JPH09230391A - Re-dispersion of electric field arrangeable particle - Google Patents

Re-dispersion of electric field arrangeable particle

Info

Publication number
JPH09230391A
JPH09230391A JP8038279A JP3827996A JPH09230391A JP H09230391 A JPH09230391 A JP H09230391A JP 8038279 A JP8038279 A JP 8038279A JP 3827996 A JP3827996 A JP 3827996A JP H09230391 A JPH09230391 A JP H09230391A
Authority
JP
Japan
Prior art keywords
voltage
transparent electrode
light
particles
ea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8038279A
Other languages
Japanese (ja)
Inventor
Kenji Furuichi
Moritaka Goto
Takayuki Imai
隆之 今井
健二 古市
守孝 後藤
Original Assignee
Fujikura Ltd
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, 株式会社フジクラ filed Critical Fujikura Ltd
Priority to JP8038279A priority Critical patent/JPH09230391A/en
Publication of JPH09230391A publication Critical patent/JPH09230391A/en
Application status is Pending legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To make it possible to rapidly re-disperse EA particles and to exactly attain a light shielding state by impressing a first voltage to generate an electric field arrangement effect between transparent electrode plates to increase the quantity of transmitted light and impressing a second voltage to generate an electrophoresis effect between these transparent electrode plates to decrease the quantity of transmission.
SOLUTION: When the first voltage is impressed between the electrodes 5 and 7, the EA particles 11 are perpendicularly arranged between the transparent electrode layers 53 and 73 by the EA effect and chain bodies are formed. Namely, a light controller section 1 attains the light transmission state as the attenuation to the incident light quantity decreases. On the other hand, the EA particles 11 executes electrophoresis and eventually stick to the one-side surfaces of the transparent electrode layers 53, 73 when the second voltage is impressed between the transparent electrodes 5 and 7. Namely, the light controller section 1 attains the light shielding state as the attenuation to the incident light quantity increases in the state that the second voltage is impressed thereon. The light shielding state is exactly and rapidly attained by impressing the second voltage different from the first voltage between the electrodes.
COPYRIGHT: (C)1997,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、電気感応型光機能性流体組成物(以下、EA流体と略称する)を使用した透過光量制御装置においてEA流体内に含有する電界配列性粒子(以下、EA粒子と略称する)を配列状態から再分散させる電界配列性粒子の再分散方法に関する。 The present invention relates to an electrical sensitive optical functional fluid composition (hereinafter, abbreviated as EA fluid) field sequence particles contained in the EA fluid in the transmission light quantity control apparatus using (hereinafter, redispersion method of the field sequence particles to redisperse the EA abbreviated as particles) from an array state.

【0002】 [0002]

【従来の技術】EA流体を使用したこの種の透過光量制御装置としては、例えば特願平6−193435号および特願平6−193448号に記載されているものがあり、またEA流体については特願平6−192633号に記載されている。 2. Description of the Related Art As this kind of the transmitted light amount control apparatus using EA fluid, while others are described, for example, No. Hei 6-193435 and Hei 6-193448, and for EA fluid It is described in Japanese Patent Application No. 6-192633.

【0003】従来のこの種の透過光量制御装置は、対向する一対の透明電極板の間にEA粒子を透明な電気絶縁性媒体の中に含有してなるEA流体を充填して構成され、一対の透明電極板の間に電圧を印加しない状態においては透明電極板間のEA流体内にEA粒子が浮遊して不規則に分散しているため、透明電極板に対して光を照射しても、この光は電極板間のEA流体内に不規則に分散しているEA粒子によって遮られ、透過することはできない。 [0003] this type of conventional transmission light quantity control device is configured to fill the EA fluid comprising in a pair of opposing transparent electrode plates transparent EA particles electrically insulative medium, a pair of transparent since EA particles within EA fluid transparent electrode plates in a state where no voltage is applied between the electrode plates are irregularly dispersed suspended, be irradiated with light to the transparent electrode plate, this light interrupted by EA particles in EA fluid between the electrode plates are irregularly distributed, can not be transmitted. すなわち、透過光量制御装置は、電極板間に電圧を印加されていない状態においては、入射光量に対する減衰が大きくなり、光を十分に透過することができない。 That is, the transmitted light quantity control device, in a state not applied with a voltage between the electrode plates, the attenuation with respect to the amount of incident light is large, it can not be sufficiently transmit light.

