC component detection circuit of own station 50 Time difference detection signal issuing circuit of own station 51 Time difference detection signal detection circuit of own station 52 The second detection signal output terminal of the feed distance calculating circuit 53 first detection signal output terminal 54 the mobile station of its own station
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/26 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location H04B 10/26
Claims (3)
制御信号が重畳された光信号の、入力光量に応じた電流
信号を出力する受光回路と、前記受光回路に接続され、
前記電流信号を電圧信号に変換する前置増幅回路と、前
記電圧信号を所望の振幅に増幅するAGC増幅回路と、
前記AGC増幅回路の出力信号からクロック成分を抽出
するタイミング抽出回路と、前記AGC増幅回路の出力
信号を前記タイミング抽出回路の出力信号を元に識別再
生し制御信号を含むデータ信号とクロック信号を出力す
る識別再生回路と、データ信号と制御信号を分離する分
離回路と、前記分離回路からのデータ信号を外部に出力
するデータ出力端子と、前記分離回路からの制御信号を
もとに前記光出力駆動回路のバイアス電流制御信号と変
調電流制御信号とを出力する制御信号処理部と、前記受
光回路の出力する電流信号を平均化し平均値信号を出力
する平均化回路と、前記平均化回路の出力信号に対応す
る基準信号を生成する第1の基準レベル生成回路と、前
記AGC増幅回路のゲインレベル信号に対応する基準信
号を生成する第2の基準レベル生成回路と、前記平均化
回路の出力信号と前記第1の基準レベル生成回路の出力
信号とを比較しその差分に応じた電圧信号を出力する第
1の比較回路と、前記AGC増幅回路のゲインレベル信
号と前記第2の基準レベル生成回路の出力信号とを比較
しその差分に応じた電圧信号を出力する第2の比較回路
と、前記第1の比較回路および第2の比較回路の出力信
号を元に相手局の光出力を制御する為の制御信号を出力
する制御信号生成回路と、データ信号を外部から入力す
るデータ入力端子と、前記制御信号生成回路が出力する
制御信号と前記データ入力端子からのデータ信号を多重
する多重回路と、前記多重回路の出力信号及び前記制御
信号処理部の出力信号に応じて動作する光出力駆動回路
と、前記光出力駆動回路の出力信号に応じた光信号を光
ファイバへ出力する発光回路とを備えたことを特徴とす
る光送受信装置。1. A light receiving circuit for outputting a current signal of an optical signal obtained by superimposing a control signal on a data signal input from an optical fiber, the current signal being connected to the light receiving circuit,
A preamplifier circuit that converts the current signal into a voltage signal; an AGC amplifier circuit that amplifies the voltage signal to a desired amplitude;
A timing extraction circuit that extracts a clock component from the output signal of the AGC amplifier circuit, and an output signal of the AGC amplifier circuit that is discriminated and reproduced based on the output signal of the timing extraction circuit to output a data signal including a control signal and a clock signal. Identification reproduction circuit, a separation circuit for separating a data signal and a control signal, a data output terminal for outputting the data signal from the separation circuit to the outside, and the optical output drive based on the control signal from the separation circuit A control signal processing unit that outputs a bias current control signal and a modulation current control signal of the circuit, an averaging circuit that averages the current signals output by the light receiving circuit and outputs an average value signal, and an output signal of the averaging circuit And a second reference level generation circuit for generating a reference signal corresponding to the gain level signal of the AGC amplifier circuit. A reference level generation circuit, a first comparison circuit that compares the output signal of the averaging circuit and the output signal of the first reference level generation circuit, and outputs a voltage signal corresponding to the difference, and the AGC amplification circuit. Of the first comparison circuit and the second comparison circuit, which compares the gain level signal of 1) with the output signal of the second reference level generation circuit and outputs a voltage signal corresponding to the difference between the gain level signal and the output signal of the second reference level generation circuit. A control signal generation circuit that outputs a control signal for controlling the optical output of the other station based on the output signal, a data input terminal that inputs a data signal from the outside, a control signal that the control signal generation circuit outputs, and A multiplexing circuit that multiplexes data signals from data input terminals, an optical output driving circuit that operates according to an output signal of the multiplexing circuit and an output signal of the control signal processing unit, and an output signal of the optical output driving circuit Optical transceiver being characterized in that a light-emitting circuit for output to the optical fiber a light signal corresponding.