【0004】一方、一対の透明電極板間に電圧を印加すると、透明電極板間のEA流体内のEA粒子は垂直に配列し、互いに間隔をあけて複数の鎖状体になり、鎖状体の間の隙間部にはEA粒子が存在せず、透明な電気絶縁媒体のみとなるため、透明電極板に対して照射された光はEA粒子の存在しない透明な電気絶縁媒体部分を通って一対の電極板間を透過することができる。 On the other hand, when a voltage is applied to the pair of transparent electrode plates, EA particles in EA fluid transparent electrode plates are arranged vertically, becomes more linear body spaced from one another, a chain-like body pair in the gap portion between the absent EA particles, since only a transparent electrically insulating medium, light emitted to the transparent electrode plate through the presence transparent electrically insulating medium portion not of EA particle it can be transmitted through the electrode plates. すなわち、 That is,
透過光量制御装置は、電極板間に電圧を印加された場合には、入射光量に対する減衰が小さくなり、光を十分に透過し得るようになる。 Transmitted light quantity control device, when it is applied a voltage between the electrode plates, the attenuation is reduced with respect to the amount of incident light, so that can sufficiently transmit light.

【0005】 [0005]

【発明が解決しようとする課題】上述したように、一対の透明電極板間に電圧を印加すると、透明電極板間のE [SUMMARY OF THE INVENTION] As described above, when a voltage is applied to the pair of transparent electrode plates, of transparent electrode plates E
A流体内のEA粒子は垂直に配列し、互いに間隔をあけて複数の鎖状体になり、この鎖状体の間を光が透過し得るようになるが、この光透過状態から元の光遮断状態にするために、透明電極板間の印加電圧を除去またはゼロにしても、鎖状体に配列されたEA粒子はすぐにはこの配列を崩さず、そのまま並んだ状態にあり、この配列状態を解除し、元の光遮断状態にするには、従来、透明電極板を振動させたり、または長時間放置する以外に方法がなかった。 EA particles in the A fluid is arranged vertically, it becomes more linear body spaced apart from each other, the light between the chain body is adapted to be transmitted, the original light from the light transmission state to cut off state, even if the removal or zero voltage applied to the transparent electrode plates, EA particles arranged in a chain body distorting the sequence immediately located as it aligned state, the sequence releasing the state, to the original light blocking state, conventionally, or by vibrating the transparent electrode plate, or there is no alternative but to left for a long time.

【0006】本発明は、上記に鑑みてなされたもので、 [0006] The present invention has been made in view of the above,
その目的とするところは、電圧を印加されて光透過配列状態になったEA粒子を迅速に再分散させて、適確に光遮断状態にし得る電界配列性粒子の再分散方法を提供することにある。 The place of interest, the voltage rapidly dispersed again applied with EA particles became light transmission array state, to provide a redispersion method of the field sequence particles that may be in the light blocking state to an appropriate probability is there.

【0007】 [0007]

【課題を解決するための手段】上記目的を達成するため、請求項1記載の本発明は、対向する一対の透明電極板の間に電界配列性粒子を透明な電気絶縁性媒体の中に含有してなる電気感応型光機能性流体組成物を充填し、 Means for Solving the Problems] To achieve the above object, the present invention according to claim 1, contained in a pair of opposing transparent electrically insulating medium field sequence particles to the transparent electrode plates filling the electro-sensitive type optical functional fluid composition comprising,
前記透明電極板間に電圧を印加することにより前記電界配列性粒子の配列を制御して前記一対の透明電極板を透過する透過光量を制御する透過光量制御装置における電界配列性粒子の再分散方法であって、電界配列効果を生じさせる第1の電圧を前記透明電極板間に印加することにより前記透過光量を増加させ、電気泳動効果を生じさせる第2の電圧を前記透明電極板間に印加することにより前記透過光量を減少させることを要旨とする。 Redispersion method of the field sequence particles in transmitted light quantity control device for controlling the amount of transmitted light transmitted through the pair of transparent electrode plates by controlling the sequence of said field sequence particles by applying a voltage to the transparent electrode plates a is to increase the amount of transmitted light by applying a first voltage to generate an electric field sequence effect to the transparent electrode plates, applying a second voltage to cause electrophoresis effects on the transparent electrode plates and summarized in that to reduce the amount of transmitted light by.

【0008】すなわち、請求項1記載の本発明にあっては、電気感応型光機能性流体組成物を充填された透明電極板間に第1の電圧を印加すると、電気感応型光機能性流体組成物内の電界配列性粒子は電界配列効果を生じて配列され、透明電極板間の透過光量は増加し、透明電極板間に第2の電圧を印加すると、電界配列性粒子は電気泳動効果を生じて透明電極板に貼り付き、透過光量を減少させる。 Namely, in the present invention according to claim 1, applying a first voltage to the electro-sensitive type optical functional fluid composition filled transparent electrode plates, the electro-sensitive type optical functional fluid field sequence particles in the composition are arranged generate an electric field sequence effect, the amount of transmitted light of the transparent electrode plates increases, applying a second voltage to the transparent electrode plates, the electric field sequence particles are electrophoretic effect sticking to the transparent electrode plate occurs and decreases the amount of transmitted light.

【0009】また、請求項2記載の本発明は、請求項1 [0009] According to a second aspect of the invention, claim 1
記載の発明において、前記第1の電圧が前記第2の電圧と極性が逆の電圧であることを要旨とする。 In the invention described, it is summarized in that the first voltage is the second voltage and the polarity reverse voltage. すなわち、 That is,
請求項2記載の本発明にあっては、電界配列性粒子に電気泳動効果を生じさせて透過光量を減少させるために、 In the present invention according to claim 2, wherein, in order to reduce the amount of transmitted light by causing the electrophoretic effect on the electric field sequence particles,
第1の電圧と極性が逆の第2の電圧を透明電極板間に印加している。 The first voltage and polarity is applied to the second voltage opposite to the transparent electrode plates.

【0010】 [0010]

【発明の実施の形態】以下、本発明に係る一実施の形態を図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment according to the present invention with reference to the drawings.

【0011】図1は、本発明の一実施の形態例に係る電界配列性粒子の再分散方法を実施する透過光量制御装置の構成を示す図である。 [0011] Figure 1 is a diagram showing a configuration of a transmission light quantity control device for implementing the redispersion method of the field sequence particles according to the example of one embodiment of the present invention. 同図に示す透過光量制御装置は、光制御装置部1と電気回路部3から構成されている。 Transmitted light quantity control device shown in the figure, and an optical controller unit 1 and the electric circuit portion 3. 光制御装置部1は、対向した一対の透明電極板5, Light control device unit 1 includes a pair of transparent electrode plates 5 facing,
7を有し、該透明電極板5,7間にはEA流体9が充填されている。 Has a 7, EA fluid 9 is filled between the transparent electrode plate 5 and 7. このEA流体9は、透明な電気絶縁性媒体13内にEA粒子11が分散されたものであり、図1に示す状態ではEA粒子11は電気絶縁性媒体13内にランダムに分散され、これによりEA流体9は光を透過しない不透明な状態になっている。 The EA fluid 9, which EA particles 11 are dispersed in a transparent electrically insulating medium 13, EA particles 11 in the state shown in FIG. 1 are randomly dispersed in the electrically insulating medium 13, thereby EA fluid 9 is in the opaque state which does not transmit light.