制御信号が重畳された光信号の、入力光量に応じた電流
信号を出力する受光回路と、前記受光回路に接続され、
前記電流信号を電圧信号に変換する前置増幅回路と、前
記電圧信号を所望の振幅に増幅するAGC増幅回路と、
前記AGC増幅回路の出力信号からクロック成分を抽出
するタイミング抽出回路と、前記AGC増幅回路の出力
信号を前記タイミング抽出回路の出力信号を元に識別再
生し制御信号を含むデータ信号とクロック信号を出力す
る識別再生回路と、データ信号と制御信号を分離する分
離回路と、前記分離回路からのデータ信号を外部に出力
するデータ出力端子と、前記分離回路からの制御信号を
もとに前記光出力駆動回路のバイアス電流制御信号と変
調電流制御信号とを出力する制御信号処理部と、前記受
光回路の出力する電流信号を平均化し平均値信号を出力
する平均化回路と、前記AGC増幅回路の出力信号をピ
ーク値検波し直流電圧信号を出力する交流成分検出回路
と、前記平均化回路の出力信号に対応する基準信号を生
成する第1の基準レベル生成回路と、前記交流成分検出
回路の出力信号に対応する基準信号を生成する第2の基
準レベル生成回路と、前記平均化回路の出力信号と前記
第1の基準レベル生成回路の出力信号とを比較しその差
分に応じた電圧信号を出力する第1の比較回路と、前記
AGC増幅回路の出力信号と前記第2の基準レベル生成
回路の出力信号とを比較しその差分に応じた電圧信号を
出力する第2の比較回路と、前記第1の比較回路および
第2の比較回路の出力信号を元に相手局の光出力を制御
する為の制御信号を出力する制御信号生成回路と、デー
タ信号を外部から入力するデータ入力端子と、前記制御
信号生成回路が出力する制御信号と前記データ入力端子
からのデータ信号を多重する多重回路と、前記多重回路
の出力信号及び前記制御信号処理部の出力信号に応じて
動作する光出力駆動回路と、前記光出力駆動回路の出力
信号に応じた光信号を光ファイバへ出力する発光回路と
を備えたことを特徴とする光送受信装置。2. A light receiving circuit for outputting a current signal of an optical signal obtained by superimposing a control signal on a data signal input from an optical fiber, the current signal being connected to the light receiving circuit,
A preamplifier circuit that converts the current signal into a voltage signal; an AGC amplifier circuit that amplifies the voltage signal to a desired amplitude;
A timing extraction circuit that extracts a clock component from the output signal of the AGC amplifier circuit, and an output signal of the AGC amplifier circuit that is discriminated and reproduced based on the output signal of the timing extraction circuit to output a data signal including a control signal and a clock signal. Identification reproduction circuit, a separation circuit for separating a data signal and a control signal, a data output terminal for outputting the data signal from the separation circuit to the outside, and the optical output drive based on the control signal from the separation circuit A control signal processing unit for outputting a bias current control signal and a modulation current control signal for the circuit, an averaging circuit for averaging the current signals output by the light receiving circuit and outputting an average value signal, and an output signal for the AGC amplifier circuit. Component detecting circuit for detecting the peak value of the signal and outputting a DC voltage signal, and a first reference for generating a reference signal corresponding to the output signal of the averaging circuit A bell generation circuit, a second reference level generation circuit that generates a reference signal corresponding to the output signal of the AC component detection circuit, an output signal of the averaging circuit, and an output signal of the first reference level generation circuit. Comparing the output signals of the AGC amplifier circuit and the output signal of the second reference level generating circuit, and outputting a voltage signal corresponding to the difference between them. And a control signal generation circuit for outputting a control signal for controlling the optical output of the partner station based on the output signals of the first comparison circuit and the second comparison circuit, and data. A data input terminal for inputting a signal from the outside, a multiplexing circuit for multiplexing the control signal output by the control signal generating circuit and the data signal from the data input terminal, an output signal of the multiplexing circuit, and the control signal processing unit. And an optical output drive circuit which operates in response to the output signal, the optical transceiver being characterized in that a light-emitting circuit for output to the optical fiber a light signal corresponding to the output signal of the light output drive circuit.