【0012】また、前記透明電極板5,7はそれぞれ2 Further, the transparent electrode plate 5 and 7, respectively 2
層構成に形成されている。 It is formed in the layer structure. すなわち、第1の透明電極板5は透明ガラス層51と透明電極層53から構成され、 That is, the first transparent electrode plate 5 is made of a transparent glass layer 51 and the transparent electrode layer 53,
透明電極層53がEA流体9に接する側に配設されている。 Transparent electrode layer 53 is disposed on the side in contact with the EA fluid 9. また、第2の透明電極板7も透明ガラス層71と透明電極層73から構成され、透明電極層73がEA流体9に接する側に配設されている。 Also configured from the second transparent electrode plate 7 is also transparent glass layer 71 and the transparent electrode layer 73, the transparent electrode layer 73 is disposed on the side in contact with the EA fluid 9. 透明電極層53,73 A transparent electrode layer 53, 73
は、例えばITO膜、酸化スズ等を透明ガラス層51, , For example an ITO film, a tin oxide transparent glass layer 51,
71上にそれぞれ蒸着して形成される。 71 are formed by respectively depositing on.

【0013】上述したように、EA流体9を間に挟んで対向して配設された透明電極板5,7の両側部にはシール部材27,29が固定され、これにより透明電極板5,7の間にEA流体9を封入している。 [0013] As described above, on both sides of the counter to disposed the transparent electrode plate 5 and 7 in between the EA fluid 9 sealing member 27 and 29 is fixed, thereby the transparent electrode plate 5, encapsulating EA fluid 9 during 7.

【0014】また、透明電極板5,7をそれぞれ構成する透明電極層53,73は、それぞれ第1および第2のリード線15,17を介して電気回路部3に接続されている。 Further, the transparent electrode layer 53, 73 constituting the transparent electrode plate 5 and 7, respectively, are connected to electrical circuit section 3 via the first and second leads 15, 17 respectively. 詳しくは、第1の透明電極板5の透明電極層53 Specifically, the transparent electrode layer of the first transparent electrode plate 5 53
は第1のリード線15を介して第1の電源19の正極側および第2の電源23の負極側に接続され、また第2の透明電極板7の透明電極層73は第2のリード線17を介して第1のスイッチ21および第2のスイッチ25の一端に接続され、更に第1のスイッチ21の他端は第1 Negative electrode side are connected, also the transparent electrode layer 73 of the second transparent electrode plate 7 and the second lead of the positive electrode side and the second power supply 23 of the first power supply 19 via the first lead 15 through 17 is connected to one end of the first switch 21 and second switch 25, further the other end of the first switch 21 is first
の電源19の負極側に接続され、第2のスイッチ25の他端は第2の電源23の正極側に接続されている。 Is connected to the negative pole of the power source 19, the other end of the second switch 25 is connected to the positive electrode side of the second power supply 23. なお、第1の電源19は、後述するようにEA効果を前記EA粒子11に生じさせるような第1の電圧、例えば1 The first power source 19, a first voltage such as to cause the EA effect on the EA particles 11 as will be described later, for example, 1
0ボルトの電圧を発生し、第2の電源23は、後述するように電気泳動効果をEA粒子11に生じさせるような第2の電圧、例えば100ボルトの電圧を発生するものであり、第1の電圧は第2の電圧と極性が逆になっている。 0 volt voltage occurred, the second power source 23, a second voltage such as to cause the EA particles 11 electrophoretic effect as described below, which generates a voltage of, for example, 100 volts, first the voltage is the second voltage and the polarity reversed.

【0015】次に、以上のように構成される透過光量制御装置の作用について説明する。 [0015] Next, the operation of the transmission light quantity control device configured as described above will be described.

【0016】まず、図1に示すように、第1および第2 [0016] First, as shown in FIG. 1, first and second
のスイッチ21,25がオフであり、光制御装置部1の透明電極板5,7の間に電圧が印加されていない状態においては、透明電極板5,7間のEA流体9内のEA粒子11は電気絶縁性媒体13内をランダムに分散して浮遊しているため、透明電極板5,7の一方の外側から透明電極板5,7に向けて光を照射しても、この光は分散浮遊しているEA流体9によって遮られ、光制御装置部1を透過することはできない。 Switches 21 and 25 are off, in a state where a voltage between the light control device unit 1 of the transparent electrode plate 5 and 7 is not applied, EA particles in EA fluid 9 between transparent electrode plates 5,7 since 11 is the floating randomly distributed electrically insulating medium 13, be irradiated with light toward the transparent electrode plate 5 and 7 from the outside of one of the transparent electrode plates 5 and 7, this light interrupted by EA fluid 9 dispersed floating, can not be transmitted through the light control device unit 1. すなわち、光制御装置部1は、電圧を印加されていない状態においては、入射光量に対する減衰が大きくなり、光遮断状態になる。 That is, the light control device unit 1, in the state of not being applied with voltage, the attenuation with respect to the amount of incident light is increased and the light blocking state.

【0017】このような状態において、次に図2に示すように、第1のスイッチ21をオンにすると、第1の電源19のEA効果用の第1の電圧、例えば10ボルトが透明電極板5,7間に印加される。 [0017] In such a state, then as shown in FIG. 2, turning on the first switch 21, a first voltage for EA effect of the first power source 19, for example 10 volts transparent electrode plate It is applied between 5 and 7. この場合、具体的には、第1の透明電極板5の透明電極層53には第1の電源19の第1の電圧の正極側が印加され、第2の透明電極板7の透明電極層73には第1の電圧の負極側が印加される。 In this case, specifically, the first positive electrode side voltage is applied, the transparent electrode layer of the second transparent electrode plates 7 73 of the first transparent electrode layer 53 of the transparent electrode plate 5 first power source 19 negative electrode side of the first voltage is applied to.

【0018】このように透明電極板5,7間に第1の電圧が印加されると、EA粒子11は電界によるEA効果により透明電極層53,73間に図示のように垂直に配列し、互いに間隔をあけて鎖状体31を形成する。 [0018] Thus when the first voltage across the transparent electrode plates 5 and 7 are applied, EA particles 11 arranged vertically as shown between the transparent electrode layer 53, 73 by EA effect by an electric field, to form a chain-like member 31 spaced apart from each other. この結果、鎖状体31の間の隙間部にはEA粒子11は存在せず、透明な電気絶縁性媒体13のみとなる。 As a result, EA particles 11 in the gap portion between the chain 31 is not present, and only the transparent electrically insulating medium 13. 従って、 Therefore,
この場合に透明電極板5,7の一方の外側から透明電極板5,7に向けて光を照射すると、この光は鎖状体31 Upon irradiation with one toward the transparent electrode plate 5 and 7 from the outside light of the transparent electrode plate 5 and 7 in this case, the light chain 31
の間の隙間部を通って光制御装置部1を透過することができる。 It can transmit light controller unit 1 through the gap portion between. すなわち、光制御装置部1は、第1の電圧を印加された状態においては、入射光量に対する減衰が小さくなり、光透過状態になる。 That is, the light control device unit 1, in the state of being applied a first voltage, the attenuation with respect to the amount of incident light is reduced, the light transmitting state.

【0019】次に、図3に示すように、第1のスイッチ21をオフにし、第2のスイッチ25をオンにすると、 Next, as shown in FIG. 3, the first switch 21 off and turn on the second switch 25,
第2の電源23の電気泳動効果用の第2の電圧、例えば100ボルトが透明電極板5,7に印加される。 Second voltage for electrophoresis effect of the second power source 23, for example, 100 volts is applied to the transparent electrode plate 5 and 7. この場合、具体的には、第1の透明電極板5の透明電極層53 In this case, specifically, the transparent electrode layer of the first transparent electrode plate 5 53
には第2の電源23の第2の電圧の負極側が印加され、 Negative electrode side of the second voltage of the second power source 23 is applied to,
第2の透明電極板7の透明電極層73には第2の電圧の正極側が印加される。 The transparent electrode layer 73 of the second transparent electrode plate 7 the positive electrode side of the second voltage is applied.