差検出信号を出力する時間差検出信号発出回路と、デー
タ信号を外部から入力するデータ入力端子と、前記時間
差検出信号発出回路が出力する時間差検出信号と前記デ
ータ入力端子からのデータ信号を多重する多重回路と、
前記多重回路の出力信号を光ファイバに光信号として出
力する送信部と、データ信号と時間差検出信号が多重さ
れた光ファイバから入力される光信号を電気信号に変換
する受信部と、データ信号と時間差検出信号を分離する
分離回路と、前記分離回路からのデータ信号を外部に出
力するデータ出力端子と、前記時間差検出信号発出回路
から出力された時間差検出信号と前記分離回路から出力
された時間差検出信号を比較しその時間差を表す電圧信
号を出力する時間差検出信号検出回路と、前記時間差検
出信号検出回路からの出力をもとに光ファイバの伝送距
離を算出し伝送距離を表す電圧信号を出力する伝送距離
算出回路と、前記時間差検出信号検出回路の出力電圧信
号を外部に出力する第1の検出信号出力端子と、前記伝
送距離算出回路の出力電圧信号を外部に出力する第2の
検出信号出力端子とを備えたことを特徴とする光送受信
装置。3. A time difference detection signal issuing circuit for outputting a time difference detection signal for obtaining a transmission time of an optical fiber, a data input terminal for externally inputting a data signal, and a time difference detection output by the time difference detection signal issuing circuit. A multiplexing circuit for multiplexing a signal and a data signal from the data input terminal;
A transmitting unit that outputs the output signal of the multiplexing circuit to the optical fiber as an optical signal, a receiving unit that converts the optical signal input from the optical fiber in which the data signal and the time difference detection signal are multiplexed into an electric signal, and the data signal, A separation circuit for separating the time difference detection signal, a data output terminal for outputting the data signal from the separation circuit to the outside, a time difference detection signal output from the time difference detection signal issuing circuit, and a time difference detection output from the separation circuit A time difference detection signal detection circuit that compares signals and outputs a voltage signal that represents the time difference, and calculates the transmission distance of the optical fiber based on the output from the time difference detection signal detection circuit, and outputs the voltage signal that represents the transmission distance. A transmission distance calculation circuit, a first detection signal output terminal for outputting an output voltage signal of the time difference detection signal detection circuit to the outside, and a transmission distance calculation circuit Optical transceiver being characterized in that a second detection signal output terminal for outputting a power voltage signal to the outside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8032280A JPH09233027A (en) | 1996-02-20 | 1996-02-20 | Optical transmitter-receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8032280A JPH09233027A (en) | 1996-02-20 | 1996-02-20 | Optical transmitter-receiver |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09233027A true JPH09233027A (en) | 1997-09-05 |
Family
ID=12354571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8032280A Pending JPH09233027A (en) | 1996-02-20 | 1996-02-20 | Optical transmitter-receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09233027A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011528209A (en) * | 2008-07-14 | 2011-11-10 | ナノテック セミコンダクター リミテッド | Method and system for closed-loop control of an optical link |
-
1996
- 1996-02-20 JP JP8032280A patent/JPH09233027A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011528209A (en) * | 2008-07-14 | 2011-11-10 | ナノテック セミコンダクター リミテッド | Method and system for closed-loop control of an optical link |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5703711A (en) | In-line optical amplifier | |
US6594070B2 (en) | Optical communication system, optical receiver and wavelength converter | |
JP3522509B2 (en) | Optical transmission device and optical communication system | |
US7265334B2 (en) | Laser power control with automatic compensation | |
CN108768533B (en) | Optical transceiver integrated assembly for high-speed long-distance transmission | |
EP0704993A2 (en) | Control circuits for parallel optical interconnects | |
US20080128587A1 (en) | Apparatus and method for controlling optical power and extinction ratio | |
JP3995934B2 (en) | Optical transmission system and terminal device applicable to the system | |
KR20150105889A (en) | Apparatus and method for driving vertical cavity surface emitting laser diode | |
JPH05235810A (en) | Remote control system and terminal station equipment used for said system and relay station equipment | |
EP0534433B1 (en) | Optical regenerative-repeater system | |
JP3328170B2 (en) | Optical communication transmitter | |
US20100150561A1 (en) | Optical receiver, optical line terminal and method of recovering received signals | |
CN208424372U (en) | A kind of light transmit-receive integrated component for high-speed remote from transmission | |
US6178026B1 (en) | Analog optical transmission apparatus | |
US7130546B2 (en) | Optical receiver | |
JPH09233027A (en) | Optical transmitter-receiver | |
JPH10173290A (en) | Light transmission circuit | |
JP2000295181A (en) | Optical transmitter and optical communication system | |
JP4173688B2 (en) | Optical module and optical communication system | |
JP2755147B2 (en) | Automatic optical output reduction circuit of optical amplifier | |
JP2508978B2 (en) | Optical transmitter circuit | |
JPH06112905A (en) | Optical direct amplifier | |
JPH09116506A (en) | Optical transmission system | |
JP2508980B2 (en) | Optical transmitter circuit |