【0020】このように透明電極板5,7間に第2の電圧が印加されると、EA粒子11は電気泳動を行い、図示のように透明電極層53,73の一面に貼り付くことになる。 [0020] When the second voltage is applied between this transparent electrode plate 5, 7, EA particles 11 performs electrophoresis, to stick to the one surface of the transparent electrode layer 53, 73 as shown Become. 従って、この場合に透明電極板5,7の一方の外側から透明電極板5,7に向けて光を照射しても、この光は透明電極層53,73に貼り付いたEA粒子11 Therefore, EA particles 11 in this case be irradiated with light toward one of the transparent electrode plate 5 and 7 from the outside of the transparent electrode plates 5 and 7, this light was stuck to the transparent electrode layer 53, 73
によって遮られ、光制御装置部1を透過することはできない。 Interrupted by can not be transmitted through the light control device unit 1. すなわち、光制御装置部1は、第2の電圧を印加された状態においては、入射光量に対する減衰が大きくなり、光遮断状態になる。 That is, the light control device unit 1, in the state of being applied to the second voltage, the attenuation with respect to the amount of incident light is increased and the light blocking state.

【0021】上述したように、EA効果用の第1の電圧を透明電極板5,7間に印加して、EA粒子11を鎖状体にし、光制御装置部1を光透過状態にした後に、光制御装置部1を光遮断状態にするには、第1の電圧とは異なる電気泳動効果用の第2の電圧を印加することにより、光制御装置部1を適確かつ迅速に光透過状態から光遮断状態にすることができる。 [0021] As described above, by applying a first voltage for EA effect between the transparent electrode plate 5 and 7, the EA particles 11 in a chain-like body, a light control device unit 1 after the light transmission state to the light control device unit 1 in the light blocking state, by the first voltage applying a second voltage for different electrophoretic effect, proper and one quick light transmitted through the light control device unit 1 it can be from a state to the optical cutoff state. すなわち、従来は、光制御装置部1を光透過状態から光遮断状態にするために、 That is, conventionally, in order to make the light control device unit 1 from the light transmitting state to the light blocking state,
第1の電圧をオフまたはゼロにしていたが、このように第1の電圧をオフまたはゼロにするだけでは、EA粒子11はしばらくの間並んだ鎖状体のままであって、光制御装置部1はすぐに光遮断状態になることはできなかったが、本実施例のように第1の電圧と異なる第2の電圧を透明電極板5,7に印加することにより、適確かつ迅速に光遮断状態にすることができるのである。 Had been the first voltage off or zero, thus only turn off or zero a first voltage, EA particles 11 is remained linear body aligned while, the light control device part 1 was not able to quickly become the light blocking state, by applying a first voltage different from the second voltage as in this embodiment to the transparent electrode plate 5 and 7, one certainly suitable rapid it is possible to light blocking state.

【0022】なお、EA効果用の第1の電圧および電気泳動効果用の第2の電圧の大きさを適宜調整することにより、光制御装置部1の光透過および遮断応答特性および光減衰特性を調整することができる。 [0022] Note that, by adjusting the magnitude of the first voltage and the second voltage for electrophoresis effect for EA effect, the light transmitting and blocking the response characteristic and the light attenuation characteristic of the light control device unit 1 it can be adjusted. また、EA粒子11の濃度によっても光の減衰量を調整することができる。 Further, it is also possible to adjust the attenuation of light by the concentration of EA particles 11.

【0023】 [0023]

【発明の効果】以上説明したように、本発明によれば、 As described in the foregoing, according to the present invention,
透明電極板間に第1の電圧を印加して、電界配列効果により電界配列性粒子を鎖状体に配列させた光透過状態において、透明電極板間に第2の電圧を印加することにより、電界配列性粒子を電気泳動効果により透明電極板に貼り付かせ、光透過状態を適確かつ迅速に光遮断状態にすることができるとともに、この場合透明電極板間に単に第1の電圧と極性の異なる第2の電圧を印加するだけであるので、透過光量制御装置の電極構造の変更は不要であり、更に電界配列性粒子は何を使用してもよいという利点がある。 A first voltage is applied to transparent electrode plates, the light transmitting state of being arranged a field sequence particles in a chain-like body by the electric field array effect, by applying a second voltage to the transparent electrode plates, the field sequence particles were sticking to the transparent electrode plate by electrophoresis effect, with the light transmitting state can be accurately and quickly light blocking state suitable, simply the first voltage in this case transparent electrode plates and the polar since the only application of a different second voltage, the change of the electrode structure of the transmission light quantity control device is not required, there is a further advantage that what field sequence particles may be used. 更に、印加電圧を調整することにより、 Further, by adjusting the applied voltage,
光透過減衰量や応答特性を調整することも可能である。 It is also possible to adjust the light transmission attenuation and response characteristics.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明に係る実施の形態の電界配列性粒子の再分散方法を実施する透過光量制御装置の構成を示す図である。 1 is a diagram showing a configuration of a transmission light quantity control device for implementing the redispersion method of the field sequence particles embodiment according to the present invention.

【図2】図1の透過光量制御装置の作用、特にEA効果による光透過状態の作用を示す図である。 [2] the action of the transmitted light quantity control device of FIG. 1 is a view particularly showing the action of the light transmitting state by EA effect.

【図3】図1の透過光量制御装置の作用、特に電気泳動効果による光遮断状態の作用を示す図である。 Effect of the transmitted light quantity control device of FIG. 3] FIG. 1 is a diagram particularly showing the action of the light blocking state by electrophoresis effect.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 光制御装置部 3 電気回路部 5,7 透明電極板 9 EA流体 11 EA粒子 13 電気絶縁性媒体 19 第1の電源 21 第1のスイッチ 23 第2の電源 25 第2のスイッチ 31 鎖状体 1 light control unit 3 an electric circuit unit 5,7 transparent electrode plate 9 EA fluid 11 EA particles 13 electrically insulating medium 19 first power supply 21 first switch 23 second power supply 25 second switch 31 concatamers

Claims (2)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 対向する一対の透明電極板の間に電界配列性粒子を透明な電気絶縁性媒体の中に含有してなる電気感応型光機能性流体組成物を充填し、前記透明電極板間に電圧を印加することにより前記電界配列性粒子の配列を制御して前記一対の透明電極板を透過する透過光量を制御する透過光量制御装置における電界配列性粒子の再分散方法であって、 電界配列効果を生じさせる第1の電圧を前記透明電極板間に印加することにより前記透過光量を増加させ、 電気泳動効果を生じさせる第2の電圧を前記透明電極板間に印加することにより前記透過光量を減少させることを特徴とする電界配列性粒子の再分散方法。 1. A filling opposing comprising in a pair of transparent electrode plates transparent electrically insulating medium field sequence particles in the electro-sensitive type optical functional fluid composition, the transparent electrode plates a redispersion method of the field sequence particles in transmitted light quantity control device for controlling the amount of transmitted light transmitted through the pair of transparent electrode plates by controlling the sequence of said field sequence particles by applying a voltage, an electric field sequence increasing the amount of transmitted light by applying a first voltage to produce an effect on the transparent electrode plates, the transmitted light quantity by the second voltage to cause electrophoresis effect applied to the transparent electrode plates redispersion method of the field sequence particles, characterized in that to reduce.
  2. 【請求項2】 前記第1の電圧は、前記第2の電圧と極性が逆の電圧であることを特徴とする請求項1記載の電界配列性粒子の再分散方法。 Wherein said first voltage, the second voltage and the redispersion method of the field sequence particles of claim 1, wherein the polarity is reversed voltage.
JP8038279A 1996-02-26 1996-02-26 Re-dispersion of electric field arrangeable particle Pending JPH09230391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8038279A JPH09230391A (en) 1996-02-26 1996-02-26 Re-dispersion of electric field arrangeable particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8038279A JPH09230391A (en) 1996-02-26 1996-02-26 Re-dispersion of electric field arrangeable particle

Publications (1)

Publication Number Publication Date
JPH09230391A true JPH09230391A (en) 1997-09-05

Family

ID=12520885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8038279A Pending JPH09230391A (en) 1996-02-26 1996-02-26 Re-dispersion of electric field arrangeable particle

Country Status (1)

Country Link
JP (1) JPH09230391A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999010767A1 (en) * 1997-08-28 1999-03-04 E-Ink Corporation Electrophoretic displays and materials
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules
US9268191B2 (en) 1997-08-28 2016-02-23 E Ink Corporation Multi-color electrophoretic displays
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9564088B2 (en) 2001-11-20 2017-02-07 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9620067B2 (en) 2003-03-31 2017-04-11 E Ink Corporation Methods for driving electro-optic displays
US9966018B2 (en) 2002-06-13 2018-05-08 E Ink Corporation Methods for driving electro-optic displays
US10319314B2 (en) 1999-04-30 2019-06-11 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9268191B2 (en) 1997-08-28 2016-02-23 E Ink Corporation Multi-color electrophoretic displays
WO1999010767A1 (en) * 1997-08-28 1999-03-04 E-Ink Corporation Electrophoretic displays and materials
US9293511B2 (en) 1998-07-08 2016-03-22 E Ink Corporation Methods for achieving improved color in microencapsulated electrophoretic devices
US10319314B2 (en) 1999-04-30 2019-06-11 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9886886B2 (en) 2001-11-20 2018-02-06 E Ink Corporation Methods for driving electro-optic displays
US9564088B2 (en) 2001-11-20 2017-02-07 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9881564B2 (en) 2001-11-20 2018-01-30 E Ink Corporation Electro-optic displays with reduced remnant voltage
US9966018B2 (en) 2002-06-13 2018-05-08 E Ink Corporation Methods for driving electro-optic displays
US9620067B2 (en) 2003-03-31 2017-04-11 E Ink Corporation Methods for driving electro-optic displays
US9542895B2 (en) 2003-11-25 2017-01-10 E Ink Corporation Electro-optic displays, and methods for driving same
US8928562B2 (en) 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US9740076B2 (en) 2003-12-05 2017-08-22 E Ink Corporation Multi-color electrophoretic displays
US9829764B2 (en) 2003-12-05 2017-11-28 E Ink Corporation Multi-color electrophoretic displays
US9005494B2 (en) 2004-01-20 2015-04-14 E Ink Corporation Preparation of capsules

Similar Documents

Publication Publication Date Title
US3147679A (en) Electrostatic image transfer processes and apparatus therefor
EP1231500B1 (en) Electronically addressable microencapsulated ink
US3668106A (en) Electrophoretic display device
US4039254A (en) Electro-optic welding lens assembly using multiple liquid crystal light shutters and polarizers
US6369793B1 (en) Printed display and battery
JP5758442B2 (en) Electrophoretic display using gaseous fluid
JP4633793B2 (en) Electro-optical display
JP5619068B2 (en) Components and methods for forming and testing the electro-optical display device
US3712710A (en) Solid state electrochromic mirror
CA1329637C (en) Electrostatic holding apparatus
CA1118876A (en) Electrophoretic display devices with x-y addressing
JP4613424B2 (en) An image display device, an image display medium, and an image display control device
JP3566524B2 (en) Electrophoretic display device
JP2512510B2 (en) Electron beam - liquid crystal light valve which beam is addressed
CN100363832C (en) Self-stabilized electrophoretically frustrated total internal reflection display
TW526373B (en) Liquid crystal display device and its manufacture method
WO1999040478A1 (en) Large aperture optical image shutter
TW446834B (en) Liquid crystal display device
CN1344379A (en) Electro-optical light modulating device
JP3184296B2 (en) Ferroelectric cold cathode
US3844636A (en) Electrochromic mirror
US20040017349A1 (en) Electrophoretic display and method of producing the same
US3883227A (en) Liquid crystal display devices
EP1321797A3 (en) Transmission type liquid crystal display device and method for fabricating the same
JPH03143279A (en) Piezoelectric actuator